Correction de l'examen

1.

a) (2 points) Soit $\varepsilon>0$. Puisque la série $\sum_{n\geqslant 1}\frac{|b(n)|}{n}$ converge, il existe $N_1\geqslant 1$ tel que, pour tout $N\geqslant N_1$, $\sum_{n>N}\frac{|b(n)|}{n}<\frac{\varepsilon}{2}$. Pour $N>N_1$, découpons notre somme en deux morceaux :

$$\begin{split} \frac{1}{N} \sum_{n=1}^{N} \ |b(n)| \ &= \ \frac{1}{N} \sum_{n=1}^{N_1} \ |b(n)| + \frac{1}{N} \sum_{n=N_1+1}^{N} \ |b(n)| \\ &\leqslant \ \frac{1}{N} \sum_{n=1}^{N_1} \ |b(n)| + \sum_{n=N_1+1}^{N} \frac{|b(n)|}{n} \\ &\leqslant \ \frac{1}{N} \sum_{n=1}^{N_1} \ |b(n)| + \sum_{n>N_1} \frac{|b(n)|}{n} \\ &\leqslant \ \frac{1}{N} \sum_{n=1}^{N_1} \ |b(n)| + \frac{\varepsilon}{2} \end{split}$$

Si on choisit $N\geqslant \max\ (N_1,\ N_2)$, où $N_2=\left[\frac{2}{\varepsilon}\ \sum_{n=1}^{N_1}\ |b(n)|\right]$ alors on obtient l'inégalité $\frac{1}{N}\sum_{n=1}^{N}\ |b(n)|<\varepsilon$. On a donc prouvé que $\frac{1}{N}\sum_{n=1}^{N}\ |b(n)|$ converge vers 0 lorsque N tend vers ∞ .

Par définition de c(n): $\frac{1}{N}\sum_{n=1}^{N}c(n)=\frac{1}{N}\sum_{n=1}^{N}\sum_{1\leqslant d|n}b(d)$. En échangeant les deux sommes, on a $\frac{1}{N}\sum_{n=1}^{N}c(n)=\frac{1}{N}\sum_{d=1}^{N}\sum_{n=1,d|n}^{N}b(d)$. Or le nombre de multiples de d compris entre 1 est N est $\begin{bmatrix} \frac{N}{d}\end{bmatrix}$ donc $\frac{1}{N}\sum_{n=1}^{N}c(n)=\frac{1}{N}\sum_{d=1}^{N}\begin{bmatrix} \frac{N}{d}\end{bmatrix}b(d)$. La différence $\sum_{n=1}^{N}\frac{b(n)}{n}-\frac{1}{N}\sum_{n=1}^{N}c(n)=\frac{1}{N}\sum_{n=1}^{N}(\frac{N}{n}-[\frac{N}{n}])b(n)$ converge vers 0 car $\frac{1}{N}\sum_{n=1}^{N}(\frac{N}{n}-[\frac{N}{n}])|b(n)|<\frac{1}{N}\sum_{n=1}^{N}|b(n)|$. L'hypothèse selon laquelle $\sum_{n\geqslant 1}\frac{b(n)}{n}$ converge montre donc que $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}c(n)=\lim_{N\to\infty}\sum_{n=1}^{N}\frac{b(n)}{n}$.

- b) (2 points) Soit $s \in \mathbb{C}$ tel que $\operatorname{Re}(s) > 1$. On a $\sum_{n=1}^N \left| \frac{b(n)}{n^s} \right| \leqslant \sum_{n=1}^N \left| \frac{b(n)}{n} \right|$ car $|n^s| = n^{\operatorname{Re}(s)} > n$, si bien que $\sum_{n\geqslant 1} \frac{b(n)}{n^s}$ converge absolument, d'après l'hypothèse sur (b(n)). Puisque les séries $\zeta(s) = \sum_{n\geqslant 1} \frac{1}{n^s}$ et $\sum_{n\geqslant 1} \frac{b(n)}{n^s}$ convergent absolument, la série produit $\sum_{n\geqslant 1} \left(\sum_{n_1n_2=n} \frac{1}{n^s_1} \frac{b(n_2)}{n^s_2}\right) = \sum_{n\geqslant 1} \frac{c(n)}{n^s}$ converge absolument vers le produit : $\zeta(s) \sum_{n\geqslant 1} \frac{b(n)}{n^s} = \sum_{n\geqslant 1} \frac{c(n)}{n^s}$.
- c) (2 points) Si l'on ne se soucie pas des problèmes de convergences, le développement formel du produit infini $\zeta(2\ s)^{-1} = \prod_p\ (1-p^{-2s})$ donne $\sum_{n\geqslant 1}\ \frac{b(n)}{n^s}$ avec $b(n)=(-1)^r$ si $n=\prod_{i=1}^r\ p_i^2$ est le carré d'un entier sans facteur carré (i.e. les p_i sont deux à deux distincts) et b(n)=0 sinon.

Si l'on prend cette définition de b(n), on a, en posant $n=m^2$, $\sum_{n\geqslant 1}\left|\frac{b(n)}{n^s}\right|=\sum_{m\geqslant 1}'\frac{1}{m^{2\mathrm{Re}(s)}}$ où la somme $\sum_{m\geqslant 1}'$ porte sur les entiers $m\geqslant 1$ sans facteur carré. L'inégalité $\sum_{n\geqslant 1}\left|\frac{b(n)}{n^s}\right|=\sum_{m\geqslant 1}'\frac{1}{m^{2\mathrm{Re}(s)}}<\sum_{m\geqslant 1}\frac{1}{m^{2\mathrm{Re}(s)}}=\zeta(2\mathrm{~Re}(s))$ montre la convergence absolue de la série $\sum_{n\geqslant 1}\frac{b(n)}{n^s}$ pour $\mathrm{Re}(s)>\frac{1}{2}$.

d) (2 points) Pour $\mathrm{Re}(s) > 1$, la majoration $\sum_{n \in A} \left| \frac{1}{n^s} \right| = \sum_{n \in A} \frac{1}{n^{\mathrm{Re}(s)}} \leqslant \sum_{n \in A} \frac{1}{n^{\mathrm{Re}(s)}} = \zeta(\mathrm{Re}(s))$ montre que la série de Dirichlet $\sum_{n \in A} \frac{1}{n^s}$ est absolument convergente.

Dans l'expression de la fonction ζ de Riemann sous forme de produit de Dirichlet $\zeta(s)=\sum_{n\geqslant 1}\frac{1}{n^s}=\prod_p\ (1+p^{-s}+p^{-2s}+\cdots)=\prod_p\ \frac{1}{1-p^{-s}}$, il est clair que si l'on tronque les séries $1+p^{-s}+p^{-2s}+\cdots$ pour ne garder que les deux premiers termes $1+p^{-s}$, celà revient, côté série de Dirichlet à restreindre la somme aux $n\in A: \sum_{n\in A}\frac{1}{n^s}=\prod_p\ (1+p^{-s}).$

e) (2 points) Reprenons le résultat de la question précédente pour le pousser plus loin : $\sum_{n\in A} \frac{1}{n^s} = \prod_p \ (1+p^{-s}) = \prod_p \ \frac{1-p^{-2s}}{1-p^{-s}} = \left(\prod_p \ \frac{1}{1-p^{-s}}\right) \left(\prod_p \ (1-p^{-2s})\right) = \zeta(s) \ \zeta(2s)^{-1}.$ En utilisant les résultats de c) et b), on a donc $\sum_{n\in A} \frac{1}{n^s} = \zeta(s) \sum_{n\geqslant 1} \frac{b(n)}{n^s} = \sum_{n\geqslant 1} \frac{c(n)}{n^s}.$ On en déduit donc, par unicité des coefficients d'une série de Dirichlet, c(n)=1. Maintenant, en utilisant la deuxième relation obtenue en a), il vient : $\lim_{N\to\infty} \frac{1}{N} \operatorname{Card} \left\{n\in A \colon n\leqslant N\right\} = \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} c(n) = \lim_{N\to\infty} \sum_{n=1}^{N} \frac{b(n)}{n} = \zeta(2)^{-1}.$

2.

a) (2 points) Puisque E et un corps fini, on sait que son groupe des éléments inversibles E^{\times} est un groupe cyclique. Soit $x \in E^{\times}$ un générateur de ce groupe.

Par finitude de E toujours, donc de E^{\times} , x est d'ordre fini, ce qui signifie exactement que x est une racine de l'unité.

Par ailleurs, l'extension F[x] de F engendrée par x contient, par définition, l'élément nul 0, l'élément x et toutes ses puissances, c'est-à-dire 0 et E^{\times} . D'où F[x] = E et E est l'extension cyclotomique engendrée par la racine de l'unité x.

- b) (1 point) Considérons la racine 8^e de l'unité $\zeta_8 = e^{\frac{i\pi}{4}} \in \mathbb{C}$. L'égalité $\zeta_8 = \frac{1}{2}(\sqrt{2} + i\sqrt{2})$ montre que $\mathbb{Q}[\zeta_8] \subset \mathbb{Q}[\sqrt{2}, \sqrt{-2}]$. Les égalités $\sqrt{2} = \zeta_8 + (\zeta_8)^{-1}$, i $\sqrt{2} = \zeta_8 (\zeta_8)^{-1}$ montrent l'inclusion inverse : $\mathbb{Q}[\sqrt{2}, \sqrt{-2}] \subset \mathbb{Q}[\zeta_8]$. Par conséquent, $\mathbb{Q}[\sqrt{2}, \sqrt{-2}]$ est l'extension cyclotomique engendrée par la racine 8^e de l'unité ζ_8 .
- c) (3 points) Considérons la racine $p^{\rm e}$ de l'unité $\zeta_p={\rm e}^{\frac{2{\rm i}\pi}{p}}\in\mathbb{C}$ et la somme de Gauss $\tau=\sum_{x\in\mathbb{F}_p^\times}\left(\frac{x}{p}\right)(\zeta_p)^x$ (qui s'exprime aussi sous la forme $\tau=\sum_{x\in\mathbb{F}_p}(\zeta_p)^{x^2}$).

Par définition de τ , on a $\mathbb{Q}[\tau] \subset \mathbb{Q}[\zeta_p]$.

Selon le cours, τ vérifie la relation $\tau^2 = \left(\frac{-1}{p}\right) p$. Quelque soit la valeur de $\left(\frac{-1}{p}\right)$, on a donc $\tau \in \{\pm \sqrt{p}, \pm \mathrm{i} \sqrt{p}\}$, c'est-à-dire $\{\pm \sqrt{p}, \pm \mathrm{i} \sqrt{p}\} = \{\pm \tau, \pm \mathrm{i} \tau\}$. En termes d'extensions, on obtient $\mathbb{Q}[\sqrt{p}, \sqrt{-p}] = \mathbb{Q}[\sqrt{p}, \mathrm{i} \sqrt{p}] = \mathbb{Q}[\tau, \mathrm{i} \tau] = \mathbb{Q}[\mathrm{i}, \tau] \subset \mathbb{Q}[\mathrm{i}, \zeta_p]$.

La racine 4 p^{e} de l'unité $\zeta_{4p} = \mathrm{e}^{\frac{\mathrm{i}\pi}{2p}} \in \mathbb{C}$ vérifie $(\zeta_{4p})^p = \mathrm{i}$ et $(\zeta_{4p})^4 = \zeta_p$, donc $\mathbb{Q}[\mathrm{i}, \zeta_p] \subset \mathbb{Q}[\zeta_{4p}]$.

Finalement, on a montré que $\mathbb{Q}[\sqrt{p}, \sqrt{-p}]$ est incluse dans l'extension cyclotomique $\mathbb{Q}[\zeta_{4p}]$ engendrée par la racine $4p^{\mathrm{e}}$ de l'unité ζ_{4p} .

d) (2 points) Soit K une extension quadratique de \mathbb{Q} . On sait que K est de la forme $\mathbb{Q}[\sqrt{d}]$ avec $d \in \mathbb{Z} \setminus \{\pm 1, 0\}$ sans facteur carré.

Écrivons $d=(-1)^{\varepsilon}\prod_{i=1}^{r} p_{i}$ la décomposition de d en produit de nombres premiers : $\varepsilon\in\{0,1\}$, $r\geqslant 1$ et les p_{i} sont des nombres premiers 2 à 2 distincts. On a $(\mathbf{i}^{\varepsilon}\prod_{i=1}^{r}\sqrt{p_{i}})^{2}=d$ donc $\mathbb{Q}[\sqrt{d}]\subset\mathbb{Q}[\mathbf{i},\sqrt{p_{1}},\sqrt{p_{2}},\cdots,\sqrt{p_{r}}]$.

D'après les deux questions précédentes, on a $\mathbb{Q}[\sqrt{p_i}] \subset \mathbb{Q}[\zeta_{4p_i}]$, si bien que $\mathbb{Q}[\sqrt{d}] \subset \mathbb{Q}[i, \sqrt{p_1}, \sqrt{p_2}, \cdots, \sqrt{p_r}] \subset \mathbb{Q}[i, \zeta_{4p_1}, \zeta_{4p_2}, \cdots, \zeta_{4p_r}]$. En posant $\zeta_{4d} = \mathrm{e}^{\frac{\mathrm{i}\pi}{2d}}$, les égalités $(\zeta_{4d})^d = \mathrm{i}$ et $(\zeta_{4d})^{p_1p_2\cdots p_{k-1}p_{k+1}\cdots p_r} = \zeta_{4p_i}$ montrent que $\mathbb{Q}[i, \zeta_{4p_1}, \zeta_{4p_2}, \cdots, \zeta_{4p_r}] \subset \mathbb{Q}[\zeta_{4d}]$.

Par conséquent, l'extension quadratique $\mathbb{Q}[\sqrt{d}]$ est incluse dans l'extension cyclotomique $\mathbb{Q}[\zeta_{4d}].$

3.

a) (2 points) Une unité fondamentale de l'anneau $\mathbb{Z}[\sqrt{15}]$ est donnée par la solution entière (x,y) de l'équation x^2-15 $y^2=\pm 1$ telle que $x,y\geqslant 1$ et x est minimal. Il est facile de voir que cette solution est (4,1), donc $\omega=4+\sqrt{15}\in\mathbb{Z}[\sqrt{15}]$ est une unité fondamentale.

Cette unité est de norme $(4+\sqrt{15})$ $(4-\sqrt{15})=1$ ((4,1) est solution de x^2-15 $y^2=1)$ donc, selon le cours, les solutions de l'équation x^2-15 $y^2=1$ correspondent, au signe près, au puissance de ω :

$$\{(x,y) \in \mathbb{Z}^2 : x^2 - 15 \ y^2 = 1\} = \{(x,y) : \exists n \in \mathbb{Z}, x + y \ \sqrt{15} = \pm \ (4 + \sqrt{15})^n\}$$

b) (1 point) L'unité fondamental $\omega \in \mathbb{Z}[\sqrt{15}]$ étant de norme 1, aucune unité n'est de norme -1 et l'équation x^2+15 $y^2=-1$ n'a aucune solution.

4.

(3 points) Les caractères de Dirichlet modulo 8 correspondent aux caractères $\alpha\colon (\mathbb{Z}/8\,\mathbb{Z})^\times \to \mathbb{C}^\times$. On sait que $(\mathbb{Z}/8\,\mathbb{Z})^\times = \{\pm 1, \pm 3\} \simeq (\mathbb{Z}/2\,\mathbb{Z})^2$. En choisissant les générateurs -1 et 3 de $(\mathbb{Z}/8\,\mathbb{Z})^\times$, on obtient que les caractères de Dirichlet correspondent aux couples $(\alpha, \beta) \in \{\pm 1\}^2$: à un tel couple correspond le caractère

$$(\mathbb{Z}/8\,\mathbb{Z})^{\times} \longrightarrow \mathbb{C}^{\times}$$

$$1 \longmapsto 1$$

$$-1 \longmapsto \alpha$$

$$3 \longmapsto \beta$$

$$-3 = -1.3 \longmapsto \alpha\,\beta$$

donc, le caractère de Dirichlet

De même, les caractères de Dirichlet modulo 12 correspondent aux caractères $\alpha\colon (\mathbb{Z}/12\ \mathbb{Z})^\times \to \mathbb{C}^\times$. On sait que $(\mathbb{Z}/12\ \mathbb{Z})^\times = \{\ \pm\ 1,\ \pm\ 5\} \simeq (\mathbb{Z}/2\ \mathbb{Z})^2$. En choisissant les générateurs -1 et 5 de $(\mathbb{Z}/12\ \mathbb{Z})^\times$, on obtient que les caractères de Dirichlet correspondent aux couples $(\alpha,\ \beta)\in \{\ \pm\ 1\}^2$: à un tel couple correspond le caractère

$$\begin{array}{cccc} (\mathbb{Z}/12\,\mathbb{Z})^{\times} & \longrightarrow & \mathbb{C}^{\times} \\ 1 & \longmapsto & 1 \\ -1 & \longmapsto & \alpha \\ 3 & \longmapsto & \beta \\ -3 = -1.3 & \longmapsto & \alpha\,\beta \end{array}$$

donc, le caractère de Dirichlet