Cours 1

Un peu d'histoire de l'algèbre: Babylone, Euclide, Bramagupta, Al' Jabr de Al-Khwarizmi, Cardan, Gauss, Emmy Noether, Emil Artin, Alexandre Grothendieck.

Théorème de d'Alembert (fundamental theorem of algebra): C est algébriquement clos (sans demonstration).

Un corps fini $\mathbf{F}_{\mathbf{q}}$ n'est pas algébriquement clos.

Euclide: Il y a une infinité de nombres premiers.

Tout corps fini est d'ordre une puissance d'un nombre premier p.

 \mathbf{Z}/\mathbf{pZ} est un corps.

Anneaux commutatifs unitaires, intègres, diviseurs de 0, ideaux, idéal principal.

Anneau principal: intègre et tout idéal est principal.

Z est principal, K[X] est principal si K est un corps (commutatif).

Somme de deux idéaux.

Un ideal I de l'anneau A est maximal si et seulement si l'anneau quotient est un corps.

L'inclusion $Aa \subset Ab$ est équivalente à b divise a (il existe $c \in A$ tel que a = bc).

 $p\mathbf{Z}$ est un idéal maximal de \mathbf{Z} par le théorème de factorisation en produit de nombres premiers.

Morphismes d'anneaux, morphismes fondamentaux $A \to A/I$, $\mathbf{Z} \to A$.

Caractéristique d'un anneau. La caractéristique d'un anneau intègre est 0 ou un nombre premier.

Un corps fini est un espace vectoriel de dimension finie sur $\mathbf{Z}/p\mathbf{Z}$ pour un nombre premier.

Factorisation d'un morphisme $A \to B$ par un morphisme surjectif $A \to A/I$.

Cours 2

Si K est un corps, l'anneau K[X]/PK[X] est un corps si et seulement si P est irréductible

Elément irreductible dans un anneau commutatif A (pas une unité, de diviseurs triviaux modulo les unités)

Un élément a de A est une unité si et seulement Aa = A.

Soit A un anneau intègre. Un élément a de A est irréductible si et seulement si Aa est un idéal maximal parmi les idéaux principaux de A.

Le groupe des unités $K[X]^*$ est égal à $K^* = K - 0$ par le lemme du degré.

Un anneau intègre fini est un corps.

Soit $a \in A$. Le morphisme d'anneau "evaluation en a" induit un isomorphisme $A[X]/(X-a)A[X] \simeq A$.

Soit $a \in A, P \in A[X]$. Alors P(a) = 0 est équivalent à X - a divise P.

$$X^{n} - a^{n} = (X - a)(X^{n-1} + aX^{n-1} + \dots + a^{n-1})$$
 pour tout entier $n \ge 1, a \in A$.

Un morphisme bijectif d'anneau $f: A \to B$ est un isomorphisme.

Théorème (Classification des corps finis). Pour tout nombre premier p et tout entier $f \ge 1$, il existe un unique corps fini ayant $q = p^f$ éléments, à isomorphisme près. Sans démonstration.

Un corps F à p éléments est isomorphe à $\mathbf{F_p} := \mathbf{Z}/p\mathbf{Z}$ (via le morphisme fondamental $\mathbf{Z} \to F$)

Si F est un corps à q éléments, alors F contient $\mathbf{F}_{\mathbf{p}}$ et $X^q - X = \prod_{a \in F} (X - a)$. C'est le "corps des racines du polynôme $X^q - X$ sur $\mathbf{F}_{\mathbf{p}}$."

Théorème (Construction d'extensions $F \subset K$). Soit F un corps et $P \in F[X]$ un polynôme irréductible de degré $f \geq 1$. Alors

- a) le morphisme canonique $F[X] \to F[X]/PF[X]$ restreint à F est injectif (par le lemme du degré),
- b) le corps K = F[X]/PF[X] vu comme un espace vectoriel sur F a une dimension finie égale au degré de P (par la division euclidienne).

Cours 3

Théorème. Pour tout nombre premier p, pour tout entier $n \geq 1$, il existe un polynôme irréductible $P \in \mathbf{F}_{\mathbf{p}}[X]$ de degré n (sans démonstration).

Application à l'existence de corps finis ayant p^n éléments.

Exemple: Corps finis ayant ≤ 16 elements.

 $X^2 + X + 1 \in \mathbf{F}_2[X]$ est l'unique polynôme irréductible unitaire de degré 2,

 $P = X^3 + X + 1, X^3 + X^2 + 1 \in \mathbf{F}_2[X]$ sont irréductibles, les corps finis $\mathbf{F}_2[X]/(P)$ ayant 8 éléments sont isomorphes, par l'isomorphisme canonique déduit de $X \to X + 1$.

Si F est un corps, un polynôme de degré ≤ 3 dans F[X] est irréductibe si et seulement s'il n'a pas de racines dans F

 $X^4 + X + 1, X^4 + X^3 + 1 \in \mathbf{F}_2[X]$ sont irréductibles, car $X^4 + X^2 + 1$ est le seul polynôme réductible sans racines dans \mathbf{F}_2 .

 $(a+b)^p = a^p + b^p$ pour deux éléments a, b d'un anneau de caractéristique p.

Morphisme de Frobenius $a \mapsto a^p$ dans un anneau de caractéristique p.

 $\mathbf{Z}[X]$ n'est pas un anneau principal.

Lemme du degré dans A[X]: Si $P,Q \in A[X]$ alors $\deg(PQ) \leq \deg(P) + \deg(Q)$ avec égalité si le coefficient dominant de P ne divise pas 0.

division euclidienne dans A[X]: Si $P,Q \in A[X]$ et le coefficient dominant de $P \neq 0$ est inversible, il existe des polynômes uniques $R,S \in A[X]$ vérfiant Q = PS + R, R = 0 ou $\deg(R) < \deg(P)$.

Si $A \subset B$ est une inclusion d'anneaux, $P, Q \in A[X]$ et P unitaire de degré ≥ 1 . Si P divise Q dans B[X] alors P divise Q dans A[X].

Module M sur un anneau, base (finie) d'un module libre.

Si $P \in A[X]$ est unitaire, alors A[X]/PA[X] est un A-module libre de rang deg P.

 $\mathbf{Z}/6\mathbf{Z} \simeq \mathbf{F_2} \times \mathbf{F_3}$.

Produit de deux idéaux dans un anneau A, deux idéaux I, J sont premiers entre eux si I + J = A.

ICapJ = IJ si I + J = A.

Lemme chinois. Si I, J sont deux idéaux premiers entre eux dans un anneau A, alors A/IJ est isomorphe à $A/I \times A/J$.

n est entier ≥ 0 , alors $\mathbf{Z}/n\mathbf{Z} \simeq \mathbf{Z}/p_1^{k_1}\mathbf{Z} \times \ldots \times \mathbf{Z}/p_r^{k_r}\mathbf{Z}$ si $n = p_1^{k_1} \ldots p_r^{k_r}, \ p_i \neq p_j$ premiers pour $1 \leq i \neq j \leq r$ and $k_i \geq 1$.

F est un corps, $P \in F[X]$ unitaire de degré ≥ 1 , alors $F[X]/PF[X] \simeq F[X]/P_1^{k_1}F[X] \times \ldots \times F[X]/P_r^{k_r}F[X]$ si $P = P_1^{k_1} \ldots P_r^{k_r}$, $P_i \neq P_j$ irréductibles unitaires pour $1 \leq i \neq j \leq r$ and $k_i \geq 1$.

Cours 4

Un anneau A est factoriel s'il est intègre et si tout element $a \neq 0$ admet une factorisation unique: $a = u \prod_{p \in P} p^{v_p(x)}$ où P est un système de représentants des irréductibles modulo multiplication par les unités, $u \in A^*, v_p(x) \in \mathbf{N}$ égal à 0 sauf pour un nombre fini de p, $u, v_p(x)$ uniques.

dans un anneau factoriel A, pour $a, b \in A$, on a $v_7(ab) = v_7(a) + v_7(b)$ pour tout $? \in P$.

dans un anneau factoriel, il existe un p.g.c.d. et un p.p.c.m. définis modulo multiplication par les unités. $v_7(p.g.c.d.(a,b)) = \min(v_7(a), v_7(b)), \quad v_7(p.p.c.m.(a,b)) = \sup(v_7(a), v_7(b)).$

Un idéal I d'un anneau A est premier si A/I est intègre, i.e. pour $a,b\in A$, alors $ab\in I$ implique a ou b appartient à I.

Idéal maximal implique idéal premier.

Théorème: A principal implique A factoriel implique A[X] factoriel.

Si A est intègre, alors A[X] est intègre et $A[X]^* = A^*$ (lemme du degré)

A factoriel est équivalent à: A intègre et

- 1) Si $p \in A$ est irréductible, alors l'idéal Ap est premier (unicité de la factorisation)
- 2) Toute suite croissante d'idéaux principaux de A est stationnaire (existence de la factorisation).

Cours 5

Un nombre entier $n \in \mathbf{Z}$ est irréductible si et seulement s'il est irréductible dans $\mathbf{Z}[X]$ (lemme du degré). Même résultat pour un anneau A intègre.

Un polynôme $P \in \mathbf{Z}[X]$ est dit primitif s'il est de degré ≥ 1 et si le p.g.c.d. de ses coefficients est ± 1 . Même définition pour un anneau factoriel en remplacant ± 1 par A^* .

 $\mathbf{Z}[X] \to \mathbf{F}_p[X]$ Réduction modulo p

Morphisme d'anneau canonique $A[X] \to B[X]$ associé à un morphisme d'anneau $f:A \to B$

Le produit de deux polynômes primitifs est primitif.

Un polynôme $P \in \mathbf{Z}[X]$ primitif, de coefficient dominant non divisible par p, irréducible dans $\mathbf{F}_p[X]$ est irréducible dans $\mathbf{Z}[X]$.

 $X^4 + 1728X^3 + 9572X^2 + 551X + 3577$ est irréductible dans $\mathbf{Z}[X]$.

Critère d'Eisenstein: Un polynôme $P \in \mathbf{Z}[X]$ unitaire, dont les coefficients non dominants sont divisible par p, et le coefficient constant n'est pas divisible par p^2 est irréductible dans $\mathbf{Z}[X]$.

 $X^{657} - 32X^{67} + 4X - 2$ est irréductible dans $\mathbf{Z}[X]$.

Contenu d'un polynôme $P \in \mathbf{Q}[X]$ de degré ≥ 1 : un élément $c(P) \in \mathbf{Q}$ tel que $P = c(P)P_1$ où P est un polynôme primitif dans $\mathbf{Z}[X]$. Unique modulo ± 1 .

 $c(PQ) = \pm c(P)c(Q)$ pour deux polynômes $P, Q \in \mathbf{Q}[X]$ de degré ≥ 1 .

 $P \in \mathbf{Z}[X]$ si et seulement si $c(P) \in \mathbf{Z}$, est primitif si et seulement si $c(P) = \pm 1$

Un polynôme $P \in \mathbf{Z}[X]$ primitif est irréductible dans $\mathbf{Z}[X]$ si et seulement s'il est irréductible dans $\mathbf{Q}[X]$.

 $\mathbf{Z}[X]$ est un anneau factoriel (factoriser c(P) dans \mathbf{Z} et P_1 dans $\mathbf{Q}[X]$).

Cours 6

A intègre, I idéal premier : $P \in A[X]$ irréductible dans A/I[X] de coefficient dominant n'appartenant pas à I, est irréductible dans A[X].

A anneau factoriel.

- Critère d'Eisenstein: $p \in A$ irréductible, $P \in A[X]$ primitif, de coefficient dominant non divisible par p, autres coefficients sont divisibles par p, terme constant on divisible par p^2 , est irréductible.
- Le produit de deux polynômes primitifs est primitif est vrai (donc ses conséquences: l'unicité du contenu d'un polynôme de FracA[X] modulo A^* , la formule du produit du contenu, un polynôme primitif est irréductible dans A[X] si et seulement s'il est irréductible dans FracA[X], A[X] est factoriel.

Si un anneau A est contenu dans un corps K. Alors $\{ab^{-1}, a \in A, b \in A - 0\}$ est un sous-corps F_K de K. C'est le plus petit corps contenant A.

Un morphisme injectif d'anneau $A \to E$ dans un corps E se prolonge uniquement à F_K , induit un isomorphisme $F_K \simeq F_E$.

Si A est intègre, $A \times (A-0)$ modulo la relation d'équivalence $a/b \equiv c/d$ si ad = bc est un corps qui contient A.

Théorème: Un anneau intègre A est contenu dans un corps, le "plus petit" s'appelle le corps des fractions FracA de A, unique à isomorphisme prés.

Un morphisme de corps est nul ou injectif.

Localisation AS^{-1} d'un anneau intègre A par un système multiplicatif S.

 $\mathbf{Z}[1/2] = \mathbf{Z}(1/2^{\mathbf{N}})^{-1}$

L'ensemble des entiers non divisibles par un nombre premier p est un système multiplicatif S(p), $\mathbf{Z}S(p)^{-1}$. Unique idéal maximal $p\mathbf{Z}S(p)^{-1}$.

A anneau intègre, I idéal premier, S(I) = A - I système multiplicatif, $AS(I)^{-1}$ a un unique idéal maximal $IAS(I)^{-1}$.

Zorn: Un ensemble ordonné E tel que toute partie totalement ordonnée possède un majorant dans E, admet un élément maximal

Tout idéal $I \neq A$ d'un anneau A est contenu dans un idéal maximal.

 $A^* = A - M$ pour un anneau A ayant un unique idéal maximal M.

Un nombre complexe z est algébrique s'il est racine P(z)=0 d'un polynôme unitaire $P\in \mathbf{Q}[X]$ de degré ≥ 1 .

Théorème. L'ensemble des nombres algèbriques est un corps algébriquement clos \mathbf{Q}^a .

définition-Proposition. Soit L/K est un extension de corps. Un élément $x \in L$ est algébrique sur K s'il vérifie les propriétés équivalentes

- x est racine P(x)=0 d'un polynôme unitaire $P\in K[X]$ de degré ≥ 1 .
- K[x] est un corps.
- K[x] est un espace vectoriel de dimension finie sur K.
- Le noyau du K-morphisme canonique $K[X] \to K[x] \subset L$ est non nul.

Le polynôme unitaire $P \in K[X]$ de plus petit degré tel que P(x) = 0 (générateur du noyau) est irréductible, s'appelle le polynôme irréductible de x sur K.

Un K-sous espace vectoriel d'un K-espace vectoriel de dimension finie est de dimension finie.

La somme et le produit de $x,y\in L$ algébriques sur K est algèbrique sur K. L'inverse de x est algébrique sur K si $x\neq 0$.

Cours 7

Base télescopique.

Extension finie E/K: le K-espace vectoriel E est de dimension finie [E:K] sur K.

Extension algébrique E/K: tout élément de E est algébrique sur K.

Un élément algébrique sur E est algébrique sur K, si E/K est algébrique.

dévissage. Si $K \subset E \subset L$, alors L/K est finie (algébrique) si et seulement E/K, L/E sont finies (algébriques); alors [L:K] = [L:E][E:K].

 \mathbf{Q}^a est le "plus petit" corps algébriquement clos contenant \mathbf{Q} .

 $\mathbf{Q}[X]$ est dénombrable ("dénombrable" est stable par union, produit fini).

 \mathbf{Q}^a est dénombrable, alors que le cardinal de \mathbf{C} est la puissance du continu.

Proposition (sans démonstration). Le cardinal d'une extension algébrique E d'un corps infini K est égal au cardinal de K.

Théorème: 1) Un corps K est contenu dans un corps algébriquement clos E.

- 2) L'ensemble des éléments de E algébriques sur K est une extension algébrique de K, algébriquement close, appelé la clôture algébrique K^a de K dans E. Toute extension de K contenue dans E contient K^a . (Même démonstration que pour $K = \mathbf{Q}$).
 - 3) deux clôtures algébriques de K sont isomorphes.

Soit $P \in K[X]$ irréductible, alors P a une racine dans le corps K[X]/PK[X] (la classe x de X).

dans l'anneau de polynômes $A = K[X_P, \text{pour tout } P \in K[X] - K]$ à plein de variables, l'idéal I engendré par $P(X_P)$ pour tout $P \in K[X] - K$ ne contient pas 1 (Si 1 est une somme finie $\sum g_i P_i(X_{P_i})$, choisir une extension F/K où les P_i ont une racine α_i puis spécialiser $X_{P_i} \to \alpha_i$, on obtient i=0). Si $i=1,\ldots,n$ est un idéal maximal de A contenant I, tout polynôme $P \in K[X]$ a une racine dans le corps A/M.

Si $K = E_o \subset E_1 \subset \ldots \subset E_n \subset$ est une suite de corps tels que tout polynôme $P \in E_n[X]$ a une racine dans E_{n+1} , pour tout $n \geq 0$, alors $E = \mathbf{C}up_n E_n$ est un corps algébriquement clos (si $P \in E[X]$, il existe $n \ge 1$ tel que $P \in E_n[X]$) contenant K.

dérivée P' d'un polynôme $P \in A[X]$. Formule du produit (PQ)' = PQ' + P'Q.

Soit $a \in A$. Si $P \in A[X]$ est divisible par $(X - a)^2$ si et seulement P et P' sont divisibles par X - a.

Pour tout nombre premier p et pour tout entier $n \geq 1$, l'ensemble des racines de $X^{p^n} - X$ dans \mathbf{F}_n^a est un corps \mathbf{F}_{p^n} à p^n éléments, c'est l'unique corps à p^n éléments contenu dans \mathbf{F}_p^a .

Cours 8 Soient d, n deux entiers ≥ 1 . Alors d|n est équivalent à $\mathbf{F}_{p^d} \subset \mathbf{F}_{p^n}$, est équivalent à $X^{p^d-1}-1$ divise $X^{p^n-1}-1$, est équivalent à a^d-1 divise a^n-1 pour un entier a>1, est équivalent à a^d-1 divise $a^n - 1$ pour tout entier a > 1.

Soit $P \in K[X]$ irréductible, et L/K une extension de corps. Un K-morphisme $K[X]/PK[X] \to L$ est déterminé par l'image de x = classe de X modulo PK[X], qui est une racine quelconque de P(X) dans L.

Soit $x \in K^a$ et P le polynôme minimal de x sur K. Alors le nombre de K-morphismes $K[x] \to K^a$ est égal au degré de P, si les racines de P sont simples.

Soit N_n le nombre de polynômes irréductibles unitaires de degré n dans $\mathbf{F}_p[X]$.

Example $N_1 = p$, $N_2 = (p^2 - p)/2$. Alors $p^n = \sum_{d|n} dN_d$.

La fonction de Moebius $\mu(1) = 1, \mu(p_1 \dots p_r) = (-1^r, \mu(p^2n)) = 0$ pour tous nombres premiers distincts p_1, \ldots, p_r et p nombre premier, n entier ≥ 1 .

Formule d'inversion de Moebius $nN_n = \sum_{d|n} \mu(n/d)p^d$ (sans démonstration)

Application: $p^n \neq \sum_{1 \leq r < n} up^r$ avec $u \in \{0, \pm 1\}$ donc $N_n \neq 0$.

Cours 9

 $(p^n - p^{[n/2]+1} \le nN_n \le p^n \text{ car } \sum_{d|n,d \ne} dN_d \le 1 + p + \dots + p^{[n/2]}.$

Application $N_n \neq 0$ for $n \geq 3$.

 $\mathbf{F}_{p^n} \simeq \mathbf{F}_p[X]/P[X]$ pour tout $P \in \mathbf{F}_p[X]$ irréductible unitaire de degré n.

Un polynôme irréductible $P \in \mathbf{F}_p[X]$ a ses racines simples (divise $X^{p^n} - X$) et contenues dans \mathbf{F}_{p^n} .

Si $x \in \mathbf{F}_p^a$ est une racine de $P \in \mathbf{F}_p[X]$ irréductible unitaire de degré n, alors $\mathbf{F}_{p^n} = \mathbf{F}_p[x]$. On dit que x est un élément primitif de \mathbf{F}_{p^n} .

 $\mathbf{F}_{p^n}^*$ est cyclique, engendré par x (utiliser que l'ordre d'un élément divise p^n-1 donc est p^d-1 pour d|n).

Le Frobenius $x \to x^p$ est un automorphisme de \mathbf{F}_{p^n} d'ordre n.

Le groupe des automorphismes de \mathbf{F}_{p^n} est cyclique engendré par le Frobenius

Un sous-groupe fini G du groupe multiplicatif d'un corps commutatif fini est cyclique. Se ramener au cas d'un groupe d'ordre p^k , avec p premier, $k \ge 1$, prendre l'élement de G d'ordre maximal p^r , puis utiliser que tout élément de G est racine de $X^{p^r} - 1$, qui a au plus p^r racines dans un corps commutatif.

Factorisation d'un groupe fini commutatif en p-groupes. Si G est d'ordre $n=p_1^{k_1}\dots p_r^{k_r}$ est la factorisation en produit de nombres premiers distincts $p_i \neq p_j$ si $i \neq j$, d'exposants $k_i \geq 1$, alors G = $G(p_1^{k_1}) \times \dots G(p_r^{k_r})$ où les $G(p_i^{k_i})$ sont des p_i -groupes (d'ordre une puissance de p_i , nécessairement $p_i^{k_i}$).

Un groupe commutatif = un **Z**-module.

Un K-espace vectoriel muni d'un endomorphisme = un K[X]-module.

Somme directe de A-modules. Soit A un anneau commutatif, M_1, M_2 deux sous-modules d'un A-module M. Alors le morphisme naturel $M_1 \times M_2 \to M$ est surjectif si et seulement si $M = M_1 + M_2$, injectif si et seulement si $M_1\mathbf{C}apM_2=0$. S'il est bijectif, on dit que $M=M_1\oplus M_2$ est la somme directe de M_1 et de

Si A est un anneau principal, M un A-module, aM=0 annulé par $a\in A$ de factorisation $a=p_1^{k_1}\dots p_r^{k_r}$ est la factorisation en produit d'irréductibes distincts $p_i \neq p_j$ si $i \neq j$, d'exposants $k_i \geq 1$, alors M est une somme directe $M = M(p_1^{k_1}) \oplus \ldots \oplus M(p_r^{k_r})$ de sous-modules $M(p_i^{k_i})$ annulé par $p_i^{k_i}$. Ecrire $a = p_1^{k_1}b$, par Bezout il existe $x, y \in A$ tel que $1 = xp_1^{k_1} + yb$, alors $bM = M(p_1^{k_1})$ est annulé par $p_1^{k_1}$ et $p_1^{k_1}M = M(b)$ est annulé par $p_1^{k_1}$ et $p_1^{k_1}M = p_1^{k_1}M = p_1^{k_1}M$. L'intersection est nulle. On continue avec $p_1^{k_1}M = p_1^{k_1}M = p_1^{k_1}M$.

Polynôme cyclotomique $\Phi_n(X) = \prod_{(k,n)=1} (X - e^{2i\pi k/n})$, de degré l'indicateur d'Euler. $\phi(n) = \phi(p_1^{k_1}) \times \ldots \times \phi(p_r^{k_r}), \ \phi(p^k) = p^k - p^{k-1}$.

 $\phi(n)$ pour $n \leq 12$.

Théorème. $\Phi_n(X) \in \mathbf{Z}[X]$ est irréductible.

Cours 10

Irréductibilité de Φ_n . Si $\Phi_n = PQ$ avec $P,Q \in \mathbf{Z}[X]$ de degré ≥ 1 , x une racine de l'unité d'ordre n telle que P(x) = 0, p nombre premier ne divisant par n, alors $P(x^p) = 0$. Sinon $Q(x^p) = 0$. On a $x \in A := \mathbf{Z}[e^{2i\pi/n}]$. Soit M un idéal maximal de A contenant p. Dans A/M, on a $Q(x^p) = Q(x)^p$ donc Q(x) = 0 = P(x). Or les racines de $X^n - 1$ dans A/M sont simples. Absurde. On en déduit que x^k pour tout entier k, (k, n) = 1, sont racines de P par induction sur le nombre de facteurs premiers de k.

 C_n groupe cyclique d'ordre $n \geq 1$. Si x est un générateur, les autres générateurs sont $x^k, 1 \leq k \leq 1$ n,(k,n)=1. L'unique sous-groupe C_d d'ordre d|n est engendré par $x^{n/d}$.

 $q=p^f, f\geq 1$. Le groupe de Galois $Aut_{\mathbf{F}_q}\mathbf{F}_{q^n}\simeq C_n$ est engendré par $\phi:x\mapsto x^q$. Le corps \mathbf{F}_{q^d} est le corps des invariants de \mathbf{F}_{q^n} par $C_{n/d}$. Bijection entre sous-groupes du groupe de Galois et sous-extensions de $\mathbf{F}_{q^n}/\mathbf{F}_q$.

Entier algébrique: racine complexe d'un polynôme unitaire $P \in \mathbf{Z}[X]$.

Exemple: la longueur $\sqrt{2}$ de la diagonale du carré unité, le nombre d'or $(1+\sqrt{5})/2$ racine positive de

Entiers quadratiques: d entier sans facteurs carré, l'anneau des entiers du corps quadratique $\mathbf{Q}[d^{1/2}]$, est $\mathbf{Z} \oplus \mathbf{Z} d^{1/2} \text{ si } d \equiv 2, 3 \mod 4 \text{ et } \{(m + nd^{1/2})/2, m, n \in \mathbf{Z}, m = n \mod 2\} = \mathbf{Z} \oplus \mathbf{Z} (1 - d^{1/2})/2 \text{ si } d \equiv 1 \mod 4.$ $x + yd^{1/2}$ entier pour $x, y \in \mathbf{Q}$ est équivalent à $2x, x^2 - dy^2$ entiers.

Trace, norme $\mathbf{Q}[d^{1/2}] \to \mathbf{Q}$.

Si x est un entier algébrique et f un automorphisme de \mathbb{C} , alors f(x) est un entier algébrique.

Le groupe des automorphismes de $\mathbf{Q}[d^{1/2}]$ est d'ordre 2.

Théorème (démonstration plus loin). L'ensemble des entiers algébriques est un anneau \mathbb{Z}^a , l'anneau des entiers algébriques.

L'anneau des entiers d'un corps de nombres.

Généralisation: $A \subset B$ une inclusion d'anneaux, $b \in B$ est entier sur A s'il existe $P \in A[X]$ unitaire tel que P(b) = 0. La clôture intégale de A dans B est l'ensemble des éléments de B entiers sur A. C'est un anneau.

Anneau intègralement clos: intègre, égal à sa clôture intégrale dans son corps des fractions.

L'anneau des entiers d'un corps de nombres est intégralement clos.

Un anneau factoriel est intégralement clos (si ab^{-1} entier avec a, b premiers entre eux, $a^n \in bA$).

Entiers cyclotomiques (sans démonstration): $\mathbf{Z}[e^{2i\pi/n}]$ est l'anneau des entiers du n-ième corps cyclotomique $\mathbf{Q}[e^{2i\pi/n}]$.

Le groupe des automorphismes de $\mathbf{Q}[e^{2i\pi/n}]$ est isomorphe à $(\mathbf{Z}/n\mathbf{Z})^*$.

Cours 11

Théorème (sans démonstration) Le groupe $(\mathbf{Z}/2^k\mathbf{Z})^*$ est isomorphe à $(\mathbf{Z}/2\mathbf{Z}) \times (\mathbf{Z}/2^{k-2}\mathbf{Z})$ si $k \geq 3$. Pour p premier impair ou pour $p = 2, k = 1, 2, (\mathbf{Z}/p^k\mathbf{Z})^*$ est cyclique (donc isomorphe à $\mathbf{Z}/p^{k-1}(p-1)\mathbf{Z}$.

Si $K \subset L$ est une extension de corps, et H un sous-groupe de Aut_KL , alors l'ensemble L^H des H-invariants de L est un corps.

Les propriétés suivantes sont équivalentes:

- 1) b est entier,
- 2) le A-module A[b] est de type fini,
- 3)A[b] est contenu dans un A-module de type fini $M,\,bM\subset M,$ et pas d'élément $d\in A[b]$ non nul tel que dM=0.

Application: Si b_1, b_2 entiers sur A, alors $A[b_1, b_2]$ est un A-module de type fini, donc tous s éléments sont entiers, en particulier $b_1 + b_2, b_1b_2$.

Preuve des équivalences. 1) entraine 2) entraine 3) (prendre M=A[b]) entraine 1): Astuce du déterminant et cofacteurs.

Prendre $(m_i) \in M^n$ engendrant M, écrire $bm_i = \sum_j a_{ij}m_j$ puis $\sum_j (a_{ij} - b\delta_{ij})m_j = 0$. Multiplier par le cofacteur b_{ik} de la matrice $(a_{ij} - b\delta_{ij}) \in M(n, A[b])$ et prendre la somme sur i. Si d est le déterminant de la matrice on obtient $dm_k = 0$ pour tout k, donc dM = 0, donc d = 0. Or $d = P(b), P \in A[X]$ de coefficient dominant ± 1 .

Cayley-Hamilton. $f \in End_AM$, il existe $P \in A[X]$ tel que P(f) = 0.

Forme multilinéaire alternée $f:M^n\to A$. Linéaire en chaque variable, nulle si deux coordonnées adjacentes sont égales $m_i=m_{i+1}$.

```
f(\ldots, m_i, m_{i+1}, \ldots) = -f(\ldots, m_{i+1}, m_i, \ldots).
```

Hypothèse "adjacent" inutile.

Si (v_i) , $(w_i) \in M^n$ et $w_j = \sum_i a_{ij} v_i$ pour $(a_{ij}) \in M(n, A)$, alors $f(w_i) = (\sum_{s \in S_n} (-1)^{\epsilon(s)} \prod a_{is(i)}) f(v_i)$. Si $M \simeq A^n$ a une base (v_i) , alors f est déterminée par $f(v_i)$.

Determinant d'une matrice $A=(a_{ij})\in M(n,R)$ de matrice colonnes $C_i\in R^n$: $det(aij)=f(C_i)=\sum_{s\in S_n}(-1)^{\epsilon(s)}\prod a_{is(i)}$ pour la forme multilinéaire alternée telle que $f(e_i)=det(Id)=1$, et (e_i) est la base canonique de R^n .

R anneau commutatif. det AB = (det A)(det B) pour deux matrices $A, B \in M(n, R)$ est égal au produit des déterminants. Appliquer $f(w_i) = (det A)f_{v_i} = (det A)(det B)f_{e_i} = det ABf(e_i)$ dans $M = R^n$ en prenant $v_i = \sum_j b_{ij} e_j$ et (e_i) la base canonique de R^n .

Matrice transposée $(b_{ij} = a_{ji}) \in M(n, A)$: même déterminant.

Developpement du déterminant $d = det(a_{ij})$ selon la ligne i

 $d = (-1)^{i+1} a_{i1} det B(i1) + (-1)^{i+2} a_{i2} det B(i2) + \dots + (-1)^{i+n} a_{in} det B(in)$

 $B(ij) := \text{matrice } (a_{ij}) \text{ privée de la ligne } i \text{ et de la colonne } j.$

Cofacteur $b_{ij} := (-1)^{i+j} det B(ij)$, matrice transposée des cofacteurs $(b_{ji}) \in M(n, A)$

Developpement du déterminant $d = det(a_{ij})$ selon la colonne j, que l'on remplace par C_k

 $\sum_{i} a_{ij}b_{ik} = d\delta_{jk}$.

 $\overline{(a_{ij})} \times (b_{ji}) = dI_n$, I_n matrice identité de M(n, A).

Cours 12

Lemme de Nakayama. Soit M un A-module de type fini et I un idéal de A tel que IM = M. Alors il existe $a \in A$ tel que aM = M, et $a \in I + I$.

Soit M un A-module de type fini. Un morphisme $f:M\to M$ surjectif est injectif.

Les bases d'un A-module libre de type fini ont le même nombre d'éléments.

(2,3)= système de générateurs minimal du **Z**-module **Z**.

Sous-module N d'un A-module M, noyau d'une application linéaire $f:M\to M'$, module quotient $p:M\to M/N$.

Morphismes canoniques: f induit un morphisme injectif $M_1/Kerf \to M'$, d'image f(M).

 $N \to N + N'$ induit un isomorphisme $N/(N \cap N') \to (N + N')/N$.

Si $N' \subset N \subset M$, le morphisme $M \to M/N'$ induit un isomorphisme $M/N \to (M/N')/(N/N')$.

Soit A un anneau ayant un unique idéal maximal P, M un A-module de type fini. Alors

- si M = PM alors M = 0.
- Si $(v_i)_{1 \le i \le n}$ est une base de M/PM, et si (m_i) relève (v_i) , alors (m_i) est un système de générateurs de M. Les systèmes générateurs minimaux de M ont le même nombre d'éléments (non démontré).

Exercice: Si a = 1 + b et b appartient à l'intersection des idéaux maximaux, alors a est inversible, i.e. Aa = A (tout idéal propre est contenu dans un idéal maximal).

Cours 13 Comment reconnaitre sur les coefficients d'un polynôme $P = a_n X^n + \ldots + a_o \in K[X]$ non constant si P a une racine double dans une cloture algébrique de K? Par le discriminant $Discr(P) \in K$ qui pour un polynôme quadratique $aX^2 + bX + c$ est $b^2 - 4ac$. Le discriminant est nul si et seulement si P a une racine double.

Pour un polynôme cubique, $a_3X^3+a_2X^2+a_1X+a_o$ le discriminant est $a_1a_2^2-4a_oa_2^3-4a_3a_1^3-27a_o^2a_3^2+18a_oa_1a_2a_3$, le discriminant de X^3+bX+c est $-4b^3-27c^2$.

Comment reconnaitre sur les coefficients de deux polynômes $P = a_n X^n + \ldots + a_o, Q = b_m X^m + \ldots + b_o \in$ K[X] non constants si P,Q ont une racine commune dans une cloture algébrique de K? Par le résultant $Res(P,Q) \in K$. Le résultant est nul si et seulement si P,Q ont une racine commune.

P,Q premiers entre eux dans K[X] est équivalent à P,Q n'ont pas de racine commune dans K^a (Si une racine commune, alors 1 = 0 by Bezout; si pas de racine commune, pas de facteurs communs).

Le résultant est le déterminant d'une matrice carrée $n \times m$, appelée la matrice de Sylvester de P,Q. Première ligne $(a_n, a_{n-1}, \ldots, a_o, 0, \ldots, 0)$, que l'on répète m fois en décalant vers la droite, puis la m+1-ligne $(b_m, b_{m-1}, \ldots, b_o, 0, \ldots, 0)$, que l'on répète n fois en décalant vers la droite.

Matrice universelle: les coefficients $a_i = x_i, b_j = y_j$ sont des indeterminées, la matrice est à coefficients dans $R := \mathbf{Z}[x_i, y_j]$. Résultant universel.

Les lignes sont les coefficients de la colonne $C = (X^{m-1}P, \dots, P, X^{n-1}Q, \dots, Q)^t$ sur la base descendante $X^{m+n-1}, \dots, 1$ du R-module $Pol_{\leq m-1} \in R[X]$ des polynômes de degré $\leq n+m-1$, i.e.

 $C = X^{n+m-1}C_{m+n-1} + \dots + 1C_o$. Par Cramer,

$$Res(P,Q) = det(C_{m+n-1}, \dots, C_o) = det(C_{m+n-1}, \dots, C_1, C) = fP + gQ \text{ pour } f, g \in R[X].$$

 $Res(P,Q) = det(C_{m+n-1},\ldots,C_o) = det(C_{m+n-1},\ldots,C_1,C) = fP + gQ$ pour $f,g \in R[X]$. Si on spécialise $x_i \mapsto a_i, y_j \mapsto b_j : Z[x_i,y_j] \to K$, le résultant est non nul si et seulement si $P = P_a, Q = R[X]$ Q_b sont premiers entre eux dans K[X].

Définition du discriminant: $Res(P, P') = (-1)^{n(n-1)/2} a_n Discr(P)$. Noter que a_n divise la première colonne de la matrice de Sylvester de P, P'.

Lien coefficients racines. Si $P = a_n \prod_i (X - \alpha_i), Q = b_m \prod_j (X - \beta_j)$ scindés,

Here coefficients rachies. Si
$$F = a_n \prod_i (X - \alpha_i)$$
, $Q = b_m \prod_j (X - \beta_j)$ s
 $Res(P,Q) = a_n^m b_m^m \prod_{1 \le i \le n, 1 \le j \le m} (\alpha_i - \beta_j)$.
 $Res(P,P') = a_n^{2n-1} \prod_{i \ne j} (\alpha_i - \alpha_j)$ (écrire $P' = a_n \sum_j \prod_{i \ne j} (X - \alpha_i)$),

$$Discr(P) = a_n^{2n-1} \prod_{i < i} (\alpha_i - \alpha_i)^2$$

 $Discr(P) = a_n^{2n-1} \prod_{i < j} (\alpha_i - \alpha_j)^2$. La relation coefficients/racines se déduit de:

- le résultant est antisymétrique $Res(P,Q) = (-1)^{mn}Res(Q,P)$ (déterminant)
- Multiplication par un scalaire $Res(aP,Q) = a^m Res(P,Q)$ (déterminant)
- Multiplicatif $Res(P_1P_2,Q) = Res(P_1,Q)Res(P_1,Q)$,
- -Res(X a, Q) = Q(a).

La preuve des deux dernières propriétés (pour simplifier P,Q unitaires) se fait avec le "symbole de Legendre" pour les polynômes, $(\frac{P}{Q})$ = déterminant de la multiplication par P dans R[X]/QR[X].

-
$$Res(P,Q) = (-1)^{mn} \left(\frac{P}{Q}\right)$$
.

Cette formule est tres utile pour calculer le résultant. Comme $(\frac{P}{Q})$ ne dépend que du reste de la multiplication de P par Q, on peut faire baisser les degrés de P,Q en utilisant les autres propriétés.

 $(f,g) \to fP + gQ, \ W \mapsto (r_Q(W), q_Q(W): Pol_{\leq m-1} \times Pol_{\leq m-1} \to Pol_{\leq m+n-1} \to Pol_{\leq m-1} \times Pol_{\leq m-1}.$ La matrice de la première application linéaire est la transposée de la matrice de Sylvester, la matrice de la seconde a pour déterminant $(-1)^{mn}$. La matrice de l'application composée $(f,g)\mapsto (r_Q(fP),g+q(fP))$ a le même determinant que celui de l'application $f \to r_Q(fP)$ i.e. $(\frac{P}{Q})$. Lorsque Q = X - a, l'image de 1 est P(a). Donc Res(P, X - a) = P(a). Par antisymétrie, Res(X - a, Q) = Q(a).

Cours 14

 $(X - t_1) \dots (X - t_n) = X^n - s_1 X^{n-1} + \dots + (-1)^n s_n.$

 $s_i = s_i(t_1, \dots, t_n)$ i-ième fonction symétrique en (t_1, \dots, t_n) . s_i polynôme homogène de degré i.

 $s_i(t_1,\ldots,t_{n-1},0)$ est la *i*-ième fonction symétrique $s_{i,o}$ en (t_1,\ldots,t_{n-1}) si $i\neq n$ et $s_n(t_1,\ldots,t_{n-1},0)=0$. monôme $t_1^{k_1} \dots t_n^{k_n}$ de degré $d(k) := k_1 + \dots + k_n$ et de poids $p(k) := k_1 + \dots + nk_n$. Le polynôme $s_1^{k_1} \dots s_n^{k_n}$ est de degré d = p(k) en (t_1, \dots, t_n) .

Partition de d associée: éléments $\leq n$.

Partition de d conjuguée: longueur $\leq n$.

Degré, poids d'un polynôme: maximum des degrés, poids des monômes.

A anneau commutatif, pour $s \in S_n$ et $P \in A[t_1, \ldots, t_n]$ on note $P^s(t_1, \ldots, t_n) = P(t_{s(1)}, \ldots, t_{s(n)})$.

 $P(t_1,\ldots,t_n)$ symétrique implique $P_o:=P(t_1,\ldots,t_{n-1},0)\in A[t_1,\ldots,t_{n-1}]^{S_{n-1}}$ symétrique.

 $A[t_1,\ldots,t_n]^{S_n}$ est un sous-anneau de $A[t_1,\ldots,t_n]$.

Pour tout $f \in A[t_1, \ldots, t_n]$ symétrique de degré $\leq d$, il existe $g \in A[s_1, \ldots, s_n]$ de poids $\leq d$ tel que f = g. Preuve par induction on (n, d).

Vrai n=1. Supposons vrai pour n-1 et soit $f\in A[t_1,\ldots,t_n]$ symétrique de degré $\leq d$. Vrai pour d=1. Supposons vrai pour degrés < d. Il existe $g_1 \in A[s_{1,o},\ldots,s_{n-1,o}]$ de poids $\le d$ tel que $f_\le = g_1$. Le polynôme $g_1(s_1,\ldots,s_{n-1})$ est symétrique de degré $\leq d$ en (t_1,\ldots,t_n) et $f_1=f-g_1(s_1,\ldots,s_{n-1})\in I$ $A[t_1,\ldots,t_n]$ est symétrique de degré $\leq d$ et nul lorsque $t_n=0$. Donc $f_1=s_nf_2$ avec $f_2\in A[t_1,\ldots,t_n]$, qui est symétrique et de degré $\leq d-n$. Donc il existe $g_2 \in A[s_1,\ldots,s_n]$ tel que $f_2=g_2$. Prendre $g = g_1(s_1, \dots, s_{n-1} + s_n g_2(s_1, \dots, s_n).$

Les fonctions symétriques sont algébriquement indépendantes: il n'existe pas de polynôme non nul $P \in A[X_1, ..., X_n]$ tel que $P(s_1, ..., s_n) = 0$ dans $A[t_1, ..., t_n]$.

Recurrence sur n. Vrai n = 1. Supposons vrai n - 1. Si faux pour n, choisir P de degré minimal, et développer P en X_n . Le terme constant $f \in A[X_1, \ldots, X_{n-1}]$ n'est pas nul car $s_n Q(s_1, \ldots, s_n) = 0$ implique $Q(s_1,\ldots,s_n)=0$. Faire $t_n=0$. Il ne reste que le terme constant $f(s_{1,o},\ldots,s_{n-1,o})=0$. Absurde par hypothèse de récurrence.

Exemple $\delta(t) = \prod_{i < j} (t_i - t_j)$ pas symétrique mais $\prod_{i < j} (t_i - t_j)^2$ symétrique, égal à $D(s_1, \dots, s_n)$ le discriminant du polynôme $X^n - s_1 X^{n-1} + \ldots + (-1)^n s_n$.

 $A[t_1, \ldots, t_n]^{S_n} = A[s_1, \ldots, s_n] \simeq A[t_1, \ldots, t_n].$

Relations de Newton pour $p_d := t_1^d + \ldots + t_n^d$ pour $d \ge 0$ (pas une base).

 $p_1 = s_1, \ p_2 = s_1 p_1 - 2s_2, \ p_3 = s_1 p_2 - s_2 p_1 + 3s_3, \dots,$ $p_d = s_1 p_{d-1} - s_2 p_{d-2} + \dots + (-1)^{d-2} s_{d-1} p_1 + (-1)^{d-1} s_d d \text{ si } d \le n.$

 $p_d = s_1 p_{d-1} - s_2 p_{d-2} + \ldots + (-1)^{n-1} s_n p_{d-n} \text{ pour } d > n.$

 $A[t_1,\ldots,t_n]$ est un module libre sur $A[t_1,\ldots,t_n]^{S_n}$ de rang n! de base $t_1^{k_1}\ldots t_n^{k_n}$ avec $0\leq k_i\leq i-1$ pour $1 \le i \le n$. (Sans démonstration).

Cours 15

Polynôme irréductible séparable: $P \in IrrK[X]$ de racines simples dans une clôture algébrique K^a .

 $X^p - T \in \mathbf{F}_{\mathbf{p}}(T)[X]$ est irréductible (Eisenstein) non séparable (une seule racine d'ordre p dans $\mathbf{F}_{\mathbf{p}}(T)^a$).

Corps parfait: tout polynôme irréductible est séparable (définition 1).

Exemple de corps parfait:

- corps algébriquement clos (un polynôme irréductible est de degré 1),
- corps de caractéristique 0 (la dérivée d'un polynôme non constant est non nulle de degré strictement inférieur, et un polynôme irréductible $P \in IrrK[X]$ de racine $\alpha \in K^a$ engendre l'idéal des polynômes $Q \in IrrK[X]$ tels que $Q(\alpha) = 0$
- corps fini (même démonstration une fois que l'on sait que la dérivée d'un polynôme irréductible $P \in IrrK[X]$ est non nulle).

Corps parfait: de caractéristque 0 ou de caractéristique p avec un Frobenius surjectif (définition 2 qui implique la définition 1). Par comptage, un corps fini est un corps parfait. La dérivée d'un polynôme irréductible $P \in IrrK[X]$ est non nulle si le corps est parfait (en caractéristique p > 0, la dérivée d'un polynôme $Q \in K[X]$ est nulle si et seulement si $Q \in K[X^p]$. Si le Frobenius est surjectif, il existe $R \in K[X]$ tel que $Q = R^p$ donc Q ne peut être irréductible).

Si K est de caractéristique p>0, les racines de $P\in IrrK[X]$ dans K^a ont même multiplicité p^k (Si P non séparable, alors $P = Q(X^p)$ pour $Q \in IrrK[X]$. Par induction, $P = Q(X^{p^k})$ pour $Q \in K[X]$ séparable).

Les prolongements à une extension monogène $K[\alpha]$ d'un morphisme $f:K\to L$ sont en bijection avec les racines dans L de l'image par f du polynôme minimal de α dans K[X].

Dévissage d'une extension finie E/K par des extensions monogènes.

Le nombre de K-automorphismes d'une extension finie E/K est majoré par le degré [E:K].

La multiplication par $x \in E$ est une application K-linéaire $E \to E$. L'anneau des applications Klinéaires de E dans E est un E-espace vectoriel de dimension [E:F]

Indépendance linéaire des morphismes de corps $E \to L$ dans le L-espace vectoriel des applications de E dans L (famille finie liée $\sum_{i=1}^{n} a_i f_i = 0$ implique $\sum a_i f_i(x) f_i = 0$ pour tout $x \in E$, si n est minimal alors les f_i sont égaux donc n=1, absurde).

Cours 16 Soit E/K un extension finie. On dit que E/K est galoisienne si $Aut_K E = [E:K]$.

Ceci est équivalent à: $Aut_K E$ est une base sur E de l'espace des applications K-lin 'eaires $f: E \to E$ (qui contient E, via la multiplication $f_x:? \to ?x$ pour $x \in E$). Autrement dit, toute application K-linéaire $f: E \to E$ s'écrit uniquement $f = \sum_{\sigma \in Aut_K E} a_{\sigma} \sigma$ avec $a_{\sigma} \in E$. Ceci est aussi équivalent à $E^{Aut_K E} = K$ (l'ensemble des points fixes de $Aut_K E$ est K).

Exemples: une extension de corps finis, l'extension cyclotomique, une extension quadratique, sont galoisiennes, mais $\mathbf{Q}[2^{1/3}]/\mathbf{Q}$ n'est pas une extension galoisienne.

Théorème principal de la théorie de Galois. Soit E/K une extension finie de groupe de Galois G := $Aut_K E$. L'application $H \to E^H$ est une bijection entre les sous-groupes de G et les sous-extensions de E/K. L'extension E/E^H est galoisienne de groupe de Galois H. L'extension E^H/K est galoisienne ssi Hest distingué dans G; son groupe de Galois est alors G/H.

La démonstration du théorème principal utilise:

Soit G un groupe fini d'automorphismes d'un corps L. Alors l'ensemble L^G des points fixes de G est un corps, et l'extension L/L^G est finie de degré majoré par le cardinal n = |G| de G.

Variante (finie) du théorème d'indépendance L-linéaire des K-morphismes d'une extension finie E/Kdans un corps L. Si $\sigma_1, \ldots, \sigma_r : E \to L$ sont r K-morphismes distincts, et e_1, \ldots, e_n est une base de E/K, alors les vecteurs $V(\sigma_1) = (\sigma_1(e_i)_{1 \le i \le n}, \dots, V(\sigma_r)$ de L^n sont L-linéairement indépendants.

Exercice: L'extension $\mathbf{Q}(2^{1/4})/\mathbf{Q}$ n'est pas galoisienne, pour trouver les sous-extensions, on considère l'extension galoisienne $\mathbf{Q}(2^{1/4},i)/\mathbf{Q}$ et le sous-groupe H du groupe de Galois G de $\mathbf{Q}(2^{1/4},i)/\mathbf{Q}$ de points fixes $\mathbf{Q}(2^{1/4})$. Les sous-extensions de $\mathbf{Q}(2^{1/4})/\mathbf{Q}$ sont les points fixes de $\mathbf{Q}(2^{1/4},i)/\mathbf{Q}$ par les sous-groupes de G qui contiennent H.

Cours 17 Exercice du partiel: Pour n > 2, $\mathbf{Q}(e^{2i\pi/n}/\mathbf{Q})$ est galoisienne, de groupe de Galois commutatif, isomorphe à $(\mathbf{Z}/n\mathbf{Z})^*$, contient le corps $\mathbf{Q}(\cos(2\pi/n))$ qui est l'ensemble des éléments fixes de $\mathbf{Q}(e^{2i\pi/n})$ par la conjugaison complexe, est de degré $\phi(n)/2$ sur Q, l'extension $\mathbf{Q}(\cos(2\pi/n)/\mathbf{Q})$ est galoisienne de groupe de Galois le quotient de $(\mathbf{Z}/n\mathbf{Z})^*$ par le sous-groupe d'ordre 2 engendré par la classe de -1.

Corps des racines dans un polynôme $P \in K[X]$ non constant dans une clôture algébrique K^a . Construction abstraite par factorisation euclidienne de P et corps de ruptures successifs $E \subset E[X]/Q[X]E[X]$ pour $Q \in E[X]$ facteur irréductible de P de degré ≥ 2 .

Si les facteurs irréductibles de P ont leur racines simples (toujours vrai si K est parfait), le corps des racines de P est une extension galoisienne de K. Son groupe de Galois est appelé le groupe de Galois sur Kde P.

Extension radicale finie: $K = E_o \subset E_1 \subset \ldots \subset E_r = E$ telle que $E_{i+1} = E_i(x_i^{1/n_i})$ pour $x_i \in E_i$ et n_i un entier ≥ 2 et $0 \leq i \leq r - 1$.

Equation P(X) = 0 résoluble par radicaux: le corps des racines de P est une extension galoisienne radicale finie.

Cours 18 Groupe fini résoluble: filtration par des sou-groupes $1 \subset G_1 \subset \ldots G_i \subset G_{i+1} \subset \ldots \subset G_n$ tels que G_i distingué dans G_{i+1} et le quotient G_{i+1}/G_i est abélien.

Un groupe quotient d'un groupe résoluble est résoluble.

Le groupe alterné A_5 n'est pas résoluble (sans démonstration).

Exercice. Un sous-groupe d'un groupe résoluble est résoluble. Le groupe symétrique S_4 est résoluble. Le groupe symétrique S_n n'est pas résoluble pour $n \ge n$.

Th. Une extension radicale finie est résoluble.

Soit p un nombre premier, et H un sous-groupe de S_p d'ordre divisible par p et contenant une transposition. Alors $H = S_p$ (sans démonstration).

Soit $P \in \mathbf{Z}[X]$ unitaire de degré p, admettant p-2 racines réelles exactement. Alors le groupe de Galois de P sur \mathbf{Q} est S_p .

L'équation P(X) = 0 avec $P(X) = X^5 - 4X + 2$, n'est pas résoluble par radicaux.

Cours 19

 $z \in \mathbf{C}$ constructible à la règle et au compas ssi le groupe de Galois du polynôme minimal de z sur \mathbf{Q} est d'ordre une puissance de 2.

Un p-groupe fini est résoluble.

Un 2-groupe fini a une filtration de quotients d'ordre 2.

Quadrature du cercle

Trissection de l'angle: impossible pour $e^{2i\pi/9}$.

Un nombres premier p est "de Fermat" si $p = 2^n + 1$ pour un entier $n \ge 1$.

Racines de l'unité d'ordre n constructibles à la règle et au compas: $\phi(n)$ est une puissance de 2, équivalent à n est une puissance de 2 multiplié par des nombres premiers de Fermat disctincts.

Un nombre premier de Fermat est de la forme $p = 2^{2^r} + 1$. Si $n = 2^r m$ avec $m \ge 3$ impair alors $2^n + 1$ est divisible par $2^{2^r} + 1 > 1$, car $X^m + 1$ est divisible par X + 1 dans $\mathbf{Z}[X]$.

Cours 20

A-module de torsion M: pour tout $m \in M$ non nul il existe $a \in A$ non nul tel que am = 0.

L'annulateur de m dans A est l'ensemble des $a \in A$ tels que am = 0. C'est un idéal. Il est non nul ssi m est de torsion.

Si $M = Am_1 + ... + Am_r$ est de type fini et de torsion, alors il existe $a \in A$ non nul tel que aM = 0.

L'annulateur de M dans A est l'intersection des annulateurs des m_i .

Supposons A principal. On appelle période de M ou de $m \in M$ un générateur de son annulateur.

Un A-module cyclique Am est isomorphe à A/(a) où a est une période de m, i.e. de Am.

P est un système de représentants des irréductibles modulo les unités de A.

Si $p \in P$, la période de pm est a si (a, p) = 1 et a/p si p|a.

Décomposition p-primaire d'un A-module de torsion de type fini sur un anneau principal.

Si M est de type fini, et aM=0 on a deja vu (lemme chinois) que M est une somme directe $M=\bigoplus_{p\in P}M_p$ où M_p est un A-module annué par $p^{v_p(a)}$ (on dit que M_p est p-primaire.

 M_p est de type fini (quotient de M de type fini). Si a est une période de M, alors $p^{v_p(a)}$ est une période de M.

Théorème. Soient A un anneau principal et M un A-module de torsion de type fini. Alors $M \simeq A/(a_1) \oplus \oplus A/(a_r)$, $(0) \neq (a_1) \subset \ldots \subset (a_r) \neq A$. La suite d'idéaux $(a_1) \subset \ldots \subset (a_r) \neq A$ est unique.

Existence pour un module p-primaire $M = Am_o + Am_1 + \ldots + Am_r, r \ge 1$ de période p^v , par induction sur le nombre de générateurs. On range de sorte que les annulateurs des m_i soient $(p^v) \subset \ldots \subset (p^{v_r})$. Le module quotient M/Am_o a r générateurs. Par induction $M/Am_o = An_1 \oplus \ldots \oplus An_s$.

La surjection $f: M \to M/Am_o$ a une section, i.e. une application A-linéaire $g: M/Am_o \to M$ telle que fg(m') = m' pour tout $m' \in M/Am_o$. (La section existe, car chaque n_i se relève en un élément $z_i \in M$ de même période).

Pour tout anneau commutatif A, une application A-linéaire $f: M \to M'$ admettant une section $g: M' \to M$, fournit une somme directe $M = g(M') \oplus Ker(f) \simeq M' \oplus Ker(f)$ (fg(m') = m') implique que g est injective et $g(M') \cap Ker(f) = 0$. D'autre part $gf(m) - m \in Ker(f)$.

Existence. La décompositon en modules p-primaire et le lemme chinois impliquent: Il exsite $P' \subset P$ est fini et pour tout $p \in P'$ un ensemble $V_p \subset \mathbb{N}_{\geq 1}$ fini tel que

 $M \simeq \bigoplus_{p \in P', k \in V_p} A/(p^k) \simeq \bigoplus A/(a_1) \oplus \ldots \oplus A/(a_r) \text{ avec } (a_1) \subset \ldots \subset (a_r) \neq A.$

Cours 21

Dictionnaire. P(a) l'ensemble des $p \in P$ divisant a. Alors $P(a_1) = P'$ et $v_p(a_1)$ est le plus grand élément de V_p .

On a $M = A/(a_1) \oplus M_1$ avec $P'_1 \subset P'$ est l'ensemble des $p \in P'$ tel que $m_p \neq 1$ et $V_{p,1}$ pour $p \in P'_1$ est V_p privé de son plus grand élément.

 $P(a_2) = P'_1$ et $v_p(a_2)$ est le plus grand élément de $V_{p,1}$, etc.

La suite $v_p(a_i)$ n'est pas nulle décroit pour $p \in P'$. Elle contient $r_p \leq r$ termes non nuls, et il existe $p \in P'$ tel que $r_p = r$.

L'unicité de la décomposition longue de M, i.e. de P', $(V_p)_{p \in P'}$ est équivalente à celle de la décomposition courte de M, i.e. de $(a_1) \subset \ldots \subset (a_r) \neq A$.

Preuve de l'unicité sur la décomposition courte de M.

 $A/(a) \simeq A/(b)$ ssi (a) = (b) (annulateurs).

Soit $M = Am_1 = A/Aa$ et $p \in P$. Alors (a, p) = 1 ss'il existe $\lambda, \mu \in A$ tel que $\lambda a + \mu p = 1$ ssi $\mu p m_1 = m_1$ ssi $m_1 \in pM$ ssi M = pM ssi M/pM = 0.

Si $a = pb, b \in A$, alors l'application linéaire naturelle $A/(p) \to M/pM$ est un isomorphisme car $M/pM \neq 0, A/pA$ est un corps.

 N_i sous module de M_i alors $N = \oplus N_i$ est un sous-module de $M = \oplus M_i$ et $\oplus M_i/N_i \simeq M/N$.

Soit $p \in P$. Alors M/pM est un espace vectoriel sur A/(p) de dimension le nombre de a_i divisibles par p. Le maximum est r (atteint si et seulement si $p \in P(a_r)$), donc r est canonique. Les ensembles $P(a_i)$ aussi. Induction sur le nombre de facteurs irréductibles de $a = a_1 \dots a_r$. Si a = p, alors r = 1 et p est unique

Sinon, soit $p \in P(a_r)$. Alors $pM = A/(a_1/p) \oplus A/(a_r/p)$. Comme a/p^r a moins de facteurs irréductibles (avec multiplicités) que a les a_i/p sont canoniques. Les a_i aussi.

Théorème. Soient A un anneau principal et M un A-module de torsion. Alors $M \simeq A^m \oplus A/(a_1) \oplus \oplus A/(a_r)$, $(0) \neq (a_1) \subset \ldots \subset (a_r) \neq A$. L'entier m et la suite d'idéaux $(a_1) \subset \ldots \subset (a_r) \neq A$ sont uniques.

Pour tout anneau A, L, M deux A-modules avec L libre de base e_1, \ldots, e_n , et $m_1, \ldots, m_n \in M$, il existe une unique application A-linéaire $L \to M$ envoyant e_i sur m_i pour $1 \le i \le n$.

Toute application A-linéaire surjective dans un A-module libre est scindée.

A principal. Tout sous-module d'un A-module libre de rang fini est libre (Induction sur le rang, n=1 vrai car A principal).

A principal. Tout A-module de type fini sans torsion est libre.

A principal. Le quotient d'un A-module de type fini M par son sous-module de torsion $M_{torsion}$ est libre de rang canonique m, M est isomorphe à $A^m \oplus M_{torsion}$, et $M_{torsion}$ est un A-module de type fini de torsion.