Feuille de TD nº 8. Variables aléatoires à densité

Un cœur \heartsuit désigne un exercice important (à traiter en priorité), un pique \spadesuit désigne un exercice difficile. Un double cœur \heartsuit désigne un exercice de cours: le partiel et l'examen contiendront l'un de ces exercices.

Exercice 8.1. Déterminer la constante c de sorte que les fonctions suivantes soient des densités de probabilité sur \mathbb{R} :

- a) $\rho(x) = c e^{-ax} \mathbb{1}_{\mathbb{R}_+}(x)$ où a est un réel strictement positif;
- b) $\rho(x) = -\ln(x^c) \mathbb{1}_{[a,1[}(x), \text{ où } a \in [0,1[\text{ est un réel.}]$

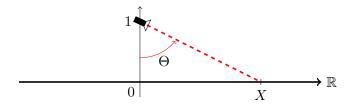
Exercice 8.2. Soit X un point choisi uniformément dans l'intervalle [0,2].

- a) Quelle est l'aire du triangle équilatéral de côté X?
- b) Calculer la probabilité que le triangle équilatéral de côté X ait une aire plus grande que 1.
- ∇ Exercice 8.3. Soit U une variable aléatoire de loi uniforme sur [0,1[.
 - a) Montrer que $\lfloor nU \rfloor$ suit une loi uniforme discrète sur $\{0, \ldots, n-1\}$, où $n \geq 1$ (ici $\lfloor x \rfloor$ désigne la partie entière de x).
 - b) Déterminer la loi de $-\frac{1}{a} \ln U$, où a>0 est un paramètre donné.

Exercice 8.4. Soit X une variable aléatoire réelle de loi $\mathcal{E}(\lambda)$, avec $\lambda > 0$. On pose $Y = 1 + \lfloor X \rfloor$, qui est une variable aléatoire à valeurs dans \mathbb{N}^* . Montrer que Y suit une loi géométrique Géom(p), et déterminer le paramètre p.

Exercice 8.5. (Examen 2021, 2ème session) Soit X une variable aléatoire réelle qui admet une densité, donnée par $f(x) = c x^3 \mathbb{1}_{[0,2[}(x), \text{ où } c \text{ est une constante.}$

- a) Trouver la valeur de la constante c.
- b) Calculer la fonction de répartition F_X de la variable aléatoire X.
- c) Calculer l'espérance $\mathbb{E}(X)$ de X.
- d) Calculer la variance Var(X) de X.
- \heartsuit Exercice 8.6. On suspend un laser à 1 mètre au-dessus du sol. L'angle qu'il forme avec la verticale est aléatoire, noté Θ , et suit la loi uniforme sur $]-\frac{\pi}{2},\frac{\pi}{2}[$. On note X le point marqué au sol par le laser (voir la figure ci-dessous).
 - a) Exprimer X en fonction de Θ .
 - b) Donner la densité de la loi de X.



 \heartsuit Exercice 8.7. Soit X une v.a. réelle à densité, de densité $f_X(x)$. Déterminer si les variables

aléatoires suivantes possèdent une densité, et si c'est le cas en déterminer une en fonction de f_X : a) aX + b, où $a > 0, b \in \mathbb{R}$; b) e^X ; c) X^2 ; d) |X|.

Exercice 8.8. Soit $X \sim \mathcal{U}(-1,1)$. Déterminer la fonction de répartition de la variable aléatoire $Y := \max(X,0)$. En déduire que Y n'est ni une v.a. discrète ni une v.a. à densité.

Exercice 8.9. Soit X et Y des v.a. réelles indépendantes, de loi $\mathcal{U}(0,1)$.

- a) On pose $W = \max(X, Y)$ et $Z = \min(X, Y)$. Déterminer la loi et l'espérance de W et de Z.
- b) Soient W_1, W_2 deux variables aléatoires indépendantes de même loi que W et Z_1, Z_2 deux variables aléatoires indépendantes de même loi que Z. Comparer les fonctions de répartitions de $\min(W_1, W_2)$ et de $\max(Z_1, Z_2)$: l'une est-elle plus grande que l'autre? Bonus: l'Exercice 7.3 montre que si $X \leq Y$ alors $F_X \leq F_Y$. La réciproque est-elle vraie?
- \heartsuit Exercice 8.10. Soit $X \sim \mathcal{N}(0,1)$.
 - a) Calculer $M_X(t) := \mathbb{E}(e^{tX})$ pour tout $t \in \mathbb{R}$.
 - \spadesuit b) En déduire $\mathbb{E}(X^k)$ pour $k \in \mathbb{N}$ (Indication : développer $M_X(t)$ en série entière).
 - c) Soit $Y \sim \mathcal{N}(\mu, \sigma^2)$. Quelle est la loi de $\frac{1}{\sigma}(Y \mu)$? En déduire la valeur de $M_Y(t) := \mathbb{E}(e^{tY})$ pour tout $t \in \mathbb{R}$.

Exercice 8.11. Soit X une v.a. réelle de densité f(x). Soit Y une v.a. à valeurs dans $\{-1,1\}$, de loi $\mathbb{P}(Y=-1)=\mathbb{P}(Y=+1)=\frac{1}{2}$, et indépendante de X. On pose Z=XY. Montrer que Z admet une densité, et en déterminer une. *Indication : décomposer suivant que* Y=+1 *ou* Y=-1.

Exercice 8.12. Soit X une v.a. réelle, de densité donnée par $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$.

- a) Vérifier que f est bien la densité d'une v.a. réelle.
- b) Montrer que 1/X a la même loi que X.

Exercice 8.13. Soit X une v.a. positive, à densité.

- a) Montrer que le k-ème moment de X est toujours bien défini (mais peut valoir $+\infty$).
- b) Montrer que si $\mathbb{E}(X^k) < +\infty$, alors $\lim_{t\to\infty} t^k \mathbb{P}(X>t) = 0$.
- c) Montrer que l'on a toujours $\mathbb{E}(X^k) = \int_0^\infty kt^{k-1}\mathbb{P}(X>t)\mathrm{d}t$ (que $\mathbb{E}(X^k) < +\infty$ ou non).
- d) En déduire qu'une v.a. Y à densité admet un moment d'ordre k fini si et seulement si $t^{k-1}\mathbb{P}(|Y|>t)$ est intégrable.
- ♠ Exercice 8.14. Soit $X_1, X_2, ...$ une suite de v.a. positives indépendantes de densité $e^{-x} \mathbb{1}_{\mathbb{R}_+}(x)$. On pose $M_n = \max_{1 \le k \le n} X_k$.
 - a) Déterminer la fonction de répartition de M_n .
 - b) Déterminer la fonction de répartition de $T_n := M_n \ln n$.
 - c) Montrer que la fonction de répartition de T_n converge, et donner sa limite F.
 - d) F est-elle la fonction de répartition d'une variable aléatoire? Si oui, cette variable aléatoire possède-t-elle une densité? Si oui, la donner.