Feuille de TD nº 6. Fonctions génératrices de variables aléatoires à valeurs dans $\mathbb N$

Un cœur \heartsuit désigne un exercice important (à traiter en priorité), un pique \spadesuit désigne un exercice difficile. Un double cœur \heartsuit désigne un exercice de cours: le partiel et l'examen contiendront l'un de ces exercices.

On rappelle que la fonction génératrice G_X d'une variable aléatoire X à valeurs dans \mathbb{N} , $G_X(s) := \mathbb{E}(s^X) = \sum_{n=0}^{+\infty} \mathbb{P}(X=n)s^n$, est toujours définie pour $s \in [-1,1]$.

 \heartsuit Exercice 6.1. Calculer la fonction génératrice G_X de X, lorsque X est une variable aléatoire de loi : a) Bern(p); b) Bin(n,p); c) Géom(p); d) Poi (λ) .

Dans tous les cas, donner le rayon de convergence de G_X .

Exercice 6.2. À partir de la fonction génératrice de X, calculer $\mathbb{E}(X)$, $\mathbb{E}(X(X-1))$ puis $\mathrm{Var}(X)$, lorsque X est une variable aléatoire de loi : a) $\mathrm{G\acute{e}om}(p)$; b) $\mathrm{Poi}(\lambda)$.

Exercice 6.3. Soit X une variable aléatoire à valeurs dans \mathbb{N} .

- a) Justifier que $G_X(s) := \mathbb{E}(s^X)$ est bien définie pour tout $s \ge 0$ (mais peut valoir $+\infty$).
- b) On suppose que $\mathbb{P}(X=0) < 1$. Montrer que $\lim_{s \to \infty} G_X(s) = +\infty$.
- \heartsuit Exercice 6.4. Soient X et Y deux variables aléatoires indépendantes, suivant une loi de Poisson, de paramètres respectifs λ_1 et λ_2 . Calculer la fonction génératrice de X+Y. Qu'en déduisez-vous?
- \heartsuit Exercice 6.5. Soit $n \geq 1$ et $(X_i)_{i=1,\dots,n}$ une suite de v.a. de Bernoulli indépendantes : pour tout $1 \leq i \leq n$, X_i suit une loi de Bernoulli de paramètre $p_n = \frac{\lambda}{n}$, où $\lambda > 0$ et $n \geq \lambda$. On pose $Y_n = X_1 + \dots + X_n$. (Un contexte possible est le suivant : $X_i = 1$ représente le fait que le i^e assuré subisse un sinistre ; le nombre total d'assurés subissant un sinistre est Y_n ; le fait que p_n soit petit modélise le fait que le risque de sinistre pour chaque assuré est petit devant le nombre d'assurés.)
 - a) Calculer la fonction génératrice de Y_n .
 - b) Calculer la limite, quand n tend vers $+\infty$, de la fonction génératrice de Y_n (on pourra utiliser que $\ln(1+u) = u + o(u)$ quand $u \downarrow 0$). Cela vous rappelle-t-il un résultat du cours?

Exercice 6.6. Soit $n \geq 2$, et soit $\Omega = \{\omega \subseteq \{1, 2, ..., n\} : \omega \neq \emptyset\}$ (c'est-à-dire l'ensemble des sous-ensembles non-vides de $\{1, ..., n\}$), muni de la probabilité $\mathbb P$ uniforme sur Ω . Pour $\omega \in \Omega$ soit $X(\omega) := \max(\omega)$ le maximum des éléments de ω .

- a) Montrer que, pour $k \in \{1, 2, ..., n\}$, on a $\mathbb{P}(X = k) = \frac{2^{k-1}}{2^n 1}$.
- b) Calculer la fonction génératrice de X.
- c) En déduire $\mathbb{E}(X)$. Bonus : calculer $\operatorname{Var}(X)$, et déterminer $\lim_{n\to\infty} \operatorname{Var}(X)$.
- \heartsuit **Exercice 6.7.** Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes et de même loi à valeurs dans \mathbb{N} , et soit Y une variable aléatoire à valeurs dans \mathbb{N} , indépendante de la suite $(X_n)_{n\geq 1}$. On définit $W = \sum_{i=1}^{Y} X_i$, c'est-à-dire $W(\omega) = 0$ si $Y(\omega) = 0$, et $W(\omega) = \sum_{i=1}^{Y(\omega)} X_i(\omega)$ si $Y(\omega) \geq 1$, pour $\omega \in \Omega$. On admettra que W est bien une variable aléatoire.

On souligne ici que W est la somme d'un nombre aléatoire de variables aléatoires indépendantes.

a) Pour $n \in \mathbb{N}$, exprimer la fonction génératrice de $X_1 + \cdots + X_n$ en fonction de celle de X_1 .

- b) Pour $s \geq 0$, calculer $\mathbb{E}(s^W \mathbb{1}_{\{Y=n\}})$ pour $n \in \mathbb{N}$. Montrer ensuite que la fonction génératrice de W vérifie $G_W(s) = G_Y(G_{X_1}(s))$. On admettra que $\mathbb{E}(\sum_{n=0}^{\infty} Z_n) = \sum_{n=0}^{\infty} \mathbb{E}(Z_n)$ si les variables aléatoires $(Z_n)_{n\geq 0}$ sont positives.
- c) En déduire la valeur de $\mathbb{E}(W)$ en fonction de $\mathbb{E}(Y)$ et $\mathbb{E}(X_1)$.
- d) Calculer $\mathbb{E}(W(W-1))$. On suppose que X et Y admettent un moment d'ordre 2 fini. Calculer Var(W) en fonction de $\mathbb{E}(Y)$, Var(Y) et $\mathbb{E}(X_1)$, $Var(X_1)$.
- e) On suppose que les X_i suivent une loi de Bernoulli de paramètre $p \in]0,1[$. Montrer que :
 - i) si $Y \sim \text{Poi}(\lambda)$ alors $W \sim \text{Poi}(\mu)$ pour un paramètre μ à déterminer;
 - ii) si $Y \sim \text{G\'{e}om}_0(q)$ (c'est-à-dire $Y+1 \sim \text{G\'{e}om}(q)$) alors $W \sim \text{G\'{e}om}_0(\theta)$ pour un paramètre θ à déterminer.

Exercice 6.8. Soit X une variable aléatoire à valeurs dans \mathbb{N} , et G_X sa fonction génératrice.

- a) Vérifier que $G_X(1) = 1$. Que vaut $G_X(0)$?
- b) Montrer que $G_X''(s) \ge 0$ pour tout $s \in [0,1[$, et en déduire que G_X est convexe. À quelle condition est-elle strictement convexe?
- c) Montrer que:
 - i) si $\mathbb{E}(X) < 1$, alors l'équation $G_X(x) = x$ n'a aucune solution sur [0,1];
 - ii) si $\mathbb{E}(X) > 1$, alors l'équation $G_X(x) = x$ admet une unique solution sur [0, 1[.
- ♠ Exercice 6.9. On souhaite étudier le modèle suivant d'évolution d'une population : on démarre d'un individu unique, appelé de génération 0; cet individu possède un nombre aléatoire X d'enfants, constituant les individus de génération 1; chacun de ses individus possède un nombre aléatoire d'enfants, qui constituent les individus de génération 2; etc... Plus formellement, soit $(X_{n,k})_{n\in\mathbb{N},k\geq 1}$ une famille de variables aléatoires indépendantes, de même loi que X, à valeur dans $\mathbb{N}: X_{n,k}$ représente le nombre d'enfants du k-ème individu de la n-ème génération. Si on note Z_n le nombre d'individus de génération n, on a la relation récursive suivante :

$$Z_0 = 1$$
, $Z_1 = X_{0,1}$, $Z_2 = \sum_{k=1}^{X_{0,1}} X_{1,k}$, ..., $Z_{n+1} = \sum_{k=1}^{Z_n} X_{n,k}$, ...

où on a utilisé la même convention que dans l'Exercice 6.7, c'est-à-dire $Z_{n+1}=0$ si $Z_n=0$.

- a) Montrer que $(\{Z_n=0\})_{n\in\mathbb{N}}$ est une suite croissante d'événements. On définit l'événement $A=\{\exists n\geq 1\,, Z_n=0\}$: justifier que l'événement A peut s'interpréter comme "la population s'éteint", et montrer que $\mathbb{P}(A)=\lim_{n\to\infty}\mathbb{P}(Z_n=0)$.
 - On va étudier $\mathbb{P}(Z_n = 0)$ en utilisant le fait que $\mathbb{P}(Z_n = 0) = G_{Z_n}(0)$ (pourquoi?).
- b) Justifier que Z_n est indépendante de $(X_{n,k})_{k\geq 1}$. En utilisant l'Exercice 6.7, en déduire que $G_{Z_n}(s) = G_{Z_n}(G_X(s))$, où $G_X(s)$ désigne la fonction génératrice de X.
- c) Conclure que $G_{Z_n} = G_X \circ \cdots \circ G_X$ (n fois). En déduire que $q_n := \mathbb{P}(Z_n = 0) = G_{Z_n}(0)$ vérifie la relation de récurrence suivante : $q_0 = 0$, $q_n = G_X(q_{n-1})$ pour $n \ge 1$.
- d) Montrer que $\mathbb{P}(A)$ (= $\lim_{n\to\infty} q_n$) est la plus petite solution de l'équation $G_X(x) = x$ dans [0,1]. Calculer $\mathbb{P}(A)$ si $X \sim \text{G\'eom}_0(p), p \in [0,1]^\S$.
- e) En utilisant le résultat de l'Exercice 6.8 c), montrer que $\mathbb{P}(A) = 1$ si $\mathbb{E}(X) < 1$, et $\mathbb{P}(A) < 1$ si $\mathbb{E}(X) > 1$.

^{§.} Bonus : calculer q_n pour tout n dans le cas $p = \frac{1}{2}$.