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Abstract. The description of all the solutions of the equation x2 + y2 = z2 in integral numbers (a.k.a.
Pythagorean triples) is a very ancient problem: a Babylonian clay tablet from about 1800BC may contain

some solutions, Pythagoras (about 500BC) seems to have known one infinite family of solutions, and so

did Plato... This gives a first example of a rational variety: the rational points on the circle with equation
x2 + y2 = 1 can be algebraically parametrized by one rational parameter. More generally, one says that a

variety of dimension n, defined by a system of polynomial equations, is rational if its points (the solutions

of the system) can be algebraically parametrized, in a one-to-one fashion, by n independent parameters. I
will begin with easy standard examples, then explain and apply some (not-so-recent) techniques that can

be used to prove that some varieties (such as the set of solutions of the equation x3 + y3 + z3 +w3 = 1) are

not rational.

1. Introduction

1.1. About the word rational. From the Merriam–Webster dictionary:

rational: relating to, based on, or agreeable to reason;

reason: proper exercise of the mind.

In mathematics, rational numbers are fractions a/b, where a and b are
whole numbers (also called integers). The story goes that when Hippasus
discovered that

√
2 was not a rational number, he was sentenced to death

by drowning by Pythagoras, who could not accept the existence of irrational
numbers.

Similar resistance was encountered when imaginary numbers (such as√
−1) were introduced (hence their derogatory name). We now call them

complex numbers.

Nowadays, mathematicians denote by Q the set of rational numbers
and by C the set of complex numbers. The word rational is used in many
places in mathematics. We will use for example rational fractions, which
are quotient of polynomials (possibly in several variables), with rational or
complex coefficients (to avoid confusion, we will say Q- or C-coefficients),
depending on the situation.
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1.2. An example: Pythagorean triples (33+42 = 52). We will start with
a very old example: we want to solve the equation

(1) x2 + y2 = 1

where x and y are rational numbers, that is, we want to find points with
rational coordinates on a circle. The geometrical approach is to start from
one point, say P0 := (−1, 0). Any other point P = (x, y) defines a line
P0P with rational slope. Conversely, any line with rational slope t passing
through P0 meets the circle in another point (x, y) with rational coordinates:
the equation of that line is y = t(x+ 1) and one also has

x2 + t2(x+ 1)2 = 1.

This can also be written as (x+ 1)(x− 1 + t2(x+ 1)) = 0, hence

x =
1− t2

1 + t2
and y =

2t

1 + t2
.

So we are successful in that case: we have parametrized solutions by rational
functions in one parameter t, in a one-to-one fashion: each solution (except
(−1, 0): it corresponds to t = ∞) is reached by exactly one value of the
parameter. Note that we obtain Q-solutions by taking t in Q, but also C-
solutions by taking t in C (although the geometric picture of a “circle” is
wrong in that case).

Note finally that solving the equation (1) in rational numbers is the same
as solving the homogenized equation

x2 + y2 = z2

in integral numbers (the solutions are called “Pythagorean triples” because
they are the lengths of the sides of a right triangle). We obtain in this way

(x, y, z) = (u2 − t2, 2tu, u2 + t2).

This is a parametrization of all solutions by polynomials in the parameters t
and u, which is often easier to manipulate.
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1.3. Rational varieties. The general problem that I want to discuss here
is the following: we start from a system of polynomial equations in several
unknowns x1, . . . , xn:

P1(x1, . . . , xn) = · · · = Pr(x1, . . . , xn) = 0.

The set of solutions (x1, . . . , xn) is called an algebraic variety. We say that
this variety is rational (over Q or C) if it can be parametrized by rational
functions depending on (several) parameters t1, . . . , td:{

parameters
(in Q or C)

}
oo //

{
solutions (in Q or C) of

P1(x1, . . . , xn) = · · · = Pr(x1, . . . , xn) = 0

}

(t1, . . . , td)
� // x1 = A1(t1,...,td)

B1(t1,...,td)
, . . . , xn = An(t1,...,td)

Bn(t1,...,td)
.

The dashed arrow on top going from left to right means that the solutions are
only be defined for almost all values of the parameters (those for which the
denominators do not vanish). The dashed arrow going from right to left means
that almost all solutions are reached by a unique value of the parameters. We
say that this is an (almost) one-to-one parametrization and call this double
dashed arrow a birational map. The number of parameters, d, is the dimension
of the variety.

As we rermarked earlier, it is often a good idea to first homogenize the
polynomials P1, . . . , Pr (by adding an extra unknown x0), so that we can
cancel the denominators in the fractions Aj/Bj and obtain a parametrization
that is polynomial in the parameters.

2. Parametrizing curves

2.1. Plane curves of higher degrees. If one tries to parametrize the curve
with equation

y2 = x(x2 − 1)

by rational fractions, one sees quite quickly that this is impossible: such a
parametrization by rational fractions with Q-coefficients is impossible simply
because the only rational solutions to this equation are (0, 0) and (±1, 0),
but more generally, a direct (elementary but lenghty) computation by sub-
stitution shows that such a parametrization is impossible even with rational
fractions with C-coefficients. This curve is not rational, even over C.
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However, this is possible for the curve with equation

y2 = x2(x+ 1)

because it is singular at P0 := (0, 0): as before, we look for points on lines
through P0, that is, of the form (x, tx). We get t2x2 = x2(x+ 1), which solves
as

(x, y) = (t2 − 1, t(t2 − 1)).

What is going on here is that a smooth compact complex curve is, topo-
logically, a smooth compact real surface and as such, it has a genus g ≥ 0.
An algebraic parametrization by rational fractions with complex coefficients
is possible only if g = 0. This is a topological condition. If the curve is de-
fined by equations with rational coefficients and one wants a parametrization
by rational fractions with rational coefficients, one also needs that the curve
have a point with rational coordinates.

3. Parametrizations in higher dimensions

3.1. Parametrizing quadrics. One can keep the same degree, 2, but in-
crease the number of unknowns, that is, consider an equation

Q(x1, . . . , xn) = 0,

where Q is a polynomial of degree 2 in n variables. We will assume that Q is
homogeneous (this can be achieved by adding one variable). To parametrize
(almost all) solutions by rational functions, we use the same trick: assuming
that there is one solution a = (a1, . . . , an), we take a line a + tx through a
and solve the equation

0 = Q(a + tx) = Q(a) + 2tB(a,x) + t2Q(x) = 2tB(a,x) + t2Q(x)

(here, B is the bilinear form associated with the quadratic form Q) as

t = −2B(a,x)

Q(x)

which gives the solutions

Q(x)a− 2B(a,x)x,

for (almost) all x. If one wants a one-to-one parametrization, one needs to
take x in a hyperplane that does not contain a.
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3.2. Parametrizing cubics. Already in degree 3, the situation becomes
more complicated. We already discussed a nonrational example in two vari-
ables. Let us consider the so-called Fermat cubic equation

x3 + y3 + z3 + 1 = 0

in three variables (which can be homogenized as x3 + y3 + z3 + w3 = 0).

There are lots of Q-solutions, for example, all (t,−t,−1), for t ∈ Q:
this family of solutions corresponds to a line contained in the cubic surface
defined by this equation, but there are many other solutions. Since we are
dealing with a surface here, we would like to know whether it is possible to
parametrize (almost all) Q-solutions by rational fractions in two variables
with Q-coefficients, in a one-to-one fashion.

The answer (already known to Euler in the 18th century) is yes and
the method is again geometric. The Fermat cubic surface contains many
lines: 9 defined over Q and 18 others defined over Q(j) (where j := e2iπ/3),
among which we find the skew lines L := {(t,−jt,−j)} and its conjugate
L̄ = {(t,−j̄t,−j̄)}. We can use them to parametrize (almost all) solutions:
if P = (t,−jt,−j) ∈ L and P̄ = (t̄,−j̄t̄,−j̄) ∈ L̄, where t = a + ib ∈ C,
the line PP̄ meets the surface in a third point P (a, b) whose coordinates are
rational functions with Q-coefficients in a and b.

Euler obtained in this way a parametrization of the solutions of the
homogeneous Fermat cubic equation by quartic polynomials with three pa-
rameters a, b, c. More recently, Noam Elkies obtained a parametrization by
cubic polynomials:

x = −a3 − 2a2c+ 3a2b+ 12abc− 3ab2 − 4ac2 + 6b2c+ 12bc2 + 9b3,

y = a3 + 2a2c+ 3a2b+ 12abc+ 3ab2 + 4ac2 − 6b2c+ 12bc2 + 9b3,

z = −8c3 − 8ac2 − 9b3 − a3 − 3a2b− 3ab2 − 4a2c− 12b2c,

w = 8c3 + 8ac2 − 9b3 + a3 − 3a2b+ 3ab2 + 4a2c+ 12b2c.

The general result is that smooth complex cubic surfaces are always ra-
tional over C. Over Q, the situation is more complicated. The surface defined
by the equation

5x3 + 12y3 + 9z3 + 10 = 0

has no Q-solutions, so cannot be rational over Q. The surface defined by

x3 + y3 + z3 + 2 = 0
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obviously has Q-solutions, but it is not rational over Q.

When the number of variables increases (keeping cubic equations), the
problem of parametrizing solutions becomes much more difficult. A geomet-
ric argument easily gives (over C) 2-to-1 parametrizations (in all dimen-
sions ≥ 2). But for cubic equations in 4 complex variables, it was only shown
in 1972 by Clemens and Griffiths that 1-to-1 parametrizations never exist:
they are not rational over C. This applies for example to the Fermat cubic
equation

x3 + y3 + z3 + w3 + 1 = 0.

In each even dimension 2m ≥ 2, there exist rational cubic equations
whose solutions can be parametrized by rational functions. The idea is to
copy what we did for surfaces: some cubics of dimension 2m, such as the
Fermat cubic

x31 + · · ·+ x32m+1 + 1 = 0,

contain disjoint m-spaces P and Q and can be parametrized by P ×Q: they
are rational (the Fermat cubic is even rational over Q).

From now on, I will forget about Q and only consider the problem of
the rationality over C of complex varieties. Here are two famous elementary
looking problems whose solutions are unknown:

• are there smooth irrational cubic hypersurfaces of dimension 4?
• are there smooth rational cubic hypersurfaces of odd dimensions?

The expected answers are YES (most cubic hypersurfaces of dimension 4
should be irrational) and NO.

4. How to prove irrationality for varieties of dimension 3?

Most varieties are not rational! There are many “numerical invariants”
that need to vanish for a (smooth projective complex) variety to be ratio-
nal. For example, (smooth projective) varieties defined by one homogeneous
equation of degree ≥ n in n variables are never rational.

However, varieties defined by cubic equations in 4 variables satisfy none
of the classical criteria for irrationality (mostly because they have two-to-
one rational parametrizations) so it was a challenge to prove that they are.
Clemens and Griffiths’ proof is based on the introduction of a new (nonnu-
merical) “invariant.” Assume that an algebraic variety X of dimension 3 is
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rational (over C). This means that there exists a birational map

C3 oo //X

(“generically” one-to-one, not necessarily everywhere defined).

The “invariant” is the intermediate Jacobian. It is a complex torus whose
definition involves the Hodge decomposition of the singular cohomology of the
variety, so I will spare you the details. It can be associated with any (smooth
projective) variety of odd dimension but the most interesting case (and the
only we will deal with here) is when it is also an algebraic variety; it is then
called an abelian variety. This is the case for curves; it is very well understood
and was already known to mathematicians in the 19th century.

A birational map between varieties of dimension 3 can be decomposed
as a composition of blow ups and blow downs of smooth curves and one can
follow what happens to the intermediate Jacobians during each of these ele-
mentary steps. The upshot is that if a (smooth projective) algebraic variety
of dimension 3 is rational, its intermediate Jacobian is isomorphic to a prod-
uct of Jacobians of curves. So it is not quite an invariant but changes in a
controlled way. We will use the equivalent statement that if its intermediate
Jacobian is not a product of Jacobians of curves, a variety (of dimension 3)
is not rational.

So what is so special about Jacobians of curves and how can one prove
that an intermediate Jacobian is not a Jacobian of curve (or a product of
such)?

4.1. Singularities of the theta divisor. All these Jacobians J carry an
extra canonical object: a theta divisor. This is a hypersurface Θ ⊂ J and, for
Jacobians of curves of their products, it is rather singular: one has

dim(Sing(Θ)) ≥ dim(J)− 4.

It is however difficult to analyze Θ in general and even more its singularities.
This has only been done in a few cases: for all smooth cubic hypersurfaces (J
has dimension 5 but Θ has a unique singular point (Mumford, Beauville)), all
smooth “double quartic solids” (J has dimension 10 but Sing(Θ) has dimen-
sion 5 (Voisin)), and general “Gushel–Mukai” threefolds (J has dimension 10
but Sing(Θ) has dimension ≤ 5 (Beauville); we will come back to them in
Section 4.3).
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4.2. Counting points. This may sound like a strange idea but here is how
it goes. When we are dealing with varieties defined by equations with integral
coefficients, we can always reduce these equations modulo a prime number p
and look for solutions in the field Fp = Z/pZ. There are then finitely many so-
lutions so we can count these “Fp-points.” The Weil conjectures (established
by Deligne) give a link between these numbers and the complex geometry of
the variety. What we are going to use here is that the range for the possible
numbers of points on the Jacobian of a curve is more restricted than on a
general abelian variety.

When A is an abelian variety (such as a Jacobian) of dimension g defined
by equations with coefficients in Fp, one can define a polynomial

QA(T ) = T 2g + a1(A)T 2g−1 + · · ·+ ag−1(A)T g+1 + ag(A)T g

+ pag−1(A)T g−1 + · · ·+ pg−1a1(A)T + pg

with integral coefficients which has the following properties.

• When A is the Jacobian JC of a curve C, one has

(2) N(C) = p+ 1 + a1(JC),

where N(C) is the number of Fp-points of C. More precisely, QJC

determines the numbers of points of C with coordinates in all exten-
sions Fpr of Fp and conversely, the knowledge of these numbers, for g
distinct values of r, determines QJC .
• When A is the intermediate Jacobian JX of a cubic X of dimension 3,

the polynomial QJX determines the numbers of lines on X with coor-
dinates in all extensions Fpr of Fp and again, the knowledge of these
numbers, for g distinct values of r, determines QJX .

Markushevich and Roulleau (2017) then consider the cubic X defined
by the homogeneous equation

(3)

x31 + 2x21x2 + 2x1x
2
2 + x21x3 + 2x1x2x3 + 2x1x

2
3 + 2x2x

2
3

+ x33 + x21x4 + 2x1x2x4 + x22x4 + x2x3x4 + x1x
2
4 + 2x3x

2
4 + x34 + x22x5

+ 2x2x3x5 + 2x23x5 + x1x4x5 + x2x4x5 + x24x5 + x2x
2
5 + 2x4x

2
5 + x35 = 0.
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They compute the number of F3r-lines contained in X for 1 ≤ r ≤ 5 and
obtain the polynomial attached to the intermediate Jacobian JX:

QJX(T ) = T 10 − 6T 9 + 15T 8 − 10T 7 − 41T 6 + 125T 5

− 41 · 3T 4 − 10 · 32T 3 + 15 · 33T 2 − 6 · 34T + 35.

If JX is the Jacobian of a curve C, we then get from (2)

N(C) = 3 + 1 + a1(JC) = 4 + a1(JX) = −2,

which is absurd.1

Of course, this only proves that the cubic defined by the equation (3)
is not rational, but a general “continuity argument” implies that this is still
true for almost all cubics of dimension 3. I think this is the only instance
were this method has been successfully used to prove irrationality.

4.3. Symmetries. A curve cannot have too many symmetries: the maximal
number is 84(g − 1), where g is the genus of the curve (it is attained by
Hurwitz curves for infinitely many, but far from all, values of g). This is also
the maximal number of symmetries for the Jacobian of a curve (more exactly,
for the pair (J,Θ)). If one can show that an intermediate Jacobian JX of
dimension g has more than 84(g − 1) symmetries, this will be (almost: one
has to exclude products of Jacobians of curves, but let us not worry about
that) enough to prove that X is not rational.

Consider the Klein cubic X defined by the homogeneous equation

x1x
2
2 + x2x

2
3 + x3x

2
4 + x4x

2
5 + x5x

2
1 = 0.

Klein noted in 1878 that, in addition to the obvious order-5 symmetry and
the less obvious order-11 symmetry

(x1, x2, x3, x4, x5) 7−→ (x1, ζx2, ζ
6x3, ζ

9x4, ζ
2x5),

where ζ := e2iπ/11, the symmetry group has in fact 660 elements. Since JX
has dimension 5 and

660 > 84 · (5− 1),

1I have cheated quite a bit in several places and the actual argument is a bit more involved.
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we see that JX cannot be the Jacobian of a curve, hence X is not rational.
Again, a general argument implies that this is still true for almost all cubics
of dimension 3. The counting argument presented above does not work in
this seemingly simpler case.

This symmetry argument has been applied (by Beauville) for many ex-
amples. Recently, Giovanni Mongardi (from Bologna) and I used it to give
a new example of an irrational variety of this type. The definition is a bit
more complicated: we look at varieties defined as follows. Start from the
Grassmannian Gr(2, 5) ⊂ P(

∧
2V5) = P9 and consider a smooth intersection

W := Gr(2, 5) ∩ P7 (they are all isomorphic). We consider varieties defined
as

X = W ∩ (quadric).

For almost all quadrics, X is smooth of dimension 3 and Beauville showed (by
a degeneration argument to the case where X acquires a single singular point)
that for almost all X (that is, for almost all quadrics), the 10-dimensional
intermediate Jacobian JX is not the Jacobian of a curve because its theta
divisor is not singular enough (see Section 4.1). This method does not produce
any explicit irrational X, though.

Giovanni and I constructed a variety X of this type with a symmetry
of order 11, which is clearly not enough. However, we prove that the in-
termediate Jacobian JX has 660 symmetries (the same symmetries as the
Klein cubic). Unfortunately, this is still not enough because this is below the
Hurwitz bound:

660 ≤ 84 · (10− 1).

But, luckily for us, when g = 10, the number of symmetries of a curve is
actually bounded by 432, so JX cannot be the Jacobian of a curve and X is
not rational!
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