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Introduction

Sheaves on topological spaces were invented by Jean Leray as a tool to deduce
global properties from local ones. Then Grothendieck realized that the usual
notion of a topological space was not appropriate for algebraic geometry
(there being an insufficiency of open subsets), and introduced sites, that
is, categories endowed with “Grothendieck topologies” and extended sheaf
theory in the framework of sites.

Sheaf theory is an extremely powerful tool and applies to many areas of
Mathematics, from Algebraic Geometry to Quantum Field Theory.

The functor Γ(X; • ), which to a sheaf F on X associates the space
Γ(X;F ) of its global section, is left exact but not right exact in general.
The derived functors Hj(X;F ) tell us the “obstructions” to pass from local
to global. In particular, given a ring k, a topological space X is naturally
endowed with the sheaf kX of k-valued locally constant functions, and the
cohomology of this sheaf is thus a topological invariant of the space.

In these Notes, we shall expose sheaf theory on sites in the framework
of derived categories and give some applications. We restrict ourselves to
the cases of sites admitting products and fiber products, which makes the
theory much easier and very similar to that of sheaves on topological spaces.
We also essentially restrict our study to abelian sheaves and we use the
results of homological algebra presented in [Sc02]. For further references on
homological algebra see [KS06] (and also [GM96], [We94]).

Classical sheaf theory is exposed in particular in [Go58] and [Br67]. For
an approach in the language of derived categories, see [Iv87], [GM96], [KS90].
Sheaves on Grothendieck topologies are exposed in [SGA4] and [KS06]. A
short presentation in case of the étale topology is given in [Ta94].

Let us briefly describe the contents of these Notes.
Chapters 1 and 2 are devoted to the general theory of sheaves on sites.

We first study with some details presheaves on presites with values in an
arbitrary category A, then we introduce Grothendieck topologies. Next, we
restrict our study to abelian sheaves, that is, to the case where A = Mod(k)
for a unital commutative ring k. We prove that the category Mod(kX) of
abelian sheaves it a Grothendieck category. We define and study the opera-
tions of internal hom and tensor product, direct and inverse image, extension
and restriction. We also glue sheaves and show how to construct naturally
locally constant sheaves.

In Chapter 3 We study the derived category D+(kX) of Mod(kX) and the
derived operations on sheaves. We describe the Čech complexes associated
with a covering and prove the Leray’s acyclic theorem. Finally, we make a
brief study of ringed sites, that is, sites equipped with a sheaf of rings. We
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study modules over such sheaves of rings and their natural derived operations.
In Chapter 4 we study abelian sheaves on topological spaces. We intro-

duce the functors ( • )Z and ΓZ( • ) associated to a locally closed subset Z and
we study flabby sheaves. Then we study locally constant abelian sheaves.
We prove that the cohomology of such sheaves is a homotopy invariant, and
using the Čech complex associated to a closed covering, we show how to com-
pute the cohomology of spaces which admit covering by contractible subsets.
We apply these techniques to calculate the cohomology of some classical
manifolds.

Chapter 5 is devoted to duality on locally compact spaces. We first
define the proper direct image functor f! associated with a morphism f : X −→
Y of locally compact spaces. (The definition that we propose here, although
equivalent, is not the traditional one.) Next, we prove that c-soft sheaves are
acyclic for the functor f! and we study its derived functor Rf !. We prove the
two main results of this theory, namely the projection formula and the base
change formula. As a byproduct, we get the Künneth formula.

The existence of the right adjoint f ! to Rf ! follows from the Brown repre-
sentability theorem. We study the properties of this functor and introduce in
particular the dualizing complex ωX that we explicitely calculate when X is
a topological manifold. As an application, we expose the De Rham cohomol-
ogy on real manifolds, the Dolbeault-Grothendieck cohomology on complex
manifolds and we construct the Leray-Grothendieck residues morphism.

In these Notes, we use the language of derived categories and follow the
notations of [Sc02]. We shall note enter in problems of universes, assuming
to be given a universe U in which we are working, and changing of universe
if necessary.



Chapter 1

Presheaves on presites

Presheaves are nothing but contravariant functors, but they play, at least
psychologically, a different role than usual functors. In this chapter, we
study the natural internal and external operations on presheaves.

In all theses Notes, we denote by k a commutative unital ring. As far as
there is no risk of confusion, we shall write ⊗ instead of ⊗k and Hom instead
of Homk.
For sheaf theory on sites: see [SGA4] and for an exposition (and a slightly
different approach) see [KS06].

1.1 Recollections from category theory

In all these Notes we fix a universe U . A U -set is a set which belongs to
U and a set is U -small if it is isomorphic to a U -set. A category means a
U -category, that is, a category C such that HomC(X, Y ) is U -small for all
X, Y ∈ C. If Ob(C) is a U -set, then one says that C is U -small. By a “big”
category, we mean a category in a bigger universe. Note that any category
is an V-category for a suitable universe V and one even can choose V so that
C is V-small. As far as it has no implication, we shall not always be precise
on this matter and the reader may skip the words “small” and “big”. The
category Set is the category of U -sets and maps.

Definition 1.1.1. Let C be a category. One defines the big categories

C∧ = Fct(Cop,Set),

C∨ = Fct(Cop,Setop) ' Fct(C,Set)op,

and the functors

hC : C −→ C∧, X 7→ HomC(·, X),

kC : C −→ C∨, X 7→ HomC(X, ·).

7
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Recall that the functors hC and kC are fully faithful. This is the Yoneda
lemma.

Definition 1.1.2. Let C and C ′ be categories, F : C −→ C ′ a functor and let
Z ∈ C ′.

(i) The category CZ is defined as follows:

Ob(CZ) = {(X, u);X ∈ C, u : F (X) −→ Y },
HomCZ ((X1, u1), (X2, u2)) = {v : X1 −→ X2;u1 = u2 ◦ F (v)}.

(ii) The category CZ is defined as follows:

Ob(CZ) = {(X, u);X ∈ C, u : Z −→ F (X))},
HomCZ ((X1, u1), (X2, u2)) = {v : X1 −→ X2;u2 = u1 ◦ F (v)}.

Note that the natural functors (X, u) 7→ X from CZ and CZ to C are
faithful.

The morphisms in CZ (resp. CZ) are visualized by the commutative dia-
gram on the left (resp. on the right) below:

F (X1)
u1 //

F (v)

��

Z

F (X2)

u2

<< Z
u1 //

u2
""

F (X1)

F (v)

��
F (X2)

Definition 1.1.3. Let C be a category. The category Mor(C) of morphisms
in C is defined as follows.

Ob(Mor(C)) = {(U, V, s);U, V ∈ CX , s ∈ HomC(U, V ),

Hom Mor(C)((s : U −→ V ), (s′ : U ′ −→ V ′)

= {u : U −→ U ′, v : V −→ V ′; v ◦ s = s′ ◦ u}.

The category Mor0(C) is defined as follows.

Ob(Mor0(C)) = {(U, V, s);U, V ∈ CX , s ∈ HomC(U, V ),

Hom Mor0(C)((s : U −→ V ), (s′ : U ′ −→ V ′)

= {u : U −→ U ′, w : V ′ −→ V ; s = w ◦ s′ ◦ u}.

A morphism (s : U −→ V ) −→ (s′ : U ′ −→ V ′) in Mor(C) (resp. Mor0(C)) is
visualized by the commutative diagram on the left (resp. on the right) below:

U
s //

u
��

V

v
��

U ′
s′ // V ′,

U
s //

u
��

V

U ′
s′ // V ′.

w

OO
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Generators

Recall that a functor F : C −→ C ′ is conservative if any morphism f : X −→ Y
is an isomorphism as soon as F (f) is an isomorphism.

Definition 1.1.4. Let C be a category. A family {Gi}i∈I of objects of C is a
system of generators if I is a small set and the functor

∏
i∈I HomC(Gi, • ) : C −→

Set is conservative.

If the family contains a single element, say G, one says that G is a gen-
erator. If the category C admits coproducts and a system of generators as
above, then it admits a generator, namely the object

⊔
i∈I Gi.

Lemma 1.1.5. Let F : C −→ C ′ be a left exact functor of abelian categories.
Then F is conservative if and only if it is faithful.

The proof is left as an exercise.

Lemma 1.1.6. Let A be an abelian category which admits small coproducts
and a generator G. Let f : X −→ Y be a morphism in A and assume that
HomA(G,X) −→ HomA(G, Y ) is surjective. Then f is an epimorphism.

The proof is left as an exercise.

Lemma 1.1.7. Let A be an abelian category which admits small coproducts
and a generator G. Let X ∈ A. Then there exists a small set I and an
epimorphism G⊕I�X.

Proof. In this proof, we write Hom (Y, Z) instead of HomA(Y, Z).
There is a natural isomorphism

HomSet(Hom (G,X),Hom (G,X)) ' Hom (G
⊕Hom (G,X)

, X).

The identity of Hom (G,X) defines the natural morphism G
⊕Hom (G,X) −→ X

which, to (g, s) ∈ G × Hom (G,X), associates s(g). This morphism defines
the morphism

Hom (G,G
⊕Hom (G,X)

) −→ Hom (G,X)

and this last morphism being obviously surjective, the result follows from
Lemma 1.1.6. q.e.d.

Definition 1.1.8. A Grothendieck category is an abelian category which
admits small inductive and small projective limits and a generator and such
that filtrant small inductive limits are exact.
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The Brown representability theorem

In the theorem below, the main result is assertion (b) which is a particular
case of the Brown representability theorem for which we refer for example
to [KS06, Th 14.3.1]. The other assertions may be easily proved.

Theorem 1.1.9. Let C and C ′ be two Grothendieck categories and let ρ : C −→
C ′ be a left exact functor. Assume that

(i) ρ has finite cohomological dimension,

(ii) ρ commutes with small direct sums,

(iii) small direct sums of injective objects in C are acyclic for the functor ρ.

Then

(a) the functor Rρ : D(C) −→ D(C ′) commutes with small direct sums,

(b) the functor Rρ : D(C) −→ D(C ′) admits a right adjoint ρ! : D(C ′) −→ D(C),

(c) the functor ρ! induces a functor ρ! : D+(C ′) −→ D+(C).

(d) Assume that C ′ has finite cohomological dimension. Then the functor ρ!

induces a functor ρ! : Db(C ′) −→ Db(C).

1.2 Presites and presheaves

Presites

Definition 1.2.1. (i) A presite X is a small category CX .

(ii) Let X and Y be two presites. A morphism of presites f : X −→ Y is a
functor f t : CY −→ CX .

In the sequel, we shall say that a presite X has a property P if the
category CX has the property P .

For example, we say that X has a terminal object if so has CX . In such
a case, we denote this object by X.

We denote by Xop the presite associated with the category Cop
X .

We denote by X̂ the presite associated with the category C∧X .
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Example 1.2.2. (i) Let X be a topological space and let OpX denote the
family of open subsets of X. This set is ordered, and we keep the same
notation for the associated category. Hence:

HomOpX
(U, V ) =

{
{pt} if U ⊂ V,

∅ otherwise.

Note that this category admits a terminal object, namely X, and finite prod-
ucts, namely U × V = U ∩ V . We shall identify a topological space X to the
presite associated with the category OpX .
(ii) Let f : X −→ Y be a continuous map of topological spaces. It defines a
morphism of presites by setting

f t(V ) := f−1(V ) for V ∈ OpY .

In particular, for U open in X, there are natural morphisms of presites

iU : U −→ X,OpX 3 V 7→ (U ∩ V ) ∈ OpU ,(1.1)

jU : X −→ U,OpU 3 V 7→ V ∈ OpX .(1.2)

Presheaves

Definition 1.2.3. Let A be a category.

(i) An A-valued presheaf F on a presite X is a functor F : Cop
X −→ A.

(ii) One denotes by PSh(X,A) the (big) category of presheaves on X with
values in A. In other words, PSh(X,A) = Fct(Cop

X ,A).

(iii) One sets PSh(X) := PSh(X,Set). In other words, PSh(X) = C∧X .

(iv) One sets PSh(kX) := PSh(X,Mod(k)) and calls an object of PSh(kX)
a k-abelian presheaf, or an abelian presheaf, for short.

• A presheaf F on X associates to each object U ∈ CX an object F (U) of
A, and to each morphism u : U −→ V , a morphism ρu : F (V ) −→ F (U),
such that for v : V −→ W , one has:

ρidU
= idF (U), ρv◦u = ρu ◦ ρv.

• The morphism ρu is called a restriction morphism. When there is no
risk of confusion, we shall not write it.
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• A morphism of presheaves ϕ : F −→ G is thus the data for any U ∈ CX of
a moprhism ϕ(U) : F (U) −→ G(U) such that for any morphism V −→ U ,
the diagram below commutes:

F (U)
ϕ(U) //

��

G(U)

��
F (V )

ϕ(V ) // G(V )

• The category PSh(X,A) inherits of most all properties of the category
A. For example, if A admits small inductive (resp. projective) limits
then so does PSh(X,A). If A is abelian, then PSh(X,A) is abelian.

• If A is a subcategory of Set, for U ∈ CX , an element of s ∈ F (U) is
called a section of F on U .

• In view of the Yoneda lemma, the functor

hX : CX ↪→ PSh(X), U 7→ HomCX ( • , U)

is fully faithful. One shall be aware that, when CX admits projective or
inductive limits, the functor hX commutes with projective limits but
not with inductive limits in general.

Notation 1.2.4. For U ∈ CX , one denotes by Γ(U ; • ) : PSh(X,A) −→ A the
functor F 7→ F (U).

The functor Γ(U ; • ) commutes to inductive and projective limits. For
example, if A is an abelian category and ϕ : F −→ G is a morphism of
presheaves, then (Kerϕ)(U) ' Kerϕ(U) and (Cokerϕ)(U) ' Cokerϕ(U),
where ϕ(U) : F (U) −→ G(U).

Examples 1.2.5. (i) Let M ∈ A. The correspondence U 7→M is a presheaf,
called the constant presheaf on X with fiber M .
(ii) Let X denote a topological space and let C0(U) denote the C-vector space
of C-valued continuous functions on U . Then U 7→ C0(U) (with the usual
restriction morphisms) is a presheaf of C-vector spaces, denoted C0

X .

Proposition 1.2.6. Let F,G ∈ PSh(X,A). There is a natural isomorphism

λ : Hom PSh(X,A)(F,G)
∼−→ lim←−

(U−→V )∈Mor0(CX)op

HomA(F (V ), G(U)).(1.3)
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Proof. (i) First, we construct the map λ. Let ϕ : F −→ G be a morphism
in PSh(X,A) and let U −→ V be a morphism in CX . The morphisms
ϕ(U) : F (U) −→ G(U) and F (U −→ V ) : F (V ) −→ F (U) define the morphism
ϕU−→V : F (V ) −→ G(U). Moreover a morphism a : (U −→ V ) −→ (U ′ −→ V ′) in
Mor0(CX) defines a morphism

ϕa : HomA(F (V ′), G(U ′)) −→ HomA(F (V ), G(U))

as follows. To ϕU ′−→V ′ : F (V ′) −→ G(U ′), one associates the composition

ϕU−→V : F (V ) −→ F (V ′)
ϕU′−→V ′−−−−−→ G(U ′) −→ G(U).

(ii) The map λ is injective. Indeed, λ(ϕ) = λ(ψ) implies that ϕ(U) = ψ(U)
for all U ∈ CX .
(iii) The map λ is surjective. Let {ϕ(U −→ V )}U−→V ∈ lim←−

U−→V

HomA(F (V ), G(U)).

To a morphism s : U −→ V in CX , one associates the two morphisms in
Mor0(CX):

U
s //

��

V

U // U,

s

OO U
s //

s
��

V

V // V

OO

In the the diagram below, the two triangles commute. Hence, the square
commutes.

F (V )
ϕ(V ) //

��
ϕ(U−→V )

''

G(V )

��
F (U)

ϕ(U)
// G(U).

(1.4)

Therefore, the family {ϕ(U −→ V )}U−→V defines a morphism of functors
ϕ : F −→ G. q.e.d.

1.3 Direct and inverse images

In this section, we shall consider a category A satisfying

A admits small projective limits and small inductive limits.(1.5)

Consider a morphism of presites f : X −→ Y , that is, a functor f t : CY −→ CX .
We shall use Definition 1.1.2.
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Definition 1.3.1. Consider a morphism of presites f : X −→ Y .

(i) Let F ∈ PSh(X,A). One defines f∗F ∈ PSh(Y,A), the direct image of
F by f , by setting for V ∈ CY : f∗F (V ) = F (f t(V )).

(ii) Let G ∈ PSh(Y,A). One defines f †G by setting for U ∈ CX :

f †G(U) = lim−→
(U−→f t(V ))∈(CUY )op

G(V ).

(iii) Let G ∈ PSh(Y,A). One defines f ‡G, by setting for U ∈ CX :

f ‡G(U) = lim←−
(f t(V )−→U)∈((CY )U )

G(V ).

Note that f †G is a well defined presheaf on X. Indeed, consider a mor-
phism u : U −→ U ′ in CX . The morphism f †G(U ′) −→ f †G(U) is given by:

f †G(U ′) = lim−→
(U ′−→f t(V ′))

G(V ′) −→ lim−→
(U−→f t(V ))

G(V ).

There is a similar remark with f ‡G.

Theorem 1.3.2. Let f : X −→ Y be a morphism of presites.

(i) The functor f † : PSh(Y,A) −→ PSh(X,A) is left adjoint to the functor
f∗ : PSh(X,A) −→ PSh(Y,A). In other words, we have an isomorphism,
functorial with respect to F ∈ PSh(X,A) and G ∈ PSh(Y,A):

Hom PSh(X,A)(f
†G,F ) ' Hom PSh(Y,A)(G, f∗F ).(1.6)

(ii) The functor f ‡ : PSh(Y,A) −→ PSh(X,A) is right adjoint to the functor
f∗ : PSh(X,A) −→ PSh(Y,A). In other words, we have an isomorphism,
functorial with respect to F ∈ PSh(X,A) and G ∈ PSh(Y,A):

Hom PSh(X,A)(F, f
‡G) ' Hom PSh(Y,A)(f∗F,G).(1.7)

Proof. Note that (i) and (ii) are equivalent by reversing the arrows, that is,
by considering the morphism of presites f op : Xop −→ Y op. Hence, we shall
only prove (i).

(a) First, we construct a map

Φ: Hom PSh(Y,A)(G, f∗F ) −→ Hom PSh(X,A)(f
†G,F ).
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Let θ ∈ Hom PSh(Y,A)(G, f∗F ) and let U ∈ CX . For V ∈ CY and a morphism

U −→ f t(V ), the morphism

G(V )
θ(V )−−→ F (f t(V )) −→ F (U)

gives a morphism Φ(θ)(U) : lim−→
U−→f t(V )

G(V ) −→ F (U). The morphism Φ(θ)(U)

is functorial in U , that is, for any morphism U ′ −→ U in CX , the diagram
below commutes:

lim−→
U−→f t(V )

G(V )
Φ(θ)(U) //

��

F (U)

��
lim−→

U ′−→f t(V ′)

G(V ′)
Φ(θ)(U ′) // F (U ′).

Therefore, the family of morphisms {Φ(θ)(U)}U defines the morphism Φ(θ).

(b) Next, we construct a map

Ψ: Hom PSh(X,A)(f
†G,F ) −→ Hom PSh(Y,A)(G, f∗F ).

Let λ ∈ Hom PSh(X,A)(f
†G,F ) and let V ∈ CY . The morphism

λ(f tV ) : lim−→
f tV−→f tW

G(W ) = f †G(f tV ) −→ F (f tV )

together with the morphism G(V ) −→ lim−→
f tV−→f tW

G(W ) defines the morphism

Ψ(λ)(V ) : G(V )F (f tV ). The morphisms Ψ(λ)(V ) are functorial in V and
define Ψ(λ).

(c) The reader will check that Ψ and Φ are inverse one to each other. q.e.d.

Proposition 1.3.3. Let X
f−→ Y

g−→ Z be morphisms of presites. Let F ∈
PSh(X,A) and let G ∈ PSh(Z,A). Then

(g ◦ f)∗ ' g∗ ◦ f∗,
(g ◦ f)† ' f † ◦ g†,
(g ◦ f)‡ ' f ‡ ◦ g‡.

Proof. The first isomorphism is obvious and the others follow by adjunction.
q.e.d.

Note that the constructions of the functors f †G and f ‡G are variant of the
so-called Kan extension of functors.
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1.4 Restriction and extension of presheaves

Let X be a presite. We shall first make the hypothesis:

the presite X admits products of two objects and fiber products.(1.8)

Notation 1.4.1. For a presite X satisfying (1.8) and U1, U2 ∈ CX , we shall
denote by U1 ×X U2 their product in CX .

Note that a category admits a terminal object and fiber products if and
only if it admits finite projective limits. If a category CX admits a terminal
object X, then U ×X V

∼−→ U × V for any U, V ∈ CX .

Definition 1.4.2. (i) For U ∈ CX , we set CU := (CX)U and we still denote
by U the presite associated with the category CU .
(ii) We denote by jU : X −→ U the morphism of presites associated with the
functor jtU : CU −→ CX which, to (v : V −→ U) ∈ CU , associates V ∈ CX .
(iii) We denote by iU : U −→ X the morphism of presites associated with the
functor itU : CX −→ CU which, to V ∈ CX , associates itU(V ) = (U ×X V −→
U) ∈ CU .

Let F ∈ PSh(X,A). One sets

F |U = jU ∗F

and one calls F |U the restriction of F to U .
More generally, consider a morphism s : V −→ U in CX . One denotes by
jt
V

s−→U
: CV −→ CU the natural functor and by j

V
s−→U

: U −→ V the associated

morphism of presites.

Proposition 1.4.3. Let U ∈ CX and (V −→ U) ∈ CU . For F ∈ PSh(X,A)
and G ∈ PSh(U,A), we have:

(i) jU ∗F (V −→ U) ' F (V ),

(ii) j†U G(V ) '
∐

s∈Hom
CX

(V,U)G(V
s−→ U).

(iii) j‡U G(V ) ' G(U ×X V −→ U).

Proof. (i) is obvious.
(ii) By its definition,

j†U G(V ) ' lim−→
(V−→jtU (W−→U))∈((CU )V )op

G(W −→ U)

' lim−→
V−→W−→U

G(W −→ U)

' lim−→
(s : V−→U)∈Hom (V,U)

G(V
s−→ U).
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Here, we use the fact that the category HomCX (V, U) is cofinal in ((CU)V )op.
The result follows since the category HomCX (V, U) is discrete.
(iii) By its definition,

j‡U G(V ) ' lim←−
(jtU (W−→U)−→V )∈(CU )V

G(W −→ U)

' lim←−
U←−W−→V

G(W −→ U)

' G(U ×X V −→ U).

Here, the last isomorphism follows from the fact that U ×X V −→ U is a
terminal object in (CU)V . q.e.d.

1.5 The functors hom and tens

Let s : V −→ U be a morphism and let F,G ∈ PSh(X,A). The functor
j
V

s−→U ∗
: PSh(U,A) −→ PSh(V,A) defines the map

Hom PSh(U,A)(F |U , G|U) −→ Hom PSh(V,A)(F |V , G|V ).

Definition 1.5.1. Let F,G ∈ PSh(X,A). One denotes by Hom (F,G) the
presheaf of sets on X, U 7→ Hom PSh(U,A)(F |U , G|U).

By its definition, we have for U ∈ CX :

Hom PSh(U,A)(F |U , G|U) ' Hom (F,G)(U).(1.9)

From now on and until the end of this section, we assume that A =
Mod(k). Note that in this case, Hom (F,G) belongs to PSh(kX). Then, one
calls it the “internal hom” of F and G.

Denote by k̃X the constant presheaf U 7→ k. Then

Hom (k̃X , F ) ' F.(1.10)

Applying (1.9), we get

Hom PSh(kX)(k̃X , F ) ' F (X).(1.11)

Now let U ∈ CX . We have the isomorphism

Hom PSh(kX)(j
†
U jU ∗k̃X , F ) ' Hom PSh(kU )(jU ∗k̃X , jU ∗F ).

Since k̃U ' jU ∗k̃X in PSh(kU), we get the isomorphism

F (U) ' Hom PSh(kX)(j
†
U jU ∗k̃X , F ).(1.12)
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Theorem 1.5.2. The category PSh(kX) is an abelian Grothendieck category.

Proof. The fact that this category is abelian, admits small limits and col-
imits and small colimits are exact is obvious. It remains to show that it
admits a small family of generators. By (1.12), we may choose the family

{j†U jU ∗k̃X}U∈CX . q.e.d.

Definition 1.5.3. Let F1, F2 ∈ PSh(kX). Their tensor product, denoted

F1

psh
⊗F2 is the presheaf U 7→ F1(U)⊗F2(U).

Proposition 1.5.4. Let Fi ∈ PSh(kX), (i = 1, 2, 3). There is a natural
isomorphism:

Hom (F1

psh
⊗F2, F3) ' Hom (F1,Hom (F2, F3)).

We skip the proof.

1.6 Presheaves on topological spaces

Definition 1.6.1. Assume X is a topological space and assume that A ad-
mits small inductive limits. Let x ∈ X, and let Ix denote the full subcategory
of OpX consisting of open neighborhoods of x. For a presheaf F on X, one
sets:

Fx = lim−→
U∈Iopx

F (U).(1.13)

One calls Fx the stalk of F at x.

Proposition 1.6.2. Assume that A is abelian, admits small inductive limits
and that small filtrant inductive limits are exact in A. Then the functor
F 7→ Fx from PSh(X,A) to A is exact.

Proof. The functor F 7→ Fx is the composition

PSh(X,A) = Fct(Opop
X ,A) −→ Fct(Iop

x ,A)

lim−→
−→ A.

The first functor associates to a presheaf F its restriction to the category
Iop
x . It is clearly exact. Since U, V ∈ Ix implies U ∩ V ∈ Ix, the category Iop

x

is filtrant and it follows that the functor lim−→ is exact. q.e.d.
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Assume A = Set or A = Mod(k). Let x ∈ U and let s ∈ F (U). The image
sx ∈ Fx of s is called the germ of s at x.

Since Iop
x is filtrant, a germ sx ∈ Fx is represented by a section s ∈ F (U)

for some open neighborhood U of x, and for s ∈ F (U), t ∈ F (V ), sx = tx
means that there exists an open neighborhood W of x with W ⊂ U ∩V such
that ρWU(s) = ρWV (t).

Exercises to Chapter 1

Exercise 1.1. Let X be a presite, let U ∈ CX and let F , G, H ∈ PSh(X).
Prove the isomorphisms

Hom (F,G)(U) ' Hom PSh(X)(F × U,G),

Hom (F ×H,G) ' Hom (F,Hom (H,G)),

Hom PSh(X)(F ×H,G) ' Hom PSh(X)(F,Hom (H,G)).

Exercise 1.2. Let X be a presite. Prove that a morphism u : A −→ B
in PSh(X) is a monomorphism (resp. an epimorphism) if and only if the
morphism u(U) : A(U) −→ B(U) in Set is a monomorphism (resp. an epimor-
phism) for any U ∈ CX .

Exercise 1.3. Let X be a presite.
Consider morphisms u : A −→ C and v : B −→ C in PSh(X). Prove that
(A×C B)(U) ' A(U)×C(U) B(U) for any U ∈ CX .

Exercise 1.4. Assume X is a topological space and let U ∈ OpX . Prove

that the composition of morphisms of presites U
iU−→ X

jU−→ U is isomorphic
to the identity functor of the presite U . Show that this result is no more true
in general.

Exercise 1.5. Let α : J −→ I be a functor of small categories and let
A be a category which admits small inductive limits. Define the functor
α∗ : Fct(I,A) −→ Fct(J ,A) by setting α∗(F ) = F ◦ α, F ∈ Fct(I,A).
(i) Prove that α∗ admits a left adjoint.
(ii) Let F : C −→ A be a functor. We assume that C is small and A admits
small inductive limits. Prove that there exists a unique (up to isomorphism)

functor F̂ : C∧ −→ A which extends F and which commutes with small induc-
tive limits in C∧.
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Chapter 2

Sheaves on sites

A site X is a small category CX endowed with a Grothendieck topology.
The objects of the category play the role of the open subsets of a topological
space and one axiomatizes the notion of a covering. The theory is much easier
when assuming, as we do here, that the category CX admits finite products
and fiber products. We study abelian sheaves on such sites, constructing
the sheaf associated with a presheaf and the usual internal and external
operations on sheaves. We also have a glance to locally constant sheaves.
Finally, we glue sheaves, that is, given a covering of X and sheaves defined
on the open sets of this coverings satisfying a natural cocycle condition, we
prove the existence and unicity of a sheaf on X locally isomorphic to these
locally defined sheaves.
Some references: [SGA4, Ta94, KS06].

2.1 Grothendieck topologies

We shall axiomatize the classical notion of a covering in a topological space.
Let X be a presite. All along theses Notes, we assume

the presite X admits products of two objects and fiber products(2.1)

Recall Notation 1.4.1.
In the sequel, we shall often write S ⊂ CU instead of S ⊂ Ob(CU). We

shall also often write V ∈ CU instead of (V −→ U) ∈ CU . For S ⊂ CU and
V ∈ CU , we set

V ×U S := {V ×U W ;W ∈ S},

a subset of CV .

21
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For S1 ⊂ CU and S2 ⊂ CU , we set

S1 ×U S2 := {V1 ×U V2;V1 ∈ S1, V2 ∈ S2},

a subset of CU .
For a morphism of presites f : X −→ Y , V ∈ CY and S ⊂ CV , we set

f t(S) := {f t(W );W ∈ S},

a subset of Cf t(V ).

Definition 2.1.1. Let U ∈ CX . Consider two subsets S1 and S2 of Ob(CU).
One says that S1 is a refinement of S2 if for any U1 ∈ S1 there exists U2 ∈ S2

and a morphism U1 −→ U2 in CU . In such a case, we write S1 � S2.

Remark 2.1.2. Instead of considering a subset S of Ob(CU), one may also
consider a family U = {Ui}i∈I of objects of CU indexed by a set I. To such
a family one may associate S = Im(U) ⊂ Ob(CU). Then for U1 = {Ui}i∈I
and U2 = {Vj}j∈J , we say that U1 is a refinement of U2 and write U1 � U2

if for any i ∈ I there exists j ∈ J and a morphism Ui −→ Vj in CU . This is
equivalent to saying that ImU1 � ImU2.

Of course, if the map I −→ Ob(CU), i 7→ Ui is injective, it is equivalent to
work with U = {Ui}i∈I or with S = Im(U).

Definition 2.1.3. Let X be a presite satisfying hypothesis (1.8). A Grothen-
dieck topology (or simply “a topology”) on X is the data for each U ∈ CX
of a family Cov(U) of subsets of Ob(CU) satisfying the axioms COV1–COV4
below.

COV1 {U} belongs to CovU .

COV2 If S1 ∈ CovU is a refinement of S2 ⊂ Ob(CU), then S2 ∈ CovU .

COV3 If S belongs to CovU , then S ×U V belongs to Cov(V ) for any (V −→
U) ∈ CU induced

COV4 If S1 belongs to CovU , S2 ⊂ CU , and S2 ×U V belongs to Cov(V ) for
any V ∈ S1, then S2 belongs to CovU .

An element of Cov(U) is called a covering of U .

Intuitively, COV3 means that a covering of an open set U induces a
covering on any open subset V ⊂ U , and COV4 means that if a family of
open subsets of U induces a covering on each subset of a covering of U , then
this family is a covering of U .

Since the category CX does not necessarily admit a terminal object, the
following definition is useful.
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Definition 2.1.4. Let X be a presite endowed with a Grothendieck topology.
A covering of X is a subset S of Ob(CX) such that S×XU belongs to Cov(U)
for any U ∈ CX .

Definition 2.1.5. (i) A site X is a presite X satisfying hypothesis (1.8)
and endowed with a Grothendieck topology.

(ii) A morphism of sites f : X −→ Y is a morphism of presites such that

(a) f t : CY −→ CX commutes with products and fiber products,

(b) for any V ∈ CY and S ∈ Cov(V ), f t(S) ∈ Cov(f t(V )).

Examples 2.1.6. (i) The classical notion of a covering on a topological
space X is as follows. A family S ⊂ OpU is a covering if

⋃
V ∈S V = U .

Axioms COV1–COV4 are clearly satisfied, and we still denote by X the site
so obtained. If f : X −→ Y is a continuous map of topological spaces, it
defines a morphism of sites.
(ii) Let X be a presite. The initial topology on X is defined as follows. Any
subset of Ob(CU) is a covering. We shall denote by Xini this site. Note that
if X is a site, the morphism of presites idX : X −→ X induces a morphism of
sites Xini −→ X.
(iii) Let X be a presite. The final topology on X is defined as follows. A
family S ⊂ Ob(CU) is a covering of U if and only if {U} ∈ S. Note that if X
is a site, the morphism of presites idX : X −→ X induces a morphism of sites
X −→ Xfin.
(iv) We shall denote by {pt} the set with one element and we denote this
element by pt. We endow {pt} with the discrete topology. Hence, the cat-
egory C{pt} associated with the presite {pt} has two objects, ∅ and pt and
{pt} is a site. The Grothendieck topology so defined is the final topology. If
X is a toplogical space, we shall usually denote by aX : X −→ {pt} the unique
continuous map from X to {pt}.
(v) Let Pt be the category with one object (let us say c) and one morphism,
idc. Then the initial and final topology on Pt differs. The empty covering is
a covering of c for the initial topology, not for the final one. In the sequel,
we endow Pt with the final topology. If X is a site with a terminal object
X, there is a natural morphism of sites X −→ Pt, which associates the object
X ∈ CX to c ∈ Pt.
(vi) Let X be a topological space. Let us endow OpX with the following
Grothendieck topology: S ⊂ OpU is a covering of U if there exists a finite
subset S ′ ⊂ S such that

⋃
V ∈S′ V = U . Axioms COV1–COV4 are clearly

satisfied. We denote by Xfinite the site so obtained.
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(vii) Let X be a real analytic manifold. The subanalytic site Xsa is defined
in [?] as follows: the objects of CXsa are the relatively compact subanalytic
open subsets of X and the topology is that of Xfinite, that is, a covering of
U ∈ CXsa is a covering of U in Xfinite.
(viii) Let X be a topological space endowed with an equivalence relation ∼.
Let CX be the category of saturated open subsets (U is saturated if x ∈ U
and x ∼ y implies y ∈ U). We endow CX with the induced topology, that is,
the coverings of U ∈ CX are the saturated coverings of U in X.
(ix) Let V be a universe with V ∈ U . Denote by C∞V be the small U -
category whose objects are the real manifolds of class C∞ belonging to V
and morphisms are morphisms of such manifolds. Let X ∈ C∞V and define
the category CX as follows. An object of CX is an étale morphism f : Y −→ X
in C∞V . (Recall that a morphism f : Y −→ X is étale if f is open and, locally

on Y , f is an isomorphism onto its image.) A morphism u : (Y1
f1−→ X) −→

(Y2
f2−→ X) is a morphism g : Y1 −→ Y2 such that f2 ◦ g = f1. Necessarily, g is

étale. Let us denote by Xet the presite so defined. We endowed it with the

following topology: a family of morphism {Ui
fi−→ U}i is a covering of U ∈ CX

if U is the union of the fi(Ui)’s.

Let X be a site and let U ∈ CX . To U is associated the category CU .
Denoting again by U the presite associated with CU , the presite U satisfies
(1.8).

The functor jtU : CU −→ CX given by

jtU(V −→ U) = V

defines a morphism of presites:

jU : X −→ U.(2.2)

The functor itU : CX −→ CU given by

itU(V ) = U ×X V −→ U

defines a morphism of presites

iU : U −→ X.(2.3)

Definition 2.1.7. The induced topology by X on the presite U is defined
as follows. Let (V −→ U) ∈ CU . A subset S ⊂ CV is a covering of (V −→ U) if
jtU(S) is a covering of V in X.

Clearly this family satisfies the axioms COV1–COV4, and thus defines a
topology on the presite U .
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Lemma 2.1.8. The morphisms of presites (2.2) and (2.3) are morphisms of
sites.

The obvious verifications are left to the reader.

Example 2.1.9. Let X be a topological space, U an open subset. Note that
both OpX and OpU admit finite projective limits, but in general jU does not
commute with such limits since it does not send the terminal object U of
OpU to the terminal object X of OpX .

2.2 Sheaves

Let A be a category satisfying

A admits small projective limits.(2.4)

Let S ⊂ CU and let F ∈ PSh(X,A). One defines F (S) by the exact sequence
(i.e., F (S) is the kernel of the double arrow):

F (S) −→
∏
V ∈S

F (V ) ⇒
∏

V ′,V ′′∈S

F (V ′ ×U V ′′).(2.5)

Here the two arrows are associated with
∏

V ∈S F (V ) −→ F (V ′) −→ F (V ′ ×X
V ′′) and

∏
V ∈S F (V ) −→ F (V ′′) −→ F (V ′ ×X V ′′).

Assume that S is stable by product, that is, if V −→ U and W −→ U
belong to S then V ×U W −→ U belongs to S. In this case, looking at S as a
full subcategory of CU , we have:

F (S) ' lim←−
(V−→U)∈S

F (V ).(2.6)

Note that, if A = Set, a section s ∈ F (S) is the data of a family of
sections {sV ∈ F (V )}V ∈S such that for any V ′, V ′′ ∈ S,

sV ′ |V ′×XV ′′ = sV ′′ |V ′×XV ′′ .

For a presheaf F , there is a natural map

F (U) −→ F (S).(2.7)

Definition 2.2.1. (i) One says that a presheaf F is separated if for any
U ∈ CX and any covering S of U , the natural morphism F (U) −→ F (S)
is a monomorphism.
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(ii) One says that a presheaf F is a sheaf if for any U ∈ CX and any covering
S of U , the natural map F (U) −→ F (S) is an isomorphism.

(iii) One denotes by Sh(X,A) the full subcategory of PSh(X,A) whose ob-
jects are sheaves and by ιX : Sh(X,A) −→ PSh(X,A) the forgetful
functor. If there is no risk of confusion, we write ι instead of ιX , or
even, we do not write ι.

(iv) One sets Sh(X) = Sh(X,Set) and Mod(kX) = Sh(X,Mod(k)). One
calls an object of Mod(kX) a k-abelian sheaf, or an abelian sheaf, for
short.

Assume that A is either the category Set or the category Mod(k). Let
F be a presheaf on X and consider the two conditions below.

S1 For any U ∈ CX , any covering S of U , any s, t ∈ F (U) satisfying
s|V = t|V for all V ∈ S, one has s = t.

S2 For any U ∈ CX , any covering S of U , any family {sV ∈ F (V )}V ∈S
satisfying sV |V×UW = sW |V×UW for all U, V ∈ S, there exists s ∈ F (U)
with s|V = sV for all V ∈ S.

The next results are obvious.

Proposition 2.2.2. Assume that A is either the category Set, or the cate-
gory Mod(k) for a ring k. A presheaf F is separated (resp. is a sheaf) if and
only if it satisfies S1 (resp. S1 and S2).

Proposition 2.2.3. Let F be a sheaf on X. Then for U ∈ CX , F |U is a
sheaf on U .

Example 2.2.4. If X is a topological space, F is a abelian sheaf on X and
{Ui}i∈I is a family of disjoint open subsets, then F (

⊔
i Ui) =

∏
i F (Ui). In

particular, F (∅) = 0.

Remark 2.2.5. Let F be an abelian sheaf on a topological space X.
(i) One defines its support, denoted by suppF , as the complementary of the
union of all open subsets U of X such that F |U = 0. Note that F |X\suppF = 0.
(ii) Let s ∈ F (U). One defines its support, denoted by supp s, as the com-
plementary of the union of all open subsets U of X such that s|U = 0.
Of course, the notion of support has no meaning on a site in general.

Theorem 2.2.6. Let F ∈ PSh(X,A) and G ∈ Sh(X,A). The presheaf
Hom (F, ιXG) is a sheaf of sets on X. (A sheaf of k-modules in case A =
Mod(k).)
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In the sequel, we shall not write ιX .

Proof. Let U ∈ CX and let S be a covering of U . We shall check conditions
S1 and S2 as in Proposition 2.2.2. Consider the diagram

F (U) //

��

F (S)

��

//
∏

V ∈SF (V )

��

//
//
∏

V ′,V ′′∈SF (V ′ ×U V ′′)

��
G(U) ∼ // G(S) //

∏
V ∈SG(V )

//
//
∏

V ′,V ′′∈SG(V ′ ×U V ′′)

(S1) Let ϕ, ψ : F |U −→ G|U be two morphisms defined on U . Denote by
ϕV , ψV their restriction to V ∈ S. These families of morphisms define the
morphisms ϕS , ψS : F (S) −→ G(S). Assuming that ϕV = ψV for all V , we get
ϕS = ψS hence ϕ(U) = ψ(U) and by the same argument, ϕ(V ) = ψ(V ) for
any V −→ U .

(S2) Let {ϕV }V be a family of morphisms ϕV : F |V −→ G|V and assume
that ϕV = ϕW on V ×U W . Then this family of morphisms defines a
morphism ϕS : F (S) −→ G(S). One constructs ϕ(U) as the composition

F (U) −→ F (S)
ϕS−→ G(S)

∼←− G(U). Replacing U with V −→ U , one checks
easily that the family of morphisms {ϕ(V )}V−→U so constructed defines a
morphism of presheaves F |U −→ G|U . q.e.d.

We shall still denote by Hom (F,G) the sheaf given by Theorem 2.2.6.

Corollary 2.2.7. Let ϕ : F −→ G be a morphism in Sh(X,A). Assume that
there is a covering S of X such that ϕV : F |V −→ G|V is an isomorphism for
any V ∈ S. Then ϕ is an isomorphism.

Proof. For V ∈ S, denote by ψV the inverse of ϕV . Then for any V,W ∈ S,
ψV |V×XW = ψW |V×XW . By Theorem 2.2.6, there exists ψ : G −→ F such that
ψ|V = ψV for all V ∈ S. Clearly ψ ◦ ϕ = idF and ϕ ◦ ψ = idG. q.e.d.

In § 2.8 we shall construct sheaves which are locally isomorphic without being
isomorphic.

Examples 2.2.8. (i) Let X be a topological space.

(a) The presheaf C0
X of complex valued continuous functions is a sheaf.

(b) Let M ∈ Mod(k). The presheaf MX of locally constant functions on X
with values in M is a sheaf. Note that the constant presheaf with stalk M
is not a sheaf except if M = 0.

(ii) Let X be a real analytic manifold.
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(a) The presheaf CωX of complex valued real analytic functions is a sheaf,

(b) the presheaf C∞X of complex valued functions of class C∞ is a sheaf as well

as C∞,(p)X , the presheaf of p-forms of class C∞,

(c) the presheaf DbX of complex valued distributions is a sheaf, as well as
the presheaf BX of complex valued hyperfunctions.

(iii) Let X be a complex manifold.

(a) The presheaf OX of holomorphic functions is a sheaf as well as the
presheaf Ωp

X of holomorphic p-forms (hence, Ω0
X = OX),

(b) the presheaf DX of (finite order) holomorphic differential operators is a
sheaf.

(iv) On a topological space X, the presheaf U 7→ C0,b
X (U) of continuous

bounded functions is not a sheaf in general. To be bounded is not a local
property and axiom (S2) is not satisfied. However, this presheaf is a sheaf
on the site Xfinite defined in Examples 2.1.6.

(v) Let X = C, and denote by z the holomorphic coordinate. The holomor-
phic derivation ∂

∂z
is a morphism from OX to OX . Consider the presheaf:

F : U 7→ O(U)/
∂

∂z
O(U),

that is, the presheaf Coker( ∂
∂z

: OX −→ OX). For U an open disc, F (U) = 0
since the equation ∂

∂z
f = g is always solvable. However, if U = C \ {0},

F (U) 6= 0. Hence the presheaf F does not satisfy axiom (S1).

2.3 Sheaf associated with a presheaf

From now on, and until the end of these Notes, with the exception of § 3.3, we
restrict ourselves to the case where A = Mod(k). However, many construc-
tions and results still hold in other situations, in particular when chooseing
A = Set. References are made to [KS06].

Recall the notations Sh(X,Mod(k)) = Mod(kX) and PSh(X,Mod(k)) =
PSh(kX).

In this section, we shall explain how to construct the “sheaf associated
with a presheaf”. More precisely, we shall show that the natural forgetful
functor ιX : Mod(kX) −→ PSh(kX) which, to a sheaf F , associates the un-
derlying presheaf, admits a left adjoint. Let U ∈ CX and let S1 and S2 be
two subsets of CU . Notice first that the relation S1 � S2 is a pre-order on
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Cov(U). Hence, Cov(U) inherits a structure of a category:

Hom Cov(U)(S1,S2) =

{
{pt} if S1 is a refinement of S2,
∅ otherwise.

For S1,S2 ∈ Cov(U), S1 ×U S2 again belongs to Cov(U). Therefore:

Lemma 2.3.1. The category Cov(U) is cofiltrant (i.e., the opposite category
is filtrant).

Lemma 2.3.2. Let F ∈ PSh(kX) and let U ∈ CX . Then F naturally defines
a functor Cov(U)op −→ A.

Proof. Let S1 � S2. We shall construct a natural morphism F (S2) −→ F (S1).
For V1 ∈ S1 we construct F (S2) −→ F (V1) by choosing V2 ∈ S2 and a mor-
phism V1 −→ V2. The composition F (S2) −→

∏
V ∈S2 F (V ) −→ F (V2) −→ F (V1)

does not depend on the choice of V1 −→ V2. Indeed, if we have two morphisms
V1 −→ V ′2 and V1 −→ V ′′2 , these morphisms factorize through V1 −→ V ′2 ×V1 V ′′2
and the composition F (S2) −→ F (V ′2) −→ F (V ′2 ×V1 V ′′2 ) −→ F (V1) is the same
as the composition F (S2) −→ F (V ′′2 ) −→ F (V ′2 ×V1 V ′′2 ) −→ F (V1).

The family of morphisms F (S2) −→ F (V1), V1 ∈ S1, defines F (S2) −→
F (S1) and one checks easily the functoriality of this construction. q.e.d.

One defines the presheaf F+ by setting for all U ∈ CX :

(2.8) F+(U) = lim−→
S∈Cov(U)

F (S).

For any V −→ U , the morphism F+(U) −→ F+(V ) is defined by the sequence
of morphisms

F+(U) = lim−→
S∈Cov(U)

F (S) −→ lim−→
S∈Cov(U)

F (V ×U S) −→ lim−→
T ∈Cov(V )

F (T ) = F+(V ).

The second arrow is well-defined since V ×U S ∈ Cov(V ).
Clearly the correspondence F 7→ F+ defines a functor + : PSh(kX) −→

PSh(kX). Moreover for each U ∈ CX , the maps F (U) −→ F (S),S ∈ Cov(U)
define F (U) −→ lim−→

S∈Cov(U)

F (S) = F+(U). Hence, there is a morphism of

functors α : id −→ +.

Theorem 2.3.3. (i) If F is a separated presheaf, then F −→ F+ is a
monomorphism.

(ii) If F is a sheaf, then F −→ F+ is an isomorphism.
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(iii) For any presheaf F , F+ is a separated presheaf.

(iv) For any separated presheaf F , F+ is a sheaf.

(v) The functor a := ++ : PSh(kX) −→ Mod(kX) is a left adjoint to the
embedding functor ιX : Mod(kX) −→ PSh(kX).

(vi) The functor + : PSh(kX) −→ PSh(kX) is left exact.

Proof. (i) By the hypothesis, for any open set U and any covering S of U ,
the morphism F (U) −→ F (S) is a monomorphism. Since Cov(U) is cofiltrant,
F (U) −→ F+(U) is a monomorphism.

(ii) By the hypothesis, for any open set U and any covering S of U , the
morphism F (U) −→ F (S) is an isomorphism. The result follows.

(iii)–(iv) We shall not give the proof here.

(v) Let G ∈ Mod(kX). The morphism F −→ F+ defines the morphism

λ : Hom PSh(kX)(F
+, G) −→ Hom PSh(kX)(F,G)

and the functor + defines the morphism

Hom PSh(kX)(F,G) −→ Hom PSh(kX)(F
+, G+)

' Hom PSh(kX)(F
+, G).

One checks that these two morphisms are inverse one to each other. Therefore
λ is an isomorphism. Replacing F with F+, the result follows.

(vi) It is enough to prove that for each U ∈ CX , the functor F −→ F+(U)
is left exact. Since F+(U) = lim−→F (S), where S ranges over the cofiltrant
category Cov(U), it is enough to check that the functor F −→ F (S) is left
exact. This follows from (2.5) and the fact that F 7→ F (V ) is exact. q.e.d.

In the sequel, we shall often omit to write the symbol ιX . Hence, (v) may
be written as follows with F ∈ PSh(kX) and G ∈ Mod(kX)

(2.9) Hom PSh(kX)(F,G) ' HomMod(kX)(F
a, G).

Definition 2.3.4. (i) If F is a presheaf on X, the sheaf F a is called the
sheaf associated with F .

(ii) We denote by θ : id −→ ιX ◦a the natural morphism of functor associated
with the pair of adjoint functor (a, ιX).
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Hence, Theorem 2.3.3 (vi) may be formulated as follows: any morphism
of presheaves ϕ : F −→ G factorizes uniquely as

F
ϕ //

θ
��

G.

F a

==(2.10)

Remark 2.3.5. When X is a topological space the construction of the sheaf
F a is much easier. Define:

F a(U) = {s : U −→
⊔
x∈U

Fx ; s(x) ∈ Fx,

for all x ∈ U, there exists V open in U , with x ∈ V,
there exists t ∈ F (V ) with ty = s(y), for all y ∈ V }.

Define θ : F −→ F a as follows. To s ∈ F (U), one associates the section of F a:

(x 7→ sx) ∈ F a(U).

One checks that (F a, θ) has the required properties, that is, any morphism
of presheaves ϕ : F −→ G factorizes uniquely as in (2.10). Details are left to
the reader.

Example 2.3.6. One denotes by kX the sheaf associated with the constant
presheaf U 7→ k. Mor generally, one defines similarly the constant sheaf MX

for M ∈ Mod(k). It follows from (1.10) and (1.11) that

Hom (kX , F ) ' F, HomkX
(kX , F ) ' F (X).(2.11)

2.4 The category of abelian sheaves

Notation 2.4.1. In the sequel, as far as there is no risk of confusion, we
shall write HomkX

, or sometimes simply Hom , instead of HomMod(kX).

Theorem 2.4.2. (i) The category Mod(kX) admits small projective limits
and such limits commute with the functor ιX .

(ii) The category Mod(kX) admits small inductive limits. More precisely,
if {Fi}i∈I is an inductive system of sheaves, its inductive limit is the
sheaf associated with its inductive limit in PSh(kX).
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(iii) The functor ιX : Mod(kX) −→ PSh(kX) is fully faithful and commutes
with small projective limits (in particular, it is left exact). The functor
a : PSh(kX)) −→ Mod(kX) commutes with small inductive limits and is
exact.

(iv) Small filtrant inductive limits are exact in Mod(kX).

(v) Let ϕ : F −→ G be a morphism in Mod(kX). Denote by “ Im ”ϕ and
“ Coim ”ϕ the image and coimage of this morphism in the category
PSh(kX) (i.e., the image and coimage of ιX(ϕ)). Then Imϕ ' (“ Im ”ϕ)a

and Coimϕ ' (“ Coim ”ϕ)a.

(vi) The category Mod(kX) is an abelian Grothendieck category.

Proof. (i) Let {Fi}i∈I be a small projective system of sheaves, let U ∈ CX
and let S ∈ Cov(U). By the definition of F (S), one sees that the mor-
phism F (U) −→ F (S) commutes with projective limits, that is, (lim←−

i

Fi)(U)
∼−→

(lim←−
i

Fi)(S). Hence a projective limit of sheaves in the category PSh(kX) is

a sheaf. The fact that this sheaf is a projective limit in Mod(kX) of the
projective system {Fi}i∈I follows from the fact that the forgetful functor
PSh(kX) −→ Mod(kX) is fully faithful:

HomkX
(G, lim←−

i

Fi) ' Hom PSh(kX)(G, lim←−
i

Fi)

' lim←−
i

Hom PSh(kX)(G,Fi)

' lim←−
i

HomkX
(G,Fi).

(ii) Let {Fi}i∈I is a small inductive system of sheaves. Let us denote by
“lim−→”

i

Fi its inductive limit in the category PSh(kX) and let G ∈ Mod(kX).

We have the chain of isomorphisms

HomkX
((“lim−→”

i

Fi)
a, G) ' Hom PSh(kX)(“lim−→”

i

Fi, G)

' lim←−
i

Hom PSh(kX)(Fi, G)

' lim←−
i

HomkX
(Fi, G).

(iii) The functor ιX is fully faithful by definition. By adjunction, ιX commutes
with small projective limits and a commutes with small inductive limits. It
remains to prove that a is left exact.
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By Theorem 2.3.3 (vi), the functor ιX ◦ a : PSh(kX) −→ PSh(kX) is left
exact. Since this functor takes its values in Mod(kX), and ιX : Mod(kX) −→
PSh(kX) is conservative and left exact, the functor a : PSh(kX)) −→ Mod(kX)
is left exact.
(iv) Small filtrant inductive limits are exact in the category Mod(k), whence
in the category PSh(kX). Then the result follows since a is exact.
(v) By (i) and (ii), the category Mod(kX) admits small projective and induc-
tive limits. Denote by “⊕ ” and “ Coker ” the coproduct and the cokernel in
the category PSh(kX). Then

Coimϕ = Coker
(
F ×G F ⇒ F

)
'

(
“ Coker ”

(
F ×G F ⇒ F

))a ' (“ Coim ”(ϕ)
)a
,

Imϕ = Ker
(
G⇒ G⊕F G)

)
' Ker

(
G⇒ (G “⊕ ”

F
G)a)

)
'

(
Ker(G⇒ G “⊕ ”G)

)a ' (“ Im ”(ϕ)
)a
.

Here, the fourth isomorphism follows from the fact that the functor a being
exact, it commutes with kernels. It follows that for a morphism ϕ : F −→
G in Mod(kX), the natural morphism Coimϕ −→ Imϕ is an isomorphism.
Therefore Mod(kX) is abelian.
(vi) It remains to prove that this category admits a system of generators.

Set kXU := (j†U jU ∗k̃X)a. Then

HomkX
(kXU , F ) ' Hom PSh(kX)(j

†
U jU ∗k̃X , F )

and it follows from Theorem 1.5.2 that the family {kXU}U∈CX is a sys-
tem of generators. (We shall recover the sheaves kXU with Notation 2.7.4
and (2.22).) q.e.d.

Remark 2.4.3. The object G :=
⊕

U∈CX kXU is a generator of the abelian
category Mod(kX).

Corollary 2.4.4. Let ϕ : F −→ G be a morphism in Mod(kX). Then ϕ is an
epimorphism if and only if, for any U ∈ CX and any t ∈ G(U), there exists
S ∈ Cov(U) and for any V ∈ S there exists s ∈ F (V ) with ϕ(s) = t in G(V ).

Proof. As above, denote by “ Im ”ϕ the image of ϕ in the category PSh(X).
Since this presheaf is a subpresheaf of the sheaf G, it is separated. Hence
Im(ϕ) ' (“ Im ”(ϕ))+ and

Im(ϕ)(U) ' lim−→
S∈Cov(U)

“ Im ”(ϕ)(S).
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Now ϕ is an epimorphism if and only if Imϕ
∼−→ G. Let t ∈ G(U). Since

Cov(U)op is filtrant, t ∈ Im(ϕ)(U) if and only if there exists S ∈ Cov(U)
with t ∈ “ Im ”(ϕ)(S). The result follows. q.e.d.

Corollary 2.4.5. Let F ′
ϕ−→ F

ψ−→ F ′′ be a complex in Mod(kX). Then the
conditions below are equivalent:

(a) this complex is exact,

(b) for any U ∈ CX and any s ∈ F (U) such that ψ(s) = 0, there exist a
covering S ∈ Cov(U) and for each V ∈ S there exists t ∈ F ′(V ) such
that ϕ(t) = s|V ,

(c) there exists a covering S of X such that the sequence F ′|U
ϕ−→ F |U

ψ−→ F ′′|U
is exact for any U ∈ S.

Proof. (a) is equivalent to saying that the natural morphism Imϕ −→ Kerψ
is an epimorphism, and this last condition is equivalent to (b) by Corol-
lary 2.4.4.

(a) ⇒ (c) follows from (Imϕ)|U ' Im(ϕ|U) and (Kerψ)|U ' Ker(ψ|U).

(c) ⇒ (b) is obvious. q.e.d.

Example 2.4.6. Assume that X is a topological space. Then a complex
F ′ −→ F −→ F ′′ in Mod(kX) is exact if and only if the sequence F ′x −→ Fx −→ F ′′x
is exact in Mod(k) for any x ∈ X.

Examples 2.4.7. Let X be a real analytic manifold of dimension n. The
(augmented) de Rham complex is

(2.12) 0 −→ CX −→ C∞,(0)
X

d−→ · · · −→ C∞,(n)
X −→ 0

where d is the differential. This complex of sheaves is exact. The same result
holds with the sheaf C∞X replaced with the sheaf CωX or the sheaf DbX .

(ii) Let X be a complex manifold of dimension n. The (augmented) holo-
morphic de Rham complex is

(2.13) 0 −→ CX −→ Ω0
X

d−→ · · · −→ Ωn
X −→ 0

where d is the holomorphic differential. This complex of sheaves is exact.
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The functor Γ(U ; • )

We have introduce the functor Γ(U ; • ) on presheaves in Notation 1.2.4. We
keep the same notation for the restriction of this functor to the category
Mod(kX).

Definition 2.4.8. Let F ∈ Mod(kX).

(i) For U ∈ CX , one sets Γ(U ;F ) = F (U).

(ii) One sets Γ(X;F ) = lim←−
U∈CX

F (U).

Of course, if CX admits a terminal object X, (i) and (ii) in Definition
2.4.8 are compatible. Moreover, one has for U ∈ CX

Γ(U ;F ) ' Γ(U ;F |U).

Since ιX is left exact and the functor F 7→ F (U) is exact on PSh(kX), the
functor Γ(U ; • ) : Mod(kX) −→ A is left exact.

Remark 2.4.9. As usual, one endows the set pt is with its natural topology.
Then the functor

Γ(pt; • ) : Mod(kX) −→ Mod(k)

is an equivalence of categories. In the sequel, we shall identify these two
categories.

The functor Γ(X; • ) is not exact in general, as shown by the example
below, a variant of Example 2.2.8 (iv).

Example 2.4.10. Let X be a complex curve. The holomorphic De Rham

complex reads as 0 −→ CX −→ OX
d−→ ΩX −→ 0. Applying the functor Γ(U ; • )

for an open subset U of X, we find the complex 0 −→ CX(U) −→ OX(U)
d−→

ΩX(U) −→ 0. Choosing for example X = C and U = C \ {0}, this complex is
no more exact.

Injective sheaves

Of course, an abelian sheaf is called injective (resp. projective) if it is so in
the category Mod(kX).

Examples 2.4.11. (i) Let X denote a real analytic manifold. The sheaf BX
of Sato’s hyperfunctions is injective, contrarily to the sheaf DbX of Schwartz’s
distributions.
(ii) When X is endowed with the subanalytic topology Xan, the sheaf DbtXan

of Schwartz’s tempered distributions is injective. (See [?].)
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2.5 Internal hom and tens

It follows from Theorem 2.2.6 that for F ∈ PSh(kX) and G ∈ Mod(kX), the
presheaf Hom (F, ιXG) belongs to Mod(kX). Clearly, the bifunctor

Hom : (Mod(kX))op ×Mod(kX) −→ Mod(kX)

is left exact.

Definition 2.5.1. Let F1, F2 ∈ Mod(kX). Their tensor product, denoted

F1 ⊗F2 is the sheaf associated with the presheaf F1

psh
⊗F2.

Clearly, the bifunctor

⊗: (Mod(kX))op ×Mod(kX) −→ Mod(kX)

is right exact. If k is a field, this functor is exact.

Proposition 2.5.2. Let Fi ∈ PSh(kX), (i = 1, 2, 3). There is a natural
isomorphism:

Hom (F1 ⊗F2, F3) ' Hom (F1,Hom (F2, F3)).

Proof. This follows immediately from Proposition 1.5.4. q.e.d.

Definition 2.5.3. Let F ∈ Mod(kX). One says that F is flat if the functor
F ⊗ • is exact.

Remark that, if X is a topological space and x ∈ X, (F1⊗F2)x ' (F1)x⊗
(F2)x and it follows that F is flat if and only if Fx is a k-flat module for any
x ∈ X.

Although the category Mod(kX) does not have enough projectives, Propo-
sition 2.5.4 is sufficient to derive the tensor product.

Proposition 2.5.4. Let G ∈ Mod(kX). Then the category of flat sheaves is
projective with respect to the functor G⊗ • .

Proof. (i) We have already seen in Remark 2.4.3 that G =
⊕

U∈CX kXU is a
generator of Mod(kX). Let F ∈ Mod(kX). By Lemma 1.1.7, there exists a
small set I and an epimorphism G⊕I�F . Since the sheaves kXU are flat and
small direct sums of flat sheaves are flat, the sheaf G⊕I is flat. Hence, there
are enough flat objects.
(ii) Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of sheaves. If F ′′ and
F are flat, then F ′ is flat. This is checked as in the case of usual k-modules
and left as an exercise.
(iii) Consider the exact sequence in (ii). If F ′′ is flat, then the sequence
obtained by applying the functor G ⊗ • will remain exact by the definition
of flatness. q.e.d.



2.6. DIRECT AND INVERSE IMAGES 37

2.6 Direct and inverse images

Let f : X −→ Y be a morphism of sites. We have already defined the direct
and inverse images of presheaves.

Proposition 2.6.1. Let F ∈ Mod(kX). Then the presheaf f∗F is a sheaf on
Y .

Proof. Let V ∈ CY and let S be a covering of V . Since f tS is a covering of
f tV , we get the chain of isomorphisms

f∗F (V ) = F (f t(V )) ' F (f t(S)) = f∗F (S).

q.e.d.

Hence, the functor f∗ : PSh(kX) −→ PSh(Y,A) induces a functor (we keep
the same notation)

f∗ : Mod(kX) −→ Mod(kY ).

We shall see in §2.7 that the functor jU ∗ is exact.

Definition 2.6.2. Let G ∈ Mod(kY ). One denotes by f−1G the sheaf on
X associated with the presheaf f †G and calls it the inverse image of G. In
other words, f−1G = (f †G)a.

Theorem 2.6.3. Let f : X −→ Y be a morphism of sites.

(i) The functor f−1 : Mod(kY ) −→ Mod(kX) is left adjoint to f∗. In other
words, there is an isomorphism

HomkX
(f−1G,F ) ' HomkY

(G, f∗F )

functorial with respect to F ∈ Mod(kX) and G ∈ Mod(kY ).

(ii) The functor f∗ is left exact and commutes with small projective limits.

(iii) The functor f−1 is right exact and commutes with small inductive limits.

(iv) There are natural morphisms of functors id −→ f∗f
−1 and f−1f∗ −→ id.

(v) Assume that for any U ∈ CX , the category (CUY )op is either filtrant or
empty. Then the functor f−1 is exact.
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Proof. (i) Denote for a while by “f∗” the direct image in the categories of
presheaves. Since f † is left adjoint to “f∗” and a is left adjoint to ιX , f−1 =
a ◦ f † is left adjoint to f∗ = “f∗” ◦ ιX .
(ii)–(iv) follow from the adjunction property.
(v) Since the functor a is exact, it is enough to prove that the functor
f † : Mod(kY ) −→ PSh(kX) is left exact. Let

0 −→ G′ −→ G −→ G′′(2.14)

be an exact sequence of sheaves on Y . For each V ∈ Mod(kY ), the sequence

0 −→ G′(V ) −→ G(V ) −→ G′′(V )(2.15)

is exact. By Definition 1.3.1, the sequence

0 −→ (f †G′)(U) −→ (f †G)(U) −→ (f †G′′)(U)(2.16)

is obtained by applying the functor lim−→
(U−→f t(V ))∈CUY

to the sequence (2.15). This

functor is exact if the category (CUY )op is either filtrant or empty. q.e.d.

Corollary 2.6.4. Let G ∈ Mod(kY ). Then (f †G)a
∼−→ f−1(Ga).

Proof. One has the chain of isomorphisms, functorial with respect to F ∈
Mod(kX):

HomkX
((f †G)a, F ) ' Hom PSh(kX)(f

†G,F ) ' HomkY
(G, f∗F )

' HomkY
(Ga, f∗F ) ' HomkX

(f−1(Ga), F ).

Hence, the result follows from the Yoneda lemma. q.e.d.

Consider two morphisms of sites f : X −→ Y and g : Y −→ Z.

Proposition 2.6.5. (i) g ◦ f : X −→ Z is a morphism of sites.

(ii) One has natural isomorphisms of functors

g∗ ◦ f∗ ' (g ◦ f)∗, f−1 ◦ g−1 ' (g ◦ f)−1.

Proof. (i) is obvious.
(ii) The functoriality of direct images for presheaves is clear (see Proposi-
tion 1.3.3). It then follows for sheaves from Proposition 2.6.1. The functori-
ality of inverse images follows by adjunction. q.e.d.
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Examples 2.6.6. Assume that f : X −→ Y is a morphism of topological
spaces. Then for x ∈ X,

(f−1G)x ' (f †G)x ' Gf(x)(2.17)

and f−1 is exact. In particular, denote by ix : {x} ↪→ X the embedding of
x ∈ X into X. Then, for F ∈ Mod(kX)

Fx ' i−1
x F.

(ii) Let M ∈ Mod(k). Recall that MX denotes the sheaf associated with
the constant presheaf U 7→ M . Hence, if X has a terminal object and
aX : X −→ Pt is the canonical map:

MX ' a−1
X MPt.

(iv) Let Z = {a, b} be a set with two elements, let Y be a topological space
and let X = Z × Y ' Y

⊔
Y , the disjoint union of two copies of Y . Let

f : X −→ Y be the projection. Then f∗f
−1G ' F ⊕ F . In fact, if V is open

in Y , then Γ(V ; f∗f
−1G) ' Γ(V

⊔
V ; f−1G)' Γ(V ;G)⊕ Γ(V ;G).

(v) Let X = Y = C \ {0}, and let f : X −→ Y be the map z 7→ z2,
where z denotes a holomorphic coordinate on C. If D is an open disk in
Y , f−1D is isomorphic to the disjoint union of two copies of D. Hence,
the sheaf f∗kX |D is isomorphic to k2

D, the constant sheaf of rank two on D.
However, Γ(Y ; f∗kX) = Γ(X; kX) = k, which shows that the sheaf f∗kX is
not isomorphic to k2

X .
(vi) Let f : X −→ Y be a morphism of topological spaces. To each open subset
V ⊂ Y is associated a natural “pull-back” map: Γ(V ; C0

Y ) −→ Γ(V ; f∗C0
X)

defined by ϕ 7→ ϕ◦f . We obtain a morphism C0
Y −→ f∗C0

X , hence a morphism:

f−1C0
Y −→ C0

X .

For example, if X is closed in Y and f is the injection, f−1C0
Y will be the

sheaf on X of continuous functions on Y defined in a neighborhood of X. If
f is smooth (locally on X, f is isomorphic to a projection Y ×Z −→ Y ), then
f−1C0

Y will be the subsheaf of C0
X consisting of functions locally constant on

the fibers of f .
(vii) Let iS : S ↪→ X be the embedding of a closed subset S of a topological
space X. Then the functor iS∗ is exact.

2.7 Restriction and extension of sheaves

Let X be a site and let U ∈ CX . We have already defined the morphisms of
sites jU : X −→ U and iU : U −→ X.
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Proposition 2.7.1. Let U ∈ CX .

(i) One has the isomorphisms of functors of presheaves

jU ∗ ' i†U , j‡U ' iU ∗.

In particular, the functor i†U sends Mod(kX) to Mod(kU) and the func-
tor j‡U sends Mod(kU) to Mod(kX).

(ii) The functor jU ∗ : Mod(kX) −→ Mod(kU) commutes with small inductive
and projective limits and in particular is exact. Moreover, jU ∗ ' i−1

U .

(iii) The functor j−1
U : Mod(kU) −→ Mod(kX) is exact.

Proof. (i) Let F ∈ PSh(kX) and let (V −→ U) ∈ CU . One has

i†UF (V −→ U) ' lim−→
W−→V−→U

F (W )

' F (V ) ' jU ∗F (V −→ U).

The isomorphism j‡U ' iU ∗ follows by adjunction.

(ii) The functor jU ∗ admits both a right and a left adjoint. The isomorphism
jU ∗ ' i−1

U follows from (i).

(iii) Since direct sums are exact in Mod(k), the functor j†U is exact by Propo-
sition 1.4.3. Then the result follows since a is exact. q.e.d.

Notation 2.7.2. One sets for F ∈ Mod(kX):

F |U = jU ∗F ' i−1
U F.

One usually sets

iU ! := j−1
U .(2.18)

Hence, iU ! is exact.

Hence, we have two pairs of adjoint functors (j−1
U , jU ∗), (jU ∗, j

‡
U):

Mod(kU)
j−1
U //

j‡U

//Mod(kX),jU∗oo(2.19)

which are also written as two pairs of adjoint functors (i−1
U , iU ∗), (iU !, i

−1
U ):

Mod(kU)
iU ! //

iU∗
//Mod(kX).i−1

U
oo(2.20)
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Let f : X −→ Y be a morphism of sites. Let V ∈ CY , set U = f t(V )
and denote by fV : U −→ V the morphism of sites associated with the functor
f tV : CV −→ CU deduced from f t. We get the commutative diagram of sites

U
iU //

fV
��

X
jU //

f

��

U

fV
��

V
iV
// Y

jV
// V.

(2.21)

Proposition 2.7.3. There are natural isomorphisms of functors

i−1
V f∗ ' fV ∗i

−1
U , f−1iV ! ' iU !f

−1
V ,

f∗ j‡U ' j‡V fV ∗, jU ∗f
−1 ' f−1

V jV ∗.

Proof. This follows from the isomorphisms jV ∗f∗ ' fV ∗jU ∗, f
−1 j−1

V ' j−1
U f−1

V ,
f∗iU ∗ ' iV ∗fV ∗ and i−1

U f−1 ' i−1
V f−1

V . q.e.d.

Notation 2.7.4. For F ∈ Mod(kX) and U ∈ CX , one sets

FU = j−1
U jU ∗F ' iU !i

−1
U F,

ΓUF = j‡U jU ∗F ' iU ∗i
−1
U F.

In case F = kX , one writes for short kXU instead of (kX)U .

Recall (see § 1.5) that we have denoted by k̃X the constant presheaf
U 7→ k. Then (see Exercises 2.6 and 2.5):

kXU ' j−1
U jU ∗k̃X .(2.22)

For V −→ U a morphism in CX , there are natural morphisms :

FV −→ FU −→ F −→ ΓUF −→ ΓV F.

Also note that (( • )U ,ΓU( • )) is a pair of adjoint functors.

Proposition 2.7.5. For U, V ∈ CX there are natural isomorphisms

(FV )U ' FU×XV , ΓU(ΓV F ) ' ΓU×XV (F ).

Proof. By adjunction, it is enough to prove the second isomorphism. One
has for W ∈ CX :

ΓU(ΓV (F ))(W ) ' ΓV (F )(U ×X W )

' F (V ×X U ×X W ) ' ΓU×XV (F )(W ).

q.e.d.
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Proposition 2.7.6. Let f : X −→ Y be a morphism of sites. For F ∈
Mod(kX) and G ∈ Mod(kY ), there is a natural isomorphism in Mod(kY )

Hom (G, f∗F )
∼−→ f∗Hom (f−1G,F ).(2.23)

Proof. Let V ∈ CY and set U = f t(V ). Denote by fU : U −→ V the morphism
of sites associated with f . Using Proposition 2.7.3, we get the chain of
isomorphisms

Γ(V ; f∗Hom (f−1G,F )) ' Γ(U ;Hom (f−1G,F ))

' Hom (f−1G|U , F |U)

' Hom ((fU)−1(G|V ), F |U)

' Hom (G|V , (fU)∗F |U)

' Hom (G|V , (f∗F )|V )

' Γ(V ;Hom (G, f∗F )).

These isomorphisms being functorial with respect to V , the isomorphism
(2.23) follows. q.e.d.

Proposition 2.7.7. Let U ∈ CX , let G ∈ Mod(kU) and let F ∈ Mod(kX).
There is a natural isomorphism

j−1
U (G⊗ jU ∗F ) ' j−1

U G⊗F.(2.24)

Note that isomorphism (2.24) may also be written as

iU !(G⊗ i−1
U F ) ' iU !G⊗F.(2.25)

Proof. The right hand side of (2.24) is the sheaf associated with the presheaf

V 7→ (
⊕

s∈Hom (V,U)

G(V
s−→ U))⊗F (V ),

and the left hand side is the sheaf associated with the presheaf

V 7→ (
⊕

s∈Hom (V,U)

G(V
s−→ U)⊗F (V )).

q.e.d.

Proposition 2.7.8. Let U ∈ CX . There are natural isomorphisms, functorial
in F ∈ Mod(kX):

Γ(U ;F ) ' Hom (kXU , F ),

ΓU(F ) ' Hom (kXU , F ),

FU ' kXU ⊗F.
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Proof. The first isomorphism follows from (1.12) thanks to (2.22) and the
second isomorphism follows. Let us prove the third one. We have by Propo-
sition 2.7.7

FU ' j−1
U i−1

U F ' j−1
U (jU ∗F ⊗ jU ∗kX)

' F ⊗ j−1
U jU ∗kX .

q.e.d.

The case of a topological space

When X is a topological space, one better uses the functors i−1
U and iU ! rather

that jU ∗ and j−1
U , respectively.

If U , V are open subsets, then U ×X V = U ∩ V . It follows that the
morphism of sites iU corresponds to the continuous embedding U ↪→ X.
Since the composition of morphisms of sites

U
iU−→ X

jU−→ U(2.26)

is the identity, we obtain:

i−1
U ◦ iU ∗ ' id, i−1

U ◦ iU ! ' id .(2.27)

Hence, iU ∗ and iU ! are fully faithful in this case.

2.8 Locally constant sheaves

Definition 2.8.1. (i) Let X be a site and let M ∈ A. The constant sheaf
MX with stalk M is the sheaf associated with the constant presheaf
with values M .

(ii) A constant sheaf is a sheaf isomorphic to a sheaf MX for some M ∈ A.

(iii) A sheaf F on X is locally constant if there exists a covering S ∈ Cov(X)
such that F |U is a constant sheaf on U for each U ∈ S.

(iv) If k is a field, a local system over k is a locally constant sheaf of finite
rank (i.e., locally isomorphic to kmX for some integer m).

If X is a topological space and M ∈ Set, the constant sheaf MX is the
sheaf of locally constant M -valued functions on X.

Locally constant sheaves, and their generalization, constructible sheaves,
play an important role in various fields of mathematics.
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Examples 2.8.2. (i) Let X = R, the real line with coordinate t. The sheaf
CX · exp(t) of functions which are locally a constant multiple of the function
t 7→ exp(t) is isomorphic to the sheaf CX , hence is a constant sheaf.
(ii) Let X = C\{0} with holomorphic coordinate z. Consider the differential
operator P = z ∂

∂z
− α, where α ∈ C \ Z. Let us denote by Kα the kernel of

P acting on OX .
Let U be an open disk in X centered at z0, and let A(z) denote a primitive

of α/z in U . We have a commutative diagram of sheaves on U :

OX
exp(−A(z))

��

z ∂
∂z
−α

// OX
1
z

exp(−A(z))
��

OX
∂
∂z // OX

Therefore, one gets an isomorphism of sheaves Kα|U
∼−→ CX |U , which shows

that Kα is locally constant, of rank one.
On the other hand, f ∈ O(X) and Pf = 0 implies f = 0. Hence

Γ(X;Kα) = 0, and Kα is a locally constant sheaf of rank one on C \ {0}
which is not constant.
(iii) With the notations of Example 2.6.6 (v), the sheaf f∗kX is locally con-
stant of rank 2.

We shall construct locally constant sheaves in Section 2.9.

2.9 Glueing sheaves

One often encounters sheaves which are only defined locally, and it is natural
to try to glue them.

For notational convenience, we shall often denote in the sequel by S =
{Ui}i∈I a covering of U ∈ CX indexed by a set I (see Remark 2.1.2). In this
case, we set

Uij = Ui ×U Uj, Uijk = Ui ×U Uj ×U Uk, etc.(2.28)

Theorem 2.9.1. Let S = {Ui}i be a covering of X. Assume to be given,
for each Ui ∈ S, an object Fi ∈ Sh(Ui,A) and, for each pair Ui, Uj ∈ S, an
isomorphism θji : Fi|Uij

∼−→ Fj|Uij
in Sh(Uij,A), these isomorphisms satisfying

the condition that for all Ui, Uj, Uk ∈ S:

θij ◦ θjk = θik on Uijk.(2.29)

Then there exists a sheaf F on X and for each Ui ∈ S an isomorphism
θi : F |Ui

∼−→ Fi such that θj = θji ◦ θi for Ui, Uj ∈ S. Moreover, (F, {θi}i is
unique up to unique isomorphism.
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The family of isomorphisms {θij} satisfying conditions (2.29) is called a
1-cocycle.

Proof. (i) Unicity. Let θi : F |Ui

∼−→ Fi and λi : G|Ui

∼−→ Fi. Hence, θj = θji ◦ θi
and λj = θji ◦ λi on Uj. Consider the isomorphisms

ρi := λ−1
i ◦ θi : F |Ui

−→ G|Ui
.

On Uij we have:

ρj = λ−1
j ◦ θj = λ−1

j ◦ θji ◦ θi
= λ−1

i ◦ θi = ρi.

Therefore, the isomorphisms ρi’s will glue as a unique isomorphism ρ : G
∼−→ F

on X, by Theorem 2.2.6.

(ii) Existence of a presheaf F . For each open subset V of X, define F (V ) by
the exact sequence

F (V ) //
∏

i∈I Fi(Ui ×X V )
a //

b
//
∏

j,k∈I Fj(Ujk ×X V ).

Here, the two arrows a, b are defined as follows. Let Uj, Uk ∈ S. Then a is
associated with the composition∏

i∈I

Fi(Ui ×X V ) −→ Fj(Uj ×X V ) −→ Fj(Ujk ×X V )

and b is associated with the composition∏
i∈I

Fi(Ui ×X V ) −→ Fk(Uk ×X V ) −→ Fk(Ujk ×X V )
θjk−→ Fj(Ujk ×X V ).

(iii) F is a sheaf. Indeed, let V ∈ CX and let V ∈ Cov(V ). We may assume
that V is stable by fiber products. Then

Fi(Ui ×X V )
∼−→ lim←−

W∈T
Fi(Ui ×X W ),

and similarly with Fj(Ujk ×X V ). Since products commute with projective
limits, we get the isomorphism F (V )

∼−→ lim←−
W∈V

F (W ) = F (V).

(iv) The morphisms θi’s are induced by the projections F (V ) −→
∏

j∈I Fj(V×X
Uj) −→ Fi(V ×X Ui). Let us prove they are isomorphisms. Let l ∈ I. We can
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construct a commutative diagram

Fl(Ul)
α //
∏

i∈I Fi(Ui ×X Ul)
a //

b
//
∏

j,k∈I Fj(Ujk ×X Ul)

F (Ul)

θl(Ui)

OO

//
∏

i∈I Fi(Ui ×X Ul)
a //

b
//

∼

OO

∏
j,k∈I Fj(Ujk ×X Ul)

∼
OO

where α = {θil}i. One checks easily that the sequence on the top is exact,
and it follows that θl(Ul) : F (Ul) −→ Fl(Ul) is an isomorphism. Replacing Ul
with any V −→ Ul, we get the result. q.e.d.

Example 2.9.2. Consider an n-dimensional real manifold X of class C∞,
and let {Xi, fi}i∈I be an atlas. Recall what it means. The family {Xi}i∈I is
an open covering of X and fi : Xi

∼−→ Ui is a topological isomorphism with
an open subset Ui of Rn such that, setting U i

ij = fi(Xij) ⊂ Rn, the maps

fji := fj|Xij
◦ f−1

i |U i
ij

: U i
ij −→ U j

ij,(2.30)

are isomorphisms of class C∞.

X Xi
oo

∼
fi��

Xij
oo

∼

~~

∼

  

// Xj

∼
fj ��

// X

Rn Uioo U i
ij

oo ∼
fji

// U j
ij

// Uj // Rn

The maps fji are called the transition functions. The locally constant func-
tion on Xij defined as the sign of the Jacobian determinant of the fji’s is a
1-cocycle. It defines a sheaf locally isomorphic to ZX called the orientation
sheaf on X and denoted by orX .

Example 2.9.3. Let X = P1(C), the Riemann sphere. Consider the covering
of X by the two open sets U1 = C, U2 = X \ {0}. One can glue OX |U1 and
OX |U2 on U1 ∩ U2 by using the isomorphism f 7→ zmf (k ∈ Z). One gets a
locally free sheaf of rank one denoted by OP1(m). For m 6= 0, this sheaf is
not free.

Exercises to Chapter 2

Exercise 2.1. Let X be a topological space. Prove that the natural mor-
phism (Hom (F,G))x −→ Hom (Fx, Gx) is not an isomorphism in general.
(Hint: choose F = kXU with U open.)
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Exercise 2.2. Let X be a site satisfying (1.8) and let u : A −→ B and v : C −→
B be morphisms in Sh(X). Assume that u is an epimorphism. Prove that
w : A×BC −→ C is an epimorphism. In other words, epimorphisms are stable
by base change in Sh(X).

Exercise 2.3. Let X be a site satisfying (1.8) and let k be a field. For F,G ∈
Mod(kX) one defines their tensor product F ⊗ G as the sheaf associated
with the presheaf U 7→ F (U) ⊗G(U). For F,G,H ∈ Mod(kX), prove the
isomorphism

Hom (F,Hom (G,H)) ' Hom (F ⊗G,H).

Exercise 2.4. Let k be a field and X a connected topological space. Let L
be a locally free sheaf of rank one on X and set L

⊗−1
:=Hom (L,kX).

(i) Prove the isomorphism L⊗L⊗−1 ' kX .
(ii) Assume that there exists s ∈ Γ(X;L) with s 6= 0. Prove that s defines
an isomorphism kX

∼−→ L.

Exercise 2.5. Let X be a site, let U ∈ CX and let F ∈ PSh(kX). Prove
that (jU ∗F )a −→ jU ∗(F

a) is an isomorphism.

Exercise 2.6. Let f : X −→ Y be a morphism of sites. Let G ∈ PSh(kY ).
Prove that (f †G)a −→ f−1(Ga) is an isomorphism.

Exercise 2.7. Let X be a presite satisfying (1.8) and let Xfin be the pre-
site X endowed with the final topology. Prove the equivalence of categories
PSh(X) ' Sh(Xfin).

Exercise 2.8. Let f : X −→ Y be a morphism of sites and assume that the
functor f−1 : Mod(kY ) −→ Mod(kX) is exact. Let F ∈ Mod(kX) be injective.
Prove that f∗F is injective. Deduce that for U ∈ CX and F injective in
Mod(kX), F |U is injective in Mod(kU).

Exercise 2.9. Let X be a topological space and let U be an open covering
stable by finite intersections and which is a basis for the topolopy of X (that
is, for any x ∈ V ∈ OpX there exists x ∈ U ⊂ V with U ∈ U). Denote
by Y the site such that CY = U , the coverings in Y being the coverings
in X. Denote by f : X −→ Y the natural morphism of sites. Prove that
f∗ : Mod(kX) −→ Mod(kY ) is an equivalence of categories.

Exercise 2.10. Let Pn(C) be the complex projective space of dimension n.

(i) Construct an isomorphism of line bundles Ω
(n)
Pn(C) ' OPn(C)(−n− 1).

(ii) Prove that the line bundles OPn(C)(l) and OPn(C)(m) are not isomorphic
for l 6= m. (Hint: reduce to the case where l = 0.)



48 CHAPTER 2. SHEAVES ON SITES

Exercise 2.11. Consider a 1-cocycle (c,S) on a ringed site (X,OX). Assume
that for each Ui ∈ S, there exists ci ∈ Γ(Ui;O×X) satisfying:

cij = ci ◦ c−1
j

on each Uij. Prove that the locally free sheaf Lc of Corollary 3.3.9 is globally
free.



Chapter 3

Derived category of abelian
sheaves

From now on and until the end of these Notes, we shall concentrate on abelian
sheaves on sites satisfying Hypothesis 2.1. We shall assume moreover that k
has finite global dimension (that is, finite injective, or equivalently projective,
dimension).

Notation. As already mentioned, we shall write ⊗ instead of ⊗k, Hom
instead of Homk. We proceed similarly with k replaced with kX , kY etc.

and ⊗ replaced with
L
⊗, Hom with RHom and Hom with RHom .

3.1 The derived category of sheaves

Recall that Mod(kX) is an abelian Grothendieck category and in particular,
admits enough injectives. Hence we may derive all left exact functors defined
on Mod(kX). Using Proposition 2.5.4 we get that Mod(kX) has enough flat
objects and this allows us to derive the tensor product functor. We denote
by D∗(kX) the derived category D∗(Mod(kX)), with ∗ = +,−, b, ub.

Let f : X −→ Y be a morphism of sites and let U ∈ CX .

49
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Theorem 3.1.1. The functors below are well defined:

RHom ( • , • ) : D−(kX)op ×D+(kX) −→ D+(k),

RHom ( • , • ) : D−(kX)op ×D+(kX) −→ D+(kX),

f−1 : D∗(kY ) −→ D∗(kX) (∗ = b,+,−),

Rf ∗ : D+(kX) −→ D+(kY ),

•
L
⊗ • : D∗(kX)×D∗(kX) −→ D∗(kX) (∗ = b,+,−),

jU ∗ : D∗(kX) −→ D∗(kU) (∗ = b,+,−),

j−1
U : D∗(kU) −→ D∗(kX) (∗ = b,+,−),

R j!U : D+(kU) −→ D+(kX).

Of course, there are other functors which are combinations or particular
cases of the preceding ones, such as the derived functor of the exact func-
tor F 7→ FU defined on D∗(kX) (∗ = b,+,−) or the right derived functor
RΓU( • ) : D+(kX) −→ D+(kX).

Then one can extend much of the preceding formulas to the derived func-
tors and obtain the next important formulas that we state without proofs.

RHom (F1, F2) ' RΓ(X;RHom (F1, F2)),

RHom (F1

L
⊗F2, F3) ' RHom (F1, RHom (F2, F3)),

RHom (F,Rf ∗G) ' Rf ∗RHom (f−1F,G),

f−1F1

L
⊗f−1F2 ' f−1(F1 ⊗L F2).

Here, F, F1, F2, F3 belong to D∗(kX) and G belong sto D∗(kY ).
Of course, there are many other important formulas, such as:

HomD∗(kX)( • , • ) ' H0RHom ( • , • )

R(f ◦ g)∗ ' Rf ∗ ◦Rg∗,
(f ◦ g)−1 ' g−1 ◦ f−1,

RΓ(U ;F ) ' RHom (kXU , F ).

Notation 3.1.2. In the literature, one often encounters the following nota-
tions:

Extj(F,G) = HjRHom (F,G),

Extj(F,G) = HjRHom (F,G),

Hj(X;F ) = Hj(RΓ(X;F )),

Torj(F,G) = H−j(F
L
⊗G).
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3.2 Čech complexes

Let Iord be a total ordered set and denote by I the underlying set. For J ⊂ I,
J finite, we denote by |J | its cardinal. If J is endowed with the order induced
by I, we write J ⊂ Iord.

Denote by {ei}i∈I the canonical basis of Z⊕I . For J ⊂ Iord, J = {i0 <
i1 < · · · < ip} ⊂ Iord, we denote by eJ the element ei0 ∧ · · · ∧ eip of

∧p+1 Z⊕I .
For σ a permutation of the set J with signature εσ, we have in

∧p+1 Z⊕I :

eσ(J) = εσeJ .

Consider a family U := {Ui}i∈I of objects of CX . For ∅ 6= J ⊂ I, J finite, set

UJ =
∏
i∈J

Ui.

Now let F ∈ Mod(kX). For J as above and i ∈ J , we denote by β(i,J) : FUJ
−→

FUJ\{i} the natural morphism. We set for p ≥ 0

F Up :=
⊕

J⊂Iord,|J |=p+1

FUJ
⊗ eJ

and we define the differential

d : F Up −→ F Up−1(3.1)

by setting for sJ ∈ FUJ
:

d(sJ ⊗ eJ) =
∑
i∈J

β(i,J)(sJ)⊗ eibeJ .

One easily checks that

d ◦ d = 0.

Then we have the Čech complex in Mod(kX) in which the term F Up is in
degree −p.

F U• := · · · −→ F Up
d−→ · · · d−→ F U1

d−→ F U0 −→ 0.(3.2)

We also consider the augmented complex

F U• ,+:= · · · −→ F Up
d−→ · · · d−→ F U1

d−→ F 0
U −→ F −→ 0.(3.3)
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Proposition 3.2.1. Assume that U is a covering of X. Then for each i0 ∈ I,
the restriction to Ui0 of the complex (3.3) is homotopic to zero. Equivalently,
F U• −→ F is a qis.

Proof. Replacing all Ui by Ui×XUi0 , we may assume from the beginning that
X = Ui0 . For each finite set J ⊂ I, the two morphisms UJ −→ UJ and UJ −→
Ui0 define the “diagonal” morphism UJ −→ UJ × Ui0 . Let γJ : FUJ

−→ FU{i0}∪J
denote the morphism associated with this diagonal morphism. Define the
homotopy λ : F Up −→ F Up+1 by setting for sJ ∈ FUJ

,

λ(sJ ⊗ eJ) = γJ(sJ)⊗ ei0 ∧ eJ .

Let us check the relation d ◦ λ+ λ ◦ d = id. Let sJ ⊗ eJ be a section of FUJ
.

Then

d ◦ λ(sJ ⊗ eJ) =
∑
i∈i0∧J

β(i,{i0}∪J)γJ(sJ)⊗ eibei0 ∧ eJ ,

λ ◦ d(sJ ⊗ eJ) =
∑
i∈J

γi,Jβ(i,J)(sJ)⊗ ei0 ∧ eibeJ .

By summing these two relations, we find on the right hand side β(i0,J)γJ(sJ)⊗
ei0bei0 ∧ eJ = sJ · eJ . q.e.d.

Example 3.2.2. Let {Uj}j=0,1,2 be a covering of X. We get the exact com-
plex:

0 −→ FU012

d1−→ FU12 ⊕ FU02 ⊕ FU01

d0−→ FU0 ⊕ FU1 ⊕ FU2

d−1−−→ F −→ 0

with for example, d1(s012) = β0,12(s012)− β1,02(s012) + β2,01(s012).

Applying Proposition 3.2.1 with F = kX , we find the complex

kUX• := · · · −→ (kUX)1
d−→ (kUX)0 −→ 0(3.4)

and we have the isomorphism

F U• ' kUX• ⊗F.

It is then natural to consider the complex of sheaves

C•(U , F ) :=Hom (kUX•, F )(3.5)

and the morphism

F −→ C•(U , F ),(3.6)
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that is, the complex

0 −→ F −→ C0(U , F )
d−→ C1(U , F ) −→ · · · ,

where

Cp(U , F ) =
∏
|J |=p+1

ΓUJ
(F )⊗ eJ with C−1(U , F ) = F,

and the morphisms: dp : Cp(U , F ) −→ Cp+1(U , F ) (p ≥ −1) are defined by

dp(sJ ⊗ eJ) =
∑
i∈I

α(i,J)(sJ)⊗ ei ∧ eJ ,

where α(i,J) is the natural morphism ΓUJ
(F ) −→ ΓUJ∪{i}(F ). Moreover, d−1 : F −→∏

i ΓUi
(F ) is the natural morphism.

Proposition 3.2.3. Assume that U is a covering of X. The sequence of
sheaves (3.6) is exact.

Proof. It is enough to check that this sequence is exact on each U ∈ U . The
additive functor Hom (·, F ) sends a complex homotopic to zero to a complex
homotopic to zero. Applying this functor to the complex (3.3) in which one
chooses F = kX , the result follows from Proposition 3.2.1. q.e.d.

Theorem 3.2.4. (The Leray’s acyclic covering theorem.) Assume that U is
a covering of X. Let U = {Ui}i∈I be an open covering of X and assume that
for any finite subset J of I, and any p > 0, one has Hp(UJ ;F ) = 0. Then
RΓ(X; C•(U , F )) ' RΓ(X;F ).

Proof. Let F • be an injective resolution of F and consider the double com-
plex:

0

��

0

��
0 // Γ(X;F ) //

��

Γ(X; C•(U , F ))

��
0 // Γ(X;F •) // Γ(X; C•(U , F •))

(i) All rows, except the first one, are exact. In fact, they are obtained by
applying the functor Γ(X; ·) to the exact complex of injective sheaves 0 −→
F j −→ C•(U , F j).
(ii) All columns, except the first one, are exact. In fact, it is enough to prove
that for J ⊂ I, J finite, the complex 0 −→ Γ(X; ΓUJ

(F )) −→ Γ(X; ΓUJ
(F •)) is
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exact. This complex is isomorphic to the complex 0 −→ Γ(UJ ;F ) −→ Γ(UJ ;F •)
which is exact by the hypothesis.
(iii) From (i) and (ii), one deduces that the cohomology of the first row is
isomorphic to that of the first column. q.e.d.

Example 3.2.5. Let {Uj}j=0,1,2 be an open covering of X, and assume that
Hp(UJ ;F ) = 0 for all p > 0 and all J ⊂ {0, 1, 2}. Then Hj(X;F ) is isomor-
phic to the j-th cohomology group of the complex

0 −→
⊕
j=0,1,2

Γ(Uj;F )
d0−→

⊕
J=01,12,02

Γ(UJ ;F )
d1−→ Γ(U012;F ) −→ 0

where the dj’s are linear combinations of the restriction morphisms affected
with the sign ±. For example, d1|Γ(U02;F ) is affected with the sign −.

3.3 Ringed sites

It is possible to generalise the preceding constructions by replacing the con-
stant sheaf kX with a sheaf of rings R. We shall only present here the main
ideas of this theory, skipping the details.

Sheaves of rings and modules

A sheaf of k-algebras (or, equivalently, a kX-algebra) R on a site X is a sheaf
of k-modules such that for each U ∈ CX , R(U) is endowed with a structure
of a k-algebra and the operations (addition, multiplication) commute to the
restriction morphisms. A sheaf of Z-algebras is simply called a sheaf of rings.
If R is a sheaf of rings, one defines in an obvious way the notion of a sheaf
F of (left) R-modules (or simply, an R-module) as follows: for each U ∈ CX ,
F (U) is an R(U)-module and the action of R(U) on F (U) commutes to the
restriction morphisms. One also naturally defines the notion of an R-linear
morphism of R-modules. Hence we have defined the category Mod(R) of
R-modules. If R is a sheaf of rings, Rop is the sheaf of rings U 7→ R(U)op.

Examples 3.3.1. (i) Let R be a k-algebra. The constant sheaf RX is a sheaf
of k-algebras. In particular, kX is a sheaf of k-algebras.
(ii) On a topological space, the sheaf C0

X is a CX-algebra. If X is a real
differentiable manifold, the sheaf C∞X is a CX-algebra. The sheaf DbX is a
C∞X -module.
(iii) If X is complex manifold, the sheaves OX and DX are CX-algebras and
OX is a left DX-module.
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One proves easily the analogue of Theorem 2.4.2 for the category Mod(R).

Definition 3.3.2. Let R be a sheaf of k-algebras on the site X and let F
be a sheaf of R-modules on X.

(i) F is injective (resp. projective) if F is an injective (resp. a projective)
object in the category Mod(R).

(ii) F is flat if the functor • ⊗R F is exact,

Remark that, if X is a topological space, F is flat if and only if Fx is a
Rx-flat module for any x ∈ X.

Proposition 3.3.3. Let RY be a sheaf of k-algebras on Y . Let f : X −→
Y be a morphism of sites and assume that the functor f−1 : Mod(RY ) −→
Mod(f−1RY ) is exact. Let F ∈ Mod(f−1RY ). Then f∗F is injective in
Mod(RY ).

Proof. This follows immediately from the adjunction formula in Theorem
2.6.3 and the hypothesis that the functor f−1 is exact. q.e.d.

Theorem 3.3.4. Let R be a sheaf of k-algebras on the site X. The cat-
egory Mod(R) is a Grothendieck category. In particular, it is abelian, it
admits small projective limits and small inductive limits, small filtrant in-
ductive limits are exact and Mod(R) has enough injective objects.

The proof goes as for Theorem ??

Proposition 3.3.5. Let R be a sheaf of k-algebras on the site X and let
G ∈ Mod(Rop). Then the category of flat R-modules is projective with respect
to the functor G⊗ • .

The proof goes as for Proposition 2.5.4.

Ringed sites

Definition 3.3.6. (i) A k-ringed site (X,OX) is a site X endowed with
a sheaf of commutative k-algebras OX on X. (If there is no risk of
confusion, we shall omit to mention k.)

(ii) Let (X,OX) be a ringed site. A locally free OX-moduleM of rank m is
an OX-module such that there is a covering S of X and for each V ∈ S,
OX-linear isomorphisms M|V

∼−→ (OX |V )m.

(iii) If m = 1, one says that M is a line bundle.
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(iv) If there exists a globally defined isomorphism M ∼−→ (OX)m on X, one
says that M is globally free.

The next result is obvious.

Proposition 3.3.7. Let R be a sheaf of k-algebras on the site X. The
forgetful functor for : Mod(R) −→ Mod(kX) is faithful and exact.

One shall be aware that this functor is not fully faithful in general

Glueing sheaves on ringed sites

Let R be a sheaf of k-algebras on X and consider the situation of Theo-
rem 2.9.1. If all Fi’s are sheaves of R|Ui

modules and the isomorphisms θji
are R|Uij

-linear, the sheaf F constructed in Theorem 2.9.1 will be naturally
endowed with a structure of a sheaf of R-modules.

Definition 3.3.8. Let (X,OX) be a ringed site. Denote by O×X the abelian
sheaf of invertible sections of OX . A 1-cocycle (c,S) on X with values in
O×X is the data of a covering S = {Ui}i of X and for each pair Ui, Uj ∈ S a
section cij ∈ Γ(Uij;O×X), these data satisfying:

cij · cjk = cik on Uijk.(3.7)

Applying Theorem 2.9.1, we get:

Corollary 3.3.9. Consider a 1-cocycle (c,S) on X with values in O×X . There
exists a unique locally free sheaf Lc of rank one with the following property:
for each Ui ∈ S there exists an isomorphism θi : OX |Ui

∼−→ Lc|Ui
and (θj)

−1 ◦
θi = cij on Uij for any Ui, Uj ∈ S.

Example 3.3.10. Recall that k× denote the multiplicative group of invert-
ible elements of k. Let X = S1 be the 1-sphere, and consider a covering
of X by two open connected intervals U1 and U2. Let U±12 denote the two
connected components of U1∩U2. Let α ∈ k×. One defines a locally constant
sheaf Lα on X of rank one over k by glueing kU1 and kU2 as follows. Let
θε : kU1|Uε

12
−→ kU2|Uε

12
(ε = ±) be defined by θ+ = 1, θ− = α.

If k = C there is a more intuitive description of the sheaf Lα. Let us
identify S1 with [0, 2π]/ ∼, where ∼ is the relation which identifies 0 and
2π and let t denotes the coordinate. Choose β ∈ C such that exp(iβ) = α.
Then Lα ' CX · exp(iβt).
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Exercises to Chapter 3

Exercise 3.1. Let Z = {(x, y) ∈ R2;xy > 1, x > 0} and let f : Z −→ R be
the map (x, y) 7→ xy. Calculate Rf ∗kZ .

Exercise 3.2. Let Z = {(x, y) ∈ R2;xy ≥ 1}, and let f : X −→ R be the
map (x, y) 7→ y. calculate Rf ∗kZ .

Exercise 3.3. Let X = R4, S = {(x, y, z, t) ∈ R4; t4 = x2 + y2 + z2; t > 0}
and let f : S ↪→ X be the natural injection. Calculate (Rf ∗kS)0.

Exercise 3.4. In this exercise, we shall admit the following theorem: for
any open subset U of the complex line C, one has Hj(U ;OC) ' 0 for j > 0.

Let ω be an open subset of R, and let U1 ⊂ U2 be two open subsets of C
containing ω as a closed subset.
(i) Prove that the natural map O(U2 \ ω)/O(U2) −→ O(U1 \ ω)/O(U1) is an
isomorphism. One denote by B(ω) this quotient.
(ii) Construct the restriction morphism to get the presheaf ω −→ B(ω), and
prove that this presheaf is a sheaf (the sheaf BR of Sato’s hyperfunctions on
R).
(iii) Prove that the restriction morphisms B(R) −→ B(ω) are surjective (i.e.
the sheaf BR is flabby).
(iv) Let K be a compact subset of R and let U be an open subset of C
containing K. Prove the isomorphism ΓK(R;BR) ' O(U \K)/O(U).

(v) Let Ω an open subset of C and let P =
∑m

j=1 aj(z) ∂
∂z

j
be a holomor-

phic differential operator (the coefficients are holomorphic in Ω). Recall the
Cauchy theorem which asserts that if Ω is simply connected and if am(z)
does not vanish on Ω, then P acting on O(Ω) is surjective. Prove that if ω is
an open subset of R and if P is a holomorphic differential operator defined
in a open neighborhood of ω, then P acting on B(ω) is surjective

Exercise 3.5. Let R be a sheaf of commutative rings on a topological space
X. Prove that a sheaf F of R-modules is injective in the category Mod(R) if
and only if, for any sheaf of ideals I of R, the natural morphism Γ(X;F ) −→
HomR(I, F ) is surjective.
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Chapter 4

Sheaves on topological spaces

In this chapter we restrict our study of sheaves of k-modules to the case of
topological spaces. If A is a subset of a topological space X, we denote by
A its closure, by IntA its interior and we set ∂A = A \ IntA.

4.1 Restriction of sheaves

Let Z be a subset of X, iZ : Z ↪→ X the inclusion. One endows Z with the
induced topology and for F ∈ Mod(kX), one sets:

F |Z = i−1
Z F,

Γ(Z;F ) = Γ(Z; i−1
Z F ).

If Z is open, these definitions agree with the previous ones. The morphism
F −→ iZ∗i

−1
Z F defines the morphism aX∗F −→ aZ∗i

−1
Z F , that is the morphism:

Γ(X;F ) −→ Γ(Z;F ).

One denotes by s|Z the image of a section s of F on X by this morphism.
Replacing X by an open subset U containing Z, we get the natural mor-

phism:

(4.1) lim−→
U⊃Z

Γ(U ;F ) −→ Γ(Z;F ).

This morphism is injective, since if a section s ∈ Γ(U ;F ) is zero in Γ(Z;F ),
this implies sx = 0 for all x ∈ Z, hence s = 0 on an open neighborhood of Z.
But one shall take care that this morphism is not an isomorphism in general.
This is true in some particular situations (see Proposition 4.1.2).

59
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Definition 4.1.1. (i) A subset Z of a topological space X is relatively
Hausdorff if two distinct points in Z admit disjoint neighborhoods in
X. If Z = X, one says that X is Hausdorff.

(ii) A paracompact space X is a Hausdorff space such that for each open
covering {Ui}i∈I of X there exists an open refinement {Vj}j∈J (i.e., for
each j ∈ J there exists i ∈ I such that Vj ⊂ Ui) which is locally finite.

Recall that, by its definition, a compact set is in particular Hausdorff.
If X is paracompact and {Ui}i is a locally finite open covering, there

exists an open refinement {Vi}i such that Vi ⊂ Ui. Closed subspaces of
paracompact spaces are paracompact. Locally compact spaces countable at
infinity (i.e., countable union of compact subspaces), are paracompact.

Proposition 4.1.2. Assume one of the following conditions:

(i) Z is open,

(ii) Z is a relatively Hausdorff compact subset of X,

(iii) Z is closed and X is paracompact.

Then the morphism (4.1) is an isomorphism.

Proof. (i) is obvious.
(ii) Let s ∈ Γ(K;F ). There exist a finite family of open subsets {Ui}ni=1

covering K and sections si ∈ Γ(Ui;F ) such that si|K∩Ui
= s|K∩Ui

. Moreover,
we may find another family of open sets {Vi}ni=1 covering K such that K∩V̄i ⊂
Ui. We shall glue together the sections si on a neighnorhood of K. For
that purpose we may argue by induction on n and assume n = 2. Set
Ki = K ∩ V̄i. Then s1|K1∩K2 = s2|K1∩K2 . Let W be an open subset of X
such that s1|W = s2|W and let Wi(i = 1, 2) be an open subset of Ui such that
Wi ⊃ Ki \W and W1 ∩W2 = ∅. Such Wi’s exist thanks to the hypotheses.
Set U ′i = Wi ∪ W , (i = 1, 2). Then s1|U ′1∩U ′2 = s2|U ′1∩U ′2 . This defines
t ∈ Γ(U ′1 ∪ U ′2;F ) with t|K = s.
(iii) We shall not give the proof here and refer to [Go58]. q.e.d.

Let f : X −→ Y be a continuous map and let F be a sheaf on X. Let
y ∈ Y . The natural morphism lim−→

V 3y
Γ(f−1V ;F ) −→ Γ(f−1(y);F |f−1(y)) defines

the morphism:

(f∗F )y −→ Γ(f−1(y);F |f−1(y)).(4.2)

This morphism is not an isomorphism in general.
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Examples 4.1.3. (i) Assume f is an open inclusion U ↪→ X and choose
x ∈ ∂U (= Ū \ U). Then f−1(x) = ∅ and Γ(f−1(x);G|f−1(x)) = 0 but

(f∗G)x = lim−→
V

Γ(U ∩ V ;G),

where V ranges through the family of open neighborhoods of x in X, and
this group is not zero in general.

(ii) Let X = C with coordinate z = x + iy, Y = R, f : X −→ R the map
f(x+ iy) = y. Then

(f∗OC)0 = lim−→
ε>0

Γ({|y| < ε};OC)

and
Γ(f−1(0);OC|f−1(0)) = lim−→

U

Γ(U ;OC)

where U ranges through the (non countable) family of open neighborhoods
of R in C.

4.2 Sheaves associated with a locally closed

subset

Let X be a topological space, U an open subset of X and F ∈ Mod(kX).
Recall that FU = j−1

U jU ∗F ' iU !i
−1
U F .

Propositions 4.2.1, 4.2.3 and 4.2.4 below are easy exercises whose proof
is left to the reader. Note that the result of Proposition 4.2.1 (i) and (ii) has
already been proved in the more general setting of sheaves on sites.

Proposition 4.2.1. (i) The functor ( • )U : Mod(kX) −→ Mod(kX), F 7→
FU , is exact and commutes with inductive limits.

(ii) One has FU ' F ⊗kXU .

(iii) For x ∈ X, (FU)x ' Fx or (FU)x ' 0 according whether x ∈ U or not.

(iv) Let U ′ be another open subset. Then (FU)U ′ = FU∩U ′.

(v) Let U1 and U2 be two open subsets of X. Then there is an exact sequence

0 −→ FU1∩U2

α−→ FU1 ⊕ FU2

β−→ FU1∪U2 −→ 0.(4.3)

Here α = (α1, α2) and β = β1−β2 are induced by the natural morphisms
αi : FU1∩U2 −→ FUi

and βi : FUi
−→ FU1∪U2.
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Now set S :=X \ U . For F ∈ Mod(kX), define the sheaf FS by

FS = iS∗i
−1
S F.(4.4)

Notation 4.2.2. For a closed set S ⊂ X one sets kXS := (kX)S. If there is
no risk of confusion, we also write kS instead of kXS. This last notation is
justified by Remark 4.2.5 bellow.

Proposition 4.2.3. (i) There is a natural exact sequence 0 −→ FU −→ F −→
FS −→ 0.

(ii) The functor ( • )S : Mod(kX) −→ Mod(kX), F 7→ FS, is exact.

(iii) One has FS ' F ⊗kXS, where one sets kXS := (kX)S for short.

(iv) For x ∈ X, (FS)x ' Fx or (FS)x ' 0 according whether x ∈ S or not.

(v) Let S ′ be another closed subset. Then (FS)S′ = FS∩S′.

(vi) Let S1 and S2 be two closed subsets of X. Then the sequence below is
exact:

0 −→ FS1∪S2

α−→ FS1 ⊕ FS2

β−→ FS1∩S2 −→ 0.(4.5)

Here α = (α1, α2) and β = β1−β2 are induced by the natural morphisms
αi : FS1∪S2 −→ FSi

and βi : FSi
−→ FS1∩S2.

(vii) Setting ΓS(F ) = Hom (kXS, F ) and ΓS(X;F ) = Hom (kXS, F ), one
has ΓS(X;F ) ' Γ(X; ΓS(F )) and

ΓS(X;F ) = {s ∈ Γ(X;F ); supp(s) is contained in S}.

Recall that a locally closed set Z is the (non unique) intersection of an
open subset U and a closed subset S of X. For F ∈ Mod(kX), one sets

FZ := (FU)S.(4.6)

Proposition 4.2.4. (i) The functor ( • )Z : Mod(kX) −→ Mod(kX), F 7→
FZ, is well defined and satisfies the properties (ii)–(v) of Proposition
4.2.3 (with S replaced by Z).

(ii) Let Z be as above and let Z ′ be a closed subset of Z. One has an exact
sequence

0 −→ FZ\Z′ −→ FZ −→ FZ′ −→ 0.(4.7)
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(iii) Setting ΓZ(F ) = Hom (kXZ , F ) and ΓZ(X;F ) = Hom (kXZ , F ), one
has for Z = U ∩ S:

ΓZ(X;F ) = {s ∈ Γ(U ;F ); supp(s) is contained in Z}.

Let U1, U2 be open subsets, S1, S2 closed subsets, Z a locally closed of X,
Z ′ a closed subset of Z. Consider the exact sequences (4.3), (4.5) and (4.7).
They give rise to distinguished triangles in the category D+(kX):

FU1∩U2 −→ FU1 ⊕ FU2 −→ FU1∪U2

+1−→,
FS1∪S2 −→ FS1 ⊕ FS2 −→ FS1∩S2

+1−→,
FZ\Z′ −→ FZ −→ FZ′

+1−→ .

Choosing F = kX and applying the functor RHom ( • , F ), we get new dis-
tinguished triangles, called Mayer-Vietoris triangles :

RΓU1∪U2F −→ RΓU1F ⊕ RΓU2F −→ RΓU1∩U2F
+1−→,(4.8)

RΓS1∩S2F −→ RΓS1F ⊕ RΓS2F −→ RΓS1∪S2F
+1−→,(4.9)

RΓZ′(F ) −→ RΓZ(F ) −→ RΓZ\Z′(F )
+1−→ .(4.10)

When applying RΓ(X; • ), we find other distinguished triangles and taking
the cohomology, we find long exact sequences, such as for example the Mayer-
Vietoris long exact sequences :

· · · −→ Hj(U1 ∪ U2;F ) −→ Hj(U1;F )⊕Hj(U2;F )(4.11)

−→ Hj(U1 ∩ U2;F ) −→ Hj+1(U1 ∪ U2;F ) −→ · · ·
· · · −→ Hj(X;FS1∪S2) −→ Hj(X;FS1)⊕Hj(X;FS2)(4.12)

−→ Hj(X;FS1∩S2) −→ Hj+1(X;FS1∪S2) −→ · · ·

Remark 4.2.5. Let S be a closed subset of X. Then

RΓ(X;FS) ' RΓ(S;F |S).(4.13)

This follows from the isomorphism FS ' iS∗i
−1
S F , the fact that iS∗ is exact

and the isomorphism RaX∗ ◦ iS∗ ' R(aX ◦ iS)∗. Note that (4.13) would not
remain true when replacing S with an open subset.

When Z is locally closed in X, one also sets

Hj
Z(F ) = Hj(RΓZ( • ))(F ), Hj

Z(X;F ) = Hj(RΓZ(X; • ))(F ).(4.14)
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4.3 Čech complexes for closed coverings

We shall adapt the construction of §3.2 to the case of closed coverings.
As in § 3.2, we consider a total ordered set Iord and denote by I the

underlying set. For J ⊂ I, J finite, we denote by |J | its cardinal. If J is
endowed with the order induced by I, we write J ⊂ Iord. We denote by {ei}i∈I
the canonical basis of Z⊕I and for J ⊂ Iord, J = {i0 < i1 < · · · < ip} ⊂ Iord,
we denote by eJ the element ei0 ∧ · · · ∧ eip of

∧p+1 Z⊕I .
Let S = {Si}i∈I be a family of closed subsets of X and let F ∈ Mod(kX).

For J ⊂ I we set

SJ :=
⋂
j∈J

Sj, S−1 =
⋃
i∈I

Si,

F p
S :=⊕|J |=p+1FSJ

, F−1
S = FS.

For J ⊂ I and i ∈ I, we denote by α(i,J) : FSJ
−→ FSJ∪{i} the natural restric-

tion morphism. We set for p ≥ 0

F p
S :=

⊕
J⊂Iord,|J |=p+1

FSJ
⊗ eJ

and we define the differential

d : F p
S −→ F p+1

S(4.15)

by setting for sJ ∈ FSJ
:

d(sJ ⊗ eJ) =
∑
i∈I

α(i,J)(sJ)⊗ ei ∧ eJ .

Here we consider J ∪ {i} as a subset of Iord. One easily checks that

d ◦ d = 0

and we obtain a complex

F •S := 0 −→ F 0
S

d0−→ F 1
S

d1−→ · · · .(4.16)

We also consider the augmented complex

F
• ,+
S := 0 −→ FS

d−1

−−→ F 0
S

d0−→ F 1
S

d1−→ · · · .(4.17)

Proposition 4.3.1. Consider a family S = {Si}i∈I of closed subsets of X.
Then the complex (4.17) is exact. Equivalently, FS −→ F •S is a qis.
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Proof. Let x ∈ X and denote by M
•
x := (F

• ,+
S )x the stalk of the complex

(4.17) at x. It is enough to check that this complex is exact. Let K = {i ∈
I;x ∈ Si}. Replacing I with K, we may assume from the beginning that
x ∈ Si for all i ∈ I. In this case, M

•
x is the Koszul complex associated with

the module M = Fx and the family of morphisms {ϕi}i∈I with ϕi = idM for
all i ∈ I. This last complex is clearly exact. q.e.d.

Example 4.3.2. Assume that X = S0 ∪ S1 ∪ S2, where the Si’s are closed
subsets. We get the exact complex of sheaves

0 −→ F
d−1

−−→ FS0 ⊕ FS1 ⊕ FS2

d0−→ FS12 ⊕ FS02 ⊕ FS01

d1−→ FS012 −→ 0.

Let us denote by

si : F −→ FSi
, saij : FSa −→ FSij

, sk̂ : FSij
−→ FS012 (a, i, j, k) ∈ {0, 1, 2}),

the natural morphisms. Then

d−1 =

 s0,
s1,
s2

 , d0 =

 0 −s1
12 s2

12

−s0
02 0 s2

02

−s0
01 s1

01 0

 d1 = (s2̂,−s0̂, s1̂).

4.4 Flabby sheaves

Definition 4.4.1. On a topological space X, an object F ∈ Mod(kX) is
flabby if for any open subset U of X the restriction map Γ(X;F ) −→ Γ(U ;F )
is surjective.

By applying the functor Hom ( • , F ) to the epimorphism kX�kXU , one
sees that injective sheaves are flabby. The converse is true if k is a field (see
Exercise 3.5).

Proposition 4.4.2. Let F be a flabby sheaf on X.

(i) If U is open in X, F |U is flabby on U ,

(ii) if f : X −→ Y is a continuous map, f∗F is flabby on Y ,

(iii) if Z be a locally closed subset of X, ΓZ(F ) is flabby.

Proof. (i)–(ii) are obvious.
(iii) Let U be an open subset containing Z as a closed subset. Since

Γ(V ; ΓZ(F )) ' Γ(U ∩ V ; ΓZ(F ))

' ΓZ∩V (U ∩ V ;F ),



66 CHAPTER 4. SHEAVES ON TOPOLOGICAL SPACES

we may assume from the beginning (replacing X by U) that Z is closed in
X. Let V be an open subset, and let s ∈ ΓZ∩V (V ;F ). First, we extend s by
0 on X \Z, thus defining s′ ∈ ΓZ(X \ (Z \V );F ). Then one extends s′ using
the flabbiness of F . q.e.d.

Proposition 4.4.3. Let 0 −→ F ′
α−→ F

β−→ F ′′ −→ 0 be an exact sequence of
sheaves, and assume F ′ is flabby. Then the sequence

0 −→ Γ(X;F ′)
α−→ Γ(X;F )

β−→ Γ(X;F ′′) −→ 0

is exact.

Proof. Let s′′ ∈ Γ(X;F ′′) and let σ = {(U ; s); U open in X, s ∈ Γ(U ;F ),
β(s) = s′′|U}. Then σ is naturally inductively ordered. Let (U ; s) be a
maximal element, and assume U 6= X.

Let x ∈ X \ U , let V be an open neighborhood of x and let t ∈ Γ(U ;F )
such that β(t) = s′′|V . Such a pair (V ; t) exists since β : Fx −→ F ′′x is
surjective. On U ∩ V , s− t ∈ Γ(U ∩ V ;F ′). Let r ∈ Γ(X;F ′) which extends
s−t. Then s−(t+r) = 0 on U∩V , hence there exists a section s̃ ∈ Γ(U∪V ;F )
with s̃|U = s, s̃|V = t+ r, and β(s̃) = s′′. This is a contradiction. q.e.d.

Proposition 4.4.4. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of
sheaves. Assume F ′ and F are flabby. Then F ′′ is flabby.

Proof. Let U be an open subset of X and consider the diagram:

Γ(X;F )

α

��

// Γ(X;F ′′)

γ

��

// 0

Γ(U ;F )
β // Γ(U ;F ′′) // 0

Then α is surjective since F is flabby and β is surjective since F ′ is flabby,
in view of the preceding proposition. This implies γ is surjective, hence F ′′

is flabby. q.e.d.

Theorem 4.4.5. The category of flabby sheaves is injective with respect to
the functors Γ(X; ·), ΓZ(·), f∗.

Proof. Since the category of sheaves has enough injectives, and injective
sheaves are flabby, the result for Γ(X; ·) follows from Propositions 4.4.3 and
4.4.4, and the other functors are similarly treated. q.e.d.

Proposition 4.4.6. Let X =
⋃
i∈I Ui be an open covering of X and let

F ∈ Mod(kX). Assume that F |Ui
is flabby for all i ∈ I. Then F is flabby.
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In other words, flabbyness is a local property.

Proof. Let U be an open subset of X and let s ∈ F (U). Let us prove that s
extends to a global section of F . Let S be the family of pairs (t, V ) such that
V is open and contains U and t|U = s. We order S as follows:(t, V ) ≤ (t′, V ′)
if V ⊂ V ′ and t′|V = t. Then S is inductively ordered. Therefore, there exists
a maximal element (t, V ). Let us show that V = X. Otherwise, there exists
x ∈ X \ V and an i ∈ I such that x ∈ Ui. Then t|Ui∩V ∈ F (Ui ∩ V ) extends
to a section ti ∈ F (Ui). Since ti|Ui∩V = t|Ui∩V , the section t extends to a
section on V ∪ Ui which contredicts the fact that V is maximal. q.e.d.

4.5 Sheaves on the interval [0, 1]

Lemma 4.5.1. Let I = [0, 1] and let F ∈ Mod(kI). Then:

(i) For j > 1, one has Hj(I;F ) = 0.

(ii) If F (I) −→ Ft is an epimorphism for all t ∈ I, then H1(I;F ) = 0.

Proof. Let j ≥ 1 and let s ∈ Hj(I;F ). For 0 ≤ t1 ≤ t2 ≤ 1, consider the
morphism:

ft1,t2 : Hj(I;F ) −→ Hj([t1, t2];F )

and let
J = {t ∈ [0, 1]; f0,t(s) = 0}.

Since Hj({0};F ) = 0 for j ≥ 1, we have 0 ∈ J . Since f0,t(s) = 0 im-
plies f0,t′(s) = 0 for 0 ≤ t′ ≤ t, J is an interval. Since Hj([0, t0];F ) =
lim−→
t>t0

Hj([0, t];F ) (see 4.8), this interval is open. It remains to prove that J is

closed. For 0 ≤ t ≤ t0, consider the Mayer-Vietoris sequence (see (4.12) and
(4.13)):

· · · −→ Hj([0, t0];F ) −→ Hj([0, t];F )⊕Hj([t, t0];F ) −→ Hj({t};F ) −→ · · ·

For j > 1, or else for j = 1 assuming H0(I;F ) −→ H0({t};F ) is surjective,
we obtain:

(4.18) Hj([0, t0];F ) ' Hj([0, t];F )⊕Hj([t, t0];F ).

Let t0 = sup {t; t ∈ J}. Then f0,t(s) = 0, for all t < t0. On the other hand,

lim−→
t<t0

Hj([t, t0];F ) = 0.

Hence, there exists t < t0 with ft,t0(s) = 0. By (4.18), this implies f0,t0(s) =
0. Hence t0 ∈ J . q.e.d.
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Lemma 4.5.2. let X = U1 ∪ U2 be a covering of X by two open sets. Let F
be a sheaf on X and assume that:

(i) U12 = U1 ∩ U2 is connected and non empty,

(ii) F |Ui
(i = 1, 2) is a constant sheaf.

Then F is a constant sheaf.

Proof. It follows from the hypothesis that there is a set M and isomorphisms
θi : F |Ui

∼−→ (MX)|Ui
. Let θ12 = θ1 ◦ θ−1

2 : (MX)|U1∩U2

∼−→ (MX)|U1∩U2 .
Since U1 ∩ U2 is connected and non empty, Γ(U1 ∩ U2;Hom (MX ,MX)) '
Hom (M,M) and θ12 defines an invertible element of Hom (M,M). Using
the map Hom (M,M) −→ Γ(X;Hom (MX ,MX)), we find that θ12 extends as
an isomorphism θ : MX ' MX all over X. Now define the isomorphisms:
αi : F |Ui

∼−→ (MX)|Ui
by α1 = θ1 and α2 = θ|U2 ◦ θ2. Then α1 and α2 will glue

together to define an isomorphism F
∼−→MX . q.e.d.

Proposition 4.5.3. Let I denote the interval [0, 1].

(i) Let F be a locally constant sheaf on I. Then F is a constant sheaf.

(ii) In particular, if t ∈ I, the morphism Γ(I;F ) −→ Ft is an isomorphism.

(iii) Moreover, if F = MI for a k-module M , then the composition

M ' F0
∼←− Γ(I;MI)

∼−→ F1 'M

is the identity of M .

Proof. (i) We may find a finite open covering Ui, (i = 1, . . . , n) such that F
is constant on Ui, Ui ∩ Ui+1 (1 ≤ i < n) is non empty and connected and
Ui ∩ Uj = ∅ for |i− j| > 1. By induction, we may assume that n = 2. Then
the result follows from Lemma 4.5.2.
(ii)–(iii) are obvious. q.e.d.

4.6 Invariance by homotopy

In this section, we shall prove that the cohomology of locally constant sheaves
is an homotopy invariant. First, we define what it means.

In the sequel, we denote by I the closed interval I = [0, 1].

Definition 4.6.1. Let X and Y be two topological spaces.
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(i) Let f0 and f1 be two continuous maps from X to Y . One says that f0

and f1 are homotopic if there exists a continuous map h : I ×X −→ Y
such that h(0, ·) = f0 and h(1, ·) = f1.

(ii) Let f : X −→ Y be a continuous map. One says that f is a homotopy
equivalence if there exists g : Y −→ X such that f ◦ g is homotopic to
idY and g ◦ f is homotopic to idX . In such a case one says that X and
Y are homotopic.

(iii) One says that a topological space X is contractible if X is homotopic
to a point {x0}.

One checks easily that the relation “f0 is homotopic to f1” is an equiva-
lence relation. If f0, f1 : X ⇒ Y are homotopic, one gets the diagram

X ' {t} ×X � � it //

ft

%%
I ×X

p

��

h // Y

X

(4.19)

where t ∈ I, it : X ' {t}×X ↪→ I ×X is the embedding, p is the projection
and ft = h ◦ it.

A topological space is contractible if and only if there exist g : {x0} −→ X
and f : X −→ {x0} such that f ◦ g is homotopic to idX . Replacing x0 with
g(x0), this means that there exists h : I × X −→ X such that h(0, x) = idX
and h(1, x) is the map x 7→ x0. Note that contractible implies non empty.

Example 4.6.2. Let V be a real vector space. A non empty convex set in
V as well as a closed cone are contractible sets.

Statement of the main theorem

Let f : X −→ Y be a continuous map and let G ∈ Mod(kY ). Remark that
aX ' aY ◦f . The morphism of functors id −→ Rf ∗◦f−1 defines the morphism
RaY ∗ −→ RaY ∗ ◦Rf ∗ ◦ f−1 ' RaX∗ ◦ f−1. We get the morphism:

(4.20) f ] : RΓ(Y ;G) −→ RΓ(X; f−1G).

If g : Y −→ Z is another morphism, we have:

(4.21) f ] ◦ g] = (g ◦ f)].

The aim of this section is to prove:
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Theorem 4.6.3. (Invariance by homotopy Theorem.) Let f0, f1 : X ⇒ Y
be two homotopic maps, and let G be a locally constant sheaf on Y . Consider
the two morphisms f ]t : RΓ(Y ;G) −→ RΓ(X; f−1

t G), for t = 0, 1. Then there
exists an isomorphism θ : RΓ(X; f−1

0 G) −→ RΓ(X; f−1
1 G) such that θ◦f ]0 = f ]1.

If G = MY for some M ∈ Mod(k), then, identifying f−1
t MY with MX

(t = 0, 1), we have f ]1 = f ]0.

This is visualized by the diagram

RΓ(Y ;G)
f]0

ww

f]1

''
RΓ(X; f−1

0 G) θ
∼

// RΓ(X; f−1
1 G).

Proof of the main theorem

In order to prove Theorem 4.6.3, we need several lemmas.
Recall that the maps p : I × X −→ X and it : X −→ I × X are defined in

(4.19). We also introduce the notation Ix := I × {x}.

Lemma 4.6.4. Let F ∈ Mod(kX). Then

(i) F
∼−→ Rp∗p

−1F ,

(ii) the morphism p] : RΓ(X;F ) −→ RΓ(I ×X; p−1F ) is an isomorphism,

(iii) the morphisms i]t : RΓ(I × X; p−1F ) −→ RΓ(X;F ) are isomorphisms
and do not depend on t ∈ I.

Proof. (i) Let x ∈ X and let t ∈ I. Using Theorem 5.3.5, one gets the
isomorphism ((Rp∗)p

−1F )x ' RΓ(Ix; p
−1F |Ix). This complex is concentrated

in degree 0 and isomorphic to Fx by Lemma 4.5.1.
(ii) We have RaX∗Rp∗p

−1F ' RaX∗F by (i). Hence p] is an isomorphism.
(iii) By (4.21), i]t ◦ p] is the identity, and p] is an isomorphism by (i). Hence,
i]t which is the inverse of p] does not depend on t. q.e.d.

Lemma 4.6.5. Let H ∈ Mod(kI×X) be a locally constant sheaf. Then

(i) the natural morphism p−1Rp∗H −→ H is an isomorphism,

(ii) for each t ∈ I, the morphism i]t : RΓ(I ×X;H) −→ RΓ(X; i−1
t H) is an

isomorphism.

(iii) If H = MI×X for some M ∈ Mod(k), the isomorphism i]t : RΓ(I ×
X;MI×X) −→ RΓ(X;MX) does not depend on t.



4.6. INVARIANCE BY HOMOTOPY 71

Proof. (i) One has

(p−1Rp∗H)(t,x) ' (Rp∗H)x

' RΓ(Ix;H|Ix) ' H(t,x).

Here the last isomorphism follows from Lemmas 4.5.3 and 4.5.1.
(ii) Consider the commutative diagram

RΓ(I ×X;H)

i]t
��

RΓ(I ×X; p−1Rp∗H)

i]t
��

∼oo

RΓ(X; i−1
t H) RΓ(X; i−1

t p−1Rp∗H)∼oo

The horizontal arrows are isomorphisms by (i) and the vertical arrow on the
vertical arrow on the right is an isomorphism by Lemma 4.6.4 (ii).
(iii) follows from Lemma 4.6.4 (iii). q.e.d.

End of the proof of Theorem 4.6.3. Set H = h−1G. Then Ft = i−1
t H and

the results follow from Lemma 4.6.4 (ii)–(iii). q.e.d.

Corollary 4.6.6. Assume f : X −→ Y is a homotopy equivalence and let G
be a locally constant sheaf on Y . Then RΓ(X, f−1G) ' RΓ(Y ;G).

In other words, the cohomology of locally constant sheaves on topological
spaces is a homotopy invariant.

Proof. Let g : Y −→ X be a map such that f ◦g and g◦f are homotopic to the
identity of Y and X, respectively. Consider f ] : RΓ(Y ;G) −→ RΓ(X; f−1G)
and g] : RΓ(X; f−1G) −→ RΓ(Y ;G). Then: (f ◦ g)] = g] ◦ f ] ' id]X = id and
(g ◦ f)] = f ]j ◦ g] ' id]Y = id . q.e.d.

Corollary 4.6.7. If X is contractible and M ∈ Mod(k), then RΓ(X;MX) '
M .

We shall apply Theorem 4.6.3 to calculate the cohomology of various
spaces.

Theorem 4.6.8. Let X =
⋃
i∈I Zi be a finite covering of X by closed subsets

satisfying the condition

(4.22) for each non empty subset J ⊂ I, ZJ is contractible or empty.

Let F be a locally constant sheaf on X. Then Hj(X;F ) is isomorphic to the
j-th cohomology object of the complex

Γ(X;F •Z) := 0 −→ Γ(X;F 0
Z)

d−→ Γ(X;F 1
Z) −→ · · ·

Proof. Recall that if Z is closed in X, then Γ(X;FZ) ' Γ(Z;F |Z). Therefore
the sheaves F p

Z (p ≥ 0) are acyclic with respect to the functor Γ(X; • ), by
Corollary 4.6.7. Applying Proposition 4.3.1, the result follows. q.e.d.
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4.7 Cohomology of some classical manifolds

Here, k denotes as usual a commutative unitary ring and M denotes a k-
module.

1-sphere

Let X be the circle S1 and let Zj’s be a closed covering by intervals such that
the Zij’s are single points and Z012 = ∅. Applying Theorem 4.6.8, we find
that if F is a locally constant sheaf on X, the cohomology groups Hj(X;F )
are the cohomology objects of the complex:

0 −→ FZ0 ⊕ FZ1 ⊕ FZ2

d−→ FZ12 ⊕ FZ20 ⊕ FZ01 −→ 0.

Recall Example 3.3.10: S1 = U1∪U2, U1∩U2 has two connected components
U+

12 and U−12, k is a field, α ∈ k× and Lα denotes the locally constant sheaf
of rank one over k obtained by glueing kU1 and kU2 by the identity on U+

12

and by multiplication by α ∈ k× on U−12.
Then for j = 0 (resp. for j = 1), Hj(S1;Lα) is the kernel (resp. the cok-

ernel) of the matrix

 0 −1 1
1 0 −α
−1 1 0

 acting on k3. (See Example 4.3.2.)

Note that these kernel and cokernel are zero except in case of α = 1 which
corresponds to the constant sheaf kX .

It follows that if M is a k-module, then RΓ(S1;MS1) 'M ⊕M [−1].

n-sphere

Consider the topological n-sphere Sn. Recall that it can be defined as follows.
Let E be an R-vector space of dimension n+1 and denote by Ė the set E\{0}.
Then

Sn ' Ė/R+,

where R+ denotes the multiplicative group of positive real numbers and Sn
is endowed with the quotient topology. In other words, Sn is the set of all
half-lines in E. If one chooses an Euclidian norm on E, then one may identify
Sn with the unit sphere in E.

We have Sn = D̄+∪D̄−, where D̄+ and D̄− denote the closed hemispheres,
and D̄+ ∩ D̄− ' Sn−1. Let us prove that:

RΓ(Sn; kSn) = k⊕ k[−n].(4.23)
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Consider the Mayer-Vietoris long exact sequence

−→ Hj(D̄+; kD̄+)⊕Hj(D̄−; kD̄−) −→ Hj(Sn−1; kSn−1)(4.24)

−→ Hj+1(Sn; kSn) −→ · · ·

The closed hemispheres being contractible, their cohomology is concentrated
in degree 0. Then we find by induction on n that the cohomology of Sn is
concentrated in degree 0 and n and isomorphic to k in these degrees. To
conclude that RΓ(Sn; kSn) is the direct sum of its cohomology objects, use
the fact that Extn

Db(k)
(k,k) ' 0 for n 6= 0 and Exercise 8.5 of [Sc02].

Let E be a real vector space of dimension n + 1, and let X = E \ {0}.
Assume E is endowed with a norm | · |. The map x 7→ x((1 − t) + t/|x|)
defines an homotopy of X with the sphere Sn. Hence the cohomology of a
constant sheaf with stalk M on V \{0} is the same as the cohomology of the
sheaf MSn

As an application, one obtains that the dimension of a finite dimensional
vector space is a topological invariant. In other words, if V and W are two
real finite dimensional vector spaces and are topologically isomorphic, they
have the same dimension. In fact, if V has dimension n, then V \ {0} is
homotopic to Sn−1.

Notice that Sn is not contractible, although one can prove that any locally
constant sheaf on Sn for n ≥ 2 is constant.

Denote by a the antipodal map on Sn (the map deduced from x 7→ −x)
and denote by a]n the action of a on Hn(Sn;MSn). Using (4.24), one deduces
the commutative diagram:

Hn−1(Sn−1;MSn−1) u //

a]n−1

��

Hn(Sn;MSn)

a]n

��
Hn−1(Sn−1;MSn−1)

−u // Hn(Sn;MSn)

(4.25)

For n = 1, the map a is homotopic to the identity (in fact, it is the same as
a rotation of angle π). By (4.25), we deduce:

a]n acting on Hn(Sn;MSn) is (−)n+1.(4.26)

n-torus

The Künneth formula will be proved in the next chapter (see Corollary 5.3.8).
It allows us to calculate the cohomology of the n-torus Tn :=(S1)n. Applying
(4.23) for n = 1 we get:

RΓ(Tn; kTn) ' (k⊕ k[−1])
⊗n
.(4.27)
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For example, for n = 2, we find

(k⊕ k[−1])⊗ (k⊕ k[−1]) ' k⊗k⊕ k⊗k[−1]⊕ k[−1]⊗k⊕ k[−1]⊗k[−1]

' k⊕ k⊕2[−1]⊕ k[−2].

Action of groups

Let G be a fgroup (with unit denoted e). We identify G with the category
with one object, the morphisms of this object being G. Consider the category

G-Mod(k) := Fct(G,Mod(k)).

An object of G-Mod(k) is thus a k-module endowed with a left action of G.
One defines the functor

IG : G-Mod(k) −→ Mod(k),

IG(M) = {m ∈M ; g ·m = m for all g ∈ G}.

The module IG(M) (also denoted MG in the literature) is thus the submodule
of G-invariants of M . One checks easily that the functor IG is left exact. If
M ∈ G-Mod(k), one sets

Hp(G;M) = Hp(RIG(M)).

Assume now that G is endowed with the discrete topology and acts on a
topological space X, that is, we have a continuous map

µ : G×X −→ X

satisfying µ(e, x) = x, µ(g1 · g2, x) = µ(g2, µ(g1, x)). On X, the relation
x ∼ y if there exists g ∈ G such that µ(g, x) = y is an equivalence relation
and one denotes by X/G the quotient space. One sets for short Y = X/G,
one endows Y with the quotient topology and one denotes by

ρ : X −→ Y = X/G

the quotient map. For g ∈ G, we get a commutative diagram

X
g //

ρ
  

X

ρ

��
Y.

For g ∈ G, we deduce a morphism of functors (see (4.21)):

g] : idY −→ ρ∗ ◦ ρ−1,(4.28)
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as the composition

idY −→ ρ∗ ◦ g∗ ◦ g−1 ◦ ρ−1 ' ρ∗ ◦ ρ−1.

Applying ρ∗ ◦ ρ−1, we get a morphism

g] : ρ∗ ◦ ρ−1 −→ ρ∗ ◦ ρ−1.(4.29)

For F ∈ Mod(kY ) define F g by the exact sequence

0 −→ F g −→ ρ∗ ◦ ρ−1F
id−g]−−−→ ρ∗ ◦ ρ−1F

and set

IG(F ) =
⋂
g∈G

F g.

Of course, there is a natural morphism F −→ IG(F ). The functor Γ(Y ; • )
being left exact, we get:

Lemma 4.7.1. Let F ∈ Mod(kY ). Then

IG(Γ(Y ;F )) ' Γ(Y ; IG(F )).

Lemma 4.7.2. Assume that X is Hausdorff and G is finite and acts freely
on X. Then one has the isomorphism F

∼−→ FG.

Proof. Notice first that the fibers of ρ are finite. Let y ∈ Y . The module Fy
is isomorphic to the submodule of Γ(ρ−1(y); ρ−1F ) on which G acts trivially,
that is, Fy ' IG((ρ∗ρ

−1F )y). Since IG((ρ∗ρ
−1F )y) ' (FG)y, we get the

result. q.e.d.

Recall that for a space Z, one denotes by aZ the map Z −→ pt. Applying the
functor aY ∗ to (4.29), we deduce that there is a well-defined functor

aX∗ ◦ ρ−1 : Mod(kY ) −→ G-Mod(k).

Lemma 4.7.3. Assume that X is Hausdorff and G is finite and acts freely
on X. Then one has the isomorphism of functors RIG ◦RaX∗ ◦ ρ−1 ' RaY ∗.

Proof. (i) The isomorphism IG ◦aX∗ ◦ρ−1 ' aY ∗. follows from Lemmas 4.7.2
and 4.7.1 .

(ii) It follows from the hypotheses that ρ−1 sends injective sheaves to injective
sheaves (apply the result of Exercise 4.7), and one knows that aX∗ sends
injective sheaves to injective sheaves. Therefore, the derived functor of the
composition is the composition of the derived functors. q.e.d.
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Application: real projective spaces 1

by Pn the real projective space of dimension n. It can be obtained as the
quotient of Sn by the antipodal map, that is, the quotient of Sn by the
group Z/2Z. Hence, we may apply Lemma 4.7.3 with X = Sn, Y = Pn and
G = Z/2Z. We choose k = Z.

We have a distinguished triangle

τ<nRaX∗ZX −→ RaX∗ZX −→ Hn(RaX∗ZX)
+1−→ .

Since X = Sn, this triangle reduces to

Z −→ RaX∗ZX −→ Z̃ [−n]
+1−→

where Z̃ = Z, the action of Z/2Z is trivial on Z, is trivial on Z̃ if n is odd and

this action on Z̃ is the multiplication by −1 if n is even (we apply (4.26)).
Using resolution, one easily obtains:

Hp(Z/2Z;Z) =


Z if p = 0,
Z/2Z if p is even,
0 otherwise.

Therefore, if n is odd one proves

Hp(Pn;Z) =


Z if p = 0, n,
Z/2Z if p = 2, 4, . . . , n− 1,
0 otherwise.

When n is even, one find

Hp(Z/2Z; Z̃) =

{
Z/2Z if p is odd,
0 otherwise.

Therefore, if n is even we find

Hp(Pn;Z) =


Z if p = 0,
Z/2Z if p = 2, 4, . . . , n,
0 otherwise.

1The classical proofs calculating the cohomology of the real projective space use spectral
sequences. The proof proposed here, using truncation functors instead, is much shorter.
It is due to Tony Yue Yu who did it when he was a Master 2 student at UPMC around
2011.
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Exercises to Chapter 4

Exercise 4.1. Let X be a topological space, M a closed subspace and F
a sheaf on X. Assume there is an n > 0 such that Hj

M(F ) ' 0 for j < n.
Prove that the presheaf U 7→ Hn

M∩U(U ;F ) is a sheaf and is isomorphic to the
sheaf Hn

M(F ). (See Notation 4.14.)

Exercise 4.2. Let X be a locally compact space, M a closed subspace and F
a sheaf on X. Assume there is an n > 0 such that for any compact K ⊂M ,
Hj
K(X;F ) = 0 for all j < n and that for each pair K1 ⊂ K2 of compact

subsets of M , the natural morphism Hn
K1

(X;F ) −→ Hn
K2

(X;F ) is injective.
(i) Prove that for each open subset ω of M , Hj

ω(X;F ) = 0 for all j < n, and
the presheaf ω 7→ Hn

ω(X;F ) is the sheaf Hn
M(F ).

(ii) Prove that if K ⊂M is compact, ΓK(M ;Hn
M(F )) ' Hn

K(X;F ).
(iii) Assume moreover that Hj

K(X;F ) = 0 for all compact subsets of M and
all j > n. Prove that the sheaf Hn

M(F ) is flabby.
(Remark: when M is a real analytic manifold of dimension n, X a complexi-
fication, and F = OX , all hypotheses are satisfied. The sheaf Hn

M(OX)⊗orM
is called the sheaf of Sato’s hyperfunctions.)

Exercise 4.3. Let X = N endowed with the topology for which the open
subsets are the intervals [0, . . . , n], n ≥ −1 and N.
(i) Prove that a presheaf F of k-modules on X is nothing but a projective
system (Fn, ρm,n) indexed by N and that this presheaf is a sheaf if and only
if F (X) ' lim←−

n

Fn.

(ii) Prove that if Fn+1 −→ Fn is onto, then the sheaf F is flabby.
(iii) Deduce that if 0 −→ M ′

n −→ Mn −→ M ′′
n −→ 0 is an exact sequence of

projective systems of k-modules and the morphisms M ′
n+1 −→ M ′

n are onto,
then the sequence 0 −→ lim←−

n

M ′
n −→ lim←−

n

Mn −→ lim←−
n

M ′′
n −→ 0 is exact.

(iv) Prove that for any sheaf F on X there exists an exact sequence 0 −→
F −→ F0 −→ F1 −→ 0, with F0 and F1 flabby.
(v) Denote by π the left exact functor

π : (Mod(k))N −→ Mod(k), {Mn}n 7→ lim←−
n

Mn.(4.30)

Prove that Rjπ ' 0 for j > 1.

Exercise 4.4. let X be a real n-dimensional vector space and let U be an
open convex subset, j : U ↪→ X the embedding. Calculate Rj∗kU .

Exercise 4.5. Assume that k is a field. Prove that a sheaf of kX-modules
is injective if and only if it is flabby.
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Exercise 4.6. By considering the space X = S1 and the map aX : X −→ pt,
prove that the isomorphism Rf ∗◦f−1 ' R(f∗◦f−1) does not hold in general.
(Here, R(f∗ ◦ f−1) denotes the right derived functor of the left exact functor
f∗ ◦ f−1.)

Exercise 4.7. Let X be a topological space and les F,G ∈ Mod(kX).
(i) Prove that if F is injective, then Hom (G,F ) is flabby.
(ii) Deduce from (i) and Proposition 4.4.6 that to be injective is a local
property.

Exercise 4.8. Let K be a compact relatively Hausdorff subset of a topo-
logical space X. Prove the isomorphism Hj(K;F ) ' lim−→

U

Hj(U ;F ), where U

ranges through the family of open neighborhoods of K.

Exercise 4.9. Let X = Sn × Sn. Calculate RΓ(X; kX).

Exercise 4.10. Assume k is a field, and for α ∈ k× let Lα be the locally
free sheaf of rank one on S1 constructed in Example 3.3.10. Let X = S1×S1.
Calculate RΓ(X;Lα � Lβ) for α, β ∈ k×.

Exercise 4.11. Let Y = [0, 1]×]0, 1[ and let X denote the manifold obtained
by identifying (0, t) and (1, 1 − t). Let S denote the hypersurface of X, the
image of the diagonal of Y . Calculate Γ(X; orS/X).

Exercise 4.12. Let D̄ denote the closed disc in R2 with boundary S1. Let
ι : S1 ↪→ D̄ denote the embedding. Prove that there exists no continuous
map f : D̄ −→ S1 such that the composition f ◦ ι is the identity.

Exercise 4.13. Let Y and Y ′ be two topological spaces, S and S ′ two closed
subsets of Y and Y ′ respectively, f : S ' S ′ a topological isomorphism.
Define the topological space X := Y tS Y ′ as the quotient Y t Y ′/ ∼ where
∼ is the equivalence relation which identifies x ∈ Y and y ∈ Y ′ for x ∈ S,
y ∈ S ′ and f(x) = y.

Let Sn be the unit sphere of thee Euclidian space Rn+1, Z the intersection
of Sn with an open ball of radius ε (0 < ε << 1) centered in some point of
Sn and let Σ denote its boundary in Sn. Set Y = Sn \ Z, S = Σ denote by
Y ′ and S ′ another copy of Y and S.
(i) Calculate RΓ(Y tS Y ′; kY tSY ′).
(ii) Same question when replacing the sphere Sn by the torus T2 embedded
in R3.



Chapter 5

Duality on locally compact
spaces

In this chapter all sites X, Y , etc. are locally compact topological spaces.
Recall that we assume that k has finite global dimension.

5.1 Proper direct images

Proper maps

Definition 5.1.1. A continuous map f : X −→ Y is proper if f is closed (i.e.
the image of any closed subset in X is closed in Y ) and its fibers are relatively
Hausdorff and compact.

If X and Y are locally compact, f is proper if and only if the inverse
image of a compact subset of Y is compact in X. If Y = pt, f is proper if
and only if X is compact.

Proposition 5.1.2. Assume that f : X −→ Y is proper. Then the morphism

(f∗F )y −→ Γ(f−1(y);F |f−1(y)).(5.1)

is an isomorphism.

Proof. When V ranges over the family of open neighborhoods of y, f−1(V )
ranges over a neighborhood system of f−1(y). Hence lim−→

V 3y
Γ(f−1V ;F )

∼−→

Γ(f−1(y);F |f−1(y)) by Proposition 4.1.2. q.e.d.

One says that a map f is finite if it is proper and moreover the inverse image
of a finite set is finite.

79
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Corollary 5.1.3. If f is finite, the functor f∗ is exact.

Lemma 5.1.4. Let K be a relatively Hausdorff compact subset of X and
let {Fi}i∈I be a small filtrant inductive system of sheaves. Then the natural
morphism lim−→

i

Γ(K;Fi) −→ Γ(K; lim−→
i

Fi) is an isomorphism.

Proof. The proof is left as an exercise. q.e.d.

Lemma 5.1.5. Let f : X −→ Y be a morphism of locally compact spaces and
let {Fi}i∈I be an inductive system of sheaves on X with I small and filtrant.
Let Z ⊂ X be a closed subset and assume that the map f |Z is proper. Then
the natural morphism lim−→

i

f∗(Fi)Z −→ f∗(lim−→
i

(Fi)Z) is an isomorphism.

Proof. We shall apply Lemma 5.1.5. Let K be a compact subset of Y . One
has

Γ(K; f∗(lim−→
i

(Fi)Z)) ' Γ(f−1K ∩ Z; lim−→
i

(Fi)Z)

' lim−→
i

Γ(f−1K ∩ Z; (Fi)Z)

' lim−→
i

Γ(K; f∗((Fi)Z)).

By choosing for K a fundamental neighborhood system of y ∈ Y we get that
the natural morphism of the statement induces an isomorphism on the talks
at each y ∈ Y . q.e.d.

Proper direct images

Definition 5.1.6. Let f : X −→ Y be a morphism of locally compact spaces
and let F ∈ Mod(kX).

(a) One defines the functor f! : Mod(kX) −→ Mod(kY ) by setting for F ∈
Mod(kX):

f!F = lim−→
U⊂⊂X

f∗(FU)

where U ranges over the family of relatively compact open subsets of X.

(b) One sets Γc(X; • ) = aX !, where aX : X −→ pt.
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Proposition 5.1.7. (i) In the situation of Definition 5.1.6, one has for V
an open subset of Y :

Γ(V ; f!F ) ' lim−→
Z

ΓZ(f−1(V );F )

where Z ranges through the family of closed subsets of f−1(V ) such that
f |Z : Z −→ V is proper. In particular, Γc(X;F ) ' lim−→

K

ΓK(X;F ), where

K ranges through the family of compact subsets of X.

(ii) If f is proper on supp(F ), then f!F
∼−→ f∗F . In particular, if f is

proper, then f!
∼−→ f∗.

(iii) The functor f! is left exact and commutes with small filtrant inductive
limits.

(iv) Let g : Y −→ Z be a continuous map of locally compact spaces. Then
f! ◦ g! = (f ◦ g)!.

(v) Let iU : U ↪→ X be an open embedding. Then the functor iU !, as given
by Definition 5.1.6, coincides with the functor j−1

U (see Notation 2.7.2).

Proof. (i) We shall apply Lemma 5.1.5. For any W open and relatively
compact subset of V

Γ(W ; lim−→
U

f∗FU) ' lim−→
U

Γ(W ; f∗FU)

' lim−→
U,W ′

Γ(f−1(W ′);FU)

where U ranges over the family of relatively compact open subsets of X and
W ′ over the family of open neighbourhoods of W .

Let s ∈ Γ(V ; f∗F ).Then s ∈ Γ(V ; f!F ) if and only if for any W ⊂ V open
and relatively compact in V , there exists U ⊂ X open and relatively compact
such that supp(s) ∩ f−1W is contained in some U relatively compact in X.
This is equivalent to saying that the support of s is proper over Y .

(ii) is obvious.

(iii) The functor F 7→ FU is exact, the functor f∗ is left exact and the functor
lim−→ over small filtrant categories is exact. Hence, f! is left exact. It commutes
with small filtrant inductive limits by Lemma 5.1.5.

(iv) In the sequel, U ranges over the family of relatively compact open subsets
of X, and similarly with V in Y .
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By Proposition 4.2.1), the functor F 7→ FU commutes with inductive lim-
its and by Lemma 5.1.5 the functor g∗(( • )V ) commutes with filtrant inductive
limits. Therefore:

g!f!F ' lim−→
V

g∗((lim−→
U

f∗FU)V ) ' lim−→
V

g∗( lim−→
U

(f∗FU)V )

' lim−→
V

(lim−→
U

g∗(f∗FU)V ) ' lim−→
U

g∗f∗FU ' (g ◦ f)∗F.

(v) Applying Notation 2.7.2, we find

iU !F = j−1
U F

' j−1
U lim−→

V

FV ' lim−→
V

j−1
U FV

where V ranges over the family of relatively compact open subsets of U .
Hence, to recover Definition 5.1.6, it is enough to check that for such a V ,

j−1
U FV ' iU ∗FV .

This is left as an exercise. q.e.d.

Base change formula (non derived)

Consider a Cartesian square of locally compact topological spaces:

X ′
g′ //

f ′

��
�

X

f
��

Y ′
g // Y.

(5.2)

This means that g ◦ f ′ = f ◦ g′ and X ′ is isomorphic (as a topological space)
to the fiber product:

X ×Y Y ′ = {(x, y′) ∈ X × Y ′; f(x) = g(y′)}.

Note that for any compact K ⊂ Y ′, g′ induces a topological isomorphism
f ′−1(K)

∼−→ f−1(g(K)).
Also note that choosing y ∈ Y and setting X ′ = f−1(y), we get the

Cartesian square:

(5.3) f−1(y)
g′ //

f ′

��
�

X

f

��
{y} g // Y.
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Proposition 5.1.8. Consider the Cartesian square (5.2). There is a natural
morphism of functors

g−1 ◦ f∗ −→ f ′∗ ◦ g′−1(5.4)

Moreover, if F ∈ Mod(kX) and f is proper on suppF , then f ′ is proper
on supp g′−1F and the morphism (5.4) induces an isomorphism g−1f∗F

∼−→
f ′∗g

′−1F . In particular, if f is proper, then (5.4) is an isomorphism.

Proof. (i) The isomorphism f∗ ◦ g′∗ ' g∗ ◦ f ′∗ defines by adjunction the
morphism g−1 ◦ f∗ ◦ g′∗ −→ f ′∗, hence the morphisms

g−1 ◦ f∗ −→ g−1 ◦ f∗ ◦ g′∗ ◦ g′−1

−→ f ′∗ ◦ g′−1.

(ii) Let y′ ∈ Y ′ and set y = g(y′). Let F ∈ Mod(kX). We have

(g−1f∗F )y′ ' (f∗F )y

' Γ(f−1(y);F )

and

(f ′∗g
′−1F )y′ ' Γ(f ′−1(y′); g′−1F ).

Since g′ induces a topological isomorphism f ′−1(y′)
∼−→ f−1(g(y′), the result

follows. q.e.d.

Theorem 5.1.9. Consider the Cartesian square (5.2). Then there is a nat-
ural isomorphism of functors:

f ′! ◦ g′−1 ∼−→ g−1 ◦ f!.

In particular, setting Y ′ = {y} for y ∈ Y , one gets for F ∈ Mod(kX) the
isomorphism:

(f!F )y ' Γc(f
−1(y);F |f−1(y)).(5.5)

Proof. Let F ∈ Mod(kX). We have the isomorphisms below in which U
ranges over the family of relatively compact open subsets of X and similarly
with U ′ in X ′:

g−1f!F ' g−1 lim−→
U

f∗FU ' lim−→
U

g−1f∗FU

' lim−→
U

f ′∗(g
′−1(FU)) ' lim−→

U

f ′∗((g
′−1F )g′−1U)
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and

f ′!g
′−1F ' lim−→

U ′

f ′∗(g
′−1F )U ′ .

Let K be a compact subset of Y ′. The family {f ′−1K ∩U ′}U ′ and the family
{f ′−1K ∩ g−1U}U are cofinal. Therefore, the morphism

Γ(K; f ′!g
′−1F ) −→ Γ(K; g−1f!F )

is an isomorphism. q.e.d.

Projection formula (non derived)

Lemma 5.1.10. Let X be a locally compact space and let F ∈ Mod(kX).
Let M be a flat k-module. Then the natural morphism:

Γc(X;F )⊗M −→ Γc(X;F ⊗MX)

is an isomorphism.

Proof. Since Γc(X;F ) ' lim−→
K

Γ(X;FK), we may assume from the beginning

that X is compact. Let K = ∪jKj be a finite covering by compact subsets
and set Kij = Ki ∩Kj. Consider the diagram:

0 // Γ(X;F )⊗M
α

��

λ // ⊕iΓ(Ki;F )⊗M
β

��

µ // ⊕ijΓ(Kij;F )⊗M
γ

��
0 // Γ(X;F ⊗MX) λ′ // ⊕iΓ(Ki;F ⊗MX)

µ′ // ⊕ijΓ(Kij;F ⊗MX)

Notice first the isomorphism

lim−→
U

(Γ(U ;F )⊗M)
∼−→ lim−→

U

Γ(U ;F ⊗MX),(5.6)

where U ranges thourgh the family of open neighborhoods of x ∈ X. In fact,
both sides are isomorphic to Fx ⊗M .
(i) α is injective. Let s ∈ Γ(X;F )⊗M , with α(s) = 0. By (5.6) there exists
a covering such that λ(s) = 0. Hence, s = 0. The same argument shows that
β and γ are injective.
(ii) α is surjective. Let t ∈ Γ(X;F ⊗MX). By (5.6) there exists a finite
covering such that λ′(t) is in the image of β. Then the result follows, using
the injectivity of γ. q.e.d.
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Now we consider a continuous map f : X −→ Y . Let F ∈ Mod(kX) and
G ∈ Mod(kY ). There are natural morphisms :

f−1(f∗F ⊗G) ' f−1f∗F ⊗ f−1G

−→ F ⊗ f−1G

which defines by adjunction: f∗F⊗ −→ f∗(F ⊗ f−1G). This last morphism
induces:

f!F ⊗G −→ f!(F ⊗ f−1G).(5.7)

Proposition 5.1.11. Let f : X −→ Y be a morphism of locally compact
spaces. Let F ∈ Mod(kX) and G ∈ Mod(kY ). Assume that G is a flat
kY -module. Then the natural morphism (5.7) is an isomorphism.

Proof. It is enough to check the isomorphism at each y ∈ Y . Denote by g :
{y} ↪→ Y the embedding and consider the Cartesian square (5.3). Applying
the base change formula, we get

(f!(F ⊗ f−1G))y ' g−1f!(F ⊗ f−1G)

' f ′!g
′−1

(F ⊗ f−1G)

' f ′!(g
′−1
F ⊗ g′−1

f−1G).

Applying Lemma 5.1.10 with F replaced by g′−1F andM replaced by f−1G =
Gy, we get

f ′!(g
′−1
F ⊗ g′−1

f−1G) ' f ′!g
′−1
F ⊗Gy

' (f!F )y ⊗Gy

' (f!F ⊗G)y.

q.e.d.

5.2 c-soft sheaves

Definition 5.2.1. Assume X is locally compact. A sheaf F is c-soft if for
any compact subset K of X, the map Γ(X;F ) −→ Γ(K;F ) is onto.

Lemma 5.2.2. Let F ∈ Mod(kX). The conditions bellow are equivalent.

(i) the sheaf F is c-soft

(ii) for any locally closed subset Z of X, the restriction map Γc(X;F ) −→
Γc(Z;F |Z) is surjective,
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(iii) for any compact subset K of X, the restriction map Γc(X;F ) −→ Γ(K;F )
is surjective,

Proof. (i) For K compact:, we have Γ(K;F ) = Γc(K;F |K). Therefore,
(ii)⇒ (iii)⇒ (i) is clear.

(ii) Assume F is c-soft. Let s ∈ Γc(Z;F |Z) with support in K and let U be
a relatively compact open neighborhood of K in X. Define s̃ ∈ Γ(∂U ∪ (Z ∩
Ū);F ) by setting s̃|Z∩Ū = s, s̃|∂U = 0. Then s̃ ∈ Γ(∂U ∪ Z ∩ Ū ;F ) extends
to a section of Γ(X;F ), and since s̃|∂U = 0, we may assume t is supported
by Ū . q.e.d.

Lemma 5.2.3. A small filtrant inductive limit of c-soft sheaves is c-soft. In
particular, a small direct sum of c-soft sheaves is c-soft.

Proof. Apply Proposition 5.1.7 and Lemma 5.2.2 after remarking that a small
direct sum is a filtrant inductive limit of finite direct sums. q.e.d.

Proposition 5.2.4. Assume F is c-soft on X.

(i) If iZ : Z ↪→ X is the embedding of a locally closed subset in X, then
i−1
Z F is c-soft,

(ii) If f : X −→ Y is continuous, then f!F is c-soft on Y ,

(iii) for Z as in (i), FZ is c-soft.

Proof. (i) If Z is open, this is clear and if Z is closed, this follows from
Lemma 5.2.2.
(ii) Let K be a compact subset of X. Consider the diagram:

Γc(X;F ) //

��

Γc(f
−1(K);F )

��
Γc(Y ; f!F ) // Γc(K; f!F )

The first horizontal arrow is surjective by Lemma 5.2.2 and the vertical ar-
rows are isomorphisms.
(iii) follows from (i) and (ii) since FZ ' iZ !i

−1
Z F . q.e.d.

Proposition 5.2.5. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of
sheaves and assume F ′ is c-soft. Then the sequence

0 −→ Γc(X;F ′)
α−→ Γc(X;F )

β−→ Γc(X;F ′′) −→ 0

is exact.
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Proof. Let s′′ ∈ Γc(X;F ′′) and let U be an open neighborhood of supp(s′′),
U being relatively compact. In order to prove that s is in the image of
Γc(X;F ) −→ Γc(X;F ′′), we may replace F ′, F, F ′′ by F ′U , FU , F

′′
U . Then we

may replace X by Ū , hence we may assume from the beginning that X is
compact.

Let {Ki}ni=1 be a finite covering of X by compact subsets and let si ∈
Γ(Ki;F ) such that β(si) = s′′|Ki

. We argue by induction on n, and reduce the
proof to the case n = 2. Then s1|K1∩K2− s2|K1∩K2 belongs to Γ(K1∩K2;F ′).
We extend this element to s′ ∈ Γ(X;F ′) and replace s2 by s2 + s′. Hence
there exists t ∈ Γ(K1 ∪K2;F ) with β(t) = s′′ and the induction proceeds.
q.e.d.

Proposition 5.2.6. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of
sheaves, and assume F ′ and F are c-soft. Then F ′′ is soft.

The proof is similar to that of Proposition 4.4.4.

Proposition 5.2.7. Let S be a closed subset and K a compact subset of
X. The category of c-soft sheaves is injective with respect to the functors
Γc(X; • ), Γc(S; • |S), f! and Γ(K; • ).

The proof is left as an exercise.

Proposition 5.2.8. Let F ∈ Mod(kX). Then F is c-soft if and only if
Hj
c (U ;F ) ' 0 for any U open in X and any j > 0.

Proof. It follows from Proposition 5.2.7 that the condition is necessary. Let
us prove the converse. Assume that Hj

c (U ;F ) ' 0 for any U open in X and
any j > 0. Let K be a compact subset. Applying Proposition 4.2.4, we have
an exact sequence

0 −→ FX\K −→ F −→ FK −→ 0.

Applying the functor Γc(X; • ) to this exact sequence, the result follows since
H1
c (X \K;F ) ' 0 by the hypothesis. q.e.d.

Proposition 5.2.9. Assume X is locally compact and countable at infinity.
Then the category of c-soft sheaves is injective with respect to the functor
Γ(X; • ).

Proof. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of sheaves, with
F ′ c-soft. Let {Kn}n∈N be an increasing sequence of compact subsets of X,
with X = ∪nKn.



88 CHAPTER 5. DUALITY ON LOCALLY COMPACT SPACES

The sequences

0 −→ Γ(Kn;F ′) −→ Γ(Kn;F ) −→ Γ(Kn;F ′′) −→ 0

are all exact, and the morphisms Γ(Kn+1;F ′) −→ Γ(Kn;F ′) are all surjective.
Hence the sequence obtained by taking the projective limit will remain exact
by the Mittag-Leffler property. (See Exercise 4.3.) q.e.d.

Proposition 5.2.10. Assume X is locally compact and countable at infinity.
Let X =

⋃
i∈I Ui be an open covering of X and let F ∈ Mod(kX). Assume

that F |Ui
is soft for all i ∈ I. Then F is soft.

In other words, to be soft is a local property.

Proof. The proof is similar to that of Proposition 4.4.6. q.e.d.

Example 5.2.11. (i) On a locally compact space X, any sheaf of C0
X-

modules is soft.
(ii) Let X be a real manifold of class C∞, let K be a compact subset of X
and U an open neighborhood of K in X. By the existence of “partition of
unity”, there exists a real C∞-function ϕ with compact support contained
in U and which is identically 1 in a neighborhood of K. It follows that any
sheaf of C∞X -modules is soft.
(iii) Flabby sheaves are soft.

5.3 Derived proper direct images

Consider a morphism f : X −→ Y of locally compact spaces. One denotes by
Rf ! its right derived functor:

Rf ! : D+(kX) −→ D+(kY ).

By Proposition 5.2.7, if F ∈ Mod(kX), then Rf !F ' f!F
•, where F • is a

c-soft resolution of F . Moreover, if g : Y −→ Z is another morphism of locally
compact spaces, then, by Proposition 5.2.4,

R(g ◦ f)! ' Rg! ◦Rf !.(5.8)

In the sequel, we shall always make Hypothesis 5.3.2 below.

Definition 5.3.1. Let d ∈ N. One says that f has c-soft dimension ≤ d if
Hj(Rf !F ) = 0 for all j > d and all F ∈ Mod(kX). One says that f has finite
c-soft dimension if there exists d ≥ 0 such that f has c-soft dimension ≤ d.
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Hypothesis 5.3.2. The map f has finite c-soft dimension.

Remark 5.3.3. It follows from Theorem 5.1.2 that f has c-soft dimension
≤ d only if, for any y ∈ Y , the restriction f |f(y)−1 has c-soft dimension ≤ d.

Note that assuming Hypothesis 5.3.2, the functor Rf ! induces a functor:

Rf ! : D
b(kX) −→ Db(kY ).

Projection formula

First, we derive the isomorphism in Proposition 5.1.11.

Theorem 5.3.4. (Projection formula.) Let f : X −→ Y be a morphism of
locally compact spaces. Let F ∈ D+(kX) and G ∈ D+(kY ). Then there is a
natural isomorphism

Rf !F
L
⊗G ' Rf !(F

L
⊗f−1G).

Proof. Let F • be a c-soft resolution of F in K+(Mod(kX)) and let G• be a flat
resolution of G in K−(Mod(kY )). By the hypothesis on the Tor-dimension
of k, we may assume that G• ∈ Kb(Mod(kY )).

Notice that if F i is c-soft and Gj is a flat sheaf, then F i ⊗ f−1Gj is

acyclic for the functor f!. It follows that Rf !(F
L
⊗f−1G) is represented by the

complex f!(F
•⊗f−1G•). On the other hand, Rf !F

L
⊗G is represented by the

complex f!F
•⊗G•. Hence, the result follows from Proposition 5.1.11. q.e.d.

Base change formula

Next, we derive the isomorphism in Theorem 5.1.9.

Theorem 5.3.5. (Base change formula.) Consider the Cartesian square
(5.2). Then there is an isomorphism in D+(kY ′), functorial in F ∈ D+(kX):

g−1Rf !F ' Rf ′!g
′−1F.

In particular, for y ∈ Y , we have the isomorphism

(Rf !F )y ' RΓc(f
−1(y);F |f−1(y)).(5.9)

Proof. It is enough to prove that g−1 ◦Rf ! is the derived functor of g−1 ◦ f!,
which is obvious and Rf ! ◦ g′

−1 is the derived functor of f ′! ◦ g′
−1.

Denote by IX the subcategory of Mod(kX) consisting of sheaves F such
that for all y ∈ Y , F |f−1(y) is c-soft, and define similarly IX′ . Then IX is

injective with respect to g′−1 and g′−1 sends IX into IX′ . Moreover, IX′ is
injective with respect to f ′!. q.e.d.
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Let us give two important corollaries which are particularly important in
Algebraic Topology. The first one tells us that the cohomology with compact
support of a topological space X, with values in a commutative group M ,
i.e., the cohomology of the constant sheaf MX , is known as soon as it is
known over Z. The second one tells us how to calculate the cohomology of a
product.

Universal coefficients formula

Corollary 5.3.6. (Universal coefficients formula.) Let M ∈ Mod(k).

(i) One has the isomorphism RΓc(X;MX) ' RΓc(X; kX)
L
⊗M .

(ii) Assume k = Z. Then

RΓc(X;MX) '
⊕
j

Hj
c (X;MX) [−j]

'
⊕
j

(
Hj
c (X;ZX)⊗Z M ⊕ TorZ1 (Hj+1

c (X;ZX),M)
)

[−j].

Proof. (i) One has MX = a−1
X Mpt

L
⊗kX . By the projection formula, we get:

RaX !(a
−1
X Mpt

L
⊗kX) ' RaX !kX

L
⊗M.

(ii) Since the homological dimension of the ring Z is one, we have for N ∈
Db(Mod(Z)) and M ∈ Mod(Z):

N ' ⊕jHj(N)[−j],

N
L
⊗ZM '

⊕
j

(
Hj(N)⊗M ⊕ TorZ1 (Hj+1(N),M)

)
[−j].

q.e.d.

Notation 5.3.7. Let X and Y be two topological spaces. One sets:

F
L

�G = q−1
1 F

L
⊗q−1

2 G.
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Künneth formula

Corollary 5.3.8. (Künneth formula.) Let X and Y be two locally compact
spaces. Let F ∈ D+(kX), G ∈ D+(kY ). Then:

RΓc(X × Y ;F
L

�G) ' RΓc(X;F )
L
⊗RΓc(Y ;G).(5.10)

Proof. Consider the diagram:

X × Y
p1

{{

p2

##
X

aX
##

Y

aY
{{

pt

(5.11)

Then:

RaX×Y !(F
L

�G) ' RaY !Rp2!(p
−1
1 F

L
⊗p−1

2 G)

' RaY !((Rp2!p
−1
1 F )

L
⊗G)

' RaY !(a
−1
Y RaX !F

L
⊗G)

' RaX !F
L
⊗RaY !G.

q.e.d.

5.4 The functor f !

All over this section, we shall assume that all morphisms of locally compact
spaces have finite c-soft dimension (see hypothesis 5.3.2).

Let f : X −→ Y be a continuous map of locally compact topological spaces.
Applying Theorem 1.1.9 and Lemma 5.2.3, we get:

Theorem 5.4.1. The functor Rf ! : D+(kX) −→ D+(kY ) admits a right ad-
joint.

One denotes by f ! this adjoint.
In other words, for F ∈ D+(kX), G ∈ D+(kY ), we have an isomorphism

functorial with respect to F and G:

HomD+(kY )(Rf !F,G) ' HomD+(kX)(F, f
!G).
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Notice that the functor f ! : D+(kY ) −→ D+(kX) is not the derived functor
of any functor in general.

For a direct proof not using the Brown representability theorem, we refer
to[GM96], [KS90].

We discuss its applications. First, notice that we get natural morphisms:

Rf !f
!G −→ G, F −→ f !Rf !F.

Proposition 5.4.2. Let g : Y −→ Z be a continuous map satisfing Hypothesis
5.3.2. Then g ◦ f satisfies Hypothesis 5.3.2 and

(g ◦ f)! ' f ! ◦ g!.

Proof. Both results immediately follow from (5.8). q.e.d.

Proposition 5.4.3. Consider the Cartesian square (5.2) Assume f satisfies
Hypothesis 5.3.2. Then f ′ satisfies Hypothesis 5.3.2 and there is a natural
isomorphism of functors from D+(kX′) to D+(kY ):

f ! ◦Rg∗ ' Rg′∗ ◦ f ′
!
.(5.12)

Proof. The results follow from Remark 5.3.3. and Theorem 5.3.5 by adjunc-
tion. q.e.d.

Proposition 5.4.4. In the situation of Theorem 5.4.1, one has:

(i) RHom (Rf !F,G) ' RHom (F, f !G)

(ii) RHom (Rf !F,G) ' Rf ∗RHom (F, f !G).

Proof. (i) follows from (ii) by applying RΓ(Y ; • ).
(ii) Consider:

Rf ∗RHom (F, f !G) −→ RHom (Rf !F,Rf !f
!G)

−→ RHom (Rf !F,G).

Let us prove that the composite of these two morphisms is an isomorphism
by applying HjRΓ(V ; • ) to both terms for V open in Y . We get :

HjRΓ(V ;Rf ∗RHom (F, f !G)) ' HomD+(kf−1(V ))
(F |f−1(V ), f

!G)[j])

' HomD+(kV )(Rf !F |V , G[j])

' HjRΓ(V ;RHom (Rf !F,G).

q.e.d.
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Proposition 5.4.5. Let G1, G2 ∈ D+(kY ). There is a natural morphism

f !G1 ⊗ f−1G2 −→ f !(G1

L
⊗G2).

Proof. Consider the chain of morphisms:

Hom (G1 ⊗G2, H) −→ Hom (Rf !f
!G1 ⊗G2, H)

' Hom (Rf !(f
!G1 ⊗ f−1G2), H)

' Hom (f !G1 ⊗ f−1G2, f
!H).

Choosing H = G1 ⊗G2, we get the result. q.e.d.

Given a map f : X −→ Y , we may decompose it by its graph:

f : X ↪→ X × Y −→ Y.

In view of Proposition 5.4.2, in order to calculate f ! it is thus enough to do
it when f is an isomorphism on a closed subset and when f is a projection.

Proposition 5.4.6. Assume that f : X −→ Y is a closed embeddding, that is,
induces an isomorphism from X onto a closed subset Z of Y . Then

f !( • ) ' f−1 ◦ RΓZ( • ).

Proof. Let F ∈ Db(kX), G ∈ Db(kY ).

Hom (Rf !F,G) ' Hom (Rf !F ⊗kZ , G) ' Hom (Rf !F,RΓZG)

' Hom (f−1Rf !F, f
−1RΓZG) ' Hom (F, f−1RΓZG).

q.e.d.

Proposition 5.4.7. Let G1, G2 ∈ Db(kY ). Then:

f !RHom (G2, G1) ' RHom (f−1G2, f
!G1).

Proof. For F ∈ Db(kX), one has:

HomDb(kX)(F, f
!RHom (G2, G1)) ' HomDb(kY )(Rf !F,RHom (G2, G1))

' HomDb(kY )(Rf !F
L
⊗G2, G1)

' HomDb(kY )(Rf !(F
L
⊗f−1G2), G1)

' HomDb(kX)(F
L
⊗f−1G2, f

!G1)

' HomDb(kX)(F,RHom (f−1G2, f
!G1)).

Since these isomorphisms hold for any F ∈ Db(kX), the result follows. q.e.d.
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Consider the diagram, were as usual δX denotes the diagonal embedding:

∆X
� � δ // X ×X

q1
zz

q2
##

X X

Corollary 5.4.8. Let F1, F2 ∈ Db(kX). Then, identifying ∆X with X by q1,

RHom (F2, F1) ' δ!RHom (q−1
2 F2, q

!
1F1).

Proof.

δ!RHom (q−1
2 F2, q

!
1F1) ' RHom (δ−1q−1

2 F2, δ
!q!

1F1)

' RHom (F2, F1).

q.e.d.

The next proposition is analogous to the Künneth formula, replacing the

functor q−1
2 ( • )

L
⊗q!

1( • ) with the functor RHom (q−1
2 ( • ), q!

1( • )).

Proposition 5.4.9. Let X and Y be topological spaces with finite c-soft
dimension. Then for G ∈ Db(kY ), F ∈ D+(kX), one has:

RHom (q−1
2 G, q!

1F )) ' RHom (RΓc(Y ;G),RΓ(X;F )).

Proof. Consider Diagram 5.11. Then:

RΓ(X × Y ;RHom (q−1
2 G, q!

1F )) ' RaX∗Rq1∗RHom (q−1
2 G, q!

1F )

' RaX∗RHom (Rq1!q
−1
2 G,F )

' RaX∗RHom (a−1
X RaY !G,F )

' RHom (RaY !G,RaX∗F ).

q.e.d.

Definition 5.4.10. Assume that f : X −→ Y satisfies Hypothsis 5.3.2. One
sets:

ωX/Y = f !kY

and calls ωX/Y the relative dualizing complex.
If X has finite c-soft dimension, one sets:

ωX = ωX/pt = f !kpt,

and calls ωX the dualizing complex on X.
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Note that by applying Proposition 5.4.5 with F1 = kX , we get a natural
morphism:

f−1G⊗ ωX/Y −→ f !G.

For F ∈ Db(kX), one defines the two dual objects to F :

D′F = RHom (F,kX),

DF = RHom (F, ωX).

The object DF is often called “the Verdier dual” of F . We denote by ∗ the
duality functor on Mod(k):

∗ = RHomk( • ,k), Db(Mod(k))op −→ D+(Mod(k)).(5.13)

Using the adjunction (RaX !, a
!
X), we get :

RHom (F, ωX) ' RHom (RΓc(X;F ),k)

= (RΓc(X,F ))∗.

Choosing F := kX , we find:

Corollary 5.4.11. Assume that X has finite c-soft dimension. Then

(RΓc(X; kX))∗ ' RΓ(X;ωX).

When X is a topological n-dimensional manifold of class C∞, we shall see
that that ωX is the orientation sheaf shifted by n, and Corollary 5.4.11 is a
formulation of the classical Poincaré duality theorem.

5.5 Orientation and duality on C0-manifolds

A C0-manifold X is a Hausdorff, locally compact, countable at infinity topo-
logical space which is locally isomorphic to a real finite dimensional vector
space. Recall that the dimension of such a vector space is a topological in-
variant, hence the dimension of X is a well-defined locally constant function
on X that we denote by dX .

Lemma 5.5.1. Let V be a real vector space of dimension n and let F be a
sheaf on V . Then Hj

c (V ;F ) = 0 for j > n.

Proof. (i) Assume n = 1. We may replace V by the open interval ]0, 1[.
Denote by j the embedding ]0, 1[↪→ [0, 1]. Then j! is exact and we deduce
that Hj

c (]0, 1[;F ) ' Hj([0, 1]; j!F ). Then, the result follows from Lemma
4.5.1.
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(ii) Assume the result if proved for linear spaces of dimension less than n.
Let p : V −→ V ′ be a surjective linear map with dimV ′ = n−1. By the above
result and the base change formula, Rjp! = 0 for j 6= 0, 1. Hence have a d.t.

R0p!F −→ Rp!F −→ R1p!F [−1]
+1−→, which gives a long exact sequence:

· · · −→ Hj
c (V

′;R0p!F ) −→ Hj
c (V ;F ) −→ Hj−1

c (V ′;R1p!F ) −→ · · ·

Then the result follows by induction. q.e.d.

Proposition 5.5.2. Let X be a C0-manifold of constant dimension n and let
F be a sheaf on X. Then:

(i) Hj(X;F ) = 0 for j > n,

(ii) Hj
c (X;F ) = 0 for j > n,

(iii) the c-soft dimension of X is n.

Proof. (i)–(ii) Let 0 −→ F −→ F 0 d0−→ F 1 d1−→ · · · be an injective resolution of
F , and let Gn := Ker dn. It is enough to prove that Gn is c-soft. This is a
local problem, and we may assume X = V is a real vector space. Let U be
an open subset of V . Since Hj

c (U ;F ) ' Hj
c (V ;FU), these groups vanish for

j > n by Lemma 5.5.1 and the result follows from Proposition 5.2.8.

(iii) By (ii) the c-soft dimension of X is ≤ n. The result follows since
Hn
c (X; kX) 6= 0 when X = Rn. q.e.d.

Lemma 5.5.3. Let X be a topological manifold of dimension n. Then
Hk(ωX) = 0 for k 6= −n, and the sheaf H−n(ωX) is locally isomorphic to
kX .

Proof. We may assume X = Rn. Then for U open in X, one has the isomor-
phisms:

RΓ(U ;ωX) ' RHom (kU , a
!
X(k))

' RHom (RΓc(U ; kX),k)

= (RΓc(U ; kX))∗.

If U is convex and non empty, one already knows that RΓc(U ; kU) is
isomorphic to k [−n]. Hence Hk(ωX) = 0 for k 6= −n and the restriction
morphisms Γ(X;H−n(ωX)) −→ Γ(U ;H−n(ωX)) are isomorphisms for U con-
vex and non empty. q.e.d.
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Definition 5.5.4. Let X be a C0-manifold of dimension dX . One sets:

orkX = H−dX (ωX)

and calls this sheaf the orientation sheaf on X. If there is no risk of confusion,
we write orX instead of orkX .

Note that

ωX ' orkX [dX ], orkX ' orZX ⊗ZX
kX .

Proposition 5.5.5. Let X be a C0-manifold of dimension dX .

(i) orX is the sheaf associated to the presheaf: U 7→ Homk(H
dX
c (U ; kX)),k),

(ii) orX is locally free of rank one over kX , and orX,x ' (HdX
{x}(kX))∗,

(iii) orX ⊗orX ' kX , and Hom (orX ,kX) ' orX ,

(iv) if X is of class C1, then orX coincides with the orientation sheaf defined
in Example 3.3.10.

Assertions (i) to (iii) are easily deduced from the previous discussion. We
refer to [KS90] for a proof of (iv).

Applying Corollary 5.4.11, we obtain the Poincaré duality theorem with
coefficients in k:

Corollary 5.5.6. (Poincaré duality.) Let X be C0-manifold of dimension
dX . Then

(RΓc(X; kX))∗ ' RΓ(X; orX) [dX ].

Definition 5.5.7. Let f : X −→ Y be a continuous map of topological spaces.
One says that f is a topological submersion of relative dimension d if, locally
on X, there exists an isomorphism X ' Y ×Rd and a commutative diagram

X

f

��

∼ // Y × Rd

p
{{

Y

such that p is the projection.

Proposition 5.5.8. Assume that f : X −→ Y is a topological submersion of
relative dimension d. Let G ∈ D+(kY ). Then there is a natural isomorphism

f−1G
L
⊗ωX/Y

∼−→ f !G.
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Proof. The natural morphism f−1G
L
⊗ωX/Y −→ f !G is given by Proposition

5.4.5. To check it is an isomorphism, we may assume X = Y × T and f is
the projection. We may assume Y = U is a non empty open convex subset
of a real vector space of dimension d. Then

RΓ(U × V ; f !G) ' RHom (kU×V , f
!G)

' RHom (Rf !kU×V , G)

' RHom (RΓc(U ; kU)
L
⊗kV , G)

' RHom (RΓc(U ; kU),k)⊗RHom (kV , G)

' RHom (kV , G)[d].

Here, we use the fact that the cohomology of RΓc(U ; kU) is isomorphic to
k[−d]. On the other hand, since ωX/Y is locally isomorphic to kX [d], it
remains to remark that

RΓ(U × V ; f−1G) ' RΓ(V ;G).

q.e.d.

5.6 Cohomology of real and complex mani-

folds

De Rham cohomology

Let X be a real C∞-manifold of dimension n (this implies in particular that
X is locally compact and countable at infinity). If n > 0, the sheaf CX is
not acyclic for the functor Γ(X; • ) in general. In fact consider two connected
open subsets U1 and U2 such that U1 ∩ U2 has two connected components,
V1 and V2. The sequence:

0 −→ Γ(U1 ∪ U2;CX) −→ Γ(U1;CX)⊕ Γ(U2;CX) −→ Γ(U1 ∩ U2;CX) −→ 0

is not exact since the locally constant function ϕ = 1 on V1, ϕ = 2 on V2

may not be decomposed as ϕ = ϕ1 − ϕ2, with ϕj constant on Uj. By the
Mayer-Vietoris long exact sequence, this implies:

H1(U1 ∪ U2;CX) 6= 0.

On the other hand, for K a compact subset in X and U an open neigh-
borhood of K in X, there exists a real C∞-function ϕ with compact support
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contained in U and which is identically 1 in a neighborhood of K (existence
of “partition of unity”). This implies that the sheaf C∞X is c-soft, as well as

any sheaf of C∞X -modules. In particular, the sheaves C∞,(p)X or Db(p)
X of differ-

ential forms with C∞X or distributions coefficients are c-soft and in particular
Γ(X; ·) and Γc(X; ·) acyclic.

Recall that by its definition, the space Γc(X;DbX) of distributions with

compact support is the topological dual of the space Γ(X; C∞,(n)
X ⊗ orX) of

C∞-densities. Integration over X defines the embedding of Γc(X; C∞X ) in
Γc(X;DbX), hence defines C∞X as a subsheaf of DbX .

Therefore, the sheaves C∞,(j)X are naturally embedded into the sheaves

Db(j)
X of differential forms with distributions as coefficients and the differential

on Db(j)
X induces the differential on C∞,(j)X .

Notation 5.6.1. consider the complexes

C∞,(•)X := 0 −→ C∞,(0)
X

d−→ · · · −→ C∞,(n)
X −→ 0,(5.14)

Db(•)
X := 0 −→ Db(0)

X

d−→ · · · −→ Db(n)
X −→ 0.(5.15)

We call them the De Rham complexes on X with C∞ and distributions coef-
ficients, respectively.

Lemma 5.6.2. (The Poincaré lemma.) Let I = (]0, 1[)n be the unit open
cube in Rn. The complexes below are exact.

0 −→ C −→ C∞,(0)(I)
d−→ · · · −→ C∞,(n)(I) −→ 0,

0 −→ C −→ Db(0)(I)
d−→ · · · −→ Db(n)(I) −→ 0.

Proof. We shall only treat the case of C∞(I). Consider the Koszul complex
K•(M,ϕ) over the ring C, where M = C∞(I) and ϕ = (∂1, . . . , ∂n) (with
∂j = ∂

∂xj
). This complex is nothing but the complex:

0 −→ C∞,(0)(I)
d−→ · · · −→ C∞,(n)(I) −→ 0.

Clearly H0(K•(M,ϕ)) ' C, and it is enough to prove that the sequence
(∂1, . . . , ∂n) is coregular. Let Mj+1 = Ker(∂1) ∩ · · · ∩ Ker(∂j). This is the
space of C∞-functions on I constant with respect to the variables x1, . . . , xj.
Clearly, ∂j+1 is surjective on this space. q.e.d.

The Poincaré lemma may be formulated intrinsically as:

Lemma 5.6.3. (The de Rham complex.) Let X be a C∞-manifold of di-

mension n. Then the natural morphisms CX −→ C∞,(•)X and CX −→ Db(•)
X are

quasi-isomorphisms.
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We shall prove a finiteness and duality theorem for the cohomology of a
compact manifold when the base ring k is the field C. The duality result
gives in this case an alternative proof of Corollary 5.5.6.

Theorem 5.6.4. (Poincaré duality on smooth manifolds.) Assume X is
compact. Then the C-vector spaces Hj(X;CX) and Hn−j(X; orCX) are finite
dimensional and dual one to each other.

Proof. We shall make use of some results of functional analysis (refer to
[Ko69]).

The vector spaces Γ(X; C∞,(p)X ) are naturally endowed with a structure

of Fréchet-Schwartz spaces (spaces of type FS), and the spaces Γ(X;Db(p)
X )

are naturally endowed with a structure of dual of Fréchet-Schwartz spaces
(spaces of type DFS). Set

E• := Γ(X; C∞,(•)X ),

F • := Γ(X;Db(•)
X ),

G• := Γ(X;Db(•)
X ⊗ orX).

(i) Finiteness. The embedding C∞,(j)X ↪→ Db(j)
X defines the morphism of com-

plexes E• −→ F •. This morphism is continuous for the topologies of spaces
FS and DFS and induces an isomorphism on the cohomology. This implies
the finiteness of the vector spaces Hj(E•).
(ii) Duality. Since the sheaf orCX is locally isomorphic to CX , one gets the
isomorphism

RΓ(X; orCX)
∼−→ Γ(X;Db(•)

X ⊗ orX).(5.16)

The topological vector spaces Γ(X;C
∞,(p)
X ) and Γ(X;Db(n−p)

X ⊗orX) are nat-
urally dual to each other, the pairing being defined by

(ϕ, u) 7→
∫
X

ϕ · u.

This pairing is compatible to the differential:

(ϕ, du) = (dϕ, u)

In other words, the two complexes E• and G• endowed with their topologies
of vector spaces of type FS and DFS respectively are dual to each other.
Since they have finite dimensional cohomology objects, this implies that the
spaces Hj(E•) and Hn−j(G•) are dual to each other. q.e.d.



5.6. COHOMOLOGY OF REAL AND COMPLEX MANIFOLDS 101

Corollary 5.6.5. Let X be a real compact connected manifold of dimension
n. Then Hn(X;CX) has dimension 0 or 1, and X is orientable if and only
if this dimension is one.

Proof. One has H0(X; orX) 6= 0 if and only if orX has a non identically zero
global section, and if such a section exists, it will define a global isomorphism
of orX with CX . By the duality theorem, H0(X; orX) is the dual space to
Hn(X;CX). q.e.d.

Cohomology of complex manifolds

Assume now that X is a complex manifold of complex dimension n, and let
XR be the real underlying manifold. The real differential d splits as ∂ + ∂̄,
and one denotes by C∞,(p,q)X the sheaf of C∞ forms of type (p, q) with respect
to ∂, ∂̄. Consider the complexes

C∞,(p,•)X := 0 −→ C∞(p,0)
X

∂̄−→ · · · −→ C∞,(p,n)
X ,

Db(p,•)
X := 0 −→ Db(p,0) ∂̄−→ · · · −→ Db(p,n)

X .

Denote by Ωp
X the sheaf of holomorphic p-forms. One usually sets

ΩX = Ωn
X .

The Dolbeault-Grothendieck lemma is formulated as:

Lemma 5.6.6. Let X be a complex manifold. Then the natural morphisms
Ωp
X −→ C

∞,(p,•)
X and Ωp

X −→ Db
(p,•)
X are quasi-isomorphisms.

Since the sheaves C∞,(p,q)X and Db(p,q)
X are c-soft, it follows that

RΓ(X; Ωp
X)

∼−→ Γ(X; C∞,(p,•)X )
∼−→ Γ(X;Db(p,•)

X ).(5.17)

(5.18)

Theorem 5.6.7. (The Cartan-Serre finiteness and duality theorems.) Let
X be a compact manifold of complex dimension n. Then the C-vector spaces
Hj(X; Ωp

X) and Hn−j(X; Ωn−p
X ) are finite dimensional and dual one to each

other.

The proof goes as in the real case, recalling that a complex manifold is
naturally oriented.
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The Leray-Grothendieck integration morphism

Let f : X −→ Y be a morphism of complex manifolds. Denote by dX (resp.
dY ) the complex dimension of X (resp. Y ), and set for short;

l = dX − dY , (hence l ∈ Z.)

For p, q ∈ Z we have a natural morphism (inverse image of differential forms):

f−1C∞,(p,q)Y −→ C∞,(p,q)X

which commutes with ∂̄ and defines by duality (recall that the complex man-
ifolds X and Y are naturally oriented):∫

f

: f!Db(p,q)
X −→ Db(p−l,q−l)

Y .(5.19)

These morphisms commute to ∂̄ and define a morphism of complexes:

· · · // f!Db(p,q)
X

∂̄ //

∫
f

��

Db(p,q+1)
X

//

∫
f

��

· · ·

· · · // Db(p−l,q−l)
Y

∂̄ // Db(p−l,q−l+1)
Y

// · · ·

If one decides that f∗Db(p,dX)
X is in degree zero (hence, Db(p−l,dY )

Y will also be in
degree zero), the first line is quasi-isomorphic to Rf !Ω

p
X [dX ] and the second

line to Ωp−l
Y [dY ]. Therefore we have constructed a morphism in Db(CY ):

Rf !Ω
p+dX
X [dX ] −→ Ωp+dY

Y [dY ].

In particular

Theorem 5.6.8. The residue morphism. To each morphism f : X −→ Y of
complex manifolds, the construction above defines functorially a morphism:∫

f

: Rf !ΩX [dX ] −→ ΩY [dY ].

By “functorially”, we mean that
∫

idX
= id and

∫
g
◦
∫
f

=
∫
g◦f . In the

absolute case we have thus obtained a map:∫
X

: HdX
c (X; ΩX) −→ C.(5.20)
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A cohomology class u ∈ HdX
c (X; ΩX) may be represented by a distribution

v ∈ Γc(X;Db(dX ,dX)
X ) modulo ∂̄w with w ∈ Γc(X;Db(dX ,dX−1)

X ). Since ∂̄w =
(∂̄+∂)w, we get that

∫
X
∂̄w = 0 and

∫
X
u is well defined. This is the required

morphism.
If X = C, we get in particular an integration map: H1

{0}(C; ΩC) −→
H1
c (C; ΩC) −→ C, and one checks easily that, representing H1

{0}(C; ΩC) by

Γ(D \ {0}; ΩC)/Γ(D; ΩC), where D is a disc centered at 0, the integral coin-
cides, up to a non-zero factor, with the residue morphism.

Exercises to Chapter 5

Exercise 5.1. Let U be a convex open subset of Rd. Prove that RΓc(U ; kU)
is concentrated in degree d and Hd(U ; kU) ' k.

Exercise 5.2. Let X be a locally compact space. Prove the isomorphisms
Hj
c (X;F ) ' lim−→

K

Hj
K(X;F ), where K ranges over the family of compact sub-

sets of X.

Exercise 5.3. (i) Let I = [0, 1[. Show that RΓc(I; kI) = 0.
(ii) Let s denote the map R2 −→ R, (x, y) 7→ x + y. Let D ⊂ R2;D =
]− 1, 1[×[−1, 1]. Calculate Rs!(kD).

Exercise 5.4. Let Y = [0, 1]×]0, 1[ and let X denote the manifold obtained
by identifying (0, t) and (1, 1 − t). Let S denote the hypersurface of X, the
image of the diagonal of Y . Calculate Γ(X; orS/X).

Exercise 5.5. Let X be a locally compact space and let {Fi}i∈I be an in-
ductive system of c-soft sheaves on X, with I filtrant. Prove that lim−→

i

Fi is

c-soft.

Exercise 5.6. (i) Let t be an indeterminate, and denote by F [t] the sheaf
F ⊗ (k[t])X . Prove that on X = C, the sequence of sheaves 0 −→ OX [t] −→
C∞X [t]

∂̄−→ C∞X [t] −→ 0 is exact.
(ii) Using the fact that there are C∞-functions ϕ with compact support

such that the support of any solution of the equation ∂̄ψ = ϕ is the whole
set X, deduce that H1(C;OC[t]) 6= 0.

Exercise 5.7. Recall that f : Z −→ X is a trivial covering if there exists
a non empty set S, a topological isomorphism h : Z

∼−→ X × S where S is
endowed with the discrete topology, such that f = p◦h where p : X×S −→ X
is the projection. Also recall that f : Z −→ X is a locally trivial covering
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if f is surjective and any x ∈ X has an open neighborhood U such that
f |f−1(U) : f−1(U) −→ U is a trivial covering.

Prove that is f : Z −→ X is a locally trivial covering, then the functor f−1

is right adjoint to f!.

Exercise 5.8. Assume f : X −→ Y is a covering. Prove that f ! ' f−1.
(Hint: the functor f! is a left adjoint to the exact functor f−1 and we get the
isomorphism Hom (F, f−1G) ' Hom (F, f !G) for all c-soft sheaf F .)

Exercise 5.9. Let Sn denote the real n-dimensional sphere, Pn the real n-
dimensional projective space, γ : Sn −→ Pn the natural projection. Prove that
γ is a 2-covering and deduce that for n ≥ 2 there are at least two different
locally constant sheaves of rank one on Pn.
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