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Introduction

The aim of these Notes is to introduce the reader to the theory of D-modules
in the analytical setting. This text is a short introduction, not a systematic
study. In particular many proofs are skipped and the reader is encouraged
to consult the literature. To our opinion, the best reference to D-modules
is [Ka03], and, in fact, most of the material of these Notes are extracted from
this book.

Indeed, although we do not mention it in the course of the notes, almost
all the results and proofs exposed here are due to Masaki Kashiwara.

References for D-modules. Some classical titles are [Ka70, Ka83, Bj93,
Ka03] and, in the algebraic setting, [Bo87]. An elementary introduction may
also be found in [Co85]. Applications to D-modules to representation theory
are studied in [HTT08].

Related theories to D-modules. Microdifferential operators are the nat-
ural localization of differential operators. References are made to [SKK73,
Ka83, Sc85]. In fact, microdifferential operators may also be considered as
an avatar of rings of deformation quantization for which there exists an enor-
mous literature. See [KS12] and the references therein.

References for categories, homological algebra and sheaves. The
reader is assumed to be familiar with sheaf theory as well as homological al-
gebra, including derived categories. An exhaustive treatment may be found
in [KS06] and a pedagogical treatment is provided in [Sc08]. Among numer-
ous other references, see [GM96], [KS90, Ch. 1, 2] [We94].

Recent develoments. Chiral algebras are built upon D-module theory and
are exposed in [BD04, FG10]. A theory of non linear differential equations,
in the spirit of D-module theory, is sketched in [KM99] as well as in [BD04].

History. An outline of D-module theory, including holonomic systems, was
proposed by Mikio Sato in the early 60’s in a series of lectures at Tokyo
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University (see [Sc07]). However, it seems that Sato’s vision has not been
understood until his student, Masaki Kashiwara, wrote his thesis in 1970
(see [Ka70]). Independently and at the same time, J. Bernstein, a student
of I. Gelfand at Moscow’s University, developed a very similar theory in the
algebraic setting (see [Be71]).



Chapter 1

The ring DX

In all these Notes, all rings are associative and unital. If R is a ring, an
R-module means a left R-module and we denote by Mod(R) the abelian
category of such modules. We denote by Rop the opposite ring. Hence,
Mod(Rop) denotes the category of right R-modules. If a, b belong to R, their
bracket [a, b] is given by [a, b] = ab − ba. We use similar conventions and
notations for a sheaf of rings R on a topological space X. In particular,
Mod(R) denotes the category of sheaves of left R-modules on X.

1.1 Construction of DX
O-modules

Let X denote a complex manifold, OX its structural sheaf, that is, the sheaf
of holomorphic functions on X. Unless otherwise specified, we denote by dX
the complex dimension of X. We denote by Ωp

X the sheaf of holomorphic
p-forms and one sets ΩX = ΩdX

X . One also sets

Ω• =
⊕
p

Ωp
X .(1.1)

We denote by Mod(CX) the abelian category of sheaves of C-vector spaces
on X, and we denote by Hom and ⊗ the internal Hom and tensor product
in this category. For F ∈ Mod(CX), we set End(F ) = HomCX (F, F ).

Similarly, we denote by Mod(OX) the abelian category of sheaves of OX-
modules, and we denote by HomO and ⊗O the internal Hom and tensor
product in this category. We denote by Modcoh(OX) the full abelian subcat-
egory consisting of coherent sheaves.

One denotes by ΘX the sheaf of Lie algebras of holomorphic vector fields.
Hence, ΘX = HomO(Ω1

X ,OX).
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8 CHAPTER 1. THE RING DX

The sheaf ΘX has two actions on Ω•, that we recall. Let v ∈ ΘX . The
interior derivative iv ∈ End(Ω•X) is characterized by the conditions

iv(a) = 0, a ∈ OX
iv(ω) = 〈v, ω〉, ω ∈ Ω1,
iv(ω1 ∧ ω2) = (ivω1) ∧ ω2 + (−)pω1 ∧ (ivω2), ω1 ∈ Ωp

X .
(1.2)

Note that iv : Ωp
X −→ Ωp−1

X is of degree −1.
On the other-hand, the Lie derivative Lv ∈ End(Ω•X) is characterized by

the conditions
Lv(a) = v(a) = 〈v, da〉, a ∈ OX ,
d ◦ Lv = Lv ◦ d,
Lv(ω1 ∧ ω2) = (Lvω1) ∧ ω2 + ω1 ∧ (Lvω2),

(1.3)

The Lie derivative is of degree 0 and satisfies

[Lu, Lv] = L[u,v], u, v ∈ ΘX .(1.4)

One has the relations

Lv = d ◦ iv + iv ◦ d.(1.5)

Using v 7→ Lv, one may regard ΘX as a subsheaf of End(OX).

The ring DX
Definition 1.1.1. One denotes by DX the subalgebra of End(OX) generated
by OX and ΘX .

If (x1, . . . , xn) is a local coordinate system on a local chart U of X, then
a section P of DX on U may be uniquely written as a polynomial

P =
∑
|α|≤m

aα∂
α(1.6)

where aα ∈ OX , ∂i = ∂xi = ∂
∂xi

and we use the classical notations for multi-

indices: 
α = (α1, . . . , αn) ∈ Nn,
|α| = α1 + · · ·+ αn,
if X = (X1, . . . , Xn), then Xα = Xα1 . . . Xαn .

Proposition 1.1.2. Let R be a sheaf of CX-algebras and let ι : OX −→ R
and ϕ : ΘX −→ R be CX-linear morphisms satisfying (here, a, b ∈ OX and
u, v ∈ ΘX):
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(i) ι : OX −→ R is a ring morphism, that is, ι(ab) = ι(a)ι(b),

(ii) ϕ : ΘX −→ R is left OX-linear, that is, ϕ(av) = ι(a)ϕ(v),

(iii) ϕ : ΘX −→ R is a morphism of Lie algebras, that is, [ϕ(u), ϕ(v)] =
ϕ([u, v]),

(iv) [ϕ(v), ι(a)] = ι(v(a)) for any v ∈ ΘX and a ∈ OX .

Then there exists a unique morphism of CX-algebras Ψ : DX −→ R such
that the composition OX −→ DX −→ R coincides with ι and the composition
ΘX −→ DX −→ R coincides with ϕ.

The proof is straightforward.

Corollary 1.1.3. Let M be an OX-module and let µ : OX −→ End(M) be
the action of OX on M. Let ψ : ΘX −→ End(M) be a CX-linear morphism
satisfying:

(i) µ(a) ◦ ψ(v) = ψ(av) (resp. ψ(v) ◦ µ(a) = ψ(av)).

(ii) [ψ(v), ψ(w)] = ψ([v, w]) (resp. [ψ(v), ψ(w)] = −ψ([v, w])),

(iii) [ψ(v), µ(a)] = µ(v(a)), (resp. [ψ(v), µ(a)] = −µ(v(a))).

Then there exists one and only one structure of a left (resp. right) DX-module
on M which extends the action of ΘX .

Proof. For the structure of a left module, apply Proposition 1.1.2 to R =
End(M). The case of right modules follows since the bracket [a, b]op in Dop

X

is −[a, b], where [a, b] is the bracket in DX . q.e.d.

Examples 1.1.4. (i) The sheaf OX is naturally endowed with a structure of
a left DX-module and 1 ∈ OX is a generator. Since the anihilator of 1 is the
left ideal generated by ΘX , we find an exact sequence of left DX-modules

DX ·ΘX −→ DX −→ OX −→ 0.

Note that if X is connected and f is a section of OX , f 6= 0 (i.e., f is not
identically zero), then f is also a generator of OX over DX . This follows from
the Weierstrass Preparation Lemma. Indeed, choosing a local coordinate
system (x1, . . . , xn), one may write f =

∑m
j=0 aj(x

′)xj1, with am ≡ 1. Then
∂m1 (f) = m!.
(ii) The sheaf ΩX is naturally endowed with a structure of a right DX-module,
by

v(ω) = −Lv(ω), v ∈ ΘX , ω ∈ ΩX .
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(iii) Let F be an OX-module. Then DX ⊗O F is a left DX-module.
(iv) Let Z be a closed complex submanifold of X of codimension d. Then
Hd
Z(OX) is a left DX-module.

(v) Let X be a complex manifold and let P be a differential operator on X.
The differential equation Pu = v may be studied via the left DX-module
DX/DX · P . (See below.)
(vi) Let X = Cn and consider the differential operators P =

∑n
j=1 ∂

2
j , Qij =

xi∂j − xj∂i. Consider the left ideal J of DX generated by P and the family
{Qij}i<j. The left DX-module DX/J is naturally associated to the operator
P and the orthogonal group O(n;C).

Internal hom and tens

The sheaf DX is a sheaf of non commutative rings and CX is contained (in
fact, is equal, but we have not proved it here) in its center. It follows that
we have functors:

HomD : (Mod(DX))op ×Mod(DX) −→ Mod(CX),

⊗D : Mod(Dop
X )×Mod(DX) −→ Mod(CX).

We shall now study hom and tens over OX .
Let M,N and P be left DX-modules and let M′ and N ′ be right DX-
modules.

(a) One endows M⊗O N with a structure of a left DX-module by setting

v(m⊗n) = v(m)⊗n+m⊗ v(n), m ∈M, n ∈ N , v ∈ ΘX .

(b) One endows HomO(M,N ) with a structure of a left DX-module by
setting

v(f)(m) = v(f(m))− f(v(m)), m ∈M, f ∈ HomO(M,N ), v ∈ ΘX .

(c) One endows N ′⊗OM with a structure of a right DX-module by setting

(n⊗m)v = nv ⊗m− n⊗ vm, m ∈M, n ∈ N ′, v ∈ ΘX .

(d) One endows and HomO(M′,N ′) with a structure of a left DX-module
by setting

v(f)(m) = f(mv)− f(m)v m ∈M′, f ∈ HomO(M′,N ′), v ∈ ΘX .
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(e) One endows and HomO(M,N ′) with a structure of a right DX-module
by setting

(fv)(m) = f(m)v + f(vm) m ∈M, f ∈ HomO(M,N ′), v ∈ ΘX .

There are isomorphisms of CX-modules;

HomD(M⊗O N ,P) ' HomD(M,HomO(N ,P)),

HomD(M′ ⊗OM,N ) ' HomD(M,HomO(M′,N )),

(M′ ⊗OM)⊗D N 'M
′ ⊗D (M⊗O N ).

To summarize, we have functors

⊗O : Mod(DX)×Mod(DX) −→ Mod(DX),

⊗O : Mod(Dop
X )×Mod(DX) −→ Mod(Dop

X ),

HomO : Mod(DX)op ×Mod(DX) −→ Mod(DX),

HomO : Mod(Dop
X )op ×Mod(Dop

X ) −→ Mod(DX),

HomO : Mod(DX)op ×Mod(Dop
X ) −→ Mod(Dop

X ).

Remark 1.1.5. Following [HTT08] who call it the Oda’s rule, one way to
memorize the left an right actions is to use the correspondence left = 0, right
= 1, a⊗ b = a+ b and Hom (a, b) = −a+ b.

Twisted DX-modules

Let L be a holomorphic line bundle, that is, a locally free OX-module of rank
one. One sets

L⊗− 1 = HomO(L,OX).

There are a natural isomorphisms

OX
∼−→ HomO(L,L)

∼←− HomO(L,OX)⊗O L.

If s is a section of L⊗− 1 and t a section of L, their product will be denoted
by 〈s, t〉, a section of OX .

Let R be a OX-ring, that is, a sheaf of rings together with a morphism
of rings OX −→ R. One can define a new OX-ring L ⊗R⊗L⊗− 1 by setting
(with obvious notations)

(s⊗m⊗ t) · (s′ ⊗m′ ⊗ t′) = s⊗m〈t, s′〉m′ ⊗ t′.

If M is a left R-module, then L ⊗OM is a left L ⊗O R ⊗O L⊗− 1-module.
Clearly:
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Proposition 1.1.6. The functor M 7→ L ⊗OM is an equivalence of cate-
gories from Mod(R) to Mod(L ⊗O R⊗O L⊗− 1).

Proposition 1.1.7. There is an isomorphism of OX-rings Dop
X ' ΩX ⊗O

DX ⊗O Ω⊗− 1

X .

Proof. The right DX-module structure of ΩX defines the morphism of rings

Dop
X −→ End(ΩX).

On the other-hand, the morphism DX −→ End(OX) defines the morphism of
rings

ΩX ⊗O DX ⊗O Ω⊗− 1

X −→ End(ΩX).

Both these morphisms are monomorphisms, and to check that their images
in End(ΩX) are the same, one remark that both rings are generated by OX
and ΘX . q.e.d.

Corollary 1.1.8. The functor M 7→ Ω ⊗O M induces an equivalence of

categories Mod(DX)
∼−→ Mod(Dop

X )

Remark 1.1.9. Suppose to be given a volume form dv on X. Then f 7→ fdv
gives an isomorphism OX

∼−→ ΩX and we get an isomorphism DX ' Dop
X .

The image of a section P ∈ DX by this isomorphism is called its adjoint with
respect to dv and is denoted by P ∗. Hence, for a left DX-module M and a
section u of M, we have

P · u = (u · dv) · P ∗.

Clearly (Q ◦P )∗ = P ∗ ◦Q∗. If (x1, . . . , xn) is a local coordinate system on X
and dv = dx1 ∧ · · · ∧ dxn, one checks that x∗i = xi and ∂∗xi = −∂xi .

1.2 Filtration on DX
Total symbol of differential operators

Assume X is affine, that is, X is open in a finite dimensional complex vector
space E. Let P be a section of DX . One defines its total symbol

σtot(P )(x; ξ) := exp〈−x, ξ〉P (exp〈x, ξ〉) =
∑
|α|≤m

aα(x)ξα.(1.7)

Using (1.6), one gets that σtot(P ) is a function on X × E∗, polynomial with
respect to ξ ∈ E∗. This function highly depends on the affine structure, but
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its order (a locally constant function on X) does not. It is called the order
of P and denoted ord(P ).

If Q is another differential operator with total symbol σtot(Q), it follows
easily from the Leibniz formula that the total symbol σtot(R) of R = P · Q
is given by:

σtot(R) =
∑
α∈Nn

1

α!
∂αξ (σtot(P ))∂αx (σtot(Q)).(1.8)

By this formula, one gets that

ord(P ·Q) = ord(P ) + ord(Q),

ord([P,Q]) ≤ ord(P ) + ord(Q)− 1.

The ring DX is now endowed with the filtration “ by the order”,

Flm(DX) = {P ∈ DX ; ord(P ) ≤ m}.

One can give a more intrinsic definition of the filtration.

Filtration on DX
Definition 1.2.1. The filtration FlDX on DX is given by

Fl −1DX = {0}, FlmDX = {P ∈ DX ; [P,OX ] ∈ Flm−1DX}.

Note that{
Fl 0DX = OX , Fl 1DX = OX ⊕ΘX ,
FlmDX · Fl lDX ⊂ Flm+lDX , [FlmDX ,Fl lDX ] ⊂ Flm+l−1DX .

(1.9)

One denotes by grDX the associated graded ring, by σ : FlDX −→ grDX the
“principal symbol map” and by σm : FlmDX −→ grmDX the map “symbol of
order m”.

One shall not confuse the total symbol, which is defined on affine charts,
and the principal symbol, which is well defined on manifolds.

It follows from (1.8) that σ(P )σ(Q) = σ(Q)σ(P ) = σ(P · Q). Hence,
gr (DX) is a commutative graded ring. Moreover, gr 0(DX) ' OX and gr 1(DX) '
ΘX .

Denote by SO(ΘX) the symmetric OX-algebra associated with the locally
free OX-module ΘX . By the universal property of symmetric algebras, the
morphism ΘX −→ gr (DX) may be extended to a morphism of symmetric
algebra

SO(ΘX) −→ grDX .(1.10)
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Proposition 1.2.2. The morphism (1.10) is an isomorphism.

Proof. Choose a local coordinate system (x1, . . . , xn) on X. Then ΘX '⊕n
i=1OX∂i and the correspondence ∂i 7→ ξi gives the isomorphism

SO(ΘX) '
⊕
α

OX∂α ' OX [ξ1, . . . , ξn] ' grDX .

q.e.d.

Denote by π : T ∗X −→ X the projection. There is a natural monomor-
phism

ΘX ↪→ π∗OT ∗X .

Indeed, a vector field on X is a section of the tangent bundle TX, hence
defines a linear function on T ∗X.

By the universal property of symmetric algebra, we get a monomorphism
SO(ΘX) ↪→ π∗OT ∗X . Applying Proposition 1.2.2, we get an embedding of
CX-algebras:

grDX ↪→ π∗OT ∗X .

In the sequel, we shall still denote by

σ : DX −→ π∗OT ∗X and σm : FlmDX −→ π∗OT ∗X ,

the maps obtained by applying the inverse of the isomorphism (1.10) to σ
and σm.

Theorem 1.2.3. The sheaf of rings DX is right and left Noetherian.

Proof. This follows from Proposition 1.2.2 and general results of [Ka03,
Th. A.20] on filtered ring with associated commutative graded ring (see The-
orem 3.3.5). q.e.d.

1.3 Characteristic variety

We shall use here the results of § 3.4.
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Poisson’s structures

The graded ring gr (DX) is endowed with a natural Poisson bracket induced
by the commutator in DX .

On the other hand, the sheaf OT ∗X (hence, the sheaf π∗OT ∗X) is endowed
with the Poisson bracket induced by the symplectic structure of T ∗X. Recall
that if (x1, . . . , xn; ξ1, . . . , ξn) is a local symplectic coordinate system on T ∗X,
this Poisson bracket is given by

{f, g} =
n∑
i=1

∂ξif ∂xig − ∂xif ∂ξig.

Proposition 1.3.1. The Poisson bracket on π∗OT ∗X induces the Poisson
bracket on gr (DX).

Proof. Let P ∈ Flm(DX) and Q ∈ Fl l(DX). Then [P,Q] ∈ Flm+l−1(DX)
and it follows from (1.8) that

σm+l−1([P,Q]) =
n∑
i=1

(
∂ξiσm(P )∂xiσl(Q)− ∂ξiσl(Q)∂xiσm(P )

)
.(1.11)

Hence, σm+l−1([P,Q]) = {σm(P ), σl(Q)}. q.e.d.

Good filtration

We shall recall some notions also introduced in § 3.3, 3.4. Recall that a good
filtration on a coherent DX-module M is a filtration which is locally the
image of a finite free filtration. Hence, a filtration FlM onM is good if and
only if, 

locally on X, Fl jM = 0 for j � 0,
Fl jM is OX-coherent,
locally on X, (Fl kDX) · (Fl jM) = Fl k+jM for j � 0 and
all k ≥ 0.

(1.12)

Applying Corollary 3.3.6, we get:

Lemma 1.3.2. Let M be a coherent DX-module, N ⊂ M a coherent sub-
module. Assume that M is endowed with a good filtration FlM. Then the
induced filtration on N defined by Fl jN = N ∩ Fl jM is good.

Denote by Modgr
coh(grDX) the abelian category of coherent graded grDX-

modules and consider the functor

˜: Modgr
coh(grDX) −→ Modcoh(π∗OT ∗X),

grM 7→ π∗OT ∗X ⊗grDX grM.
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This functor is exact and faithful. If M is a coherent DX-module endowed
with a good filtration, the π∗OT ∗X-module

g̃rM = π∗OT ∗X ⊗grDX grM

is thus coherent and its support satisfies:

supp(g̃rM) = {p ∈ T ∗X;σ(P )(p) = 0 for any P ∈ Icar(M)}.

In the sequel, we shall often confuse grM and g̃rM.

Definition 1.3.3. The characteristic variety ofM, denoted char(M), is the
closed subset of T ∗X characterized as follows: for any open subset U of X
such thatM|U is endowed with a good filtration, char(M)|T ∗U is the support

of g̃rM|U .

Theorem 1.3.4. (i) char(M) is a closed C×-conic analytic subset of T ∗X.

(ii) char(M) is involutive for the Poisson structure of T ∗X, and in partic-
ular, codim(char(M)) ≤ dX .

(iii) If 0 −→ M′ −→ M −→ M′′ −→ 0 is an exact sequence of coherent DX-
modules, then

char(M) = char(M′) ∪ char(M′′).

Proof. (i) is obvious, (ii) follows from Gabber’s theorem and (iii) follows from
Lemma 1.3.2. q.e.d.

Note that the involutivity theorem has first been proved by Sato, Kashiwara
and Kawai [SKK73] using analytical tools, before Gabber gave is purely
algebraic proof.

Suppose that a coherent DX-module M is generated by a single section
u. Then M ' DX/I, where I is the anihilator of u. There is a natural
filtration on M, the image of FlDX . Put Fl jI = I ∩ Fl jDX . It follows
from Corollary 3.3.6 that the graded ideal gr I is coherent. Moreover, since
grM = grDX/gr I, we get

char(M) = {p ∈ T ∗X;σj(P )(p) = 0 for all P ∈ Fl j(I)}.(1.13)

If {P0, . . . , PN} generates I it follows that

char(M) ⊂
⋂
j

σ(Pj)
−1(0).

In general the equality does not hold, since the family of the Pj’s may generate
I although the family of the σmj(Pj)’s does not generate gr I.
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Example 1.3.5. If X = A1(C), the affine line, the ideal generated by ∂ and
x is DX , but the ideal generated by their principal symbols is not OT ∗X .

Corollary 1.3.6. LetM be a coherent DX-module, let p ∈ T ∗X and assume
that p /∈ char(M). Let u ∈ M. Then there exists a section P ∈ DX defined
in a neighborhood of π(p) with Pu = 0 and σ(P )(p) 6= 0.

Proof. Consider the sub-DX-module DXu generated by u. It is coherent
and its characteristic variety is contained in that of M. Let I denotes the
anihilator ideal of u in DX and let P1, . . . , PN denotes sections of this ideal
such that σ(P1), . . . , σ(PN) generate the graded ideal gr I. Such a finite
family exists since gr I is coherent. Since p /∈ char(DXu), there exists j with
σ(Pj)(p) 6= 0. q.e.d.

Example 1.3.7. (i) char(OX) = T ∗XX, the zero-section of T ∗X.
(ii) char(DX/DX · P ) = {p ∈ T ∗X;σ(P )(p) = 0}.

Multiplicities

By the result of Proposition 3.5.2, one sees that if M is a coherent DX-

module and V is an irreducible component of char(M)∪V , then multV (g̃rM)
depends only on M.

Definition 1.3.8. Let V be a closed analytic subset of T ∗X and letM be a
coherent DX-module such that V is an irreducible component of char(M) ∪
V . The number multV (g̃rM) is called the multiplicity of M along V and
denoted multV (M).

If 0 −→M′ −→M −→M′′ −→ 0 is an exact sequence of cherent DX-modules
with V irreducible in char(M) ∪ V , then

multV (M) = multV (M′) + multV (M′′).

Involutive basis

Definition 1.3.9. Let I be a coherent ideal of DX and let {P1, . . . , PN} be
a family of sections of I, with Pj of order mj. One says that this family is
an involutive basis of I if the family {σ(P1), . . . , σ(PN)} generates gr I.

Proposition 1.3.10. Assume

(i) ∩Nj=1σmj(Pj)
−1(0) is of codimension N ,
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(ii) there exist Qjkl ∈ Flmj+mk−ml−1DX such that for all j, k

[Pj, Pk] =
∑
l

QjklPl

Then {P1, . . . , PN} is an involutive basis.

Proof. Set pj = σ(Pj). Let aj ∈ gr l−mjDX with∑
j

ajpj = 0.

By Proposition 3.4.9, it is enough to find Aj ∈ DX with σ(Aj) = aj and such
that ∑

j

AjPj = 0.

By the hypothesis, the sequence {p1, . . . , pN} is a regular sequence. Hence,
we may find rij ∈ gr l−mi−mjDX satisfying

aj =
∑
i

rijpi, rij = −rji.

Next we choose Rij ∈ Fl l−mi−mjDX with σ(Rij) = rij and Rij = −Rji. Set
Aj =

∑
iRijPi. Then σl−mj(Aj) = aj and∑

j

AjPj =
∑
i,j

RijPiPj =
∑
i<j

Rij[Pi, Pj]

=
∑
i<j

∑
k

RijQijkPk.

Set Sk =
∑

i<j RijQijk. Then Sk has order ≤ l−mk − 1,
∑

j(Aj −Sj)Pj = 0
and σl(Aj − Sj) = aj. q.e.d.

1.4 De Rham and Spencer complexes

If A is a ring, M is an A-module, and ϕ := (ϕ1, . . . , ϕn) are n-commuting
endomorphisms of M , one can define the Koszul complex K•(M ;ϕ) and the
co-Koszul complex K•(M ;ϕ). We refer to [Sc08] for an exposition.

Also recall the De Rham complex

DRX(OX) := 0 −→ Ω0
X

d−→ Ω1
X

d−→ · · · −→ ΩdX
X −→ 0,(1.14)



1.4. DE RHAM AND SPENCER COMPLEXES 19

where d is the differential.
LetM be a left DX-module. One defines the differential d : M−→ Ω1

X⊗O
M as follows. In a local coordinate system (x1, . . . , xdX ) onX, the differential
d is given by

M−→ Ω1
X ⊗OM, m 7→

∑
i

dxi ⊗ ∂im

and one checks easily that this does not depend on the choice of the local
coordinate system.

One defines the De Rham complex ofM, denoted DRX(M), as the com-
plex

DRX(M) := 0 −→ Ω0
X ⊗OM

d−→ · · · −→ ΩdX
X ⊗OM−→ 0,(1.15)

where Ω0
X ⊗OM is in degree 0 and the differential d is characterized by:

d(ω ⊗m) = dω ⊗m+ (−)pω ∧ dm, ω ∈ Ωp
X ,m ∈M.

Note that DRX(DX) ∈ Cb(Mod(Dop
X )), the category of bounded complexes of

right DX-modules, and

DRX(M) ' DRX(DX)⊗DM.(1.16)

Recall that there is a natural right D-linear morphism ΩX ⊗O DX −→ ΩX .
Moreover, one checks easily that the composition

ΩdX−1
X ⊗O DX −→ ΩdX

X ⊗O DX −→ ΩX

is zero. Hence, we get a morphism in the derived category Db(Dop
X )

DRX(DX) −→ ΩX[−dX].(1.17)

Proposition 1.4.1. The morphism (1.17) induces an isomorphism in Db(Dop
X ).

Proof. Since the morphism is well defined on X, we may argue locally and
choose a local coordinate system. In this case, there is an isomorphism of
complexes

DRX(DX) ' K•(DX; ∂1·, . . . , ∂dX
·)(1.18)

where the right hand side is the Koszul complex of the the sequence ∂1·, . . . , ∂n·
acting on the left on DX . Since this sequence is clearly regular, the result
follows. q.e.d.
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Applying Proposition 1.4.1 and isomorphism (1.16), we get:

Corollary 1.4.2. Let M be a left DX-module. Then

DRX(M) ' ΩX

L
⊗DM [−dX].

Let us apply the contravariant functor HomDop( • ,DX) to the complex
DRX(DX). One sets

SPX(DX) := HomD(DRX(DX),DX),(1.19)

and calls SPX(DX) the Spencer complex.

SPX(DX) := 0 −→ DX ⊗O
dx∧

ΘX
d−→ · · · −→ DX ⊗O ΘX −→ DX −→ 0,(1.20)

One deduces from (1.18) the isomorphism of complexes

SPX(DX) ' K•(DX; ·∂1, . . . , ·∂dX
)(1.21)

where the right hand side is the co-Koszul complex of the sequence ·∂1, . . . , ·∂dX
acting on the right on DX . Since this sequence is clearly regular, we obtain:

Proposition 1.4.3. The left D-linear morphism DX −→ OX induces an iso-
morphism SPX(DX)

∼−→ OX in Db(DX).

Corollary 1.4.4. Let M be a left DX-module. There is an isomorphism in
Db(CX)

RHomD(OX ,M) ' DRX(M).

Proof. Since SPX(DX) is a complex of locally free DX-modules of finite rank,
one has

RHomD(OX ,M) ' HomD(SPX(DX),M)

' HomD(SPX(DX),DX)⊗DM
' DRX(DX)⊗DM
' DRX(M).

q.e.d.

Proposition 1.4.5. One has the isomorphism

RHomD(OX ,DX)[dX ] ' ΩX

RHomDop(ΩX ,DX)[dX ] ' OX
RHomD(OX ,OX) ' CX .
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Proof. (i) One has the chain of isomorphisms

RHomD(OX ,DX)[dX ] ' RHomD(SPX(DX),DX)[−dX]

' HomD(SPX(DX),DX)[−dX]

' DR(DX)[−dX] ' ΩX.

(ii) The proof is similar.
(iii) The canonical morphism CX −→ HomD(OX ,OX) induces the morphism

CX −→ RHomD(OX ,OX)

' HomD(SPX(DX),OX)

' Ω•X .

The isomorphism CX
∼−→ Ω•X is the classical Poincaré lemma. q.e.d.

1.5 Homological properties of DX
Vanishing theorems and dimension

There is a corresponding theorem to Theorem 3.5.6 for D-modules.

Theorem 1.5.1. Let M be a coherent DX-module. Then

(i) ExtkD(M,DX) is coherent for all k and is 0 for k < codim(char(M)),

(ii) codim(char(ExtkD(M,DX))) ≥ k,

(iii) char(ExtkD(M,DX)) ⊂ char(M),

(iv) ExtkD(M,DX) = 0 for k > dX .

Corollary 1.5.2. Let M be a coherent DX-module. Then the support of
ExtdX

D
(M,DX) has pure dimension dX .

Proof. First we construct by induction a finite free filtered resolution of FlM,
that is, a filtered exact sequence of FlDX-modules

· · · −→ FlL1 −→ FlL0 −→ FlM−→ 0

where the FlLj’s are filtered finite free. We denote by dj the differential.
Set:

FlL• := · · · −→ FlL1 −→ FlL0 −→ 0,

grL• := · · · −→ grL1 −→ grL0 −→ 0.
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Then

· · · −→ grL1 −→ grL0 −→ grM−→ 0

is exact. Put

L∗j = HomD(Lj,DX),

L∗• = HomD(L•,DX) = 0 −→ L∗0 −→ L∗1 −→ · · ·

One defines a filtration FlL∗j on L∗j by setting

FlmL∗j = {ϕ ∈ HomD(Lj,DX);ϕ(Fl kLj) ⊂ Fl k+mDX for all k}.

Clearly, this filtration on L∗j is good and moreover HomgrD(grLj, grD) '
grL∗j . In other words,

HomgrD(grL•, grD) ' grL∗•.

Put

Zk = Ker(Lk
dk−→ Lk+1), Ik = Im(Lk−1 −→ Lk) Hk(L∗•) = Zk/Ik.

We endow Zk with the induced filtration andHk(L∗•) with the filtration image
of FlZk. Since ExtkD(M,DX) ' Hk(L∗•), we get a filtration Fl ExtkD(M,DX)

on this module. Moreover Extk
grD(grM, grDX)) ' Hk(grL∗•).

In order to complete the proof, we need a lemma. q.e.d.

Lemma 1.5.3. grHk(L∗•) is a subquotient of Hk(grL∗•).

Proof of Lemma 1.5.3.

Hk(grmL∗•) =
Flm(L∗k) ∩ (dk)

−1
Flm−1L∗k+1

Flm−1(L∗k) + dk−1FlmL∗k−1

⊃ Flm(Zk)
Flm−1(Zk) + dk−1FlmL∗k−1

.

On the other-hand,

grmH
k(L∗•) =

Flm(Zk)
Flm−1(Zk) + Ik ∩ Flm(Zk)

.

The result then follows from

Flm−1(Zk) + dk−1FlmL∗k−1 ⊂ Flm−1(Zk) + Ik ∩ Flm(Zk).

q.e.d.
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End of proof of Theorem 1.5.1. It follows that

char(ExtkD(M,DX)) ⊂ supp(Extk
grD(grM, grDX))).(1.22)

(i) By Theorem 3.5.6, ExtkO(g̃rM,OT ∗X)) = 0 for k < codim(char(M)). By

(1.22), we get that ExtkD(M,DX) = 0 for k < codim(char(M)).

(ii) By Theorem 3.5.6, codim(supp(Extk
grD(grM, grDX))) ≥ k. By (1.22),

we get that codim(char(ExtkD(M,DX))) ≥ k.

(iii) follows from the inclusion

supp(Extk
grD(grM, grDX)) ⊂ supp(grM).

(iv) follows from (ii) and the involutivity of the characteristic variety of
ExtkD(M,DX). q.e.d.

Example 1.5.4. Let dX = 1. Then any coherent ideal I of DX is projective
since Extj

D
(DX/I,DX) = 0 for j > 1.

Let t denote a local holomorphic coordinate. The left ideal of DX gener-
ated by t2 and t∂t − 1 is projective. By Theorem 1.3.4, its characteristic is
T ∗X. Since it is contained in DX , its multiplicity on T ∗X is 1. This module
does not admits a single generator, and it follows that it is not free.

Free resolutions

Theorem 1.5.5. Let M be a coherent DX-module. Then, locally on X, M
admits a finite free resolution of length ≤ dX . In other words, there locally
exists an exact sequence

0 −→ LdX −→ · · · −→ L0 −→M −→ 0,

where the Li’s are free of finite rank over DX and n ≤ dX .

Proof. Set n = dX . Since we argue locally, we may endow M with a good
filtration FlM. We may locally find a finite free filtered resolution

· · · −→ FlLn −→ · · · −→ FlL0 −→ FlM−→ 0.

On the other-hand, we know that Extj
grD

(grM, grDX) = 0 for j > n. Set

Kn = Ker(Ln−1 −→ Ln−2) and let us endow Kn with the induced filtration.
Then the sequence

0 −→ grKn −→ grLn−1 −→ · · · −→ grL0 −→ grM−→ 0
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is exact and it follows that grKn is projective. Since projective modules
over grDX are stably free, there exists a finite free DX module L such that
grKn ⊕ grL is free and this implies that Kn ⊕ L is a free DX-module. The
sequence

0 −→ Kn ⊕ L −→ Ln−1 ⊕ L −→ · · · −→ L0 −→M −→ 0

is a finite free resolution of M. q.e.d.

Homological dimension

Let R be a ring. Recall that the global homological dimension of R, gld(R),
is the biggest d ∈ N ∪ {∞} such that there exist left R-modules M and N
with Extd

R
(M,N) 6= 0.

For a sheaf of rings R on a topological space X, the global homological
dimension of R, gld(R), is the biggest d ∈ N ∪ {∞} such that there exist
sheaves of R-modules M and N with ExtdR(N ,M) 6= 0.

The weak global homological dimension of R, wgld(R), also called the
Tor-dimension of R, is the biggest d ∈ N∪{∞} such that there exists a right

R-module N and a left R-module M with T orRd (N,M) 6= 0.
For a sheaf of rings R, wgld(R) is the maximum of wgld(Rx), for x ∈ X.

Lemma 1.5.6. (i) The OX-module DX is flat.

(ii) If a DX-module I is injective in the category Mod(DX), then it is in-
jective in the category Mod(OX).

Proof. (i) Locally, DX is isomorphic to OX (N).

(ii) follows from (i). Indeed, if N is a DX-module, then

HomO(N , I) ' HomD(DX ⊗O N , I).

q.e.d.

Recall that if M and N are two left DX-modules, HomO(M,N ) has a
natural structure of a left DX-modules. By Lemma 1.5.6 we get that the
natural forgetful functor Db(DX) −→ Db(OX) commutes with RHomO.

Lemma 1.5.7. Let M,N ∈ Mod(DX). Then

RHomD(M,N ) ' RHomD(OX , RHomO(M,N )).
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Proof. Since this formula is true when replacing RHom with Hom , it is
enough to show that if N is an injective DX-module, then

Hj(RHomD(OX ,HomO(M,N ))) = 0 for j > 0.

Choose a finite freeDX-resolution L• ofOX (for example, take L• = SPX(DX)).
Notice that L•⊗OM−→M is a quasi-isomorphism of left DX-modules. Using
the fact that N is OX and DX-injective, we get:

RHomD(OX ,HomO(M,N )) ' RHomD(OX , RHomO(M,N ))

' RHomD(L•,HomO(M,N ))

' RHomD(L• ⊗OM,N )

' RHomD(M,N ) ' HomD(M,N ).

q.e.d.

Theorem 1.5.8. Let x ∈ X. The global homological dimension gld(DX,x) is
dX . In other words, the conditions (i)–(ii) below are satisfied:

(i) let M and N be two DX,x-modules. Then ExtjDX,x(M,N) = 0 for j >
dX ,

(ii) there exist two DX,x-modules M and N such that ExtjDX,x(M,N) 6= 0,
with j = dX .

Proof. (i) By classical results (see [We94, Th. 4.1.2]), it is enough to prove the
result when assuming that M is finitely generated. Since DX,x is noetherian,
there exists a coherent DX module M defined in a neighborhood of x such
that M =Mx. Then the result follows from Theorem 1.5.5 in this case.

(ii) Choose M = OX,x and N = DX,x. q.e.d.

Theorem 1.5.9. The weak global dimension wgld(DX,x) of DX is equal to
dX . In other words, the conditions (i)–(ii) below are satisfied:

(i) for any left (resp. right) DX-moduleM (resp. N ), one has TorDj (N ,M) =
0 for j > dX ,

(ii) there exist a left DX-module M and a right DX-module N , such that

T orDdX (N ,M) 6= 0.

Proof. (i) It is well known that if R is a ring, wgld(R) is less or equal to
gld(R) (see [We94, Ch. 4]). Therefore, wgld(DX) is bounded by gld(DX,x),
that is, by dX .

(ii) Choose N = ΩX and M = OX . q.e.d.
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Theorem 1.5.10. The global dimension of DX is 2dX + 1. In other words,
the conditions (i)–(ii) below are satisfied:

(i) let M and N be two DX-modules. Then Extj
D

(M,N ) = 0 for j >
2dX + 1,

(ii) there exist two DX-modules M and N such that Ext2dX+1

D
(M,N ) 6= 0.

Proof. Let n = dimX.

(i) By Lemma 1.5.7 one has

RHomD(M,N ) ' RHomD(OX , RHomO(M,N )).

Let SPX(DX) be the Spencer complex of DX . This complex has length n, is
locally free and is qis to OX .

On the other hand, consider a resolution in the category Mod(DX):

0 −→ N n+1 −→ N n −→ · · · −→ N 0 −→ N −→ 0

such that N 0, . . . ,N n are DX-injective. Then these modules will be OX-
injective and it follows from Theorem 3.5.7 that N n+1 is OX-injective. Set
Li = HomOX (M,N i). This is a left DX-module, and a flabby sheaf. Con-
sider the complex

L• := 0 −→ L0 −→ · · · −→ Ln+1 −→ 0.

Then RHomD(M,N ) is represented by the complex HomD(SPX(DX),L•).
This complex has length 2n+1 and its components are flabby sheaves. There-
fore

RHomD(M,N ) ' RΓ(X;HomD(SPX(DX),L•))

is concentrated in degree [0, 2n+ 1].

(ii) Let x ∈ X. One has

Extj
D

(OX,x,D(N)
X ) 6= 0 for j = 2n+ 1.

Indeed, RHomD(OX,x,DX) ' ΩX [−n], we get

Extj+n
D

(OX,x, (DX)(N)) ' Hj(RΓ{x}(X; Ω
(N)
X )).

Then the result follows from Proposition 3.5.8. q.e.d.
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1.6 Derived category and duality

Recall that Mod(DX) is a Grothendieck category (see for example [KS06,
Th. 18.1.6]) and thus has enough injectives. One denotes by Modcoh(DX) the
thick abelian subcategory of Mod(DX) consisting of coherent modules and
by Db

coh(DX) the full triangulated category of the bounded derived category
Db(DX) consisting of objects with coherent cohomology.

If M∈ Db
coh(DX), we set

char(M) =
⋃
j

char(Hj(M)).(1.23)

Internal operations

We denote by RHomO the right derived functor of HomO and by
D
⊗ the left

derived functor of ⊗O acting on D-modules. Hence, we get the functors

•
D
⊗ • : Db(DX)×Db(DX) −→ Db(DX),

•
D
⊗ • : Db(Dop

X )×Db(DX) −→ Db(Dop
X ),

RHomO( • , • ) : Db(DX)op ×Db(DX) −→ Db(DX),

RHomO( • , • ) : Db(Dop
X )op ×Db(Dop

X ) −→ Db(DX).

The tensor product is commutative and associative, that is, for L,M,N in

Db(DX) there are natural isomorphismsM
D
⊗N ' N

D
⊗M and (M

D
⊗N )

D
⊗L '

M
D
⊗(N

D
⊗L). Moreover OX

D
⊗M 'M.

There are also natural functors

RHomD( • , • ) : Db(DX)op ×Db(DX) −→ Db(CX),

•
L
⊗D • : Db(Dop

X )×Db(DX) −→ Db(CX).

These functors are related by the formulas (1.24) and (1.25) below.

Proposition 1.6.1. For L,M,N in Db(DX) and K in Db(Dop
X ) there are

natural isomorphisms

K
L
⊗D(M

D
⊗N ) ' (K

D
⊗M)

L
⊗DN ,(1.24)

RHomD(L, RHomO(M,N )) ' RHomD(L
D
⊗M,N ).(1.25)
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Duality

We define the duality functors on Db(DX) or Db(Dop
X ), all denoted by D′D

and DD, by setting

D′D(M) :=RHomD(M,DX) (M∈ Db(DX) or M∈ Db(Dop
X )),(1.26)

DD(M) :=RHomD(M,DX ⊗O Ω
⊗−1

X [dX ]) (M∈ Db
coh(DX)),(1.27)

DD(M) :=RHomD(M,ΩX [dX ]⊗O DX) (M∈ Db
coh(D

op
X )).(1.28)

Proposition 1.6.2. For M,N in Db(DX), we have a natural morphism

RHomD(OX ,DDM
D
⊗N ) −→ RHomD(M,N )(1.29)

and if M of N belongs to Db
coh(DX), this morphism is an isomorphism.

Proof. We have the isomorphism

RHomD(OX ,DDM
D
⊗N ) ' RHomD(OX ,DX)

L
⊗D(DDM

D
⊗N )

' ΩX

L
⊗D(DDM

D
⊗N ) [−dX ]

' (ΩX

D
⊗DDM)

L
⊗DN [−dX ]

' D′DM
L
⊗DN −→ RHomD(M,N ).

Cleary, ifM ofN belongs to Db
coh(DX), the last morphism is an isomorphism.

q.e.d.

Proposition 1.6.3. (i) The functor D′D : Db
coh(DX)op −→ Db

coh(Dop
X ) is well-

defined and satisfies D′D ◦ D′D ' id and similarly with DD.

(ii) If M∈ Db
coh(DX), then char(D′D(M)) = char(M).

Proof. (i) There is a natural morphism id −→ D′D ◦ D′D. To prove it is an
isomorphism, we argue by induction on the amplitude ofM and reduce to the
case whereM is a coherent DX-module. More precisely, assume Hj(M) = 0
for j /∈ [j0, j1] and the result has been proved for modules with amplitude
j1 − j0 − 1. Consider the distinguished triangle (d.t. for short)

Hj0(M)[−j0] −→M −→ τ>j0(M)
+1−→(1.30)

and apply the functor D′D◦D′D. We get a new d.t. with two objects isomorphic
to two objects of the d.t. (1.30). hence the third objects of these d.t. will be
isomorphic.
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Hence, we are reduced to treat the case of M ∈ Modcoh(DX). We may
argue locally and replace M with a bounded complex of finite free DX-
modules. It reduces to the case where M = DX .

(ii) It is enough to prove the inclusion char(D′D(M)) ⊂ char(M). We argue
by induction on the amplitude of M. Assume Hj(M) = 0 for j /∈ [j0, j1].
Consider the distinguished triangle (1.30) Applying the functor D′D we find
the d.t.

D(τ>j0M) −→ D′DM−→ D′D(Hj0(M))[j0]
+1−→

Since char(M) = char(Hj0(M)) ∪ char(τ>j0(M)), the induction proceeds,
and we are reduced to the case where M is a coherent DX-module. Then
the result follows from Theorem 1.5.1 (iii). q.e.d.
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Chapter 2

Operations on D-modules

2.1 External product

Let X and Y be two manifolds. For a DX-module M and a DY -module N ,

we define their external product, denoted M
D

�N , by

M
D

�N :=DX×Y ⊗DX�DY (M�N ).

Note that the functor M 7→M
D

�N is exact.

Theorem 2.1.1. Let M ∈ Db
coh(DX) and N ∈ Db

coh(DY ). Then M
D

�N ∈

Db
coh(DX×Y ) and char(M

D

�N ) = char(M)× char(N ).

Proof. (i) By dévissage, one reduces to the case where M ∈ Modcoh(DX)
and N ∈ Modcoh(DY ).

(ii) Let us show that M
D

�N is coherent. Consider finite free presentations
of M and N :

DM1
X

·P−→ DM0
X −→M −→ 0, DN1

Y

·Q−→ DN0
Y −→ N −→ 0.

Then

(DX �DY )N1+M1

(
P 0
0 Q

)
−−−−→ (DX �DY )N0+M0 −→M�N −→ 0

is a finite free presentation ofM�N over DX �DY . To conclude, apply the
exact functor DX×Y ⊗DX�DY

• to this sequence.

31
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(iii) Let us endow M and N with good filtrations FlM and FlN . Set

Fl k(M
D

�N ) =
∑
i+j=k

Fl i(M)
D

�Fl j(N ).

Then {Fl k(M
D

�N )}k is a good filtration on M
D

�N and the result follows
from

gr (M
D

�N ) ' gr (M)
gr D

� gr (N )

where
gr D

� is defined similarly as
D

�. q.e.d.

2.2 Transfert bimodule

Let f : X −→ Y be a morphism of complex manifolds. Recall (see (3.14)) that
to f are associated the maps

TX
f ′−→ X ×Y TY

fτ−→ TY.(2.1)

We shall construct a (DX , f−1DY )-bimodule denoted DX−→Y which shall al-
low one to pass from left DY -modules to left DX-modules and from right
DX-modules to right DY -modules.

Set

DX−→Y = OX ⊗f−1OY f
−1DY .

This sheaf on X is naturally endowed with a structure of an (OX , f−1DY )-
bimodule. We shall endow it of a structure of a left DX-module by defining
the action ΘX and verifying that this action satisfies the hypothesis of Corol-
lary 1.1.3. Let v ∈ ΘX . Then f ′∗v ∈ OX ⊗f−1OY f

−1ΘY . Hence

f ′∗v =
∑
j

aj ⊗wj,

with aj ∈ OX and wj ∈ f−1ΘY . Define the action of v on a⊗P ∈ OX⊗f−1OY
f−1DY by setting

v(a⊗P ) = v(a)⊗P +
∑
j

aaj ⊗wj ◦ P.(2.2)
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If one chooses a local coordinate system (y1, . . . , ym) on Y and writes f =
(f1, . . . , fm), then

v(f ∗ϕ) =
m∑
j=1

v(fj)
∂ϕ

∂yj
,

which implies

f ′∗v =
m∑
j=1

v(fj)⊗ ∂yj .

A section P of DX−→Y may formally be written as P =
∑

α aα(x)∂αy .

By composing the monomorphismDY ↪→ HomCY (OY ,OY ) withDX−→Y =
OX ⊗f−1OY f

−1DY we get the monomorphisms

DX−→Y ↪→ OX ⊗f−1OY f
−1HomCY (OY ,OY )

↪→ HomCX (f−1OY ,OX)

and the section 1X−→Y := 1 ⊗ 1 ∈ DX−→Y corresponds to the canonical
morphism

f−1OY −→ OX
ϕ 7→ ϕ ◦ f.

Note that DY being flat over OY ,

DX−→Y ' OX
L
⊗
f−1OY f

−1DY .

One also introduces the (f−1DY ,DX)-bimodule DY←−X by setting

DY←−X = ΩX ⊗OX DX−→Y ⊗f−1OY f
−1Ω

⊗−1

Y .

Proposition 2.2.1. Let f : X −→ Y , g : Y −→ Z be morphisms of manifolds
and set h = g ◦ f : X −→ Z. Then there is an isomorphism of (DX , h−1DZ)-
bimodules

DX−→Y

L
⊗
f−1DY f

−1DY−→Z ' DX−→Z .(2.3)

In particular, the left hand side is concentrated in degree zero.
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Proof. One has the isomorphisms of (OX , h−1DZ)-bimodules:

DX−→Y

L
⊗
f−1DY f

−1DY−→Z = (OX
L
⊗
f−1OY f

−1DY )
L
⊗
f−1DY f

−1(OY
L
⊗
g−1OZg

−1DZ)

' OX
L
⊗
f−1OY (f−1DY

L
⊗
f−1DY f

−1OY
L
⊗
h−1OZh

−1DZ)

' OX
L
⊗
h−1OZh

−1DZ ' OX ⊗h−1OZ h
−1DZ .

(Recall that DZ is flat over OZ .) Then, one checks that these isomorphisms
extend as isomorphisms of (DX , h−1DZ)-bimodules. q.e.d.

Proposition 2.2.2. (i) Assume f is submersive. Then DX−→Y is DX-
coherent and f−1DY -flat.

(ii) Assume f is a closed embedding. Then DX−→Y is DY -coherent and
DX-flat.

Proof. (i) Since the problem is local on X, we may assume that X = Z × Y

and f is the second projection. In this case, DX−→Y ' OZ
D

�DY . Note that
if x = (t, y) is a local coordinate system on Z ×Y with t = (t1, . . . , tm), then

DX−→Y ' DX/DX · ∂t
where DX · ∂t denotes the left ideal generated by (∂t1 , . . . , ∂tm).
(ii) For a local coordinate system y = (t, x) on Y such that X = {t = 0}, we
have

DX−→Y ' DY /t · DY
where t · DY denotes the right ideal generated by (t1, . . . , tm). q.e.d.

If f is submersive, one has

DX−→Y ' DX/DX ·Θf

where DX · Θf denotes the left ideal generated by the vector fields tangent
to the leaves of f .

If f is a closed embedding, one has

DX−→Y ' DY /IX · DY
where IX · DY denotes the right ideal generated sections of OY vanishing on
X.

Notice that any morphism f : X −→ Y may be decomposed as

f : X ↪→ X × Y −→ Y

where the first map is the graph (closed) embedding and the second map is
the projection.

Example 2.2.3. One has DX−→pt ' OX and Dpt←−X ' ΩX .
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Inverse and direct images of D-modules

Definition 2.2.4. Let f : X −→ Y be a morphism of complex manifolds.

(i) One defines the inverse image functor f−1
D : Db(DY ) −→ Db(DX) by set-

ting for N ∈ Db(DY ):

f−1
D N :=DX−→Y

L
⊗
f−1DY f

−1N .

(ii) One defines the direct image functors fD∗ , f
D
! : Db(DX) −→ Db(DY ) by

setting for M∈ Db(Dop
X ):

fD∗ M :=Rf ∗(M
L
⊗DDX−→Y ), fD! M :=Rf !(M

L
⊗DDX−→Y ).

Using the bimodule DY←−X , one defines similarly the inverse image of a
right DY -module or the direct images of a left DX-module. Note that, if
g : Y −→ Z is another morphism of complex manifolds, we have

(g ◦ f)−1
D ' f−1

D ◦ g
−1
D ,(2.4)

(g ◦ f)D∗ ' gD∗ ◦ fD∗ ,(2.5)

(g ◦ f)D! ' gD! ◦ fD! .(2.6)

2.3 Inverse images

Definition 2.3.1. Let N be a coherent DY -module. One says that f is non
characteristic forN (orN is non characteristic for f) if f is non characteristic
for char(N ). (See Definition 3.1.10.)

Example 2.3.2. (i) Since char(OY ) = T ∗Y Y , the DY -module OY is non
characteristic for any morphism f : X −→ Y . Note that f−1

D OY ' OX .
(ii) See Exercise 2.2.

Example 2.3.3. Assume to be given a coordinate system (y) = (x1, . . . , xn, t) =
(x, t) on Y such that X = {t = 0}. Let P be a differential operator of order
m. Then X is non-characteristic with respect to P (i.e., for the DY -module
DY /DY · P ) in a neighborhood of (x0, 0) ∈ X if and only if P is written as

P (x, t; ∂x, ∂t) =
∑

0≤j≤m

aj(x, t, ∂x)∂
j
t(2.7)

where aj(x, t, ∂x) is a differential operator not depending on ∂t of order ≤ m−
j and am(x, t) (which is a holomorphic function on Y ) satisfies: am(x0, 0) 6= 0.
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Lemma 2.3.4. Let X, Y and P be as in Example 2.3.3. Let N = DY /DY ·P .
Then DX−→Y ⊗DY N ' D

m
X .

Proof. Notice that

DX−→Y ⊗D N ' DY /(t · DY +DY · P ).

By the Weierstrass preparation theorem, any Q(x, t, ∂x, ∂t) ∈ DY may be
written uniquely as

Q(x, t, ∂x, ∂t) = S(x, t, ∂x, ∂t) · P (x, t, ∂x, ∂t) +
m−1∑
j=0

Rj(x, t, ∂x)∂
j
t .

Hence, Q(x, t, ∂x, ∂t) ∈ DY may be written uniquely as

Q(x, t, ∂x, ∂t) =

S(x, t, ∂x, ∂t) · P (x, t, ∂x, ∂t) + t · T (x, t, ∂x) +
m−1∑
j=0

Pj(x, ∂x)∂
j
t .

q.e.d.

Proposition 2.3.5. . For M,N ∈ Db(DX), one has

M
D
⊗N ' δ−1

D (M
D

�N ),

where δ : X −→ X ×X is the diagonal embedding.

Proof. Let us identify X with ∆, the diagonal of X ×X. One has the chain
of isomorphisms

δ−1
D (M

D

�N ) ' O∆

L
⊗ODX×X

L
⊗D(M

D

�N )

' O∆

L
⊗O(M

D

�N ) 'M
D
⊗N .

q.e.d.

Corollary 2.3.6. Let f : X −→ Y be a morphism of complex manifolds. For
N1,N2 ∈ Db(DY ), one has

f−1
D (N1

D
⊗N2) ' f−1

D N1

D
⊗f−1
D N2.



2.3. INVERSE IMAGES 37

Proof. Denote by δX the diagonal embedding X −→ X×X and similarly with
δY , and denote by f̃ : X ×X −→ Y × Y the map associated with f . One has
the chain of isomorphisms

f−1
D (N1

D
⊗N2) ' f−1

D δY
−1
D (N1

D

�N2) ' δX
−1
D f̃

−1
D (N1

D

�N2)

' δX
−1
D (f−1

D N1

D

� f−1
D N2) ' f−1

D N1

D
⊗f−1
D N2.

q.e.d.

Theorem 2.3.7. Let N ∈ Modcoh(DY ) and assume that f is non character-
istic for N . Then

(a) f−1
D N is concentrated in degree 0,

(b) f−1
D N is DX-coherent,

(c) char(f−1
D N ) ⊂ fdf

−1
π char(N ).

Remark 2.3.8. In fact, there is a better result, namely char(f−1
D N ) =

fdf
−1
π char(N ) and the characteristic cycle of f−1

D N is the image by fdf
−1
π of

the characteristic cycle of N (see [Ka83]).

Proof. The map f : X −→ Y decomposes as

X
h−→ X × Y p−→ Y

where h is the graph embedding and p is the projection. Using (2.4) and
Lemma 3.1.13, it is enough to prove the result for p and for h. Hence, we
shall treat separately the case where f is submersive and the case where f is
a closed embedding.

(i) Assume f : X −→ Y is submersive. The problem is local on X. Hence,
we may assume X = Y × Z and f is the projection. In this case, f−1

D ( • ) '

OX
D

� • . Hence, this functor is exact and the result follows from Theo-
rem 2.1.1.

(ii) Assume f : X −→ Y is a closed embedding. Let d denote the codimension
of X in Y . Since our problem is local, we may assume that there are subman-
ifolds X = X0 ⊂ X1 ⊂ · · · ⊂ Xd = Y . Using (2.4) and Lemma 3.1.13 again,
we are reduced to treat the case d = 1. Since the problem is local we may
assume to be given a local coordinate system in a neighborhood of x0 ∈ X,
(y) = (x1, . . . , xn, t) = (x, t) on Y such that X = {t = 0}. Let (x, t; ξ, τ)
denote the associated coordinate system on T ∗Y . Set Λ = char(N ). By
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the hypothesis, (x0, 0; 0, 1) /∈ Λ. By Corollary 1.3.6, for each section u of N
defined in a neighborhood of (x0, 0), there exists a differential operator P ,
say of order m, such that

Pu = 0, σm(P )(x0, 0; 0, 1) 6= 0.(2.8)

(iii) Let us prove that f−1
D N is concentrated in degree 0. Since DX−→Y '

DY /t · DY , f−1
D N is isomorphic to the complex N t·−→ N . Hence, we have

to show that t· acting on N is injective. Let u ∈ N with tu = 0. Let P
satisfying (2.8). Set Ad(P ) = [P, • ]. We obtain

Adm(P )(t)u = m!u = 0.

Hence, u = 0.

(iv) Let us prove that f−1
D N is DX-coherent. Let (u1, . . . , uN) be a system

of generators of N in a neighborhood of (x0, 0). For each j, 1 ≤ j ≤ N ,
there exists a differential operator Pj of order mj, such that Pjuj = 0 and
σmj(Pj)(x0, 0; 0, 1) 6= 0. Set

M = ⊕Nj=1DY /DY · Pj.

It follows from (iii) and Lemma 2.3.4 that f−1
D M is concentrated in degree

0 and is DX-coherent.
Denote by vj the canonical generator of DY /DY ·Pj, the image of 1 ∈ DY .

There is a well-defined DY -linear epimorphism ψ : M�N which associates
uj to vj. The functor f−1

D being right exact, the epimorphism ψ defines the
epimorphism f−1

D M�f−1
D N . Therefore, f−1

D N is locally finitely generated.
Define the coherent DY -module L by the exact sequence

0 −→ L −→M −→ N −→ 0.(2.9)

It follows from (iii) that the sequence

0 −→ f−1
D L −→ f−1

D M−→ f−1
D N −→ 0(2.10)

is exact. Since X is non-characteristic for M, it is non-characteristic for its
submodule L. Therefore, f−1

D L is locally finitely generated and f−1
D M being

coherent, this implies that f−1
D N is coherent.

(v) Let us prove (c).
(v)–(a) Let us choose a local coordinate system (x, t) on Y such that X =
{(x, t); t = 0}. Then f−1

D N ' N /t · N . Set

M := f−1
D N .



2.3. INVERSE IMAGES 39

Let FlN = {Nj}j∈Z be a good filtration on N . We define a filtration on
FlM = {Mj}j∈Z by setting

Mj = Nj/(t · N ∩ Nj).(2.11)

(v)–(b) Let us show that FlM is a good filtration. It is enough to check that
the Mj’s are OX-coherent. Since

t · N ∩ Nj =
⋃
k

(t · Nk ∩Nj),

and Nj is OY -coherent, this sequence is locally stationary. It follows that
Mj is OY -coherent. Being supported by X, Mj is OX-coherent.

(v)–(c) The exact sequence 0 −→ Nj−1 −→ Nj −→ gr jN −→ 0 gives rise to the
exact sequence

Nj−1/t · Nj−1 −→ Nj/t · Nj −→ gr jN /t · gr jN −→ 0.(2.12)

Note that grN /t · grN is an OX ⊗OY grDX-module, but grM is simply a
grDX-module. We deduce from (2.11) and (2.12) an epimorphism gr jN /t ·
gr jN�gr jM, hence, an epimorphism of grDX-modules

grN /t · grN�grM.(2.13)

Considering grN /t · grN as a grDX-module is the same as considering
fd∗(grN /t · grN ). It follows that the support of grM in T ∗X is contained
in fd(supp(grN /t · grN ) = fdf

−1
π char(N ). q.e.d.

Corollary 2.3.9. Let M,N ∈ Modcoh(DX) and assume that char(M) ∩
char(N ) ⊂ T ∗XX. Then M

D
⊗N is DX-coherent and

char(M
D
⊗N ) ⊂ char(M) +

X
char(N ).

Recall that for two conic subsets Λ1 and Λ2 of T ∗X ,

Λ1 +
X

Λ2 := {(x; ξ1 + ξ2); (x; ξj ∈ Λj, j = 1, 2}.

Proof. Apply Proposition 2.3.5 and Theorem 2.3.7. q.e.d.
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Duality and inverse images

Let N ∈ Db(DY ). Recall that its dual, DDN ∈ Db(DY ) has been constructed
in (1.28)

Theorem 2.3.10. Let f : X −→ Y be a morphism of complex manifolds and
let N ∈ Db

coh(DY ). Assume that f is non characteristic for N . Then there
exists a natural isomorphism :

ψ : DDf−1
D N

∼−→ f−1
D DDN .

Proof. First, we shall construct the morphism ψ. By Proposition 1.6.2, we
have an isomorphism

HomDb(DY )(N ,N )
∼−→ HomDb(DY )(OY ,DDN

D
⊗N ).

It defines the morphism OY −→ DDN
D
⊗N . Applying the functor f−1

D we get
the morphisms

f−1
D OY ' OX −→ f−1

D DDN
D
⊗f−1
D N

−→ f−1
D DDN

D
⊗DDDDf−1

D N .

Hence, we have obtained a morphism

ψ ∈ HomDb(DX)(OX , f
−1
D DDN

D
⊗DDDDf−1

D N )

' HomDb(DX)(DDf
−1
D N , f

−1
D DDN ).

To prove that ψ is an isomorphism, we proceed as in the proof of Theo-
rem 2.3.7 and reduce to the case where X is a closed hypersurface of Y
and N = DY /DY · P for a differential operator P of order m. In this case,
f−1
D N ' DmX and DDf−1

D N ' DmX [dX ]. On the other hand, N is represented

by the complex 0 −→ DY
·P−→ DY −→ 0 and it follows that

DDN ' N [dY − 1].

Therefore, f−1
D DDN ' DmX [dY − 1]. q.e.d.

2.4 Holomorphic solutions of inverse images

Let f : X −→ Y be a morphism of complex manifolds and let N1,N2 ∈
Mod(DY ). There is a natural morphism

f−1RHomDY (N1,N2) −→ RHomDX (f−1
D N1, f

−1
D N2).(2.14)
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obtained as the composition

f−1RHomDY (N1,N2) −→ RHomf−1DY (f−1N1, f
−1N2)

−→ RHomDX (DX−→Y

L
⊗
f−1Df

−1N1,DX−→Y

L
⊗
f−1Df

−1N2).

Also recall the natural isomorphism

f−1
D OY ' OX .(2.15)

Theorem 2.4.1. (Cauchy-Kowalevski-Kashiwara) Let f : X −→ Y be a mor-
phism of complex manifolds and let N ∈ Mod(DY ). Assume that f is non
characteristic for N . Then there exists a natural isomorphism :

f−1RHomDY (N ,OY )
∼−→ RHomDX (f−1

D N ,OX).(2.16)

Proof. As in the proof of Theorem 2.3.7, we may check separately the case
of a projection and a closed embedding.

(a) If f is submersive, the morphism (2.14) is an isomorphism. Indeed,
we may reduce to the case where N1 = N2 = DY . In such a case, the
isomorphism reduces to:

f−1DY ' RHomDX (DX−→Y ,DX−→Y ).

We may assume f is the projection X = Y × Z −→ Y , and the result is a
relative version of the De Rham isomorphism CZ ' RHomDZ (OZ ,OZ).

(b) Now assume f is a closed embedding. Again, we reduce to the case where
X is a hypersurface. First we treat the case where N = DY /DY · P . We
may assume that we have a local coordinate system (x, t) such that X =
{(x, t); t = 0} and P is a differential operator of order m as in Lemma 2.3.3.

The complex RHomDY (N ,OY ) is represented by the complex 0 −→ OY |X
P ·−→

OY |X −→ 0, where OY |X on the left is in degree 0. Since N−1
D ' DmX , the

complex RHomDX (N−1
D ,OX) is represented by the complex OmX in degree 0.

The morphism (2.16) reduces to the morphism

0 // OY |X P //

γ

��

OY |X

��

// 0

0 // OmX // 0 // 0

Here, the vertical arrow γ is the morphism which, to f ∈ OY |X associates
the first m traces of f

γ(f) = f |X , ∂tf |X , . . . , ∂m−1
t f |X .
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Then the theorem asserts that P acting on OY |X is an epimorphism and
KerP acting on this sheaf is isomorphic by γ to OmX . This is the Cauchy-
Kovalevski theorem.

(c) As in the proof of Theorem 2.3.7, we construct an exact sequence (2.9)
0 −→ L −→M −→ N −→ 0 whereM is a finite direct sum of modules of the type
DY /DY · P . let us apply the functor RHomDY ( • ,OY ) to the sequence (2.9)

and the functorRHomDX ( • ,OX) to the image by (−1
D
• ) of the sequence (2.9).

Let us set for short

SolY ( • ) :=RHomDY ( • ,OY )

and similarly with SolX( • ). We find the morphism of distinguished triangles

f−1SolY (N ) //

��

f−1SolY (M) //

��

f−1SolY (L)
+1 //

��
SolY (f−1

D N ) // SolY (f−1
D M) // SolY (f−1

D L)
+1 //

Let us apply the cohomology functorH0 to this morphism of distinguished
triangles. We find a morphism of long exact sequences

0 // H0(A1) //

u01
��

H0(A2) //

u02
��

H0(A3) //

u03
��

H1(A1) //

u11
��

· · ·

0 // H0(B1) // H0(B2) // H0(B3) // H1(B1) // · · ·.

By (b), all morphisms un2 , n ≥ 0 are isomorphisms. It follows that u0
1 is

a monomorphism, and the module M satisfying the non characteristicity
hypothesis, the morphism u0

3 is also a monomorphism. Therefore, u0
1 is an

isomorphism, hence u0
3 is also an isomorphism. By induction, we get that all

un1 are isomorphism. q.e.d.

2.5 Direct images

Good D-modules

Definition 2.5.1. (i) Let F ∈ Mod(OX). One says that F is good if for
any relatively compact open subset U ⊂⊂ X, there exists a small and
filtrant category I, an inductive system {Fi}i∈I of coherent OU -modules
and an isomorphism lim−→

i

Fi
∼−→ F|U .
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(ii) One denotes by Modgd(OX) the full subcategory of Mod(OX) consisting
of good OX-modules.

(iii) A coherent DX-module M is good if it is good as an OX-module.

(iv) One denotes by Modgd(DX) the full subcategory of Modcoh(DX) con-
sisting of good OX-modules.

Note that DX is good. For generally, if a coherent DX-module may be
endowed with a good filtration, then it is good. However, there exist coherent
DX-modules which are not good.

Lemma 2.5.2. The category Modgd(OX) is a thick abelian subcategory of
the category Modcoh(DX). In particular, the full subcategory Db

gd(DX) of

Db
coh(DX) consisting of objects M such that Hj(M) is good for all j is tri-

angulated.

Proof. For the proof, we refer to [Ka03]. q.e.d.

Lemma 2.5.3. Let M ∈ Modcoh(DX). Then M is good if and only if, for
any relatively compact open subset U ⊂⊂ X, there exists F ⊂ M|U with
F ∈ Modcoh(OU) and an epimorphism of DU -modules F ⊗OU DU�M|U .

Proof. After replacing X with a relatively compact open subset of X con-
taining the closure of U , we may assume that M = lim−→

i

Fi where I is small

and filtrant and Fi is OX-coherent. Set

Li = Im(Fi ⊗OX DX −→M).

SinceM isDX-coherent, the family {Li}i∈I of coherentDX-modules is locally
stationary hence is stationary on the closure of U . q.e.d.

Coherency

Theorem 2.5.4. Let f : X −→ Y be a morphism of complex manifolds and
let M∈ Db

gd(Dop
X ). Assume that f is proper on supp(M). Then

(i) fD∗ M∈ Db
gd(Dop

Y ),

(ii) char(fD∗ M) ⊂ fπfd(char(M)).

(iii) Moreover, if f is finite on supp(M), the above inclusion is an equality.
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Proof. (i)–(a) By “dévissage”, we reduce to the case where M is a good
DX-module. More precisely, assume Hj(M) = 0 for j /∈ [j0, j1] and the
result has been proved for modules with amplitude j1− j0− 1. Consider the
distinguished triangle

Hj0(M)[−j0] −→M −→ τ>j0(M)
+1−→

Applying the functor fD! to this d.t., we get the d.t.:

fD! (Hj0(M))[−j0] −→ fD! M−→ fD! (τ>j0(M))
+1−→

It follows from the induction hypothesis and Lemma 2.5.2 that fD! M belongs
to Db

gd(Dop
Y ).

(i)–(b) First, assume that M' F ⊗O DX for a coherent OX-module F and
f is proper on supp(F). Then

fD∗ M ' Rf !(F ⊗O DX ⊗DX DX−→Y )

' Rf !(F ⊗O OX ⊗f−1OY f
−1DY )

' Rf !F ⊗O DY .

The coherence of Rf !F follows from Grauert’s theorem.

(i)–(c) Since the problem is local on Y and f is proper on supp(M), we may
assume by Lemma 2.5.3 that there exists an exact sequence in Mod(Dop

X ):

0 −→M′ −→ F ⊗O DX −→M −→ 0

and f is proper on supp(F). We apply the functor fD! to this sequence and
take the cohomology. Setting L = F ⊗O DX we find a long exact sequence

· · · −→ Hj(fD! M′) −→ Hj(fD! L) −→ Hj(fD! M) −→ Hj+1(fD! M′) −→ · · · .

Assume Hj(fD! M) is good for all M and all j > j0. Set

Kj := Ker(Hj0+1(fD! M′) −→ Hj0+1(fD! L)).

Then Kj is good. Moreover, we have an exact sequence

Hj(fD! L) −→ Hj(fD! M) −→ Kj −→ 0

from which we deduce that Hj(fD! M) is locally finitely generated over Dop
Y .

Set

Rj := CokerHj(fD! M′) −→ Hj(fD! L).
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Being a quotient of a good Dop
Y -module by a finitely generated module, it is

a good Dop
Y -module. By the exact sequence

0 −→ Rj −→ Hj(fD! M) −→ Kj −→ 0

we conclude that Hj0(fD! M) is a good DX-module and the induction pro-
ceeds.

(ii)–(iii) The proof is similar to that of Theorem 2.3.7 and left to the reader.
q.e.d.

Example 2.5.5. (i) Assume X is compact and let M ∈ Db
gd(Dop

X ). Denote

by aX the projection X −→ {pt}. Then aX
D
∗M ' RΓ(X;M

L
⊗DOX) and for

all j ∈ Z, Hj(RΓ(X;M
L
⊗DOX) is a finite-dimensional C-vector space.

(ii) Let f : X −→ Y be a proper map and assume that Y is a curve (i.e.,
dY = 1). The object fD! OX is called the Gauss-Manin connection on Y
associated with f . It is of particular importance when f is finite (hence, X
is again a curve). Note that the characteristic variety of the Gauss-Manin
connection satisfies

char(fD! OX) ⊂ fπf
−1
d (T ∗XX)

= {(y; η) ∈ T ∗Y ; there exist x ∈ X with fd(x)η = 0}.
In other words, this characteristic variety is contained in the union of the
zero-section of T ∗Y and the conormal bundles to the points y ∈ Y which are
critical values of f .

We state without proof an important result due to Kashiwara.

Theorem 2.5.6. Let j : Z ↪→ X be a closed embedding of a smooth mani-
fold. Then the functor jD∗ induces an equivalence of categories Mod(DZ)

∼−→
ModZ(DX), where ModZ(DX) denotes the full abelian subcategory of Mod(DX)
consisting of objects with support contained in Z. Moreover, this equivalence
induces an equivalence of the subcategories consisting of coherent modules.

A quasi-inverse functor to jD∗ is given by j−1HomD(DX←−Z , • ).
Although we do not give the proof here and refer to [Ka03, Th. 4.28], the

next result will be used in the sequel.

Theorem 2.5.7. Projection formula for D-modules Let f : X −→ Y be a
morphism of complex manifolds. Let M ∈ Db(Dop

X ) and let N ∈ Db(DY ).
There is a natural isomorphism in Db(DY )

fD! (M
D
⊗f−1
D N ) ' fD! M

D
⊗N .(2.17)

Proof. q.e.d.
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2.6 Trace morphism

Theorem 2.6.1. For each morphism of complex manifoldsf : X −→ Y there
exists a “trace morphism” in Db(Dop

Y )

trf : fD! ΩX [dX ] −→ ΩY [dY ](2.18)

with the following properties:

(i) trf is functorial in f , that is, tridX = id and trg◦f = trg ◦ trf for

morphisms X
f−→ Y

g−→ Z,

(ii) when X is a curve and Y = {pt}, trf induces the residues morphism
on H1

c (X; ΩX).

Using the direct images functor for left D-modules, (2.18) gives the func-
torial morphism

trf : fD! OX [dX ] −→ OY [dY ].(2.19)

Proof. Recall that ΩX [−dX ] is quasi-isomorphic in Db(Dop
X ) to the De Rham

complex DRX(DX) (see (1.17)):

DRX(DX) := 0 −→ Ω0
X ⊗O DX

d−→ · · · −→ ΩX ⊗O DX −→ 0,

where the differential d is characterized by:

d(ω ⊗m) = dω ⊗P + (−)pω ∧ dP, ω ∈ Ωp
X , P ∈ DX

and dP =
∑

i dxi ⊗ ∂i ◦ P in a local coordinate system.
Let us identify XR, the real analytic manifold underlying the complex

manifold X with the diagonal of X × X. Hence, the real tangent bundle
TXR is isomorphic to TX ×XR TX and the differential dXR splits as

dXR = ∂ ⊕ ∂.

Denote by DbXR the sheaf of distributions on the real analytic manifold XR.
The sheaf Ωp

X is quasi-isomorphic to the Dolbeault complex

0 −→ Db(p,0)
XR

∂−→ · · · ∂−→ Db(p,dX)
XR

−→ 0,

where Db(p,q)
XR

is the sheaf of forms of type (p, q) with coefficients in DbXR . It
follows that there is a qis

ΩX [−dX ] −→ Db • , •XR
⊗O DX , (∂, ∂)(2.20)
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where the bidifferential (∂, ∂) satisfies

∂(u⊗P ) = ∂u⊗P + (−)pu ∧ dP,(2.21)

∂(u⊗P ) = ∂u⊗P.(2.22)

Denote by C∞(p,q)
XR

the sheaf of forms of type (p, q) with coefficients in the sheaf
C∞XR

of complex valued C∞-functions on XR. There is a natural morphism

f ∗ : f−1C∞(p,q)
YR

−→ C∞(p,q)
XR

.(2.23)

Since Γc(X;Db(p+dX ,q+dX)
XR

) is the dual of the space Γc(X; C∞(p,q)
XR

), the mor-
phism (2.23) defines the morphism∫

f

: f!Db(p+dX ,q+dX)
XR

−→ Db(p+dY ,q+dY )
YR

.(2.24)

Moreover,
∫
f

commutes with ∂ and ∂.

The object ΩX [dX ]
L
⊗DDX−→Y of Db(Dop

X ) is isomorphic to the complex

Db • , •XR
⊗O f−1DY [2dX ] where ∂(u⊗P ) = ∂u⊗P and the action of ∂ is given

by (2.21) and (2.2). Noticing that the sheaves Db(p,q)
XR

are soft, we get the
chain of morphisms and isomorphisms

fD! ΩX [dX ] ' f!(Db
• , •

XR
⊗O DX ⊗D OX ⊗f−1OY f

−1DY )[2dX ]

' f!(Db
• , •

XR
⊗f−1OY f

−1DY )[2dX ]∫
f−→ Db • , •YR

⊗O DY [2dY ]

' ΩY [dY ].

The properties (i) and (ii) of the morphism trf are easily checked. q.e.d.

Corollary 2.6.2. Let N ∈ Db(DY ). There exists a canonical morphism in
Db(DY ):

fD! (f−1
D N ⊗O ΩX [dX ]) −→ N ⊗O ΩY [dY ].(2.25)

Proof. By Theorem 2.5.7, we have an isomorphism

fD! (f−1
D N ⊗O ΩX [dX ]) = fD! (f−1

D N
D
⊗ΩX [dX ])

' N
D
⊗fD! ΩX [dX ].

To conclude, apply the trace morphism fD! ΩX [dX ] −→ ΩY [dY ]. q.e.d.
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Corollary 2.6.3. Let M ∈ Db(DX) and let N ∈ Db(DY ). There is a
canonical morphism

Rf ∗RHomD(M, f−1
D N ) [dX ] −→ RHomD(fD! M,N ) [dY ].(2.26)

Proof. Consider the chain of morphisms

Rf ∗RHomD(M, f−1
D N ) [dX ]

−→ Rf ∗RHomD(DY←−X ⊗DM,DY←−X ⊗D f
−1
D N ) [dX ]

−→ RHomD(Rf !(DY←−X ⊗DM), Rf ∗(DY←−X ⊗D f
−1
D N )) [dX ]

' RHomD(fD! M, fD! f
−1
D N ) [dX ]

−→ RHomD(fD! M,N ) [dY ]

where the last morphism follows from (2.25). q.e.d.

Duality and direct images

Let again f : X −→ Y be a morphism of complex manifolds.

Lemma 2.6.4. Let M ∈ Db(Dop
X ). There is a canonical morphism in

Db(Dop
Y ):

fD! DDM−→ DDfD! M.(2.27)

Proof. By choosing N = DY in Corollary 2.6.3, we get the chain of mor-
phisms

fD! DDM = Rf !(RHomD(M,DX ⊗O ΩX [dX ])⊗D DX−→Y )

−→ Rf !(RHomD(M,ΩX ⊗O DX−→Y ) [dX ]

' Rf !(RHomD(M, f−1
D ΩY ) [dX ])

−→ RHomD(fD! M,DY ⊗O ΩY ) [dY ]

= DDfD! M.

q.e.d.

Theorem 2.6.5. LetM∈ Db
gd(Dop

X ) and assume that f is proper on supp(M).
Then the morphism (2.27) is an isomorphism.

Proof. We may reduce to the case where M ∈ Modgd(Dop
X ) and, as in the

proof of Theorem 2.5.4, that M = F ⊗O DX for a coherent OX-module F .
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In this case,

fD! DDM ' Rf !(RHomD(F ⊗O DX ,DY←−X ⊗O f
−1ΩY ) [dX ]

' Rf !RHomO(F ,OX)⊗O DY [dX ]⊗O ΩY

' RHomO(Rf !F ,OY )⊗O DY ⊗O ΩY [dY ]

' RHomD(Rf !F ⊗O DY ,DY )⊗O ΩY [dY ]

' DDfD! M.

Here, we have used the fact that proper direct images commute with duality
for O-modules (Theorem 3.5.11). q.e.d.

Theorem 2.6.6. LetM∈ Db
gd(Dop

X ) and assume that f is proper on supp(M).
Then the morphism (2.25) is an isomorphism.

Proof. SinceM and fD! M have coherent cohomologies, we have the isomor-
phisms

RHomD(M, f−1
D N ) ' RHomD(M,DX←−Y )

L
⊗
f−1DY f

−1N ,

RHomD(fD! M,N ) ' RHomD(fD! M,DY )
L
⊗DN .

Hence, we are reduced to prove the result when N = DY , and it follows
immediately from Theorem 2.6.5. q.e.d.

Corollary 2.6.7. Let M ∈ Db
gd(DX) and assume f is proper on supp(M).

There is a canonical isomorphism

Rf ∗RHomD(M,OX) [dX ]
∼−→ RHomD(fD! M,OY ) [dY ].

2.7 D-modules associated with a submanifold

Let Z be a hypersurface of X. One denotes by OX(∗Z) the sheaf of mero-
morphic functions on X with poles in Z. Hence, if {f = 0} is a local equation
of Z, a section u of OX(∗Z) is locally written as a quotient u = g/fm, for
some m ∈ N and g a section of OX . Clearly, OX(∗Z) is a left DX-module.

One also introduces the left DX-module BZ|X by the exact sequence

0 −→ OX −→ OX(∗Z) −→ BZ|X −→ 0.

If {f = 0} is a local equation of Z, then

BZ|X ' (OX [1/f ])/OX .
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More generally, let Z = {fj = 0; j = 1, . . . , d} be a complete intersection.
One sets

BZ|X ' OX [1/f1 . . . fd]/
∑
i

OX [1/f1 . . . f̂i . . . fd].(2.28)

We shall see that this does not depend on the choice of the f ′js. For that
purpose, we recall the construction of the functor Γ[Z] and its derived func-
tors.

The functor Γ[Z] for O-modules

Let X be a complex manifold, Z a closed analytic subset, IZ its defining
ideal. Let F be an OX-module. Recall that ΓZF denotes the subsheaf of
sections supported by Z.

Definition 2.7.1. One sets

Γ[Z]F ' lim−→
j

HomO(OX/IjZ ,F),

Γ[X\Z]F = lim−→
j

HomO(IjZ ,F).

Notice that

• Γ[Z]F is the subsheaf of ΓZF consisting of sections s such that, locally

on X, there exists j ≥ 0 such that IjZs = 0,

• there is a monomorphism Γ[Z]F�ΓZF ,

• in Definition 2.7.1, one may replace the defining ideal IZ with any
coherent ideal I such that supp(OX/I) = Z. Indeed, for such an ideal,
there exists locally an integer k such that IkZ ⊂ I ⊂ IZ ,

• the functors Γ[Z]( • ) and Γ[X\Z]( • ) are left exact,

• there is an exact sequence of sheaves

0 −→ Γ[Z]F −→ F −→ Γ[X\Z]F .(2.29)

We shall concentrate our study on the functor Γ[Z].

Proposition 2.7.2. Let Z1 and Z2 be two closed subsets of X. There is a
natural isomorphism

Γ[Z1]Γ[Z2]F ' Γ[Z1∩Z2]F .
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Proof. One has the chain of isomorphisms

Γ[Z1]Γ[Z2]F = lim−→
j1

HomO(OX/Ij1Z1
, lim−→
j2

HomO(OX/Ij2Z2
,F))

' lim−→
j1

lim−→
j2

HomO(OX/Ij1Z1
,HomO(OX/Ij2Z2

,F))

' lim−→
j1

lim−→
j2

HomO(OX/(Ij1Z1
+ Ij2Z2

),F)

' lim−→
j

HomO(OX/(IZ1 + IZ2)
j,F).

Here, we have used

(IZ1 + IZ2)
2j ⊂ IjZ1

+ IjZ2
⊂ (IZ1 + IZ2)

j

Since supp(IZ1 + IZ2) = Z1 ∩ Z2, the result follows from Lemma ??. q.e.d.

Let x ∈ X and let F ∈ Mod(OX). Denote by jx : {x} ↪→ X the inclusion.
One shall be aware that one uses the notation Fx for both the stalk of F at
x, an object of Mod(OX,x) and for the sheaf jx∗j

−1
x F , an object of Mod(OX).

Proposition 2.7.3. Let F be an OX-module and let x ∈ X. Then there is
a natural isomorphism (Γ[Z]F)x ' Γ[Z]Fx.

Proof. By the the coherence of OX/ImZ we have the isomorphisms

(HomO(OX/IjZ ,F))x ' HomOX,x((OX/I
j
Z)x,Fx)

' HomO(OX/IjZ ,Fx).

q.e.d.

Proposition 2.7.4. Let G be a coherent OX-module and let F be an OX-
module. There are natural isomorphisms

HomO(G,Γ[Z]F) ' Γ[Z]HomO(G,F)

' lim−→
j

HomO(G/IjZG,F).(2.30)

Proof. (i) Since G is coherent, the functor HomO(G, • ) commutes with fil-
trant inductive limits. Hence

HomO(G,Γ[Z]F) ' HomO(G, lim−→
j

HomO(OX/IjZ ,F))

' lim−→
j

HomO(G,HomO(OX/IjZ ,F))

' lim−→
j

HomO(OX/IjZ ,HomO(G,F)).
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(ii) The second isomorphism follows from

G ⊗O OX/I
j
Z ' G/I

j
ZG.

q.e.d.

The functor Γ[Z] for D-modules

Note that DX being flat over OX ,

DXIjZ ' DX ⊗O I
j
Z ,

DX/DXIjZ ' DX ⊗O OX/I
j
Z .

Hence, if M is a DX-module:

Γ[Z]M ' lim−→
j

HomD(DX/DXIjZ ,M).(2.31)

Proposition 2.7.5. Let M be a left DX-module. Then Γ[Z]M is naturally
endowed with a strucure of a left DX-module.

Proof. The proof decomposes into several steps.
(i) Let I be an ideal of OX . Then

In+mFlmDX ⊂ FlmDXIn.(2.32)

First, we treat the case m = 1. Let v ∈ Fl 1DX and let a1, . . . , an ∈ I. Then

a0 · · · anv = va0 · · · an −
n∑
i=0

[v, ai]a0 · · · âi · · · an ∈ F1In.

The inclusion (2.32) follows by induction. Indeed, FlmDX = Fl 1DXFlm−1DX ,
and we get

In+mFlmDX ' In+mFl 1DXFlm−1DX
⊂ Fl 1DXIn+m−1Flm−1DX
⊂ Fl 1DXFlm−1DXIn.

(ii) Let Z be a closed analytic subset. It follows that if P ∈ FmDX , then ·P
defines a morphism DXIn+m

Z

·P−→ DXInZ , hence a morphism

P · : HomD(DX/DXIj+mZ ,M) −→ HomD(DX/DXIjZ ,M).

It follows from (2.31) that P acts on Γ[Z]M.. q.e.d.
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Definition 2.7.6. We denote by J the full additive subcategory of DX
consisting of objects M such that Mx is OX,x-injective for all x ∈ X.

Lemma 2.7.7. Let Z be an closed analytic subset. The category J satisfies:

(i) for any M ∈ Mod(DX), there exists N ∈ J and a monomorphism
M�N ,

(ii) for any exact sequence 0 −→M′ −→M −→M′′ −→ 0 with M and M′ in
J , then M′′ ∈ J ,

(iii) for any exact sequence as above with M′ in J , the sequence 0 −→
Γ[Z]M′ −→ Γ[Z]M−→ Γ[Z]M′′ −→ 0 is exact,

(iv) for any M∈ J , Γ[Z]M∈ J .

Proof. (i)–(ii) are easy and left to the reader.
(iii) It is enough to check that this sequence is exact after applying the
functor ( • )x for x ∈ X. Indeed, the sequence 0 −→ M′

x −→ Mx −→ M′′
x −→ 0

is exact and the sequence obtained by applying the functor HomO(O/IjZ , • )
will remain exact since M′

x is OX,x-injective. Then the result follows from
Proposition 2.7.3.
(iv) By Proposition 2.7.3, it is enough to check that Γ[Z]Mx is OX,x-injective.
By classical results (see [We94, Ch. 2 § 3]) we are thus reduced to show that if
G ′ ⊂ G are coherentOX-modules, thenHomO(G,Γ[Z]M) −→ HomO(G ′,Γ[Z]M)
is an epimorphism. SinceMx is injective for all x ∈ X and G, G ′ are coherent,
the sequence

HomO(G/IjZG,M) −→ HomO(G ′/(G ′ ∩ IjZG),M) −→ 0

is exact. Hence, it is enough to prove the isomorphism

lim−→
j

HomO(G ′/IjZG
′,M)

∼−→ lim−→
j

HomO(G ′/(G ′ ∩ IjZG),M).

This follows from the Artin-Rees theorem (see Theorem 3.5.10) which asserts
that there locally exists r � 0 such that G ′ ∩ (Ij+rZ G) ⊂ IjZG ′. q.e.d.

We can define the right derived functor RΓ[Z] : Db(DX) −→ Db(DX). Using
the category J , we obtain

Proposition 2.7.8. Let F ∈ Db(OX).

(i) RΓ[Z1] ◦ RΓ[Z2] ' RΓ[Z1∩Z2],

(ii) if G is O-coherent, RHomO(G,RΓ[Z]F) ' RΓ[Z]RHomO(G,F).
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Proof. Remark first that it follows from Lemma 2.7.7 that if F ∈ Mod(DX)
and F −→ F• is a qis with F• ∈ C+(J ), then RΓ[Z]F ' Γ[Z]F• in Db(DX).
(i) By Proposition 2.7.2, it is enough to prove that the derived functor of
Γ[Z1]◦Γ[Z2] is the composition RΓ[Z1]◦RΓ[Z2]. This follows from Lemma 2.7.7 (iv).
(ii) We may assume that F ∈ J . In this case the formula reduce to the first
isomorphism in Proposition 2.7.4. q.e.d.

Proposition 2.7.9. Let N ,M ∈ Db(DX). Then there is a natural isomor-

phism RΓ[Z](N
D
⊗M) ' (RΓ[Z]N )

L
⊗OM in Db(DX).

Proof. (i) First, we construct the morphism. One proves the isomorphism

RΓ[Z](RΓ[Z]N
D
⊗M) ' RΓ[Z]N

D
⊗M.

(We shall not give the proof here.) Hence, the morphism RΓ[Z]N
D
⊗M −→

N
D
⊗M factorizes uniquely through RΓ[Z]N

D
⊗M −→ RΓ[Z](N

D
⊗M).

(ii) Then, we prove the isomorphism in Db(OX), that is, for the functor
L
⊗O.

By dévissage, we reduce to the case where N and M belong to Mod(OX).
Then, we may reduce to the case where N and M are coherent. Set M∗ =
RHomO(M,O). In this case,

(RΓ[Z]N )
L
⊗OM ' RHomO(M∗,RΓ[Z]N )

' RΓ[Z]RHomO(M∗,N )

' RΓ[Z](N
L
⊗OM).

(iii) The morphism in (i) is an isomorphism by (ii). q.e.d.

The DX-module BZ|X
Lemma 2.7.10. Let Z be a closed analytic subset of X. Then

Hk(RΓ[Z]OX) ' lim−→
j

ExtkO(OX/IjZ ,OX).(2.33)

Proof. Let F• be a resolution of OX with F j ∈ J . Then the left hand side
of (2.33) is the k-th cohomology object of lim−→

j

HomO(OX ,F•). Sincve the

inductive limit is filtrant, it commutes with Hk. Moreover,

Hk(HomO(OX/IjZ ,F
•)) ' ExtkO(OX/IjZ ,OX),

since the germs of the F j’s are OX,x-injective and OX/IjZ is OX-coherent.
q.e.d.
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Recall that if Z is a closed complex analytic hypersurface of X and j : (X \
Z) ↪→ X is the open embedding, the sheaf j∗j

−1OX describes the sheaf of
holomorphic functions on X \Z, with essential singularities on Z. It contains
the subsheaf OX [∗Z] of meromorphic functions with poles in Z. If {f = 0}
is an equation of Z (such an f exists locally), then OX [∗Z] ' OX [1/f ].

Proposition 2.7.11. (i) Let Z be a closed analytic subset of codimension
≥ l. Then Hj(RΓ[Z]OX) = 0 for j < l.

(ii) If Z is a hypersurface, then Hj(RΓ[Z]OX) = 0 for j 6= 1 and if {f = 0}
is an equation of Z then H1(RΓ[Z]OX) ' OX [1/f ]/OX .

Proof. (i) using (2.33), this is a particular case of Theorem 3.5.6.
(ii) For j > 0, let us apply the left exact functor HomO( • ,OX) to the exact

sequence 0 −→ OX
fj−→ OX −→ OX/IjZ −→ 0. We get the sequence

0 −→ OX
fj−→ OX −→ Ext1O(OX/IjZ ,OX) −→ 0.

Hence, H1(RΓ[Z]OX) ' lim−→
j

OX/f jOX . The isomorphism lim−→
j

OX/f jOX
∼−→

OX [1/f ]/OX associates 1/f j ∈ OX [1/f ]/OX to the image of 1 ∈ OX in
OX/f jOX . q.e.d.

Recall thatHd
Z( • ) is the d-th derived functor of the functor ΓZ( • ) : Mod(CX) −→

Mod(CX).

Definition 2.7.12. When Z is a closed subset of pure codimension d, one
sets

BZ|X = Hd(RΓ[Z]OX), B∞Z|X = Hd
Z(OX).

Note that

BX|X = OX .

Also note that the morphism of functors RΓ[Z]( • ) −→ ΓZ( • ) defines the mor-
phism RΓ[Z]( • ) −→ RΓZ( • ) and in particular, the morphism

BZ|X −→ B∞Z|X .

Recall that a closed analytic subvariety of codimension d is called a local
complete intersection if locally on X there exists d holomorphic functions
f1, . . . , fd such that, setting Zj = {x ∈ X; fj = 0}, Z =

⋂d
j Zj.



56 CHAPTER 2. OPERATIONS ON D-MODULES

Proposition 2.7.13. Assume Z =
⋂d
j Zj is a local complete intersection of

codimension d. Then Hj(RΓ[Z]OX) = 0 for j 6= d and

BZ|X ' BZ1|X
D
⊗· · ·

D
⊗BZd|X .(2.34)

Proof. Since BZ|X is concentrated in degree ≥ 0 and the right-hand side of
(2.34) is concentrated in degree ≤ 0, it is enough to prove this formula. One
has

RΓ[Z]OX [d] ' RΓ[Z1]OX [1]
D
⊗· · ·

D
⊗RΓ[Zd]OX [1].(2.35)

Since each RΓ[Zi]OX [1] is concentrated in degree 0, the result follows. q.e.d.

Corollary 2.7.14. Let Z = {fj = 0; j = 1, . . . , d} be a complete intersection.
Then

BZ|X ' OX [1/f1 . . . fd]/
∑
i

OX [1/f1 . . . f̂i . . . fd].(2.36)

Corollary 2.7.15. Let x = (x′, x′′) be a local coordinate system on X, with
x′ = (x1, . . . , xd). Assume Z = {x′ = 0}. Then

BZ|X ' DX/DX(x′, ∂x′′).

Corollary 2.7.16. Let Z be a closed smooth submanifold of X. Then BZ|X
is a coherent DX-module and its characteristic variety is T ∗ZX, the conormal
bundle to Z in X.

Notation 2.7.17. Let f be a non zero section of OX (on a connected open
set) and let Z = {f = 0}. One denotes by δ(f) the generator of BZ|X '
OX [∗Z]/OX associated with 1/f .

Let Z1 and Z2 be hypersurfaces and assume Z1 ∩ Z2 has codimension 2.
Consider the diagram below in which all morphisms are isomorphisms:

BZ1|X ⊗O BZ2|X
//

��

BZ1∩Z2|X

BZ2|X ⊗O BZ1|X
// BZ1∩Z2|X

Note that δ(f1)⊗ δ(f2) is a generator of BZ1∩Z2|X and

δ(f1)⊗ δ(f2) = −δ(f2)⊗ δ(f1).(2.37)
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Remark 2.7.18. One proves similarly that Z =
⋂d
j Zj being a local complete

intersection of codimension d, then Hj
Z(OX) = 0 for j 6= d and

B∞Z|X ' B∞Z1|X
D
⊗· · ·

D
⊗B∞Zd|X .(2.38)

Proposition 2.7.19. Let Z be a complete intersection of codimension d and
assume IZ = OXf1 + · · ·+OXfd. Then the section

δ(f1)⊗ · · · ⊗ δ(fd)⊗ df1 ∧ · · · ∧ dfd ∈ BZ|X ⊗O Ωd
X

does not depend on the choice of the sequence (f1, . . . , fd).

Proof. Let (f ′1, . . . , f
′
d) be another sequence defining the ideal IZ . There

exists a section A ∈ Gl(OX , d) which interchanges these two sequences. The
group Gl(OX , d) is generated by the transformations

(i) (f1, . . . , fd) 7→ (af1, . . . , fd), with a ∈ O×X ,

(ii) (f1, . . . , fi, fi+1, . . . fd) 7→ (f1, . . . , fi+1, fi, . . . , fd)

(iii) (f1, . . . , fd) 7→ (f1, f2 + bf1, . . . , fd)

Then, it is enough to notice that

1/af1 · 1/f2d(af1) ∧ df2 = 1/f1 · 1/f2df1 ∧ df2,

1/f2 · 1/f1df2 ∧ df1 = 1/f1 · 1/f2df1 ∧ df2

1/f1 · 1/(f2 + bf1)df1 ∧ d(f2 + bf1) = 1/f1 · 1/f2df1 ∧ df2.

q.e.d.

Definition 2.7.20. Assume that Z is smooth of codimension d. We shall
denote by δ(Z)dx the canonical section of BZ|X⊗OΩd

X constructed in Propo-
sition 2.7.19. One calls it the fundamental class of Z in X.

Note that δ(Z)dx belongs to
∧dLZ where LZ denotes the subsheaf of Ω1

X

consisting of sections with values in the conormal bundle T ∗ZX.
Denote by ∆ the diagonal in X×X and by q1 and q2 the first and second

projections X ×X −→ X. The projection q2 allows us to identify T ∗∆X ×X
with T ∗X. There is a natural DX ⊗Dop

X -linear morphism

DX −→ B∆|X×X ⊗q−1
2 O

q−1
2 ΩX ,(2.39)

given by 1 7→ δ(∆)dx

Proposition 2.7.21. The morphism (2.39) is an isomorphism.

Proof. We may choose a local coordinate system (x) on X and denote by (y)
a copy of this system. Then (x, y) is a local coordinate system on X × X.
Replace this coordinate system by the new system (u, v) = (x + y, x − y).
Then B∆|X×X is isomorphic to DX×X/(v, ∂u) and the result follows. q.e.d.
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Exercises to Chapter 2

Exercise 2.1. Let Z1 and Z2 be two smooth submanifolds of X and assume
they are transversal. Calculate
(i) RHomD(BZ1|X ,BZ2|X),

(ii) BZ1|X
D
⊗BZ2|X .

Exercise 2.2. Let f : X −→ Y be a morphism of complex manifolds and let
Z be a smooth closed submanifold of Y . Assume that f is transversal to Z,
that is, f is non characteristic for T ∗ZY , or, equivalently, for BZ|Y . Prove that
S := f−1Z is a smooth closed submanifold of X and that f−1

D BZ|Y ' BS|X .

Exercise 2.3. Denote by j : Z ↪→ X the closed embedding of a smooth
submanifold Z of X.
(i) Prove that BZ|X ' jD! OZ .
(ii) Calculate RHomD(BZ|X ,DX) for a smooth submanifold Z of X.

Exercise 2.4. Let M ∈ Modcoh(DX) and assume that char(M) ⊂ T ∗XX.
Prove that locally on X, there is an isomorphism of DX-modules M ' ONX
for some integer N . (Hint: see [Ka03, Prop. 4.43]).

Exercise 2.5. Let f : X −→ Y be a morphism of complex manifolds. Let
M ∈ Db(Dop

X ) and let N ∈ Db(DY ). Prove that there is a natural isomor-
phism in Db(CY )

Rf !(M
L
⊗Df

−1
D N ) ' fD! M

L
⊗DN .

Exercise 2.6. Let X and Y be two complex manifolds and denote by qi the
i-th projection defined on X × Y and by pi the i-th projection defined on
T ∗X × T ∗Y (i = 1, 2). Let M∈ Db(DX) and L ∈ Db(Dop

X×Y ).
(i) Prove the isomorphism

L ◦M := q2
D
! (L

D
⊗q1

−1
D M) ' Rq2!(L

L
⊗Dq

−1
1 M).

(ii) Assume now that M ∈ Db
gd(DX), L ∈ Db

gd(Dop
X×Y ) and that p2 is proper

on p−1
1 char(M)∩ char(L). Prove that p−1

1 char(M)∩ char(L) ⊂ T ∗X×YX × Y
and that L ◦MM ∈ Db

gd(Dop
Y ).

(iii) Show that the construction of the inverse or direct image of a D-module
can be obtained by this procedure.



Chapter 3

Appendix

In this Appendix, we collect basic and classical results of various fields of
Mathematics which are of constant use in D-modules theory.

We give a few proofs of results that, although elementary, are not always
well-known. Here, K denotes a commutative ring.

3.1 Symplectic geometry

The theory developed in this section works for real vector spaces and real
manifolds, as well as for complex vector spaces and complex manifolds.

Linear symplectic geometry

A finite dimensional symplectic vector space (E, θ) is a finite dimensional
vector space E endowed with a non degnerate skew symmetric 2-form θ. In
such a case E has even dimension.

Definition 3.1.1. A symplectic basis on a symplectic vector space (E, θ)
is a basis (e; f) = (e1, . . . , en; f1, . . . , fn) such that denoting by (e∗; f ∗) =
(e∗1, . . . , e

∗
n; f ∗1 , . . . , f

∗
n) the dual basis, on E∗, one has

θ =
n∑
i=1

f ∗i ∧ e∗i .

One proves easily that any finite dimensional symplectic vector space
(E, θ) admits a symplectic basis.

Example 3.1.2. Let V be a finite dimensional vector space. The space E =
V ⊕V ∗ is endowed with a symplectic structure, by setting for (x; ξ) ∈ V ⊕V ∗:

θ((x; ξ)(x′; ξ′)) = 〈x′, ξ〉 − 〈x, ξ′〉.

59
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Since θ is non degenerate, it defines an isomorphism

H : E∗
∼−→ E

〈ξ, v〉 = θ(v,H(ξ)), v ∈ E, ξ ∈ E∗.

The isomorphism H is called the Hamiltonian isomorphism. If ξ ∈ E∗, one
also writes Hξ instead of H(ξ) and calls Hξ the Hamiltonian vector of ξ.

The Poisson bracket. denoted {·, ·}, is the symplectic form on E∗, the
image of θ by H. It is thus given by:

{ξ, η} = θ(H−1(ξ), H−1(η)).

If E is endowed with a symplectic basis and one calculates the image by
H of the dual symplectic basis, one finds

H(e∗i ) = −fi, H(f ∗i ) = ei.(3.1)

Let ρ be a linear subspace of E. One sets

ρ⊥ = {v ∈ E; θ(v, ρ) = 0.

Note that

ρ⊥⊥ = ρ, (ρ1 + ρ2)⊥ = ρ⊥1 ∩ ρ⊥2 , (ρ1 ∩ ρ2)⊥ = ρ⊥1 + ρ⊥2 .

Definition 3.1.3. A linear subspace ρ of E is called

(i) isotropic if ρ ⊂ ρ⊥,

(ii) involutive (or else, co-isotropic) if ρ⊥ ⊂ ρ,

(iii) Lagrangian if ρ = ρ⊥.

Note that if dimE = 2n and ρ is isotropic (resp. involutive, resp. La-
grangian), then dim ρ ≤ n (resp. dim ρ ≥ n, resp. dim ρ = n). A line is
always isotropic and a hyperplane is always involutive.

Symplectic manifolds

A real or complex symplectic manifold (X, θ) is a manifold X endowed with
a closed 2-form θ such that θn never vanishes.

At each p ∈ T ∗X, the 2-form θX(p) is a bilinear skew symmetric non de-
generate form on TpT

∗X, hence induces a linear isomorphism H(p) : T ∗p X '
TpX. Hence θ defines an isomorphism of vector bundles

H : T ∗X ' T X,

or, equivalenly, a sheaf isomorphism

H : ΘX ' ΩX.(3.2)
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Definition 3.1.4. (i) Let f be a section of the sheaf OX, one sets

Hf = H(df),

the section of ΘX associated with df by the isomorphism (3.2). One
calls Hf the Hamiltonian vector field of f .

(ii) Given two sections f and g of OX, one defines their Poisson bracket
{f, g} as

{f, g} = Hf (g).(3.3)

The Poisson bracket satisfies the Jacobi identities:
{f, g} = −{g, f}
{f, hg} = h{f, g}+ g{f, h}
{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

(3.4)

Moreover,

[Hf , Hg] = H{f,g}.(3.5)

Definition 3.1.5. A symplectic local coordinate system (x; ξ) is a local co-
ordinate system (x1, . . . , xn; ξ1 . . . , ξn) on X such that

θ =
∑
i

dξi ∧ dxi.(3.6)

The Darboux Theorem asserts that a symplectic local coordinate system
always locally exists.

In a symplectic local coordinate system, one finds, using (3.1):

Hxi = −∂ξi , Hξi = ∂xi(3.7)

Hf =
n∑
i=1

(∂f
∂ξi

∂

∂xi
− ∂f

∂xi

∂

∂ξi

)
(3.8)

{f, g} =
n∑
i=1

(∂f
∂ξi

∂g

∂xi
− ∂f

∂xi

∂g

∂ξi

)
.(3.9)

If S is a locally closed analytic subvariety of a smooth complex manifold X,
one denotes by Sreg the manifold given by the non singular points of S, and
by IS the defining sheaf of ideals of S.

Definition 3.1.6. Let V be a locally closed analytic subset of X. One says
that V isotropic (resp. involutive, resp. Lagrangian) if for each p ∈ Vreg, the
vector space TpVreg is isotropic (resp. involutive, resp. Lagrangian) in TpX.



62 CHAPTER 3. APPENDIX

One can prove that V is involutive if and only if its symbol ideal IV is
stable by the Poisson product, that is, if for any f, g vanishing on V , the
function {f, g} also vanishes on V . If V is involutive, then all irreductible
components of V have dimension at least n.

If V is smooth, then V is involutive if and only if for any function f
which vanishes on V , then Hf is tangent to V . Indeed, TV ⊥ is generated by
the vector fields Hf , with f |V = 0. By (3.5), it follows that the sub-bundle
TV ⊥ of TV is table by brackets, that is, satisfies the Frobenius integrability
conditions. Therefore there exists a foliation of V , and the leaves of this
foliations are called the “bicharacteristic leaves” of V .

An involutive manifold has dimension ≥ n. A hypersurface is always
involutive.

One proves that V is isotropic if and only if, for any manifold S and any
morphism f : S −→ V , the 2-form f ∗θX vanishes. If V is isotropic, then all
irreductible components of V have dimension at most n. A curve is always
isotropic.

If V is Lagrangian, then it is pure dimensional.

Realification of complex cotangent bundles

For a complex manifold X we denote by XR the real underlying submanifold
to X. When there is no risk of confusion, we simply write X instead of XR.

We denote by X the complex conjugate manifold to X. (Recall that
X = X as a topological space, but the sheaf of holomorphic functions on X
is the sheaf of anti-holomorphic functions on X.) Then, identifying X with
the diagonal of X ×X, the complex manifold X ×X is a complexification of
XR.

Denote by dαX the symplectic form on T ∗X and by dαXR the symplectic
form on T ∗XR. Then

dαXR = 2< dαX .

Homogeneous symplectic manifolds

A homogeneous symplectic manifold is the data of a symplectic manifold
(X, θ) together with a vector field v on X such that

Lvθ = θ.(3.10)

Define the 1-form ω by

ω = ivθ.(3.11)
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Since Lv = d ◦ iv + iv ◦ d, we get

dω = θ, H(ω) = −v.(3.12)

In such a case one calls X a homogeneous symplectic manifold.

Definition 3.1.7. A homogeneous symplectic local coordinate system (x; ξ)
is a local coordinate system (x1, . . . , xn; ξ1 . . . , ξn) such that

ω =
∑
i

ξidxi.(3.13)

It follows from Darboux’s theorem that such a local coordinate system
always locally exists.

Cotangent bundle

Let X be a manifold and let E −→ X be a real vector bundle over X. Then
E is endowed with an action of R× and in particular, an action of R+. One
says that a subset Λ ⊂ E is R+ conic if it is invariant by this action. One
defines similarly the C×-conic subsets of a complex vector bundle.

If X is a manifold, we denote by τ : TX −→ X and π : T ∗X −→ X the
tangent and cotangent bundles, respectively.

Let f : X −→ Y be a morphism of manifolds. To f are associated the
tangent morphisms

TX
f ′−→ X ×Y TY

fτ−→ TY.(3.14)

Taking the dual bundles, we find the canonical morphisms

T ∗X

π

��

X ×Y T ∗Y
π
��

fdoo fπ // T ∗Y

π

��
X X

f // Y.

(3.15)

The projection π : T ∗X −→ X defines ππ : T ∗X ×X T ∗X −→ T ∗T ∗X. By
composing with the diagonal embedding T ∗X ↪→ T ∗X ×X T ∗X, we find the
map

T ∗X −→ T ∗T ∗X,

which is a section of the projection T ∗T ∗X −→ T ∗X. We have thus con-
structed a canonical 1-form ωX on T ∗X.
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Let x = (x1, . . . , xn) a local coordinate system on X. It defines canoni-
cally a local coordinate system on T ∗X,

(x; ξ) = (x1, . . . , xn; ξ1, . . . , ξn)(3.16)

and the 1-form ωX associates (x; ξ; ; ξ; 0) to (x; ξ) ∈ T ∗X. Therefore

ωX =
n∑
i=1

ξidxi,

H(ω) =
n∑
i=1

−ξi
∂

∂ξi
.

The vector field H(ω) is called the Euler vector field and denoted euT ∗X .
It is the vector field associated with the action of C× (in case of complex
manifolds, R× in case of real manifolds) on the vector bundle T ∗X.

Set θX = dωX . In local coordinates,

θX =
n∑
i=1

dξi ∧ dxi.

Hence, (T ∗X, θ, euT ∗X) is a homogeneous symplectic manifold.

Definition 3.1.8. (i) One denotes by T ∗XX the zero-section of the vector
bundle T ∗X.

(ii) Consider a morphism f : X −→ Y of manifolds. The conormal bundle
to X in Y is the sub-vector bundle of X ×Y T ∗Y given by f−1

d (T ∗XX).

When Z is a smooth submanifold of X, the conormal bundle T ∗ZX is
identified with a sub-bundle of T ∗X. Note that the zero-section T ∗X X is
also the conormal bundle to X in X.

Let Z be a smooth submanifold to X. Then T ∗ZX is a Lagrangian sub-
manifold of T ∗X and Z ×X T ∗X is an involutive submanifold.

Example 3.1.9. Assume we have a local coordinate system (x) = (x′, x′′)
on X, with (x′) = (x1, . . . , xp) and (x′′) = (xp+1, . . . , xn). Let (x; ξ) =
(x′, x′′; ξ′, ξ′′) denote the associate coordinates on T ∗X and let Z = {x ∈
X;x′ = 0}. Then

T ∗ZX = {(x; ξ) ∈ T ∗X;x′ = 0, ξ′′ = 0},
Z ×X T ∗X = {(x; ξ) ∈ T ∗X;x′ = 0}.
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Non characteric morphisms

Definition 3.1.10. Consider a morphism f : X −→ Y of real manifolds and
let Λ ⊂ T ∗Y be a closed R+-conic subset. One says that f is non-caracteristic
for Λ (or else, Λ is non-caracteristic for f , or f and Λ are transversal) if, with
the notations in (3.15),

f−1
π (Λ) ∩ T ∗XY ⊂ X ×Y T ∗Y Y.

Lemma 3.1.11. (i) Let Λ be a closed R+-conic subset of T ∗Y . Then a
morphism f : X −→ Y is non characteristic for Λ if and only if fd : X×Y
T ∗Y −→ T ∗X is proper on f−1

π (Λ).

(ii) In particular, if f is non characteristic for Λ, then fdf
−1
π (Λ) is closed

and R+-conic in T ∗X.

(iii) If f is a morphism of complex manifolds and Λ is a complex analytic
C×-conic subset, then fd is finite on f−1

π (Λ) and fdf
−1
π (Λ) is a complex

analytic C×-conic subset of T ∗X.

Proof. The first assertion follows from the fact that if λ is a closed cone in a
vector space E and u : E −→ F is a linear map, then u|λ is proper if and only
if λ ∩ u−1(0) ⊂ {0}, and the others are easily deduced. q.e.d.

Example 3.1.12. Let Z be a closed and smooth submanifold of Y . Then f
is non-characteristic for T ∗ZY if and only if f is transversal to Z.

Lemma 3.1.13. Consider morphisms of real manifolds X
f−→ Y

g−→ Z and
set h = g ◦ f . Let Λ be a closed R+-conic subset of T ∗Z.

(i) Assume that g is non characteristic for Λ and f is non characteristic
for gdg

−1
π (Λ). Then h is non characteristic for Λ.

(ii) Assume that h is non characteristic for Λ. Then g is non characteristic
for Λ on a neighborhhod of f(X) and f is non characteristic for gdg

−1
π Λ.

Proof. Set Λ0 = g−1
π Λ. Consider the diagram in which the square labelled �

is Cartesian:

T ∗X X ×Y T ∗Yfd
oo

fπ
��

X ×Z T ∗Zϕ
oo

ψ
��

�

T ∗Y Y ×Z T ∗Z ⊃ Λ0gd
oo

gπ
��

T ∗Z ⊃ Λ.

(3.17)
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Note that

(g ◦ f)d = fd ◦ ϕ, (g ◦ f)π = gπ ◦ ψ,
ψ−1(T ∗YZ) ⊂ T ∗XZ, ϕ−1(T ∗XY ) = T ∗XZ,

Λ0 := g−1
π (Λ) f−1

π gd(Λ0) = ϕψ−1(Λ0).

It follows that

(g ◦ f)d(g ◦ f)−1
π (Λ) = fdf

−1
π gdg

−1
π (Λ).

(i) Since f is non characteristic for gdg
−1
π (Λ) and f−1

π gdg
−1
π (Λ) = ϕψ−1g−1

π (Λ),
we get

f−1
d (T ∗XX) ∩ ϕψ−1g−1

π (Λ) ⊂ X ×Y T ∗Y Y.

Hence

ϕ−1f−1
d (T ∗XX) ∩ ψ−1g−1

π (Λ) = (g ◦ f)−1
d (T ∗XX) ∩ (g ◦ f)−1

π (Λ)

⊂ X ×Z T ∗ZZ.

(ii)–(a) By the hypothesis,

ψ−1(g−1
π (Λ) ∩ T ∗YZ) ⊂ (g ◦ f)−1

π (Λ) ∩ T ∗XZ ⊂ X ×Z T ∗ZZ.

Therefore, g is non characteristic for Λ on a neighborhood of f(X).
(ii)–(b) We have

f−1
π (gdg

−1
π (Λ)) ∩ T ∗XY = ϕψ−1g−1

π (Λ) ∩ T ∗XY
= ϕ((g ◦ f)−1

π (Λ) ∩ T ∗XZ)

⊂ ϕ(X ×Z T ∗ZZ) ⊂ X ×Y T ∗Y Y.

(Note that we have used the equality ϕ(A) ∩B = ϕ(A ∩ ϕ−1B).) q.e.d.

3.2 Coherent sheaves

Let X be a topological space and let R be a K-algebra (i.e., a sheaf of
K-algebras) on X. Let us recall a few classical definitions.

• An R-module M is locally finitely generated if there locally exists an
exact sequence

L0 −→M −→ 0(3.18)

such that L0 is locally free of finite rank over R.
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• An R-module M is locally of finite presentation if there locally exists
an exact sequence

L1 −→ L0 −→M −→ 0(3.19)

such that L1 and L0 are locally free of finite rank over R. This is
equivalent to saying that there locally exists an exact sequence

0 −→ K u−→ N −→M −→ 0(3.20)

where N is locally free of finite rank and K is locally finitely gener-
ated. This is also equivalent to saying that there locally exists an exact
sequence

K −→ N −→M −→ 0(3.21)

where N is locally of finite presentation and K is locally finitely gen-
erated.

• AnR-moduleM is pseudo-coherent if for any locally defined morphism
u : N −→ M with N of finite presentation, Keru is locally finitely
generated. This is also equivalent to saying that any locally defined R-
submodule ofM is locally of finite presentation as soon as it is locally
finitely generated.

• An R-module M is coherent if it is locally finitely generated and
pseudo-coherent. A ring is a coherent ring if it is so as a module
over itself. One denotes by Modcoh(R) the full additive subcategory of
Mod(R) consisting of coherent modules. Note that Modcoh(R) is a full
abelian subcategory of Mod(R), stable by extension, and the natural
functor Modcoh(R) −→ Mod(R) is exact (see [?, Exe. 8.23]).

• An R-module M is Noetherian (see [?, Def. A.7]) if it is coherent,
Mx is a Noetherian Rx-module for any x ∈ X, and for any open
subset U ⊂ X, any filtrant family of coherent submodules of M|U is
locally stationary. (This means that given a family {Mi}i∈I of coherent
submodules ofM|U indexed by a filtrant ordered set I, withMi ⊂Mj

for i ≤ j, there locally exists i0 ∈ I such that Mi0
∼−→ Mj for any

j ≥ i0.) A ring is a Noetherian ring if it is so as a left module over
itself.

Let M and N be two R-modules. Consider the natural morphism

ϕx : (HomR(M,N ))x −→ HomRx(Mx,Nx).
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If M is locally finitely generated (resp. of finite presentation), then ϕx is
injective (resp. bijective). By choosing N =M, one gets that ifM is locally
of finite presentation and Mx = 0, then there exists an open neighborhood
U of x such that M|U = 0.

Example 3.2.1. Let U be an open subset of X with U 6= U . Then the sheaf
RU is not of finite presentation since, choosing x ∈ U \ U , (RU)x ' 0.

Proposition 3.2.2. If R is Noetherian, then all coherent R-modules are
Noetherian.

Proposition 3.2.3. Let X = Y × Z be a product of topological spaces and
let f : X −→ Y be the projection. Let R be a sheaf of KY -algebras on Y .

(i) If R is coherent, then f−1R is coherent.

(ii) If R is Noetherian and moreover Z is a topological manifold, then f−1R
is Noetherian.

3.3 Filtered sheaves

As above, K denotes a commutative unitary ring and X a topological space.

Definition 3.3.1. (i) A graded sheaf grM on X is a sheaf of K-modules
together with a familly gr jM, j ∈ Z of subsheaves satisfying :

grM'
⊕
j

gr jM.

(ii) The shifted graduation gr [p]M is given by gr
[p]
j M = gr p+jM.

(iii) A morphism of graded sheaves gr f : grM −→ grN is a morphism of
sheaves such that gr f(gr jM) ⊂ gr jN for all j ∈ Z.

(iv) A graded ring grR on X is a graded sheaf of rings satisfying: 1 ∈ gr 0R
and gr iR · gr jR ⊂ gr i+jR for all i, j.

(v) A graded grR-module grM is a graded sheaf of grR-modules satisfy-
ing:

gr iR · gr jM⊂ gr i+jM for all i, j.

(vi) We denote by Modgr(grR) the abelian category of graded grR-modules.
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Definition 3.3.2. (i) A filtered sheaf FlM on X is a sheaf M of K-
modules together with a familly Fl jM, j ∈ Z of subsheaves satisfying
:

Fl jM⊂ Fl j+1M, lim−→
j

Fl jM =M.

One calls M the underlying sheaf.

(ii) The shifted filtration Fl [p]M is given by Fl
[p]
j M = Fl p+jM.

(iii) A morphism of filtered sheaves Fl f : FlM −→ FlN is a morphism of
sheaves f :M−→ N such that f(Fl jM) ⊂ Fl jN for all m.

(iv) The graded sheaf grM associated to FlM is the sheaf
⊕

j gr jM, where
gr jM = Fl jM/Fl j−1M. If Fl f : FlM−→ FlN is a filtered morphism,
one denotes by gr f : grM−→ grN the associated morphism of graded
sheaves.

(v) One denote by σj : Fl jM −→ gr jM the canonical morphism and calls
it the“symbol of order j” morphism. One denotes by σ : FlM−→ grM
the morphism deduced from the σj and calls it the“principal symbol”
morphism. (One shall be aware that σj is an additive morphism, con-
trarily to σ.)

(vi) A filtered ring FlR on X is a filtered sheaf of rings satisfying: 1 ∈ Fl 0R
and Fl iR · Fl jR ⊂ Fl i+jR for all i, j.

(vii) A filtered R-module FlM, or equivalently an FlR-module, is an R-
module endowed with a filtration satisfying: Fl iR · Fl jM⊂ Fl i+jM.

Consider an exact sequence of sheaves

0 −→M′ f−→M g−→M′′ −→ 0

and assume thatM is endowed with a filtration FlM. The induced filtration
onM′ is given by Fl jM′ = f−1(Fl jM). The image filtration onM′′ is given
by Fl jM′′ = g(Fl jM).

Let us denote by Modfil(kX) the category of filtered sheaves. Clearly, the
category Modfil(kX) is additive and admits kernels and cokernels.

Remark 3.3.3. One shall be aware that the category Modfil(kX) is not
abelian, even when X = pt. Indeed, consider a filtered K-module FlM and
the identity morhism u : FlM −→ Fl [1]M . Its kernel and cokernel are zero,
although this morphism is not an isomorphism in general.
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Here, we shall assume that the filtration is positive, that is,

FlmR = 0 for m� 0.(3.22)

Definition 3.3.4. Let FlR be a filtered ring and M an R-module.

(i) A filtration FlM on M is locally finite free if it is locally isomorphic
to a finite direct sum of Fl [i]R.

(ii) A filtration FlM on M is locally finitely generated if it is locally the
image of a finite free filtration.

(iii) One defines similarly the notion of a filtration locally of finite presen-
tation.

(iv) A locally finitely generated filtration is called a good filtration.

If M�N is an epimorphism and M is endowed with a good filtration,
then the image filtration on N is good. Note that ifM is a finitely generated
R-module, then M may be endowed with a good filtration. Namely, if
Rm�M is an epimorphism, one endows M with the image filtration.

We shall give conditions in order that the induced filtration on a submod-
ule is good.

Recall that if R is a sheaf of rings, then R[T ] is the sheaf of rings asso-
ciated with the presheaf R⊗k k[T ].

Theorem 3.3.5. Let R be a filtered ring. Assume

(i) gr 0R and grR are Noetherian sheaves of rings,

(ii) all gr iR are locally finitely generated over gr 0R.

Then the sheaves R and R[T ] are Noetherian.

Corollary 3.3.6. We make the hypotheses of Theorem 3.3.5.

(i) Let FlM be an FlR-module with FlmM = 0 for m << 0 and assume
that grM is locally finitely generated (resp. coherent). Then M is
locally finitely generated (resp. coherent).

(ii) LetM be a coherent R-module endowed with a good filtration FlM and
let N be a coherent submodule. Then the induced filtration FlN on N
is good.

(iii) Let M be a coherent R-module endowed with a good filtration FlM.
Then grM is a coherent grR-module.
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3.4 Almost commutative filtered rings

In this section, for simplicity, we shall not consider sheaves of filtered rings,
but simply filtered rings.

If FlA is a filtered ring with Fl iA = 0 for i << 0 and a ∈ A, the order
of a, denoted ord(a) is the smallest integer m such that a ∈ FlmA.

Poisson bracket

From now on and until the end of this section, we shall assume that

[FlmA,Fl lA] ⊂ Flm+l−1A.(3.23)

Hence, for any a, b ∈ FlA one has:

ord[a, b] ≤ ord(a) + ord(b)− 1.(3.24)

Clearly, condition (3.23) is equivalent to the fact that grA is commutative.
One defines a Poisson bracket on grA by setting for homogeneous element
ām and āl of order m and l respectively:

{ām, āl} = σm+l−1([am, al]),(3.25)

where am ∈ FlmA, al ∈ Fl lA and ām and āl are the principal symbols of am
and al, respectively. Clearly, the right hand side of (3.25) does not depend
on the choice of am and al. The relations

[f, g] = −[g, f ]
[f, hg] = h[f, g] + g[f, h]
[[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0

(3.26)

tell us that the bracket { • , • } satisfies the Jacobi identities (3.4).

Definition 3.4.1. A graded ideal gr I of grA is involutive if it is stable by
the Poisson bracket, that is, a, b ∈ gr I implies {a, b} ∈ gr I.

Additivity

Recall that an additive semi-group S is a set endowed with an associative,
commutative law S × S −→ S, (a, b) 7→ a+ b and a zero element 0, such that
0 + a = a for all a.
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Examples 3.4.2. (i) If S is a set and S = P(S) is the set of subsets of S,
then the map S × S −→ S, (a, b) 7→ a ∪ b makes S an additive semi-group.
The zero element is the empty set.
(ii) Let B be a commutative ring and let S denote the family of its ideals.
Then the map S × S −→ S, (I, J) 7→ I · J makes S an additive semi-group.
The zero element is B.

Definition 3.4.3. Let C be an abelian category

(i) The Grothendieck group K(C) of C is the additive group generated by
the isomorphy classes [X] of objects of C wih relations [X] = [X ′]+[X ′′]
if there exists an exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0.

(ii) Let C ′ a full additive subcategory of C stable by isomorphisms in C. One
denotes by K(C ′) the semigroup of K(C) of elements [X] with X ∈ C ′.

(iii) Let χ : Ob(C ′) −→ S a function. One says that χ is additive if for any
exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in C, with X ′, X,X ′′ in C ′,
one has

χ(X) = χ(X ′) + χ(X ′′).(3.27)

Clearly, an additive function χ as above defines an additive function χ :
K(C ′) −→ S.

Let FlA be a filtered ring with grA commutative. We denote by Modgr
f (grA)

the full additive subcategory of the abelian category Modgr(grA) consisting
of finitely generated graded modules.

Theorem 3.4.4. Let χ : Modgr
f (grA) −→ S be an additive function. We

assume that χ is invariant by the shift functors [i]. Let M be an A-module
of finite type. Let us endow M with a finite filtration FlM . Then χ(grM)
does not depend on the choice of the finite filtration.

Proof. (i) Let FlM and Fl ′M be two finite filtrations on M . There exists
an n0 ∈ N such that Fl ′iM ⊂ Fl i+n0M for all i. Replacing FlM by Fl [n0]M ,
we may assume from the beginning that

Fl ′iM ⊂ Fl iM ⊂ Fl ′i+n0
M for all i.(3.28)

We shall argue by induction on n0. If n0 = 0 the result is clear.
(ii) Assume n0 = 1. Consider the exact sequences

0 −→ ⊕iFl ′iM/Fl i−1M −→ ⊕iFl iM/Fl i−1M −→ ⊕iFl iM/Fl ′iM −→ 0,

0 −→ ⊕iFl i−1M/Fl ′i−1M −→ ⊕iFl ′iM/Fl ′i−1M −→ ⊕iFl ′iM/Fl i−1M −→ 0.
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Set grL′ = ⊕iFl ′iM/Fl i−1M , grL′′ = ⊕iFl iM/Fl ′iM . We get exact se-
quences

0 −→ grL′ −→ grM −→ grL′′ −→ 0,

0 −→ gr [−1]L′ −→ gr ′M −→ grL′′ −→ 0.

(iii) Assume n0 > 1. Set Fl ′′iM = Fl i−1M + Fl ′iM . Then

Fl ′′iM ⊂ Fl iM ⊂ Fl ′′i+1M,

Fl ′iM ⊂ Fl ′′iM ⊂ Fl ′i+n0−1M.

Since χ(grM) = χ(gr ′′M) by (ii), the induction proceeds. q.e.d.

Corollary 3.4.5. We make the hypotheses of Theorem 3.3.5. Let 0 −→M ′ −→
M −→M ′′ −→ 0 be an exact sequence of finitely generated A-modules. Then

χ(M) = χ(M ′) + χ(M ′′).(3.29)

Gabber’s theorem

Recall that if B is a commutative ring and I an ideal, the radical
√
I of I is

the ideal

x ∈
√
I ⇔ there exists k ≥ 0 with xk ∈ I.

If N is a B-module, the annihilator IN of N is the ideal given by

x ∈ IN ⇔ xu = 0 for all u ∈ N.

If 0 −→M ′ −→M −→M ′′ −→ 0 is an exact sequence in Mod(B), then clearly√
IM =

√
IM ′ ∩

√
IM ′′ =

√
IM ′ · IM ′′ .(3.30)

In other words, the map M 7→
√
IM is additive. If grM is a graded

grA-module, then
√
IgrM is a graded ideal.

Let FlA be a filtered ring with grA commutative. Let M be a finitely
generated A-module. Let us endow M with a finite filtration FlM . Applying
Theorem 3.4.4, we can state:

Definition 3.4.6. Let M is a finitely generated A-module. One sets

Icar(M) =
√
IgrM ,(3.31)

where grM is the graded module associated with a finite filtration FlM on
M .
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Let us give a direct proof of the fact that Icar(M) does not depend on
the choice of the filtration. Let ā ∈

√
IgrM of order p. There exists q such

that āq ∈ IgrM and there exists a ∈ Fl pM such that σ(a) = ā. Then

aqFl kM ⊂ Fl k+pq−1 for all k,

alqFl kM ⊂ Fl k+lpq−l for all k.

If Fl ′M is another filtration, there exists r such that Fl ′k−rM ⊂ Fl kM ⊂
Fl ′k+rM . Hence, alqFl ′k ⊂ Fl ′k+lpq−1 for l >> 0.

As an application, assume moreover that grA has no zero divisors. let
a 6= 0, b 6= 0 in A. Then

A · a ∩ A · b 6= {0}.

Indeed, the sequence below of left A-modules is exact.

0 −→ A/(A · a ∩ A · b) −→ A/A · a⊕ A/A · b −→ A/(A · a+ A · b) −→ 0

It follows that

0 6= Icar(A/A · a) ∩ Icar(A/A · b) ⊂ Icar(A/(A · a ∩ A · b).

Theorem 3.4.7. (Gabber’s Theorem.) Assume that grA is a commuta-
tive Noetherian Q-algebra. Let M be a finitely generated A-module. Then
Icar(M) is involutive.

Note that if ā and b̄ belong to IgrM , then {ā, b̄} obviously belongs to IgrM .
The difficulty is that one assumes that ā and b̄ belong to the radical of IgrM .

Involutive basis

Let FlA and grA be as in Theorem 3.3.5 with grA commutative.

Definition 3.4.8. Let I be an ideal of A and {u1, . . . , uN0} a system of gener-
ators. One says that this system is an involutive basis if {σ(u1), . . . , σ(uN0)}
is a system of generators of gr I.

Let mj denote the order of uj. We endow I with the induced filtration
by FlA. Consider the sequences

⊕N0
j=1Fl [−mj ]A

Fl f−−→ Fl I −→ 0, where Fl f(⊕jbj) =
∑
j

bjuj,(3.32)

⊕N0
j=1gr [−mj ]A

gr f−−→ gr I −→ 0, where gr f(⊕j b̄j) =
∑
j

b̄jūj.(3.33)
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Proposition 3.4.9. The following conditions are equivalent.

(i) (u1, . . . , uN0) is an involutive basis of I,

(ii) the sequence (3.32) is filtered exact,

(iii) the sequence (3.33) is exact,

(iv) for any l ∈ Z and b̄j ∈ gr l−mjA such that
∑

j b̄jσ(uj) = 0, there exists
bj ∈ Fl l−mjA such that

∑
j bjuj = 0.

Proof. (i) ⇔ (iii) by definition and (ii) ⇔ (iii) by Proposition ??.

Let us prove that (iv) ⇔ (iii). Let gr I ′ denote the ideal generated by
{σ(u1), . . . , σ(uN0)}. Consider the exact sequences

0 −→ grK ′ −→ ⊕N0
j=1gr [−mj ]A

gr f−−→ gr I ′ −→ 0

0 −→ Fl Ker(f) −→ ⊕N0
j=1Fl [−mj ]A

Fl f−−→ Fl I −→ 0,

where Ker f is endowed with the induced filtration. Then gr I ′
∼−→ gr I if and

only if grK ′
∼←− gr Ker(f). q.e.d.

Note that since grA is Noetherian, there always exist involutive basis.

3.5 O-modules

Coherency

Let X be a complex manifold of complex dimension dX , OX it structural
sheaf.

Theorem 3.5.1. The sheaf OX is Noetherian.

If Z is a closed complex analytic subset, we shall denote by IZ its defining
ideal. Note that IZ is coherent.

One denotes by Modcoh(OX) the abelian category of coherent sheaves
of OX-modules. If S is a closed analytic subset of X, we shall denote by
Modcoh(OX)S the abelian category of coherent sheaves with support in S.
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Cycles

Let Z be a closed analytic irreducible component of S. To each F ∈
Modcoh(OX)S one can associates a number multZ(F), the multiplicity of F
along Z, as follows. First, assume that IZF = 0. Then F is an OZ-module,
and generically, Z is smooth and F is free of finite rank r over OZ . Then we
set multZ(F) = r. In the general case, since locally at generic points of Z,
suppF ⊂ Z, there locally exists an integer N such that INZ F = 0 and one
sets

multZ(F) =
∑
j≥0

multZ(IjZF/I
j+1
Z F).

Proposition 3.5.2. Let S a closed analytic subset of X and let Z be an
irreducible component of S. The function multZ( • ) on Modcoh(OX)S is ad-
ditive.

Let us introduce the group ZdX of cycles of codimension d as the free
abelian group generated by the symbols [S] where S is a closed irreducible
subset of X of codimension d. One sets

ZX =
⊕
d

ZdX

and calls this graded group the group of cycles of X.

If F is a coherent sheaf, S its support, {Zj}j the (locally finite) family
of closed irreducible components of S, the cycle associated with F is defined
by

[F ] =
∑
j

multZj(F)[Zj].

One shall be aware that [ • ] is not additive on the category Modcoh(OX).

Example 3.5.3. Let X = C with holomorphic coordinate x and let F =
OX/x2OX . Let Z = {0}. Then multZ(F) = 2 and [F ] = 2[{0}]. On the
other hand [OX ⊕F ] = [OX ] = [X].

One denotes by [F ]d the homogeneous part of degree d of the cycle [F ].
Then the function [ • ]d is additive on the full category of Modcoh(OX) con-
sisting of sheaves F such that codim(supp(F)) ≥ d.
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Operations on O-modules

For a complex manifold X, one denotes by Modcoh(OX) the thick abelian
subcategory of Mod(OX) consisting of coherent modules. One denotes by
Db

coh(OX) the full triangulated category of the bounded derived category
Db(OX) consisting of objects with coherent cohomology.

We shall also encounter the duality functors for O-modules:

D′OF :=RHomO(F ,OX),

DOF :=RHomO(F ,ΩX [dX ]).

Recall that dX is the complex dimension of X and ΩX = ΩdX
X .

Let X and Y be two manifolds. For an OX-module F and an OY -module

G, we define their external product, denoted F
D

�G, by

F
D

�G = OX×Y ⊗OX�OY (F � G).

Note that the functor F 7→ F
D

�G is exact. Clearly, if F ∈ Db
coh(OX) and

G ∈ Db
coh(OY ), then F

D

�G ∈ Db
coh(OX×Y ).

Let f : X −→ Y be a morphism of complex manifolds. There is a natural
morphism of rings f−1OY −→ OX . Using this morphism, the direct images
f∗F and f!F of an OX-module are well defined as OY -modules. One denotes
as usual by Rf ∗ and Rf ! their derived functors. The inverse image of an
OY -module G is defined by f ∗ :=OX ⊗f−1OY f

−1G. Its right derived functor
is denoted Lf ∗. The following result is left as an exercise.

Proposition 3.5.4. Let G ∈ Db
coh(OY ). Then Lf ∗G ∈ Db

coh(OX) and there
is a natural isomorphism

Lf ∗D′OG ' D′OLf ∗G.

There is a similar result for direct images:

Theorem 3.5.5. Grauert’s theorem. Let F ∈ Db
coh(OX) and assume that

f is proper on supp(F). Then Rf !F ∈ Db
coh(OY ) and there is a natural

isomorphism

Rf !DOF ' DORf !F .

Note that Grauert’s theorem is a relative version of the Cartan-Serre’s
finiteness theorem and the Serre’s duality theorem.
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Homological properties

Recall the well known results.

Theorem 3.5.6. Let X be a smooth manifold and let F be a coherent OX-
module. Then

(i) ExtkO(F ,OX) = 0 for k < codim supp(F),

(ii) codim(supp(ExtkO(F ,OX))) ≥ k.

Theorem 3.5.7. (Golovin)The global homological dimension of OX is dX+1.

In other words, any OX-module F admits an injectve resolution of length
≤ dimX+1, or equivalently, for anyOX-modules F and G, one has Extj

O
(F ,G) =

0 for j > dX + 1.
Let us only show that this dimension is at least dX + 1.

Proposition 3.5.8. Let x ∈ X. Then Hj(RΓ{x}(X;O(N)
X )) 6= 0 for j =

dX + 1.

We may assume X = Cn. Let Y = Cn−1 and let f : X −→ Y be the

projection. We have a short exact sequence 0 −→ f−1OY −→ OX
∂n−→ OX −→ 0

form wich we deduce the exact sequence

· · · −→ Hn+1(RΓ{x}(X;O(N)
X )) −→ Hn+2(RΓ{x}(X; f−1O(N)

Y ))

−→ Hn+2(RΓ{x}(X;O(N)
X )) = 0.

Since for any sheaf F on Y

Hj+2(RΓ{0}(X; f−1F)) ' Hj(RΓ{0}(Y ;F)),

we are reduced to prove the result for n = 1. Let X = P1(C) denote the
Riemann sphere. Since X is compact, Hj(X;OX [T ]) ' Hj(X;OX)[T ] and

this group is zero for j > 0. Therefore, H2
{x}(X;O(N)

X ) ' H1(X \{0};OX [T ]).

Lemma 3.5.9. Set X = A(C), the affine line. Then H1(X;OX [T ]) 6= 0.

Proof. Let δ(n) denote the Dirac mass at n ∈ X and set u = Σnδ(n)T n ∈
Γ(X; Db

X [T ]). The equation ∂v = u has no solution in Γ(X; Db
X [T ]). The

exact sequence of sheaves

0 −→ OX [T ] −→ Db
X [T ]

∂−→ Db
X [T ] −→ 0

and the vanishing of H1(X; Db
X [T ]) give the result. q.e.d.
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The Artin-Rees theorem

Theorem 3.5.10. Let I be a coherent ideal of OX and let F be a coherent
OX-module. Then, locally, there exists m0 ≥ 0 such that for any m ≥ m0,
the morphism

Im ⊗O F −→ I
m−m0 ⊗O F

factorizes uniquely through

Im ⊗O F −→ I
mF −→ Im−m0 ⊗O F .

In fact, there is a similar theorem in the more general setting of commu-
tative Noetherian rings.

The Grauert theorem

Theorem 3.5.11. Let f : X −→ Y be a morphism of complex manifolds and
let F ∈ Db

coh(OX). Assume that f is proper on supp(F). Then Rf !F belongs
to Db

coh(OY ).

Theorem 3.5.12. Let f : X −→ Y be a morphism of complex manifolds and
let F ∈ Db

coh(OX). Assume that f is proper on supp(F). Then there is a
canonical isomorphism

Rf !RHomO(F ,OX) [dX ] ' RHomO(Rf !F ,OY ) [dY ].
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