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Introduction

The aim of these Notes is to introduce the reader to the theory of D-modules
in the analytical setting. This text is a short introduction, not a systematic
study. In particular many proofs are skipped and the reader is encouraged
to consult the literature. To our opinion, the best reference to D-modules
is [Ka03], and, in fact, most of the material of these Notes are extracted from
this book.

Indeed, although we do not mention it in the course of the notes, almost
all the results and proofs exposed here are due to Masaki Kashiwara.

References for D-modules. Some classical titles are [Ka70, Ka83, Bj93,
Ka03] and, in the algebraic setting, [Bo87]. An elementary introduction may
also be found in [Co85]. Applications to D-modules to representation theory
are studied in [HTTO0S].

Related theories to D-modules. Microdifferential operators are the nat-
ural localization of differential operators. References are made to [SKKT73,
Ka83, Sc85]. In fact, microdifferential operators may also be considered as
an avatar of rings of deformation quantization for which there exists an enor-
mous literature. See [KS12] and the references therein.

References for categories, homological algebra and sheaves. The
reader is assumed to be familiar with sheaf theory as well as homological al-
gebra, including derived categories. An exhaustive treatment may be found
in [KS06] and a pedagogical treatment is provided in [Sc08]. Among numer-
ous other references, see [GM96], [KS90, Ch. 1, 2] [We94].

Recent develoments. Chiral algebras are built upon D-module theory and
are exposed in [BD04, FG10]. A theory of non linear differential equations,
in the spirit of D-module theory, is sketched in [KM99] as well as in [BD04].

History. An outline of D-module theory, including holonomic systems, was
proposed by Mikio Sato in the early 60’s in a series of lectures at Tokyo
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University (see [Sc07]). However, it seems that Sato’s vision has not been
understood until his student, Masaki Kashiwara, wrote his thesis in 1970
(see [Ka70]). Independently and at the same time, J. Bernstein, a student
of I. Gelfand at Moscow’s University, developed a very similar theory in the
algebraic setting (see [Be71]).



Chapter 1
The ring Dy

In all these Notes, all rings are associative and unital. If R is a ring, an
R-module means a left R-module and we denote by Mod(R) the abelian
category of such modules. We denote by R°® the opposite ring. Hence,
Mod(R°P) denotes the category of right R-modules. If a, b belong to R, their
bracket [a,b] is given by [a,b] = ab — ba. We use similar conventions and
notations for a sheaf of rings R on a topological space X. In particular,
Mod(R) denotes the category of sheaves of left R-modules on X.

1.1 Construction of Dy

O-modules

Let X denote a complex manifold, Oy its structural sheaf, that is, the sheaf
of holomorphic functions on X. Unless otherwise specified, we denote by dx
the complex dimension of X. We denote by Q% the sheaf of holomorphic
p-forms and one sets Qx = Qf,l(X . One also sets

(1.1) O =P ox.

We denote by Mod(Cx) the abelian category of sheaves of C-vector spaces
on X, and we denote by Hom and ® the internal Hom and tensor product
in this category. For F' € Mod(Cx), we set End(F) = Hom (F, F).

Similarly, we denote by Mod(QOyx) the abelian category of sheaves of O x-
modules, and we denote by Hom, and &, the internal Hom and tensor
product in this category. We denote by Modcon (Ox) the full abelian subcat-
egory consisting of coherent sheaves.

One denotes by ©x the sheaf of Lie algebras of holomorphic vector fields.
Hence, ©x = Hom ,(Q, Ox).
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The sheaf ©x has two actions on €2°, that we recall. Let v € ©x. The
interior derivative i, € End(§%) is characterized by the conditions

iv(a) =0, a € Ox
(1.2) iv(w) = (v,w), we QY
iv(wl Nwy) = (ivwl) N wo + (—)pwl N (ivWQ), w1 € Qg(

Note that 4, : Q% — Q% " is of degree —1.
On the other-hand, the Lie derivative L, € End(Q%) is characterized by
the conditions

Ly(a) =v(a) = (v,da),a € Oy,
(1.3) doL,=1L,od,
Ly(wy Aws) = (Lywr) A ws 4+ wy A (Lyws),

The Lie derivative is of degree 0 and satisfies

(1.4) [Ly, Ly) = Ly, u,v € Ox.
One has the relations

(1.5) Ly, =doi,+i,o0d.

Using v — L,, one may regard ©x as a subsheaf of End(Ox).

The ring Dy

Definition 1.1.1. One denotes by Dx the subalgebra of End(Ox ) generated
by Ox and Ox.

If (zq,...,2,) is a local coordinate system on a local chart U of X, then
a section P of Dx on U may be uniquely written as a polynomial

(1.6) P= ) a0

la|<m

where a, € Ox, 0, = 0,, = % and we use the classical notations for multi-
indices:

a=(ag,...,ap) € N,

la] = a1 + -+ an,

if X =(Xy,...,X,), then X* = X X,

Proposition 1.1.2. Let R be a sheaf of Cx-algebras and let + : Ox — R
and ¢ : ©x — R be Cx-linear morphisms satisfying (here, a,b € Ox and
u,v € Ox):
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(i) ¢: Ox = R is a ring morphism, that is, t(ab) = t(a)i(b),
(i) ¢ : ©x — R is left Ox-linear, that is, p(av) = t(a)p(v),

(i) ¢ : ©x — R is a morphism of Lie algebras, that is, [p(u),p(v)] =
([u,v]),

(iv) [¢(v),e(a)] = t(v(a)) for any v € Ox and a € Ox.

Then there exists a unique morphism of Cx-algebras ¥ : Dx — R such
that the composition Ox — Dx — R coincides with ¢ and the composition
Ox — Dx — R coincides with .

The proof is straightforward.

Corollary 1.1.3. Let M be an Ox-module and let p: Ox — End(M) be
the action of Ox on M. Let ¢ : ©x — End(M) be a Cx-linear morphism
satisfying:

(i) pla) o v(v) = ¢(av) (resp. Y(v) o pla) = ¢(av)).
(i) [¥(v), Y(w)] = ¢([v,w]) (resp. [b(v), ¥(w)] = =¥([v, w])),
(iif) [¢(v), p(a)] = p(v(a)), (resp. [b(v), u(a)] = —p(v(a))).

Then there exists one and only one structure of a left (resp. right) Dx-module
on M which extends the action of Ox.

Proof. For the structure of a left module, apply Proposition 1.1.2 to R =
End(M). The case of right modules follows since the bracket [a,b]°? in DY
is —[a, b], where [a, b] is the bracket in Dx. q.e.d.

Examples 1.1.4. (i) The sheaf Oy is naturally endowed with a structure of
a left Dy-module and 1 € Oy is a generator. Since the anihilator of 1 is the
left ideal generated by ©x, we find an exact sequence of left Dx-modules

DX'QX%D)(—)OX—)O.

Note that if X is connected and f is a section of Ox, f # 0 (i.e., f is not
identically zero), then f is also a generator of Ox over Dx. This follows from
the Weierstrass Preparation Lemma. Indeed, choosing a local coordinate
system (z1,...,2,), one may write f = 37" a;(¢')x], with a,, = 1. Then
or(f) = ml.

(ii) The sheaf Q2 x is naturally endowed with a structure of a right Dx-module,
by

v(w) = —Ly(w), vE€OBOx,we Ny.
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(iii) Let F be an Ox-module. Then Dy ®,, F is a left Dx-module.

(iv) Let Z be a closed complex submanifold of X of codimension d. Then
H(Ox) is a left Dx-module.

(v) Let X be a complex manifold and let P be a differential operator on X.
The differential equation Pu = v may be studied via the left Dx-module
Dx/Dx - P. (See below.)

(vi) Let X = C" and consider the differential operators P = 7" | 07, Qi; =

x;0; — ;0;. Consider the left ideal J of Dx generated by P and the family
{Qij}i<j. The left Dx-module Dx/J is naturally associated to the operator
P and the orthogonal group O(n;C).

Internal hom and tens

The sheaf Dx is a sheaf of non commutative rings and Cx is contained (in
fact, is equal, but we have not proved it here) in its center. It follows that
we have functors:

Hom 5, : (Mod(Dx))? x Mod(Dx) = Mod(Cyx),
®p : Mod(DY) x Mod(Dx) — Mod(Cx).

We shall now study hom and tens over Ox.
Let M,N and P be left Dx-modules and let M’ and N’ be right Dx-

modules.

(a) One endows M ®, N with a structure of a left Dx-module by setting

vim®@n)=v(m)@n+m®euv(n), meM,neNve0Byx.

(b) One endows Hom (M, N) with a structure of a left Dy-module by
setting

v(f)(m) = v(f(m)) = f(v(m)), me M, feHomy(MN) veOx.

(c) One endows N" ®, M with a structure of a right Dx-module by setting

m@mv=nv®@m-n®um, mecM,neN veOx.

(d) One endows and Hom ,(M', N') with a structure of a left Dx-module
by setting

v(f)(m) = f(mv) — f(m)v m e M, f € Hom ,(M',N"),v € Ox.
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(e) One endows and Hom ,,(M,N’) with a structure of a right Dx-module
by setting

(fv)(m) = f(m)v+ flvm) m e M, f € Hom ,(M,N"),v € Ox.

There are isomorphisms of Cx-modules;

Hom (M @, N, P) ~ Hom (M, Hom (N, P)),

Hom p(M' &, M, N) = Hom (M, Hom (M, N)),

(M @y M) @y N > M @5 (M®,N).

To summarize, we have functors
%y Mod(Dyx) x Mod(Dy) — Mod(Dy),
®p: Mod(DY) x Mod(Dx) — Mod(DY),
Hom ,: Mod(Dx )P x Mod(Dx) — Mod(Dx),
Hom ,,: Mod(DY)°P x Mod(DY') — Mod(Dyx),
Hom ,: Mod(Dx)® x Mod(DY) — Mod(DY).
Remark 1.1.5. Following [HTTO08] who call it the Oda’s rule, one way to

memorize the left an right actions is to use the correspondence left = 0, right
=1,a®b=a+0band Hom(a,b) = —a +b.

Twisted Dx-modules

Let £ be a holomorphic line bundle, that is, a locally free O x-module of rank
one. One sets

L7 =Hom (L, Ox).
There are a natural isomorphisms
Ox = Hom (L, L) < Hom (L, 0x) ®, L.

If s is a section of L' and t a section of L, their product will be denoted
by (s,t), a section of Ox.

Let R be a Ox-ring, that is, a sheaf of rings together with a morphism
of rings Ox — R. One can define a new Ox-ring L ® R ® L' by setting
(with obvious notations)

(s@m®t) (s @m' @t)=smt,sym' @t

If M is a left R-module, then £ ®, M is a left £ ®, R ®, L~ -module.
Clearly:
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Proposition 1.1.6. The functor M — L ®, M is an equivalence of cate-
gories from Mod(R) to Mod(L &, R &, L~ ").

Proposition 1.1.7. There is an isomorphism of Ox-rings DY ~ Qx ®,
Dx ®, Q% .

Proof. The right Dx-module structure of 2x defines the morphism of rings
DY — End(Qx).

On the other-hand, the morphism Dy — End(Ox) defines the morphism of
rings

QX ®O DX ®O 9381—71 — g’l’Ld(Qx)

Both these morphisms are monomorphisms, and to check that their images
in End(Slx) are the same, one remark that both rings are generated by Ox
and Oy. q.e.d.

Corollary 1.1.8. The functor M + Q ®, M induces an equivalence of
categories Mod(Dx) = Mod (DY)

Remark 1.1.9. Suppose to be given a volume form dv on X. Then f — fdv
gives an isomorphism Ox = Qx and we get an isomorphism Dy ~ DY.
The image of a section P € Dx by this isomorphism is called its adjoint with
respect to dv and is denoted by P*. Hence, for a left Dx-module M and a
section u of M, we have

P-u=(u-dv)-P"

Clearly (Qo P)* = P*oQ*. If (x4, ...,x,) is a local coordinate system on X
and dv = dxy A - -+ A dw,, one checks that =} = x; and J;. = —0,,.

1.2 Filtration on Dy

Total symbol of differential operators

Assume X is affine, that is, X is open in a finite dimensional complex vector
space E. Let P be a section of Dx. One defines its total symbol

(1.7) oot (P)(x; &) :=exp(—x, &) P(exp(x,§)) = Z aq ()€

la|<m

Using (1.6), one gets that oy (P) is a function on X x E*, polynomial with
respect to & € E*. This function highly depends on the affine structure, but
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its order (a locally constant function on X) does not. It is called the order
of P and denoted ord(P).

If @ is another differential operator with total symbol oy (@), it follows
easily from the Leibniz formula that the total symbol oy (R) of R = P - Q
is given by:

(18) en(R) = %ag(amt(za))ag(atot(@)).

aeNn

By this formula, one gets that

ord(P - Q) = ord(P) + ord(Q),
ord([P,Q]) < ord(P) + ord(Q) — 1.

The ring Dy is now endowed with the filtration “ by the order”,
Fl,,(Dx) = {P € Dx;ord(P) < m}.

One can give a more intrinsic definition of the filtration.

Filtration on Dy

Definition 1.2.1. The filtration FIDx on Dy is given by
F1 _1Dx ={0}, Fl1,,Dx ={P € Dx;[P,Ox] € Fl,,_1Dx}.
Note that

(19) { FloDx = Ox, FliDx = Ox & Ox,
' Fl,.Dx - F1,Dx C Fl,,;Dx, [FlDx,Fl;Px] C Fl,si1Dx.

One denotes by gr Dx the associated graded ring, by o : FIDx — grDx the
“principal symbol map” and by o,, : Fl1,,Dx — gr,,Dx the map “symbol of
order m”.

One shall not confuse the total symbol, which is defined on affine charts,
and the principal symbol, which is well defined on manifolds.

It follows from (1.8) that o(P)o(Q) = o(Q)o(P) = o(P - Q). Hence,
gr (Dx) is a commutative graded ring. Moreover, gro(Dx) ~ Ox and gr{(Dx) ~
Ox.

Denote by So(Ox) the symmetric Ox-algebra associated with the locally
free Ox-module O . By the universal property of symmetric algebras, the
morphism ©y — gr(Dx) may be extended to a morphism of symmetric
algebra

(110) S@(@X) —>gI‘D)(.
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Proposition 1.2.2. The morphism (1.10) is an isomorphism.

Proof. Choose a local coordinate system (zq,...,z,) on X. Then ©x ~
P, Ox0; and the correspondence 0; — &; gives the isomorphism

SO(@X) ~ GBOXOO‘ ~ Ox[gl, Ce 7£n] ~ gI‘DX.
q.e.d.

Denote by 7 : T*X — X the projection. There is a natural monomor-
phism

@X — W*OT*X.

Indeed, a vector field on X is a section of the tangent bundle 7X, hence
defines a linear function on 7% X.

By the universal property of symmetric algebra, we get a monomorphism
So(Ox) — m.Oprx. Applying Proposition 1.2.2, we get an embedding of
Cx-algebras:

gI‘DX — W*OT*X.
In the sequel, we shall still denote by
0: Dx = m.Op«x and o,,: Fl1,,Dx — m,.Op«x,

the maps obtained by applying the inverse of the isomorphism (1.10) to o
and o,,.

Theorem 1.2.3. The sheaf of rings Dx s right and left Noetherian.

Proof. This follows from Proposition 1.2.2 and general results of [Ka03,
Th. A.20] on filtered ring with associated commutative graded ring (see The-
orem 3.3.5). q.e.d.

1.3 Characteristic variety

We shall use here the results of § 3.4.
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Poisson’s structures

The graded ring gr (Dx) is endowed with a natural Poisson bracket induced
by the commutator in Dy.

On the other hand, the sheaf Or-x (hence, the sheaf 7,07 x) is endowed
with the Poisson bracket induced by the symplectic structure of 7*X. Recall
that if (z1,...,2,;&,...,&) is alocal symplectic coordinate system on T* X,
this Poisson bracket is given by

{f.9} = 0c.f 0,9 — Ou, f Oc,9.
i=1

Proposition 1.3.1. The Poisson bracket on w,Op«x induces the Poisson
bracket on gr (Dx).

Proof. Let P € Fl,,(Dx) and Q € F1;(Dx). Then [P,Q] € Fl,,1;-1(Dx)
and it follows from (1.8) that

n

(L1 0 ([P Q) = Y (960m(P)001(Q) — 0,01(Q) 0,0 (P)).

i=1

Hence, 0,41-1([P, Q) = {om(P),0(Q)}. q.e.d.

Good filtration

We shall recall some notions also introduced in § 3.3, 3.4. Recall that a good
filtration on a coherent Dx-module M is a filtration which is locally the
image of a finite free filtration. Hence, a filtration F1.M on M is good if and
only if,

locally on X, FI;M =0 for j <0,

F1,M is Ox-coherent,

locally on X, (F1,Dx) - (F1;M) = Fl;4;M for j > 0 and
all k> 0.

Applying Corollary 3.3.6, we get:

Lemma 1.3.2. Let M be a coherent Dx-module, N C M a coherent sub-
module. Assume that M is endowed with a good filtration F1 M. Then the
induced filtration on N defined by F1 ;N = N NFL;M is good.

(1.12)

Denote by Mod®%, (gr Dx) the abelian category of coherent graded gr Dx-
modules and consider the functor

~: Mod®"

coh

(gI‘D)(> — MOdcoh<7T*OT*X),
g M — W*OT*X@)grDX gr M.
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This functor is exact and faithful. If M is a coherent Dy-module endowed
with a good filtration, the 7,Or«x-module

g/l"7\/4 = m0r-x ®,.p, M
is thus coherent and its support satisfies:
supp(gr M) = {p € T*X; ¢(P)(p) = 0 for any P € Icar(M)}.
In the sequel, we shall often confuse gr M and g/r\/\//l

Definition 1.3.3. The characteristic variety of M, denoted char(M), is the
closed subset of T*X characterized as follows: for any open subset U of X
such that M|y is endowed with a good filtration, char(M)|r«y is the support

of gr M|y.
Theorem 1.3.4. (i) char(M) is a closed C*-conic analytic subset of T*X .

(ii) char(M) is involutive for the Poisson structure of T*X, and in partic-
ular, codim(char(M)) < dx.

(iii) If0 > M - M — M" — 0 is an exact sequence of coherent Dx-
modules, then

char(M) = char(M’) U char(M").

Proof. (i) is obvious, (ii) follows from Gabber’s theorem and (iii) follows from
Lemma 1.3.2. q.e.d.

Note that the involutivity theorem has first been proved by Sato, Kashiwara
and Kawai [SKK73] using analytical tools, before Gabber gave is purely
algebraic proof.

Suppose that a coherent Dx-module M is generated by a single section
u. Then M ~ Dx/Z, where 7 is the anihilator of u. There is a natural
filtration on M, the image of F1Dx. Put F1,Z = Z NF1;Dx. It follows
from Corollary 3.3.6 that the graded ideal grZ is coherent. Moreover, since
grM = grDyx/erZ, we get

(1.13) char(M) = {p € T"X;0,(P)(p) =0 for all P € F1;(Z)}.
If {P,..., Py} generates Z it follows that
char(M) C ﬂU(Pj)_I(O).
J

In general the equality does not hold, since the family of the P;’s may generate
T although the family of the o,,,(P;)’s does not generate grZ.
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Example 1.3.5. If X = A'(C), the affine line, the ideal generated by 9 and
x is Dy, but the ideal generated by their principal symbols is not Oz x.

Corollary 1.3.6. Let M be a coherent Dx-module, let p € T*X and assume
that p ¢ char(M). Let u € M. Then there ezists a section P € Dx defined
in a neighborhood of m(p) with Pu =0 and o(P)(p) # 0.

Proof. Consider the sub-Dy-module Dxu generated by wu. It is coherent
and its characteristic variety is contained in that of M. Let Z denotes the
anihilator ideal of v in Dx and let Py, ..., Py denotes sections of this ideal
such that o(Py),...,0(Py) generate the graded ideal grZ. Such a finite
family exists since grZ is coherent. Since p ¢ char(Dxu), there exists j with

o(P)(p) £ 0. o,
Example 1.3.7. (i) char(Ox) = Tx X, the zero-section of T*X.

(ii) char(Dx/Dx - P) = {p € T*X;0(P)(p) = 0}.

Multiplicities

By the result of Proposition 3.5.2, one sees that if M is a coherent Dyx-
module and V' is an irreducible component of char(M)UV'| then multy (gr M)
depends only on M.

Definition 1.3.8. Let V' be a closed analytic subset of T*X and let M be a
coherent Dy-module such that V' is an irreducible component of char(M) U

V. The number multv(g/r\//\/l) is called the multiplicity of M along V' and
denoted multy (M).

Ifo—- M — M — M” — 0is an exact sequence of cherent D x-modules
with V irreducible in char(M) UV, then

multy (M) = multy (M') + multy (M").

Involutive basis

Definition 1.3.9. Let Z be a coherent ideal of Dx and let {Py,..., Py} be
a family of sections of Z, with P; of order m;. One says that this family is
an involutive basis of Z if the family {o(P}),...,0(Py)} generates grZ.

Proposition 1.3.10. Assume

(i) NI om, (P;)71(0) is of codimension N,
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(ii) there exist Qju € Fly, tmy—m—1Dx such that for all j,k

[Py, Pl =) QiuP,
l

Then { Py, ..., Py} is an involutive basis.

Proof. Set p; = o(P;). Let a; € gr;_,,,Dx with
Z (ijj = O
J

By Proposition 3.4.9, it is enough to find A; € Dx with 0(A,) = a; and such
that
J

By the hypothesis, the sequence {pi,...,pn} is a regular sequence. Hence,
we may find ry; € gri_,,—m; Dx satisfying

a; = g TijPi;  Tij = —Tji.
i

Next we choose Rij € Fl lfmifmjDX with U(Rij) = Tij and Rij = —Rﬂ Set
Aj = Zz Rz]PZ Then O'lfmj (Aj) = aj and

ZA]‘PJ' = ZRz‘jPin:ZRij[Pi7Pj]
J b

) 1<j
= Z Z R Qiji Py
i<j k
Set Sy = Z,-q- R;jQijk- Then Sy has order <1 —my, —1, Zj(Aj —S;)Pj=0
and o;(A; — S;) = a;. q.e.d.

1.4 De Rham and Spencer complexes

If Ais aring, M is an A-module, and ¢ := (¢1,...,¢,) are n-commuting
endomorphisms of M, one can define the Koszul complex K*(M; ) and the
co-Koszul complex K,(M; ). We refer to [Sc08] for an exposition.

Also recall the De Rham complex

(1.14) DRx(0x):=0— Q% S0k & ... 5 o 0,
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where d is the differential.

Let M be a left Dy-module. One defines the differential d: M — Q% ®,,
M as follows. In alocal coordinate system (z1, ..., x4, ) on X, the differential
d is given by

M= Q@ M, mi Y dr; ®0m
and one checks easily that this does not depend on the choice of the local
coordinate system.

One defines the De Rham complex of M, denoted DRx (M), as the com-
plex

(1.15) DRx(M):= 0= 0% @, M5 .- = Q¥ g, M =0,
where Q% ®,, M is in degree 0 and the differential d is characterized by:
dlw®@m) =dwe@m+ (=)’wAdn, we meM.

Note that DRx(Dx) € C*(Mod(DY)), the category of bounded complexes of
right Dx-modules, and

Recall that there is a natural right D-linear morphism Qx ®, Dx — Qx.
Moreover, one checks easily that the composition

le(xil ®O Dy — Qi(x ®O Dy — QX

is zero. Hence, we get a morphism in the derived category D?(DY)

Proposition 1.4.1. The morphism (1.17) induces an isomorphism in D*(D).

Proof. Since the morphism is well defined on X, we may argue locally and
choose a local coordinate system. In this case, there is an isomorphism of
complexes

(118) DRx(Dx) ~ K‘(Dx;al',...,adx')

where the right hand side is the Koszul complex of the the sequence 0 -, . .., Op-
acting on the left on Dy. Since this sequence is clearly regular, the result
follows. q.e.d.
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Applying Proposition 1.4.1 and isomorphism (1.16), we get:
Corollary 1.4.2. Let M be a left Dx-module. Then

L
DRx(M> ~ Qx®DM [—dx]

Let us apply the contravariant functor Hom pe,(+, Dx) to the complex
DRx(Dx). One sets

(1.19) SPx(Dx) = Hom,(DRx(Dx), Dx),

and calls SPx(Dx) the Spencer complex.

dx
(120) SP)((D)() = O—>DX ®(9 /\@Xi)—)px ®(’) @X—>Dx—>0,
One deduces from (1.18) the isomorphism of complexes
(121) pr<Dx) ~ K.(Dx, ~81, ey '8dX)

where the right hand side is the co-Koszul complex of the sequence -0, . . ., -04,
acting on the right on Dyx. Since this sequence is clearly regular, we obtain:

Proposition 1.4.3. The left D-linear morphism Dx — Ox induces an iso-
morphism SPx(Dx) — Ox in D*(Dx).

Corollary 1.4.4. Let M be a left Dx-module. There is an isomorphism in
D*(Cx)

RHOWD(Ox, ./\/l) >~ DRx(M)

Proof. Since SPx(Dx) is a complex of locally free Dx-modules of finite rank,
one has

RHom (Ox,M) =~ Hom,(SPx(Dx), M)

Hom (SPx(Dx), Dx) @ M
DRx(Dx) ®p M

DRx(M).

12

12

12

Proposition 1.4.5. One has the isomorphism

RHOmD(Ox,Dx)[dx] ~ QX
RHomDOp(Qx,Dx)[dX} ~ OX
RHOTRD<OX,O)() ~ (C)(.
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Proof. (i) One has the chain of isomorphisms

RHOmD(Ox,Dx)[dx] ~ RHOmD(SPx(Dx),Dx)[—dx]
HOmD(pr(Dx),Dx)[—dx]
DR(Dx)[—dx] ~ Qx.

12

12

(ii) The proof is similar.
(ili) The canonical morphism Cx — Hom ,(Ox,Ox) induces the morphism

Cx — RHomp(Ox,0Ox)
~ HomD(SPX(DX),OX)

~ Q%.

The isomorphism Cx — Q% is the classical Poincaré lemma. q.e.d.

1.5 Homological properties of Dy

Vanishing theorems and dimension
There is a corresponding theorem to Theorem 3.5.6 for D-modules.
Theorem 1.5.1. Let M be a coherent Dx-module. Then

(i) Exth (M, Dx) is coherent for all k and is 0 for k < codim(char(M)),

)

(ii) codim(char(c‘fmtkD(M,DX))) >k,
) char(€xth (M, Dx)) C char(M),
)

(iii
(iv) Exth (M, Dx) =0 for k > dx.

Corollary 1.5.2. Let M be a coherent Dx-module. Then the support of
Ssctc,g( (M, Dx) has pure dimension dx.

Proof. First we construct by induction a finite free filtered resolution of F1 M,
that is, a filtered exact sequence of F1Dx-modules

= FIL; - FILy - FIM =0

where the F1L,’s are filtered finite free. We denote by & the differential.
Set:

FlL,:=---—=FIL; - FI1Ly— 0,
grLy =+ —grLy —grLy—0.
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Then
oo —=orly —werly—>egrM—0
is exact. Put

L;k = Homp(ﬁj,DX),
Ly=Homp(Le,Dx)=0—= L5 — L] — -

One defines a filtration F1 £} on L] by setting

Flm/:;k = {QO € HOmD(Ej,Dx); gO(Fl k£3> C Fl k+mDX for all ]{7}

Clearly, this filtration on £} is good and moreover Hom glrD(gr L grD) ~

gr L3. In other words,
Hom ,, p(gr Lo, gr D) =~ gr L.

Put

28— Ker(Ly D Lon1), T8 =Tm(Lpy — L) HN(LD) = Z%/T".

We endow Z* with the induced filtration and H*(L£?) with the filtration image
of F1Z*. Since Ext’ (M, Dx) ~ H*(L}), we get a filtration F1Ext (M, D)

on this module. Moreover Sxt’;w(gr./\/l, grDyx)) ~ H*(gr L?).
In order to complete the proof, we need a lemma.

Lemma 1.5.3. gr H*(L}) is a subquotient of H*(gr LZ).
Proof of Lemma 1.5.5.

Fl,,(£3) N (d*) ' Fl,, 1L
Fl,,—1(L}) + d—1F1,, L5,

F1,,(2%)
Flo1(25) + & 'Fl L,

H*(gr nL3)

On the other-hand,

Fl,.(Z%)
Flp1(Z5) + ZF N Fln(Z)

gt H (L)

The result then follows from

Fl,1(Z) + d*'F1,,L5 |, CFl,1(2) +ZF N FL, (2.

q.e.d.

q.e.d.
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End of proof of Theorem 1.5.1. 1t follows that

(1.22) char(Ext’ (M, Dx)) C supp(é’xt’;w(gr./\/l, grDx))).

(i) By Theorem 3.5.6, Ext%(m, Or+x)) = 0 for k < codim(char(M)). By
(1.22), we get that Ext (M, Dx) = 0 for k < codim(char(M)).

(ii) By Theorem 3.5.6, codim(supp(c‘,’xtzm(gr/\/{,grDX))) > k. By (1.22),
we get that Codim(char(é'xt’;')(M,DX))) > k.

(iii) follows from the inclusion

supp(c‘,’a:tl;m(gr M, grDx)) C supp(gr M).

(iv) follows from (ii) and the involutivity of the characteristic variety of

83:15';)(]\/1,1?)(). q.e.d.

Example 1.5.4. Let dx = 1. Then any coherent ideal Z of Dy is projective
since &EtjD(DX/I, Dx) =0 for j > 1.

Let t denote a local holomorphic coordinate. The left ideal of Dx gener-
ated by t? and td; — 1 is projective. By Theorem 1.3.4, its characteristic is
T*X. Since it is contained in Dy, its multiplicity on 7% X is 1. This module
does not admits a single generator, and it follows that it is not free.

Free resolutions

Theorem 1.5.5. Let M be a coherent Dx-module. Then, locally on X, M
admits a finite free resolution of length < dx. In other words, there locally
exists an exact sequence

0= L% 5 ... 5L 5 M =0,
where the L'’s are free of finite rank over Dx and n < dx.

Proof. Set n = dx. Since we argue locally, we may endow M with a good
filtration F1 M. We may locally find a finite free filtered resolution

oo s FIL" = - =2 FI1L° = FIM — 0.

On the other-hand, we know that 8xtirp(gr./\/l,gr Dx) =0 for j > n. Set

K" = Ker(£L" ' — £"?) and let us endow K,, with the induced filtration.
Then the sequence

0= gK'—=grlt ' ... 5all—sgaM—0
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is exact and it follows that gr K™ is projective. Since projective modules
over gr Dx are stably free, there exists a finite free Dy module £ such that
gr K™ @ gr L is free and this implies that K" @ L is a free Dx-module. The
sequence

0K Lo>L ' L— oL S M—=0

is a finite free resolution of M. q.e.d.

Homological dimension

Let R be a ring. Recall that the global homological dimension of R, gld(R),
is the biggest d € N U {oo} such that there exist left R-modules M and N
with Ext?, (M, N) # 0.

For a sheaf of rings R on a topological space X, the global homological
dimension of R, gld(R), is the biggest d € N U {oo} such that there exist
sheaves of R-modules M and N with Ext‘%(/\/' , M) #0.

The weak global homological dimension of R, wgld(R), also called the
Tor-dimension of R, is the biggest d € NU{oo} such that there exists a right

R-module N and a left R-module M with Tor (N, M) # 0.
For a sheaf of rings R, wgld(R) is the maximum of wgld(R,), for x € X.

Lemma 1.5.6. (i) The Ox-module Dx is flat.

(ii) If a Dx-module T is injective in the category Mod(Dx), then it is in-
jective in the category Mod(Ox).

Proof. (i) Locally, Dx is isomorphic to Ox®™.
(ii) follows from (i). Indeed, if N is a Dx-module, then
Hom ,(N,T) ~ Hom(Dx ®, N, I).
q.e.d.
Recall that if M and N are two left Dx-modules, Hom ,(M,N) has a
natural structure of a left Dx-modules. By Lemma 1.5.6 we get that the
natural forgetful functor D*(Dx) — D’(Ox) commutes with RHom,,.

Lemma 1.5.7. Let M,N € Mod(Dx). Then

RHom p(M,N) ~ RHom (Ox, RHom (M, N)).
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Proof. Since this formula is true when replacing RHom with Hom , it is
enough to show that if A/ is an injective Dx-module, then

H)(RHom (Ox, Hom (M, N))) = 0 for j > 0.

Choose a finite free Dx-resolution £* of Ox (for example, take L* = SPx(Dx)).
Notice that £*®, M — M is a quasi-isomorphism of left Dx-modules. Using
the fact that A is Ox and Dx-injective, we get:

RHom (Ox, Hom o(M,N)) =~ RHom,(Ox, RHom ,(M,N))
~ RMHomp (L, Hom (M, N))
~ RHomp(L* ®, M,N)
~ RHomp(M ) Hom (M, N).

q.e.d.

Theorem 1.5.8. Let x € X. The global homological dimension gld(Dx ;) is
dx. In other words, the conditions (1)—(ii) below are satisfied:

(i) let M and N be two Dx ,-modules. Then ExtjDXz(M, N)=0 forj >
dX; ’

(ii) there exist two Dx ,-modules M and N such that E:z:tjDX,I (M,N) #0,

Proof. (i) By classical results (see [We94, Th. 4.1.2]), it is enough to prove the
result when assuming that M is finitely generated. Since Dy , is noetherian,
there exists a coherent Dx module M defined in a neighborhood of x such
that M = M. Then the result follows from Theorem 1.5.5 in this case.

(ii) Choose M = Ox, and N = Dx . q.e.d.

Theorem 1.5.9. The weak global dimension wgld(Dx ) of Dx is equal to
dx. In other words, the conditions (1)—(ii) below are satisfied:

(i) for any left (resp. right) Dx-module M (resp. N'), one has Tor} (N, M) =
0 for j > dx,
(ii) there exist a left Dx-module M and a right Dx-module N, such that
Torﬁ{(/\/’,/\/l) £ 0.
Proof. (i) It is well known that if R is a ring, wgld(R) is less or equal to

gld(R) (see [We94, Ch. 4]). Therefore, wgld(Dx) is bounded by gld(Dx ),
that is, by dx.

(ii) Choose N = Qx and M = Ox. q.e.d.
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Theorem 1.5.10. The global dimension of Dx is 2dx + 1. In other words,
the conditions (1)—(ii) below are satisfied:

(i) let M and N be two Dx-modules. Then ExtjD(M,N) =0 forj >
2dx + 1,

(ii) there exist two Dx-modules M and N such that ExthXH(M,N) # 0.

Proof. Let n = dim X.
(i) By Lemma 1.5.7 one has

RHom (M, N) ~ RHom ,(Ox, RHom ,(M,N)).

Let SPx(Dx) be the Spencer complex of Dx. This complex has length n, is
locally free and is qis to Ox.
On the other hand, consider a resolution in the category Mod(Dx):

0= N S N — ... 5 NP 2 N =0

such that N, ..., N™ are Dx-injective. Then these modules will be Ox-
injective and it follows from Theorem 3.5.7 that N™*! is Ox-injective. Set
L' = Hom, (M,N"). This is a left Dx-module, and a flabby sheaf. Con-
sider the complex

L0=0—>L"—> ... 5 v 0.

Then RHom,(M,N) is represented by the complex Hom ,(SPx(Dx), L*).
This complex has length 2n+1 and its components are flabby sheaves. There-
fore

RHom (M, N) ~ RI'(X; Hom ,(SPx(Dx), L*))

is concentrated in degree [0,2n + 1].

(i) Let z € X. One has
Ext’ (Ox.q, DY) # 0 for j = 2n +1.
Indeed, RHom »(Ox 4, Dx) ~ Qx[—n], we get
Ext!*" (O, (Dx)™) ~ HI(RD (5 (X;QF)).

Then the result follows from Proposition 3.5.8. q.e.d.
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1.6 Derived category and duality

Recall that Mod(Dy) is a Grothendieck category (see for example [KS06,
Th. 18.1.6]) and thus has enough injectives. One denotes by Modon(Dx) the
thick abelian subcategory of Mod(Dx) consisting of coherent modules and
by D> (Dx) the full triangulated category of the bounded derived category
DP(Dy) consisting of objects with coherent cohomology.

If M € D>, (Dx), we set

(1.23) char(M) = |_J char(H?(M)).

J
Internal operations

D
We denote by RHom , the right derived functor of Hom , and by ® the left
derived functor of ®, acting on D-modules. Hence, we get the functors

DP(Dx) x D*(Dx) — D(Dx),

®0

)
- : D"(DY) x D*(Dx) — D(DY),

(
'(% (D
RHO?TLO<‘, °) Db(DX)Op X Db( ) — Db<DX)7
RHom ,(, *) DP(DP)P x DP(DY) — D" (Dx).

The tensor product is commutative and associative, that is, for £, M, N in
D D D _D
DP(Dyx) there are natural isomorphisms MN ~ N@M and (MIN)RL ~
D D D
MRNRL). Moreover Ox@M ~ M.

There are also natural functors
RHomp(+,+) : D°(Dx)® x D’(Dx) — D"(Cx),
‘&,+ . D'(DP) x D’(Dy) — D*(Cx).
These functors are related by the formulas (1.24) and (1.25) below.

Proposition 1.6.1. For £, M, N in D*(Dx) and K in D®(DY) there are
natural isomorphisms

(1.24) K&, (MEN) = (KEM)EN,
(1.25) RHom p(L, RHom o(M,N) =~ RHom p(LOIM,N).
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Duality

We define the duality functors on D?(Dx) or D*(DY), all denoted by D
and Dyp, by setting

(1.26) DpH(M):= RHom (M, Dx) (M € D*(Dx) or M € D*(DY)),
(1.27) Dp(M) = RHomp(M,Dx @p Uy [dx]) (M € D, (Dy)),
(1.28) Dp(M) := RHom (M, Qx|dx] ®, Dx) (M € D>, (D).

Proposition 1.6.2. For M, N in D*(Dx), we have a natural morphism

D
(1.29) RHom (Ox,DpMRN) — RHom (M, N)
and if M of N belongs to DP, (Dx), this morphism is an isomorphism.

coh

Proof. We have the isomorphism

RHom p(Ox, DpMEN) =~ RHomp(Ox, Dy )& (DpMEN)
~ Oy (DpMON) [—dy]
~ (QxODpM)SN [—dy]

D ME,N — RHom p(M, N).

12

Cleary, if M of A belongs to D2 (Dx), the last morphism is an isomorphism.
q.e.d.

Proposition 1.6.3. (i) The functor Diy: D, (Dx)°® — D"

coh

defined and satisfies Dy o D, ~ id and similarly with Dp.

(DY) is well-

(ii) If M € D>, (Dx), then char(D(M)) = char(M).

coh

Proof. (i) There is a natural morphism id — D%, o D},. To prove it is an
isomorphism, we argue by induction on the amplitude of M and reduce to the
case where M is a coherent Dx-module. More precisely, assume H/(M) = 0
for j ¢ [jo,j1] and the result has been proved for modules with amplitude
j1 — jo — 1. Consider the distinguished triangle (d.t. for short)

(1.30) H? (M)[=jo] = M = 77 (M) =

and apply the functor D},oD/,. We get a new d.t. with two objects isomorphic
to two objects of the d.t. (1.30). hence the third objects of these d.t. will be
isomorphic.
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Hence, we are reduced to treat the case of M € Mod ., (Dx). We may
argue locally and replace M with a bounded complex of finite free Dx-
modules. It reduces to the case where M = Dx.

(ii) It is enough to prove the inclusion char(ID,(M)) C char(M). We argue
by induction on the amplitude of M. Assume H’(M) = 0 for j & [jo, J1]-
Consider the distinguished triangle (1.30) Applying the functor D%, we find
the d.t.

D7 M) — DpM — Dip(H (M) [jo]
Since char(M) = char(H’°(M)) U char(7>7%(M)), the induction proceeds,
and we are reduced to the case where M is a coherent Dx-module. Then
the result follows from Theorem 1.5.1 (iii). q.e.d.
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Chapter 2

Operations on D-modules

2.1 External product

Let X and Y be two manifolds. For a Dx-module M and a Dy-module N,
D

we define their external product, denoted M XN, by

D
M gNZZDXxY ®Dxxpy (M X'N)

D
Note that the functor M — M XN is exact.

D
Theorem 2.1.1. Let M € D2, (Dx) and N € D2, (Dy). Then MXN €

coh coh

Db (Dxxy) and char(M %N) = char(M) x char(N).

Proof. (i) By dévissage, one reduces to the case where M € Mod.,(Dx)
and N & MOdCOh(Dy).

D
(ii) Let us show that M XN is coherent. Consider finite free presentations
of M and N:

pM B plo s M0, DY L DY o N 0.

Then

PO
(Dx B Dy )M+ M (Dx B Dy )Mot s MERN — 0

is a finite free presentation of M XN over Dx X Dy. To conclude, apply the
exact functor Dxy«y ®p mp, * tO this sequence.

31
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(iii) Let us endow M and N with good filtrations FI M and FIN. Set

M&N > FIy( xFlj(N).

i+j=k

D D
Then {Fl,(MXN)} is a good filtration on M XN and the result follows
from

grD

gr(/\/l%./\/')zgr(./\/l) X gr (N)

grD
where X is defined similarly as Xl q.e.d.

2.2 Transfert bimodule

Let f: X — Y be a morphism of complex manifolds. Recall (see (3.14)) that
to f are associated the maps

(2.1) TX L X xy TY & Y.

We shall construct a (Dx, f~!Dy)-bimodule denoted Dx—sy which shall al-
low one to pass from left Dy-modules to left Dy-modules and from right
Dx-modules to right Dy-modules.

Set

Dx—y = Ox ®; 1, [~ Dy.

This sheaf on X is naturally endowed with a structure of an (Ox, f~!Dy)-
bimodule. We shall endow it of a structure of a left Dx-module by defining
the action ©x and verifying that this action satisfies the hypothesis of Corol-
lary 1.1.3. Let v € ©x. Then f',v € Ox ®p-10, f~1Oy. Hence

/ —
f*U_ § Qa; ®wj7
J

with a; € Ox and w; € f~'Oy. Define the action of v on a®@ P € Ox R-10,
f~ Dy by setting

(2.2) v(a® P) :U(a)®P+Zaaj ®w; o P.

J
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If one chooses a local coordinate system (yi,...,y,) on Y and writes f =

(fi,.-., fm), then

m

w70) = S u(f)5E

Jj=1

which implies

m

fiv = Zv(f]) ®ayj~

J=1

A section P of Dx—y may formally be written as P =} aq(7)d; .
By composing the monomorphism Dy — Hom ¢, (Oy, Oy ) with Dx sy =
Ox ®; 10, [~ 'Dy we get the monomorphisms

Dx—y <= Ox ®pap, fﬁl’}—[om(cy((’)y,(’)y)
— ,HOmCX(filoy,Ox)

and the section 1x—3y (= 1 ® 1 € Dx—sy corresponds to the canonical
morphism
[0y — Ox
¢ = polf.

Note that Dy being flat over Oy,

Dx—y ~ OXéf—loyf_le-
One also introduces the (f~'Dy, Dx)-bimodule Dy« x by setting
Dy+x =Qx ®y, Dx—y @1, f_lﬂi_l.
Proposition 2.2.1. Let f: X =Y, g: Y — Z be morphisms of manifolds

and set h = go f: X — Z. Then there is an isomorphism of (Dx,h™'Dy)-
bimodules

L
(2.3) DX%Y®f71DYf_1DY—>Z ~ Dx—z.

In particular, the left hand side is concentrated in degree zero.
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Proof. One has the isomorphisms of (Ox, h™'Dy)-bimodules:

L L L L
DX—>Y®f71DYf_1DY—>Z = (OX®f—1(9Yf—1DY)®f—1'DYf_1(OY®9—1OZ.9_1DZ>

L —1 L —1 L -1
~ OX®JC710Y (f Dy®f71DYf OY@hfl(QZh Dz)

L
~ O)(@h,lozh_lpz ~ OX ®h_1(92 h_lpz.
(Recall that Dy is flat over Oz.) Then, one checks that these isomorphisms
extend as isomorphisms of (Dx, h™'Dy)-bimodules. q.e.d.
Proposition 2.2.2. (i) Assume f is submersive. Then Dx—sy is Dx-
coherent and f~ Dy -flat.
(ii) Assume f is a closed embedding. Then Dx—sy is Dy-coherent and
Dx—ﬂat.
Proof. (i) Since the problem is local on X, we may assume that X = Z x Y

D
and f is the second projection. In this case, Dx—sy >~ Oz X Dy. Note that
if x = (t,y) is a local coordinate system on Z X Y with t = (¢,...,t,,), then

Dx—y ~ DX/DX o)

where Dy - 0; denotes the left ideal generated by (0, ..., 0, ).
(i) For a local coordinate system y = (¢,x) on Y such that X = {t = 0}, we
have

Dx—y ~ Dy /t- Dy
where t - Dy denotes the right ideal generated by (t1,...,tm). q.e.d.

If f is submersive, one has
DX—)Y ~ DX/DX . @f

where Dx - © denotes the left ideal generated by the vector fields tangent
to the leaves of f.
If f is a closed embedding, one has
Dx—y ~ DY/IX - Dy

where Zx - Dy denotes the right ideal generated sections of Oy vanishing on
X.
Notice that any morphism f: X — Y may be decomposed as

i X—=XXY =Y

where the first map is the graph (closed) embedding and the second map is
the projection.

Example 2.2.3. One has Dx— ~ Ox and Dy« x >~ (x.
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Inverse and direct images of D-modules

Definition 2.2.4. Let f: X — Y be a morphism of complex manifolds.

(i) One defines the inverse image functor f5': D?(Dy) — DP(Dx) by set-
ting for N € D*(Dy):

L
fBIN = DX—>Y®f_1Dyf_1N'

(ii) One defines the direct image functors fP, fP: DP(Dx) — D"(Dy) by
setting for M € D*(DY):

L L
fEM = Rf*<M®DDX_>Y)> f!DM = Rf!(M®DDX—)Y)-
Using the bimodule Dy« x, one defines similarly the inverse image of a

right Dy-module or the direct images of a left Dx-module. Note that, if
g: Y — Z is another morphism of complex manifolds, we have

(2.4) (9o f)p =~ fp' o gp",
(2.5) (go )Y ~gPo 1P,
(2.6) (go )l ~gP o fP.

2.3 Inverse images

Definition 2.3.1. Let NV be a coherent Dy-module. One says that f is non
characteristic for A/ (or AV is non characteristic for f) if f is non characteristic
for char(N). (See Definition 3.1.10.)

Example 2.3.2. (i) Since char(Oy) = TyY, the Dy-module Oy is non
characteristic for any morphism f: X — Y. Note that f5'Oy ~ Ox.
(ii) See Exercise 2.2.

Example 2.3.3. Assume to be given a coordinate system (y) = (x1, ..., Ty, t)
(x,t) on Y such that X = {t = 0}. Let P be a differential operator of order
m. Then X is non-characteristic with respect to P (i.e., for the Dy-module
Dy /Dy - P) in a neighborhood of (x,0) € X if and only if P is written as

(2.7) P(2,t;0,,00) = > a;(x,t,0,)0}

0<j<m

where a;(z,t,0,) is a differential operator not depending on 0, of order < m—
j and a,,(z, t) (which is a holomorphic function on Y') satisfies: a,,(zo,0) # 0.
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Lemma 2.3.4. Let X,Y and P be as in Example 2.3.3. Let N = Dy /Dy - P.
Then Dx—y ®p,, N ~ D7

Proof. Notice that
Dx—y ®DNﬁpy/(t~Dy + Dy - P)

By the Weierstrass preparation theorem, any Q(x,t,0,,0;) € Dy may be
written uniquely as

m—1
Q(z,t,0,,0) = S(x,t,05,0,) - P(x,1,0,,0,) + Y _ Rj(w,t,0,)0}.
j=0
Hence, Q(z,t,0,,0;) € Dy may be written uniquely as
Q(xataaxaat) =
m—1

S(2,,05,00) - P(w,t,0,,0) +t - T(x,£,0,) + > _ P(,0,)0].

§=0
q.e.d.

Proposition 2.3.5. . For M, N € D*(Dx), one has

D D
MERN =~ 65 (MERN),
where 0: X — X x X is the diagonal embedding.

Proof. Let us identify X with A, the diagonal of X x X. One has the chain
of isomorphisms

D
S5 MBIN) ~ Opé,Dyrxtp(MEN)
D
~ OaS,(MBIN) ~ MEN.
q.e.d.

Corollary 2.3.6. Let f: X — Y be a morphism of complex manifolds. For
N1, Ny € DX(Dy), one has

F5 NA@NG) = N @ f .
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Proof. Denote by dx the diagonal embedding X — X x X and similarly with
dy, and denote by f: X x X = Y x Y the map associated with f. One has
the chain of isomorphisms

D ~ D
fﬁl(/\ﬂ‘%/\/z) ~ fpoyp (MBNG) = 0xp' [ (N RIN,)
D
5x 0! (f5 M B f5 D) = f NG @ f5 .

12

q.e.d.

Theorem 2.3.7. Let N' € Mod.on(Dy) and assume that f is non character-
istic for N'. Then

(a) fp'N is concentrated in degree 0,
(b) fo'N is Dx-coherent,
(c¢) char(fp'N) C faf:"'char(N).

Remark 2.3.8. In fact, there is a better result, namely char(fy'N) =
faf! char(N) and the characteristic cycle of f5'A is the image by fuf ! of
the characteristic cycle of N (see [Ka83]).

Proof. The map f: X — Y decomposes as
XhHxxy Ly

where h is the graph embedding and p is the projection. Using (2.4) and
Lemma 3.1.13, it is enough to prove the result for p and for h. Hence, we
shall treat separately the case where f is submersive and the case where f is
a closed embedding.

(i) Assume f: X — Y is submersive. The problem is local on X. Hence,
we may assume X =Y x Z and f is the projection. In this case, f5'(*) =~

D
Ox X . Hence, this functor is exact and the result follows from Theo-
rem 2.1.1.

(ii) Assume f: X — Y is a closed embedding. Let d denote the codimension
of X in Y. Since our problem is local, we may assume that there are subman-
ifolds X = Xg C X3 C--- C Xy =Y. Using (2.4) and Lemma 3.1.13 again,
we are reduced to treat the case d = 1. Since the problem is local we may
assume to be given a local coordinate system in a neighborhood of xy € X,
(y) = (z1,...,2n,t) = (x,t) on Y such that X = {t = 0}. Let (z,t;&,7)
denote the associated coordinate system on 7*Y. Set A = char(N). By
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the hypothesis, (z9,0;0,1) ¢ A. By Corollary 1.3.6, for each section u of N/
defined in a neighborhood of (zg,0), there exists a differential operator P,
say of order m, such that

(2.8) Pu =0, om(P)(x0,0;0,1) # 0.

(iii) Let us prove that f5'A is concentrated in degree 0. Since Dx—sy =~
Dy /t - Dy, f5'N is isomorphic to the complex N Ly N. Hence, we have
to show that ¢ acting on N is injective. Let u € N with tu = 0. Let P
satisfying (2.8). Set Ad(P) = [P, »]. We obtain

Ad™(P)(t)u = mlu = 0.

Hence, u = 0.

(iv) Let us prove that f,'N is Dx-coherent. Let (uy,...,uy) be a system
of generators of N in a neighborhood of (zg,0). For each 7,1 < j < N,
there exists a differential operator P; of order m;, such that Pju; = 0 and
Om; (Pj)(20,0;0,1) # 0. Set

M = @é\;lDY/DY : P]

It follows from (iii) and Lemma 2.3.4 that f5'M is concentrated in degree
0 and is Dx-coherent.

Denote by v; the canonical generator of Dy /Dy - P;, the image of 1 € Dy
There is a well-defined Dy-linear epimorphism v : M-—/N which associates
u;j to v;. The functor f;' being right exact, the epimorphism ¢ defines the
epimorphism fp'M-»f5 . Therefore, f5' N is locally finitely generated.

Define the coherent Dy-module £ by the exact sequence

(2.9) 0=>L—->M-—=>N—=0.
It follows from (iii) that the sequence
(2.10) 0= fp'l = fp'M—= f'N =0

is exact. Since X is non-characteristic for M, it is non-characteristic for its
submodule £. Therefore, f5*L is locally finitely generated and f,* M being
coherent, this implies that f5'A is coherent.

(v) Let us prove (c).
(v)—(a) Let us choose a local coordinate system (z,¢) on Y such that X =

{(z,t);t = 0}. Then fy'N ~ N/t -N. Set
M= f5'N.
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Let FIN = {N};ez be a good filtration on N. We define a filtration on
FIM = {M;};ez by setting

(2.11) M; = N/(t-NNON)).

(v)—(b) Let us show that F1.M is a good filtration. It is enough to check that
the M’s are Ox-coherent. Since

t- NN = N Ag),
k

and N; is Oy-coherent, this sequence is locally stationary. It follows that
M is Oy-coherent. Being supported by X, M is Ox-coherent.

v)—(c) The exact sequence 0 — N,_; — N; — gr , N — 0 gives rise to the
J J J
exact sequence

(2.12) N/t - N2y = N;/t- N — gr ;N Jt-gr ;N — 0.

Note that gr '/t - gr N is an Ox ®,, gr Dx-module, but gr M is simply a
gr Dx-module. We deduce from (2.11) and (2.12) an epimorphism gr ;N'/t -
gr ;N —gr ; M, hence, an epimorphism of gr Dx-modules

(2.13) gr N/t - gr N—gr M.

Considering gr N/t - gr N as a gr Dy-module is the same as considering
fa.(gr N/t - gr N). Tt follows that the support of gr M in T*X is contained
in fy(supp(gr N/t -gr N) = faf-char(N). q.e.d.

Corollary 2.3.9. Let M,N € Mod.on(Dx) and assume that char(M) N
D
char(NV) C TxX. Then M®N is Dx-coherent and

char(M(%N) C char(M) + char(N).

Recall that for two conic subsets A; and Ay of T*X |

Proof. Apply Proposition 2.3.5 and Theorem 2.3.7. q.e.d.
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Duality and inverse images

Let N € D*(Dy). Recall that its dual, Dp/N € DP(Dy ) has been constructed
in (1.28)

Theorem 2.3.10. Let f: X — Y be a morphism of complex manifolds and
let N € Db, (Dy). Assume that f is non characteristic for N'. Then there

coh
exists a natural tsomorphism :

V: Dpfp'N = fr'DpN.

Proof. First, we shall construct the morphism . By Proposition 1.6.2, we
have an isomorphism

~ D
Home(Dy)(N’ N) = Home(DY)(OY,DDN®N).

D
It defines the morphism Oy — DpN®@N. Applying the functor f,* we get
the morphisms

D
70y ~ Ox = [ DpNRfF'N
D
— fp_lDDN®DDDDf51N
Hence, we have obtained a morphism
D
¢ € Homp,p (Ox, fp DpN@DpDp frr ' N)

To prove that 1 is an isomorphism, we proceed as in the proof of Theo-
rem 2.3.7 and reduce to the case where X is a closed hypersurface of Y
and N = Dy /Dy - P for a differential operator P of order m. In this case,
fo'N =~ D% and Dpf,' N ~ D% [dx]. On the other hand, A is represented

by the complex 0 — Dy i Dy — 0 and it follows that
DDN EN[dY — 1].
Therefore, f5'DpN =~ D% [dy — 1]. q.e.d.

2.4 Holomorphic solutions of inverse images

Let f: X — Y be a morphism of complex manifolds and let N, N, €
Mod(Dy ). There is a natural morphism

(2.14) [ RHomp (N1, Na) — RHomDX(fglNl,fglNg).
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obtained as the composition
fT'RHomp, (N1, Na) — RHom, .p (f7'N, [N
— RHomy (DX%Yéf_lpfilNl,DX—)Y(%f_lpfilNQ).
Also recall the natural isomorphism
(2.15) fptOy ~ Ox.

Theorem 2.4.1. (Cauchy-Kowalevski-Kashiwara) Let f: X — Y be a mor-
phism of complex manifolds and let N € Mod(Dy). Assume that f is non
characteristic for N'. Then there exists a natural isomorphism :

(2.16) fﬁlR’HomDY (N, 0y) = RHomp_ (fo'N, Ox).

Proof. As in the proof of Theorem 2.3.7, we may check separately the case
of a projection and a closed embedding.

(a) If f is submersive, the morphism (2.14) is an isomorphism. Indeed,
we may reduce to the case where Nj = Ny = Dy. In such a case, the
isomorphism reduces to:

f7'Dy ~ RHomp (Dx—y,Dx—y).

We may assume f is the projection X =Y x Z — Y, and the result is a
relative version of the De Rham isomorphism C; ~ RHomDZ(OZ, Oyz).

(b) Now assume f is a closed embedding. Again, we reduce to the case where
X is a hypersurface. First we treat the case where N' = Dy /Dy - P. We
may assume that we have a local coordinate system (z,t) such that X =
{(z,t);t =0} and P is a differential operator of order m as in Lemma 2.3.3.
The complex RHom (N, Oy) is represented by the complex 0 — Oy |x EiSN
Oy|x — 0, where Oy|x on the left is in degree 0. Since N;' ~ D, the
complex RHom p,_ (Np', Ox) is represented by the complex O% in degree 0.
The morphism (2.16) reduces to the morphism

0—=Oy|y = Oy|x —=0

P

0 on 0 0

Here, the vertical arrow 7 is the morphism which, to f € Oy|x associates
the first m traces of f

’Y(f) :f’)(?atf‘X?"waFilf‘X'
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Then the theorem asserts that P acting on Oy|y is an epimorphism and
Ker P acting on this sheaf is isomorphic by 7 to O%. This is the Cauchy-
Kovalevski theorem.

(c) As in the proof of Theorem 2.3.7, we construct an exact sequence (2.9)
0— L — M — N — 0where M is a finite direct sum of modules of the type
Dy /Dy - P. let us apply the functor RHom, (¢, Oy) to the sequence (2.9)

and the functor RHom ;, _(+, Ox) to the image by (5" ) of the sequence (2.9).
Let us set for short

Soly(+) = RHomy (+,Oy)

and similarly with Solx(+). We find the morphism of distinguished triangles

[Soly (N) — f~1Soly (M) — f~'Soly (L) H,

| | |

Soly (f5'N) —= Soly ( f5' M) —= Soly (f5'£) -~

Let us apply the cohomology functor H° to this morphism of distinguished
triangles. We find a morphism of long exact sequences

00— H(A;) — H(Ay) — H°(A3) —= HY(A)) —— - -~

0 0 0 1

0——= H(B;) —= H%(By) —> H°(B3) —> H'(B;) —~ - - -

By (b), all morphisms u},n > 0 are isomorphisms. It follows that u? is
a monomorphism, and the module M satisfying the non characteristicity
hypothesis, the morphism uJ is also a monomorphism. Therefore, u? is an
isomorphism, hence w3 is also an isomorphism. By induction, we get that all

uf are isomorphism. q.e.d.

2.5 Direct images

Good D-modules

Definition 2.5.1. (i) Let F € Mod(Ox). One says that F is good if for
any relatively compact open subset U CC X, there exists a small and
filtrant category I, an inductive system {F; };es of coherent Op-modules
and an isomorphism lin 7 = Flo.
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(ii) One denotes by Modgq(Ox) the full subcategory of Mod(Ox) consisting
of good Ox-modules.

(iii) A coherent Dx-module M is good if it is good as an Ox-module.

(iv) One denotes by Modgq(Dx) the full subcategory of Modeon(Dx) con-
sisting of good O x-modules.

Note that Dy is good. For generally, if a coherent Dx-module may be
endowed with a good filtration, then it is good. However, there exist coherent
D x-modules which are not good.

Lemma 2.5.2. The category Modgq(Ox) is a thick abelian subcategory of
the category Modeon(Dx). In particular, the full subcategory Dgy(Dx) of
Db (Dx) consisting of objects M such that H?(M) is good for all j is tri-

coh
angulated.

Proof. For the proof, we refer to [Ka03]. q.e.d.

Lemma 2.5.3. Let M € Mod.ow(Dx). Then M is good if and only if, for
any relatively compact open subset U CC X, there exists F C M|y with
F € Modcon(Orp) and an epimorphism of Dy-modules F ®o, Dy—»M]|y.

Proof. After replacing X with a relatively compact open subset of X con-
taining the closure of U, we may assume that M = hg]—"z where [ is small

and filtrant and F; is Ox-coherent. Set
ﬁi = Im(]i ®OX Dx — M)

Since M is Dx-coherent, the family {£;};c; of coherent D x-modules is locally
stationary hence is stationary on the closure of U. q.e.d.

Coherency

Theorem 2.5.4. Let f: X — Y be a morphism of complex manifolds and
let M € DYy(DY). Assume that f is proper on supp(M). Then

(i) fPM € Dy (DY),
(ii) char(fPM) C frfa(char(M)).

(iii) Moreover, if f is finite on supp(M), the above inclusion is an equality.
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Proof. (i)—(a) By “dévissage”, we reduce to the case where M is a good
Dx-module. More precisely, assume H?(M) = 0 for j ¢ [jo,71] and the
result has been proved for modules with amplitude j; — jo — 1. Consider the
distinguished triangle

H?(M)[~jo] = M = 770 (M) T
Applying the functor fP to this d.t., we get the d.t.:
fPHP(M))[jo] = FPM = fP(777(M)) 5

It follows from the induction hypothesis and Lemma 2.5.2 that f” M belongs
to D2y (DY).

(i)—(b) First, assume that M ~ F ®, Dx for a coherent Ox-module F and
f is proper on supp(F). Then

f*DM = Rf'(f@)o DX ®DX DX—>Y)
~ Rf\(F &, Ox ® 10, [ Dy)
~ Rfyf ®(9 Dy.

The coherence of Rf,F follows from Grauert’s theorem.

(i)—(c) Since the problem is local on Y and f is proper on supp(M), we may
assume by Lemma 2.5.3 that there exists an exact sequence in Mod(D%):

0> M = F®,Dx > M—=0

and f is proper on supp(F). We apply the functor fP to this sequence and
take the cohomology. Setting £ = F ®,, Dx we find a long exact sequence

o= HI(fPM) = H(fPL) = H (fP M) = H7FH(fPM) = -+
Assume H7(fPM) is good for all M and all j > jy. Set
K7 := Ker(HPH (fPM') — HOY(fPL)).
Then K7 is good. Moreover, we have an exact sequence
HI(fPL) — HI(fPM) = K =0

from which we deduce that H’(fP M) is locally finitely generated over Dy?.
Set

R’ := Coker HY(fPM') — HI(fPL).
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Being a quotient of a good DyP-module by a finitely generated module, it is
a good D{P-module. By the exact sequence

0— R — HI(fPM) =K =0
we conclude that H(fPM) is a good Dyx-module and the induction pro-

ceeds.

(ii)—(iii) The proof is similar to that of Theorem 2.3.7 and left to the reader.
q.e.d.

Example 2.5.5. (i) Assume X is compact and let M € Dpy(D¥). Denote
L
by ax the projection X — {pt}. Then ax? M ~ RI'(X; M®,0x) and for

all j € Z, H(R['(X; M(%)DOX) is a finite-dimensional C-vector space.

(ii) Let f: X — Y be a proper map and assume that Y is a curve (i.e.,
dy = 1). The object fPOx is called the Gauss-Manin connection on Y
associated with f. It is of particular importance when f is finite (hence, X
is again a curve). Note that the characteristic variety of the Gauss-Manin
connection satisfies

char(fPOx) C fofi ' (T%X)
= {(y;m) € T*Y; there exist x € X with fy(x)n = 0}.
In other words, this characteristic variety is contained in the union of the

zero-section of T*Y and the conormal bundles to the points y € Y which are
critical values of f.

We state without proof an important result due to Kashiwara.

Theorem 2.5.6. Let j: Z — X be a closed embedding of a smooth mani-
fold. Then the functor jP induces an equivalence of categories Mod(Dy) —
Modyz(Dx), where Modz(Dx) denotes the full abelian subcategory of Mod(Dx)
consisting of objects with support contained in Z. Moreover, this equivalence
induces an equivalence of the subcategories consisting of coherent modules.

A quasi-inverse functor to j? is given by j7'Hom (Dx«z, *).

Although we do not give the proof here and refer to [Ka03, Th. 4.28], the
next result will be used in the sequel.

Theorem 2.5.7. Projection formula for D-modules Let f: X — Y be a
morphism of complex manifolds. Let M € D*(D) and let N' € DP(Dy).
There is a natural isomorphism in DP(Dy)

(2.17) [P(MBf5'N) = fPMEN.

Proof. q.e.d.
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2.6 Trace morphism

Theorem 2.6.1. For each morphism of complex manifoldsf: X — Y there
exists a “trace morphism” in DP(D{F)

(218) tl"fl f!DQX [dX] — Qy {dy]
with the following properties:

(i) try is functorial in f, that is, tria, = id and tryey = tr, o try for

morphisms X ERSTEER Z,

(ii) when X is a curve and Y = {pt}, try induces the residues morphism

on HY(X;Qx).

Using the direct images functor for left D-modules, (2.18) gives the func-
torial morphism

(219) tl"fi f!DOX [dx] — Oy [dy}

Proof. Recall that Qx[—dx] is quasi-isomorphic in D*(DF) to the De Rham
complex DRx(Dx) (see (1.17)):

DRx(Dx):= 0— Q% ®,Dx < -+ = Qx ®, Dx — 0,
where the differential d is characterized by:
dlwe@m)=dv®P+ (—)PwAdP, weQf PeDx

and dP =), dz; ® 0; o P in a local coordinate system.

Let us identify Xg, the real analytic manifold underlying the complex
manifold X with the diagonal of X x X. Hence, the real tangent bundle
T Xg is isomorphic to T'X X x, TX and the differential d X Splits as

dx, =0® 0.

Denote by Dbx, the sheaf of distributions on the real analytic manifold Xg.
The sheaf Q% is quasi-isomorphic to the Dolbeault complex

0— D0 2 L D) g,

where Db%{q) is the sheaf of forms of type (p, ¢) with coefficients in Dby, . It
follows that there is a qis

(2.20) Qx[—dx] = Dby " &, Dx, (0,0)
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where the bidifferential (9, d) satisfies

(2.21) Ou®P) = Ju®P+ (—)’uNdP,
(2.22) du®@P) = Ou®P.

Denote by C;Omfp ‘D the sheaf of forms of type (p, q) with coefficients in the sheaf
C%, of complex valued C*°-functions on Xg. There is a natural morphism

(2.23) £ f*lc;;(pvq) —>C;°H§p’q).

Since T'.(X ;Dbg?;dx +4x)) s the dual of the space I'o(X ;C;Ongp ) the mor-
phism (2.23) defines the morphism

+dx,q+d +dy ,q+d
(2.24) /f:f,Dbgng oardx) _y ppthady),

Moreover, [ 5 commutes with 0 and 0.

L
The object Qx|[dx]®,Dx—sy of D*(DY) is isomorphic to the complex
Db;(]’R: ®p [ 1Dy [2dx] where d(u® P) = du® P and the action of 9 is given

by (2.21) and (2.2). Noticing that the sheaves Db%f) are soft, we get the
chain of morphisms and isomorphisms

PQxldx] =~ A(Dby, ®, Dx @p Ox ®;-10, f~ ' Dy)[2dx]

~ f!(DbX;R ®f_1OY f_IDY)[QdX]

f e o
=% Dby:" &, Dy|2dy]
~ Qy [dy]

The properties (i) and (ii) of the morphism tr; are easily checked.  q.e.d.

Corollary 2.6.2. Let N' € DP(Dy). There exists a canonical morphism in
Db(Dy).'

(2.25) P (fo'N @, Qx [dx]) = N &, Qy [dy].
Proof. By Theorem 2.5.7, we have an isomorphism
IP(f5'N € Qxldx]) = fP(fp NEQx [dx])
= /\/’g?f!DQX [dx].

To conclude, apply the trace morphism fPQy [dx] — Qy [dy]. q.e.d.
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Corollary 2.6.3. Let M € D(Dx) and let N € D*(Dy). There is a
canonical morphism

(2.26) Rf,RHom ,(M, fp'N) [dx] = RHom ,(fE M, N) [dy].
Proof. Consider the chain of morphisms

Rf . RHom (M, fr'N) [dx]
— Rf,RHom »(Dy+x @, M, Dy x @y fp'N) [dx]
— RHom p(Rf\(Dy+x ®p M), Rf,(Dy+x @p fp'N)) [dx]
~ RHOmD(f!DMv FP o' N) [dx]
— RHom 5 (fEPM,N) [dy]

where the last morphism follows from (2.25). q.e.d.

Duality and direct images

Let again f: X — Y be a morphism of complex manifolds.

Lemma 2.6.4. Let M € DP(DY). There is a canonical morphism in
Db('D)O/p>.'

(2.27) fPDpM — Dp fPM.

Proof. By choosing N' = Dy in Corollary 2.6.3, we get the chain of mor-
phisms

fPDpM - = Rf((RHom (M, Dx ®, Qx [dx]) ®p Dx—y)
Rf (RHom p(M,Qx ®, Dx—y) [dx]
Rf(RHom (M, f5'0y) [dx])
RHom 5 (fE M, Dy ®, Qy) [dy]

= DpfPM.

3

12

1

q.e.d.

Theorem 2.6.5. Let M € ng(Dgf) and assume that f is proper on supp(M).
Then the morphism (2.27) is an isomorphism.

Proof. We may reduce to the case where M € Modgq(DY) and, as in the
proof of Theorem 2.5.4, that M = F ®, Dx for a coherent Ox-module F.
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In this case,

JPDpM

12

Rf\(RHom (F @, Dx, Dy+x ®p [~ Q) [dx]
Rf RHom ,(F,Ox) ®, Dy [dx] ®, Qy

RHom ,(Rf\F,Oy) ®, Dy ®y Qy [dy]

RHom »(Rf\F @, Dy, Dy) &, Qy [dy]

~ DpfPM.

12

12

12

Here, we have used the fact that proper direct images commute with duality
for O-modules (Theorem 3.5.11). q.e.d.

Theorem 2.6.6. Let M € Dp,(DY’) and assume that f is proper on supp(M).
Then the morphism (2.25) is an isomorphism.

Proof. Since M and f’ M have coherent cohomologies, we have the isomor-
phisms

L
RHom (M, f5'N) =~ RHom (M, DX<_Y)®f*1DYf_1N,
RHom(fPEM,N) ~ RHom,(fEM, Dy)é@fDN.

Hence, we are reduced to prove the result when AN/ = Dy, and it follows
immediately from Theorem 2.6.5. q.e.d.

Corollary 2.6.7. Let M € ng(DX) and assume f is proper on supp(M).
There is a canonical isomorphism

Rf,RHom (M, Ox)[dx] = RHom,(fF M, Oy) [dy].

2.7 D-modules associated with a submanifold

Let Z be a hypersurface of X. One denotes by Ox(xZ) the sheaf of mero-
morphic functions on X with poles in Z. Hence, if {f = 0} is a local equation
of Z, a section u of Ox(xZ) is locally written as a quotient v = g/f™, for
some m € N and ¢ a section of Ox. Clearly, Ox(xZ) is a left Dx-module.
One also introduces the left Dx-module Bz x by the exact sequence

0= Ox = Ox(xZ) = Bz x — 0.
If {f =0} is a local equation of Z, then
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More generally, let Z = {f; =0;j = 1,...,d} be a complete intersection.
One sets

(2.28) Byx =~ (’)X[l/f1...fd]/ZOX[l/fl...ﬁ-...fd].

We shall see that this does not depend on the choice of the fis. For that
purpose, we recall the construction of the functor I'iz; and its derived func-
tors.

The functor I'|z for O-modules

Let X be a complex manifold, Z a closed analytic subset, Z, its defining
ideal. Let F be an Ox-module. Recall that I';F denotes the subsheaf of
sections supported by Z.

Definition 2.7.1. One sets

iz F = lim Hom ,(Ox [T}, F),
J
Pz F = lim Hom (T3, F).
J

Notice that

o ['|;F is the subsheaf of I, F consisting of sections s such that, locally
on X, there exists j > 0 such that Z7,s = 0,

e there is a monomorphism I'jz) Fr—1zF,

e in Definition 2.7.1, one may replace the defining ideal 7, with any
coherent ideal Z such that supp(Ox/Z) = Z. Indeed, for such an ideal,
there exists locally an integer k such that Zf C Z C Zy,

e the functors I'jz)(+) and 'jx\z(+) are left exact,
e there is an exact sequence of sheaves

(2.29) 0— F[Z]-/—" - F = F[X\Z]]:-

We shall concentrate our study on the functor I'iz.

Proposition 2.7.2. Let Z, and Zy be two closed subsets of X. There is a
natural isomorphism

F[Zl]F[Zﬂ‘F = F[Zlﬂzz]f'
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Proof. One has the chain of isomorphisms

Lizg Uiz F = hﬂHomO(OX/I%,hg?—[omo((’)x/zz,}"))
Ji J2

~ lim limy Hom o (Ox /T3, Hom o(Ox /T, F))

J1 J2
~ i limg Hom o (Ox / (T} +T%), F)
Jj1 J2

~ limHomy(Ox/(Zz +Iz),F).
J

Here, we have used
(Zz, +T2,)% CI, + Ty, C (g +1z)
Since supp(Zz, + Zz,) = Z1 N Zs, the result follows from Lemma ?7. q.e.d.

Let x € X and let F € Mod(Ox). Denote by j,: {z} — X the inclusion.
One shall be aware that one uses the notation F, for both the stalk of F at
z, an object of Mod(Ox ) and for the sheaf j,,j'F, an object of Mod(Ox).

T

Proposition 2.7.3. Let F be an Ox-module and let x € X. Then there is
a natural isomorphism (U5 F ), ~ Uiz Fs.

Proof. By the the coherence of Ox /77 we have the isomorphisms
(Homo(Ox /T4, F)) = Home, (Ox/T))., F)
~ Hom ,(Ox T}, Fr).
q.e.d.

Proposition 2.7.4. Let G be a coherent Ox-module and let F be an Ox-
module. There are natural isomorphisms

Hom (G, T F) =~ TizHom,(G,F)
(2.30) ~ lim Hom ,(G/Z,G, F).
J

Proof. (i) Since G is coherent, the functor Hom (G, *) commutes with fil-
trant inductive limits. Hence

Hom (G, 151 F) ~ Homo(g,lig’}'-lomo(@x/l%,f))
J
~ lim Hom (G, Hom o(Ox /Ty, F))
J

~ lilgHomO(OX/I;, Hom (G, F)).
J
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(ii) The second isomorphism follows from

G @, Ox/T} ~ G/TLG.

The functor I'|y for D-modules

Note that Dx being flat over Oy,

DxT}, ~ Dx ®, I},
Dx/DxT}, ~ Dx &, Ox /T

Hence, if M is a Dx-module:
(2.31) LigM = limHomp(Dx/DxTy, M).
J

Proposition 2.7.5. Let M be a left Dx-module. Then 'z M is naturally
endowed with a strucure of a left Dx-module.

Proof. The proof decomposes into several steps.
(i) Let Z be an ideal of Ox. Then

(2.32) T™"F1,, Dy C Fl,,DxT".
First, we treat the case m = 1. Let v € F1{Dx and let ay,...,a, € Z. Then
ag -+ ayv :vao---an—Z[v,ai]ao---d}---an e 1"
i=0
The inclusion (2.32) follows by induction. Indeed, F1,,Dx = F1,DxF1,, 1Dy,

and we get

In+mF1mDX ~ In+mF11D)(F1m_1DX
F1,DxZ""™ 'Fl,, Dy

C
C F11DxFl1,,.1DxI".

(ii) Let Z be a closed analytic subset. It follows that if P € F,, Dy, then -P
defines a morphism DxZ, " i Dx1T7%, hence a morphism
P-: Hom (Dx /DxT,™, M) — Hom (Dx /DxT}, M).

It follows from (2.31) that P acts on I'izjM.. q.e.d.
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Definition 2.7.6. We denote by J the full additive subcategory of Dx
consisting of objects M such that M, is Ox ,-injective for all x € X.

Lemma 2.7.7. Let Z be an closed analytic subset. The category J satisfies:

(i) for any M € Mod(Dx), there exists N € J and a monomorphism
M—N,

(ii) for any exact sequence 0 — M" — M — M" — 0 with M and M’ in
J, then M" € 7,

(iii) for any exact sequence as above with M’ in J, the sequence 0 —
LM’ = TigM = TiggpM” = 0 is ezact,

(iv) forany M e J, TiyzM e J.

Proof. (1)—(ii) are easy and left to the reader.

(iii) It is enough to check that this sequence is exact after applying the
functor (), for x € X. Indeed, the sequence 0 — M’ — M, — M! — 0
is exact and the sequence obtained by applying the functor Hom ,(O /I;, *)
will remain exact since M/, is Ox ,-injective. Then the result follows from
Proposition 2.7.3.

(iv) By Proposition 2.7.3, it is enough to check that 'z M, is Ox ,-injective.
By classical results (see [We94, Ch. 2 § 3|) we are thus reduced to show that if
G' C G are coherent O x-modules, then Hom (G, I'iziM) — Hom ,(G', T'1z1M)
is an epimorphism. Since M, is injective for all x € X and G, G’ are coherent,
the sequence

Hom ,(G/TLG, M) — Hom »(G'/(G' N TLG), M) = 0
is exact. Hence, it is enough to prove the isomorphism
liny Hom (G’ /T,G', M) = lim Hom o (G'/(G' N T4G), M).
J J
This follows from the Artin-Rees theorem (see Theorem 3.5.10) which asserts

that there locally exists 7 > 0 such that G' N (Z,"G) C Z,G'. q.e.d.

We can define the right derived functor RT'z: D*(Dx) — D"(Dx). Using
the category J, we obtain

Proposition 2.7.8. Let F € D*(Ox).
(i) RF[Zl] o RF[Z2] =~ RF[ZmZg];
(ii) of G is O-coherent, RHom (G, Rz F) ~ RI'z)RHom (G, F).
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Proof. Remark first that it follows from Lemma 2.7.7 that if F € Mod(Dx)
and F — F* is a qis with F* € C*(J), then Rz F ~ 'z F* in D*(Dx).

(i) By Proposition 2.7.2, it is enough to prove that the derived functor of
I'1z,10L 12, is the composition RI'[z,j0RT[z,). This follows from Lemma 2.7.7 (iv).
(ii) We may assume that F € J. In this case the formula reduce to the first
isomorphism in Proposition 2.7.4. q.e.d.

Proposition 2.7.9. Let N, M € DP(Dx). Then there is a natural isomor-
D L
phism RF[Z] (N@M) ~ (RF[Z]N)(X)OM m Db(DX).

Proof. (i) First, we construct the morphism. One proves the isomorphism
D D
RT7(RT 7N @M) ~ RT 1N @M.

D
(We shall not give the proof here.) Hence, the morphism RI'|zN®@M —
D D D
N®@M factorizes uniquely through RI'7N @M — RI' (N @M).

(ii) Then, we prove the isomorphism in D”(Ox), that is, for the functor (}LE)O.
By dévissage, we reduce to the case where N" and M belong to Mod(Ox).
Then, we may reduce to the case where NV and M are coherent. Set M* =
RHom (M, O). In this case,

L
(RF[Z]N)®OM ~ RHomO(M*, RF[Z}./\/’)
~ RTzRHom ,(M*,N)
L
~ RF[Z] (N@OM)

(iii) The morphism in (i) is an isomorphism by (ii). q.e.d.

The Dx-module Bz x
Lemma 2.7.10. Let Z be a closed analytic subset of X. Then
(2.33) H*¥(RI'5Ox) ~ nggxtg(ox /T, Ox).

j

Proof. Let F* be a resolution of Ox with 7/ € J. Then the left hand side
of (2.33) is the k-th cohomology object of @Homo(ox,]—"'). Sincve the
J

inductive limit is filtrant, it commutes with H*. Moreover,
H*(Hom »(Ox /T4, F*)) = Eatk (Ox /T}, Ox),

since the germs of the F/’s are Ox z-injective and Ox /I]Z is Ox-coherent.
q.e.d.
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Recall that if Z is a closed complex analytic hypersurface of X and j: (X \
Z) — X is the open embedding, the sheaf 7,7 'Ox describes the sheaf of
holomorphic functions on X \ Z, with essential singularities on Z. It contains
the subsheaf Ox[*Z] of meromorphic functions with poles in Z. If {f = 0}
is an equation of Z (such an f exists locally), then Ox[*Z] ~ Ox[1/f].

Proposition 2.7.11. (i) Let Z be a closed analytic subset of codimension
> 1. Then HI(RL'5Ox) =0 for j <.

(ii) If Z is a hypersurface, then H(RT'zOx) = 0 for j # 1 and if {f = 0}
is an equation of Z then H'(RI';Ox) ~ Ox[1/f]/Ox.

Proof. (i) using (2.33), this is a particular case of Theorem 3.5.6.
(ii) For j > 0, let us apply the left exact functor Hom ,(+,Ox) to the exact

sequence 0 — Ox , Ox — (’)X/Ié — 0. We get the sequence

0= Ox L5 Ox = Eat' (Ox /TS, Ox) = 0

Hence, H'(RI'|5Ox) =~ @Ox/fjox The isomorphism li IQOX/]”OX =

Ox|[1/f]/Ox associates 1/f3 € Ox[1/f]/Ox to the 1mage of 1 € Ox in

Ox/fj OX g.e. d.
Recall that HZ(+) is the d-th derived functor of the functor I'z(+): Mod(Cx) —
MOd(Cx)
Definition 2.7.12. When Z is a closed subset of pure codimension d, one
sets
BZ\X = Hd(RF[Z]OX)> BZ\X - Hg((’)x).
Note that

Bxx = Ox.

Also note that the morphism of functors RI'iz(+) — I'z(+) defines the mor-
phism RI'z(+) = RI'z(+) and in particular, the morphism

BZ\X — B?TX

Recall that a closed analytic subvariety of codimension d is called a local
complete intersection if locally on X there exists d holomorphic functions
fi, ..., fa such that, setting Z; = {z € X; f; =0}, Z = ﬂ;iZj.
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Proposition 2.7.13. Assume Z = ﬂ;l Zj 15 a local complete intersection of
codimension d. Then H?(RT'1zOx) =0 for j # d and

D D
(2.34) Bzix ~ Bz x®--- @Bz,x-

Proof. Since Bz x is concentrated in degree > 0 and the right-hand side of
(2.34) is concentrated in degree < 0, it is enough to prove this formula. One
has

D D
(2.35) RjOx[d] = RT(7)Ox[1]8 - - ®RT 17, Ox [1].

Since each RI'z,)Ox|[1] is concentrated in degree 0, the result follows. q.e.d.

Corollary 2.7.14. Let Z = {f; = 0;j = 1,...,d} be a complete intersection.
Then

(2.36) Box ~ Ox[1/fi- fa/ D Ox[1/fr-- i f].
Corollary 2.7.15. Let x = (2/,2") be a local coordinate system on X, with
= (x1,...,2q). Assume Z = {2’ =0}. Then

BZ\X = DX/DX(Z’/,@M)-

Corollary 2.7.16. Let Z be a closed smooth submanifold of X. Then Bz x
15 a coherent Dx-module and its characteristic variety is T, X, the conormal
bundle to Z in X.

Notation 2.7.17. Let f be a non zero section of Ox (on a connected open
set) and let Z = {f = 0}. One denotes by 6(f) the generator of Bz x ~
Ox[+#Z]/Ox associated with 1/f.

Let Z, and Z5 be hypersurfaces and assume Z; N Z5 has codimension 2.
Consider the diagram below in which all morphisms are isomorphisms:

Bz, x @0 Bzy;x — Bz,nz:x

|

Bz, x @0 Bz, |x —Bz,nz:x

Note that §(f1) ®d(f2) is a generator of Bz ~z,x and

(2.37) 5(f1) @6(f2) = —6(f2) @(f1).
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Remark 2.7.18. One proves similarly that Z = ﬂ;l Z; being a local complete
intersection of codimension d, then H%(Ox) = 0 for j # d and

D D
Proposition 2.7.19. Let Z be a complete intersection of codimension d and
assume Ly = Ox f1 + -+ + Ox fy4. Then the section

§(f1) @+ ®6(fa) ®@dfy A+ ANdfa € Bzix ®, Q%
does not depend on the choice of the sequence (f1,..., fa)-

Proof. Let (f1,...,f;) be another sequence defining the ideal Z;. There
exists a section A € GI(Ox,d) which interchanges these two sequences. The
group Gl(Ox,d) is generated by the transformations

(1) (fl,...,fd)»—>(afl,...,fd),withan)X(,
(i) (fr-oos fis firns - fa) = (frso firns fir oo fa)
(111) (fh"‘?fd)'_>(f17f2+bf17'--afd)

Then, it is enough to notice that

L/af -1/ fod(afr) Adfy = 1/ f1 -1/ fadfy A dfs,
1/ fo- 1/ frdfs AN dfy = 1/ f1 - 1/ fadfr A dfo
L/ fi-1/(fa +0f1)dfs Nd(fo +0f1) = 1/ fi - 1/ fadfi A dfo.

q.e.d.

Definition 2.7.20. Assume that Z is smooth of codimension d. We shall
denote by 6(Z)dxz the canonical section of By ®, Q% constructed in Propo-
sition 2.7.19. One calls it the fundamental class of Z in X.

Note that 6(Z)dz belongs to ALy where Lz denotes the subsheaf of QL
consisting of sections with values in the conormal bundle 7 X.

Denote by A the diagonal in X x X and by ¢; and ¢ the first and second
projections X x X — X. The projection g, allows us to identify Tx X x X
with 7*X. There is a natural Dy ® DY -linear morphism

(2.39) Dx — BA|X><X ®q;10 QQ_IQX7
given by 1 — 6(A)dx
Proposition 2.7.21. The morphism (2.39) is an isomorphism.

Proof. We may choose a local coordinate system (z) on X and denote by (y)
a copy of this system. Then (z,y) is a local coordinate system on X x X.
Replace this coordinate system by the new system (u,v) = (x + y,z — y).
Then Bajxxx is isomorphic to Dxx/(v,0,) and the result follows. q.e.d.
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Exercises to Chapter 2

Exercise 2.1. Let Z; and Z5 be two smooth submanifolds of X and assume
they are transversal. Calculate

(i) RHom (Bzyx, Bz, x),
D
(ii) Bz, 1x®Bz,x.

Exercise 2.2. Let f: X — Y be a morphism of complex manifolds and let
Z be a smooth closed submanifold of Y. Assume that f is transversal to 7,
that is, f is non characteristic for T,Y", or, equivalently, for Bzy. Prove that
S = f~1Z is a smooth closed submanifold of X and that sz;le‘y ~ Bg|x-

Exercise 2.3. Denote by j: Z — X the closed embedding of a smooth
submanifold Z of X.

(i) Prove that By x ~ jPOy.

(ii) Calculate RHom p(Bzx,Dx) for a smooth submanifold Z of X.

Exercise 2.4. Let M € Mod..n(Dx) and assume that char(M) C T5%X.
Prove that locally on X, there is an isomorphism of Dyx-modules M ~ OF
for some integer N. (Hint: see [Ka03, Prop. 4.43]).

Exercise 2.5. Let f: X — Y be a morphism of complex manifolds. Let
M € D*(DY) and let N' € D*(Dy). Prove that there is a natural isomor-
phism in D"(Cy)

L _1 D 1
Rf!(M®DfD N) = f1 M@DN

Exercise 2.6. Let X and Y be two complex manifolds and denote by ¢; the
1-th projection defined on X x Y and by p; the i-th projection defined on
T*X x T*Y (i=1,2). Let M € D*(Dx) and L € D*(DY_,).

(i) Prove the isomorphism

Dl 1 R
LoM:=q (L&Gp M)~ Rg(LRpq, M).

(ii) Assume now that M € DPy(Dx), £ € Dpy(DY,y ) and that p, is proper
on p; 'char(M) Nchar(£). Prove that p; 'char(M) Nchar(£) C T5,vX X Y
and that £o MM € DY, (DY).

(iii) Show that the construction of the inverse or direct image of a D-module
can be obtained by this procedure.
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Appendix

In this Appendix, we collect basic and classical results of various fields of
Mathematics which are of constant use in D-modules theory.

We give a few proofs of results that, although elementary, are not always
well-known. Here, K denotes a commutative ring.

3.1 Symplectic geometry

The theory developed in this section works for real vector spaces and real
manifolds, as well as for complex vector spaces and complex manifolds.

Linear symplectic geometry

A finite dimensional symplectic vector space (E, ) is a finite dimensional
vector space F/ endowed with a non degnerate skew symmetric 2-form 6. In
such a case E has even dimension.

Definition 3.1.1. A symplectic basis on a symplectic vector space (F,60
is a basis (e; f) = (e1,...,en; f1,---, fn) such that denoting by (e*; f*) =
(ef,...,ex 1, ..., [F) the dual basis, on E*, one has

n
0=> [N
i=1
One proves easily that any finite dimensional symplectic vector space

(E,0) admits a symplectic basis.

Example 3.1.2. Let V be a finite dimensional vector space. The space E =
V@ V* is endowed with a symplectic structure, by setting for (z;£) € Vo V™

0((z; §)(;8") = (2',§) — (2,¢),

29
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Since 6 is non degenerate, it defines an isomorphism

~

H:EF" —F

(& v)y=0(v,H()), veEZEecE"
The isomorphism H is called the Hamiltonian isomorphism. If & € E*, one
also writes H instead of H () and calls He the Hamiltonian vector of &.

The Poisson bracket. denoted {-,-}, is the symplectic form on E*, the
image of 6 by H. It is thus given by:

{&n}y = 0(H'(€), H " (n)).

If F is endowed with a symplectic basis and one calculates the image by
H of the dual symplectic basis, one finds

(3.1) H(ej) =—fi, H(f])=ei.
Let p be a linear subspace of E. One sets
pt={veE;f(v,p) =0.

Note that

prt=p, (pr+p)T =i Ny, (pNpa)™ = pi + py

Definition 3.1.3. A linear subspace p of F is called
(i) isotropic if p C pt,
(i) involutive (or else, co-isotropic) if p+ C p,
(iii) Lagrangian if p = p*.
Note that if dim £ = 2n and p is isotropic (resp. involutive, resp. La-

grangian), then dimp < n (resp. dimp > n, resp. dimp = n). A line is
always isotropic and a hyperplane is always involutive.

Symplectic manifolds

A real or complex symplectic manifold (X,6) is a manifold X endowed with
a closed 2-form € such that 6" never vanishes.

At each p € T* X, the 2-form 0x(p) is a bilinear skew symmetric non de-
generate form on 7,7* X, hence induces a linear isomorphism H (p) : Ty X ~
T, X. Hence 0 defines an isomorphism of vector bundles

H:T"X~TX,
or, equivalenly, a sheaf isomorphism

(3.2) H : Ox ~ Q.
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Definition 3.1.4. (i) Let f be a section of the sheaf Oy, one sets
Hy = H(df),

the section of Oy associated with df by the isomorphism (3.2). One
calls Hy the Hamiltonian vector field of f.

(ii) Given two sections f and g of Ox, one defines their Poisson bracket

{f,g} as

(3.3) {f,9} = Hy(g).
The Poisson bracket satisfies the Jacobi identities:
{f,9y =g, [}
(3.4) {f,hg} = h{f. g} + g{f. h}
Hfigh by +{{g.h} 3+ {{h, f}, 9} =0
Moreover,
(3.5) [Hy, Hy] = Hggy.
Definition 3.1.5. A symplectic local coordinate system (z;¢) is a local co-
ordinate system (x1,...,2,;& .. .,&,) on X such that
(3.6) 0=> d& Ad;.

The Darboux Theorem asserts that a symplectic local coordinate system
always locally exists.
In a symplectic local coordinate system, one finds, using (3.1):

(3'7) Hxi = _aﬁi’ Hfi = axi
" of 9 Of O
. H, = - - 4 =

(3.9) {f.9} = Z(a—éa— - a—ia—&)~

If S is a locally closed analytic subvariety of a smooth complex manifold X,
one denotes by S;., the manifold given by the non singular points of S, and
by Zs the defining sheaf of ideals of .S.

Definition 3.1.6. Let V' be a locally closed analytic subset of X. One says
that V isotropic (resp. involutive, resp. Lagrangian) if for each p € V., the
vector space T},V,., is isotropic (resp. involutive, resp. Lagrangian) in 7}, X.
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One can prove that V' is involutive if and only if its symbol ideal Zy is
stable by the Poisson product, that is, if for any f, g vanishing on V', the
function {f, g} also vanishes on V. If V is involutive, then all irreductible
components of V' have dimension at least n.

If V' is smooth, then V is involutive if and only if for any function f
which vanishes on V, then H; is tangent to V. Indeed, TV* is generated by
the vector fields Hy, with f|y = 0. By (3.5), it follows that the sub-bundle
TV+ of TV is table by brackets, that is, satisfies the Frobenius integrability
conditions. Therefore there exists a foliation of V', and the leaves of this
foliations are called the “bicharacteristic leaves” of V.

An involutive manifold has dimension > n. A hypersurface is always
involutive.

One proves that V' is isotropic if and only if, for any manifold S and any
morphism f : S — V, the 2-form f*6x vanishes. If V is isotropic, then all
irreductible components of V' have dimension at most n. A curve is always
isotropic.

If V is Lagrangian, then it is pure dimensional.

Realification of complex cotangent bundles

For a complex manifold X we denote by Xg the real underlying submanifold
to X. When there is no risk of confusion, we simply write X instead of Xg.

We denote by X the complex conjugate manifold to X. (Recall that
X = X as a topological space, but the sheaf of holomorphic functions on X
is the sheaf of anti-holomorphic functions on X.) Then, identifying X with
the diagonal of X x X, the complex manifold X x X is a complexification of
XR.

Denote by dax the symplectic form on 7% X and by dax, the symplectic
form on T*Xg. Then

dOéXR == 2§Rdax.

Homogeneous symplectic manifolds

A homogeneous symplectic manifold is the data of a symplectic manifold
(X, 0) together with a vector field v on X such that

(3.10) L,0=0.
Define the 1-form w by

(3.11) w = iy0.
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Since L, =doi, + i, 0d, we get
(3.12) dw =10, Hw)=—v.
In such a case one calls X a homogeneous symplectic manifold.

Definition 3.1.7. A homogeneous symplectic local coordinate system (z; &)
is a local coordinate system (z1,...,2,;& ...,&,) such that

(3.13) w=Y &dz;.

It follows from Darboux’s theorem that such a local coordinate system
always locally exists.

Cotangent bundle

Let X be a manifold and let £ — X be a real vector bundle over X. Then
E is endowed with an action of R* and in particular, an action of R*. One
says that a subset A C F is R conic if it is invariant by this action. One
defines similarly the C*-conic subsets of a complex vector bundle.

If X is a manifold, we denote by 7: TX — X and n: T"X — X the
tangent and cotangent bundles, respectively.

Let f : X — Y be a morphism of manifolds. To f are associated the
tangent morphisms

(3.14) X L X <y TY I 1Y

Taking the dual bundles, we find the canonical morphisms

(3.15) T*X <1 X xy TV =Ty

T

The projection 7 : T*X — X defines 7w, : T"X xx T*X — T*T*X. By
composing with the diagonal embedding T*X — T*X xx T*X, we find the
map

T*X — T*T*X,

which is a section of the projection T*T*X — T*X. We have thus con-
structed a canonical 1-form wyx on T*X.
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Let x = (x1,...,2,) a local coordinate system on X. It defines canoni-
cally a local coordinate system on 7T%X,

(3.16) (2;€) = (21, xn; &1, -+, &)

and the 1-form wy associates (z;¢;;&;0) to (z;€) € T*X. Therefore

n
wWx = E ﬁidiﬁm
i=1

- 0
i=1 i

The vector field H(w) is called the Euler vector field and denoted eur:x.
It is the vector field associated with the action of C* (in case of complex
manifolds, R* in case of real manifolds) on the vector bundle T*X.

Set 0x = dwy. In local coordinates,

=1

Hence, (T*X, 0, eur-x) is a homogeneous symplectic manifold.

Definition 3.1.8. (i) One denotes by Tx%X the zero-section of the vector
bundle 7% X.

(ii) Consider a morphism f: X — Y of manifolds. The conormal bundle
to X in Y is the sub-vector bundle of X xy T*Y given by f; '(T%X).

When Z is a smooth submanifold of X, the conormal bundle 77X is
identified with a sub-bundle of 7" % X. Note that the zero-section T *x X is
also the conormal bundle to X in X.

Let Z be a smooth submanifold to X. Then 77X is a Lagrangian sub-
manifold of T*X and Z x xy T*X is an involutive submanifold.

Example 3.1.9. Assume we have a local coordinate system (x) = (2/,2")
on X, with (') = (21,...,2,) and (") = (Tpy1,...,2,). Let (x;

(', 2";:¢',¢") denote the associate coordinates on T*X and let Z =
X; 2" = 0}. Then

Ty X ={(x;€) e T*X;2' =0,&" = 0},
ZxxT*X ={(z;€) e T*X;2' = 0}.
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Non characteric morphisms

Definition 3.1.10. Consider a morphism f: X — Y of real manifolds and
let A C T*Y be a closed RT-conic subset. One says that f is non-caracteristic
for A (or else, A is non-caracteristic for f, or f and A are transversal) if, with
the notations in (3.15),

A A NTRY € X xy TyY.

Lemma 3.1.11. (i) Let A be a closed R -conic subset of T*Y . Then a
morphism f: X — Y is non characteristic for A if and only if fg: X Xy
T*Y — T*X is proper on f1(A).

(ii) In particular, if f is non characteristic for A, then fqf-*(A) is closed
and R* -conic in T*X.

(i) If f is a morphism of complex manifolds and A is a complex analytic
C*-conic subset, then fq is finite on f-1(A) and fif(A) is a complex
analytic C*-conic subset of T*X.

Proof. The first assertion follows from the fact that if A is a closed cone in a
vector space E and u: F — F'is a linear map, then u|, is proper if and only
if A\Nwu=*(0) C {0}, and the others are easily deduced. q.e.d.

Example 3.1.12. Let Z be a closed and smooth submanifold of Y. Then f
is non-characteristic for 77Y if and only if f is transversal to Z.

Lemma 3.1.13. Consider morphisms of real manifolds X Ly 4% 7 and
set h=go f. Let A be a closed R*-conic subset of T*Z.

(i) Assume that g is non characteristic for A and f is non characteristic
for gag=*(A). Then h is non characteristic for A.

(ii) Assume that h is non characteristic for A. Then g is non characteristic
for A on a neighborhhod of f(X) and f is non characteristic for gag-*A.

Proof. Set Ag = g-'A. Consider the diagram in which the square labelled [J
is Cartesian:

(3.17) T*X ~—— X xy T*Y X x;T°Z
fa ¥
fwj m] wl
™Y Y x;T*7Z O Ay

9d

.

T*Z O A.
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Note that

(gofla= fao,
Vv NIy Z) C TxZ,
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(goflr=gro0,
e N (TRY) =TxZ,

frt9a(Ao) = o (Ay).

(A) = fafr ' ga9: " (A).

(i) Since f is non characteristic for gzg-'(A) and f'gag-1(A) = py~tg1(A),

TR X) N~ lg (A € X xy Ty,

Ao =g (A)
It follows that

(gofalgo f)i'
we get
Hence

P (TR X) Nyl (A)

(ii)—(a) By the hypothesis,

g (M) NTYZ) C

(g0 £ (TxX) N (g0 fl'(A)

c X XzTEZ.

(go HZH M NTZ C X x5 T3 Z.

Therefore, ¢ is non characteristic for A on a neighborhood of f(X).

(ii)—(b) We have

fz ' (9agz " (A) N TRY

C

e g (A) NTRY
e((go /) (M) NTxZ)
(X X7 T3Z) C X xy TLY.

Note that we have used the equality p(A) N B = (AN 'B). q.e.d.
¥

3.2 Coherent sheaves

Let X be a topological space and let R be a K-algebra (i.e., a sheaf of
K-algebras) on X. Let us recall a few classical definitions.

e An R-module M is locally finitely generated if there locally exists an

exact sequence

(3.18)

£0—>M—>0

such that L is locally free of finite rank over R.
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e An R-module M is locally of finite presentation if there locally exists
an exact sequence

(3.19) L —Ly— M—=0

such that £ and L, are locally free of finite rank over R. This is
equivalent to saying that there locally exists an exact sequence

(3.20) 0=KS3N—=-M=0

where N is locally free of finite rank and K is locally finitely gener-
ated. This is also equivalent to saying that there locally exists an exact
sequence

(3.21) K—=N-—->M=0

where A is locally of finite presentation and K is locally finitely gen-
erated.

e An R-module M is pseudo-coherent if for any locally defined morphism
uw: N — M with N of finite presentation, Keru is locally finitely
generated. This is also equivalent to saying that any locally defined R-
submodule of M is locally of finite presentation as soon as it is locally
finitely generated.

e An R-module M is coherent if it is locally finitely generated and
pseudo-coherent. A ring is a coherent ring if it is so as a module
over itself. One denotes by Mod,n(R) the full additive subcategory of
Mod(R) consisting of coherent modules. Note that Mod..,(R) is a full
abelian subcategory of Mod(R), stable by extension, and the natural
functor Modcon(R) — Mod(R) is exact (see |7, Exe. 8.23]).

e An R-module M is Noetherian (see [?, Def. A.7]) if it is coherent,
M, is a Noetherian R, ,-module for any =z € X, and for any open
subset U C X, any filtrant family of coherent submodules of M|y is
locally stationary. (This means that given a family { M, };c; of coherent
submodules of M|y indexed by a filtrant ordered set I, with M; C M,
for i < j, there locally exists ig € I such that M;, = M, for any
j > ip.) A ring is a Noetherian ring if it is so as a left module over
itself.

Let M and N be two R-modules. Consider the natural morphism

@ - (Hom (M, N)), — Hom gy (M, Ny).
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If M is locally finitely generated (resp. of finite presentation), then ¢, is
injective (resp. bijective). By choosing N = M, one gets that if M is locally
of finite presentation and M, = 0, then there exists an open neighborhood
U of z such that M|y = 0.

Example 3.2.1. Let U be an open subset of X With_U =% U. Then the sheaf
Ry is not of finite presentation since, choosing z € U \ U, (Ry). =~ 0.

Proposition 3.2.2. If R is Noetherian, then all coherent R-modules are
Noetherian.

Proposition 3.2.3. Let X =Y X Z be a product of topological spaces and
let f: X =Y be the projection. Let R be a sheaf of Ky -algebras on Y .

(i) If R is coherent, then f~'R is coherent.

(i) If R is Noetherian and moreover Z is a topological manifold, then f~'R
15 Noetherian.

3.3 Filtered sheaves

As above, K denotes a commutative unitary ring and X a topological space.

Definition 3.3.1. (i) A graded sheaf gr M on X is a sheaf of K-modules
together with a familly gr ;jM, j € Z of subsheaves satisfying :

gr M ~ @grj/\/l.

J

(ii) The shifted graduation gr P/ M is given by gr E-p IM = gr p4 ;M.

(iii) A morphism of graded sheaves gr f : gr M — gr N is a morphism of
sheaves such that gr f(gr ;M) C gr ;N for all j € Z.

(iv) A graded ring gr' R on X is a graded sheaf of rings satisfying: 1 € groR
and gr;R - gr;R C gr;;;R for all 7, j.

(v) A graded gr R-module gr M is a graded sheaf of gr R-modules satisfy-
ing:

gr;R -gr,M C gr; ;M for all ¢, 7.

(vi) We denote by Mod® (gr R) the abelian category of graded gr R-modules.
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Definition 3.3.2. (i) A filtered sheaf FIM on X is a sheaf M of K-
modules together with a familly F1;M, j € Z of subsheaves satisfying

FIJM CF1j+1M, %FIJM:M
J

One calls M the underlying sheaf.
(ii) The shifted filtration F1PIM is given by Flgp M =Fl piM.

(iii) A morphism of filtered sheaves F1 f : FIM — FIN is a morphism of
sheaves f: M — N such that f(F1,M) C F1,N for all m.

(iv) The graded sheaf gr M associated to F1 .M is the sheaf P, gr ; M, where
griM =F1;M/Fl;, ;M. IfFl f : FIM — FIN is a filtered morphism,
one denotes by gr f : gr M — gr N the associated morphism of graded
sheaves.

(v) One denote by o; : F1,M — gr ;M the canonical morphism and calls
it the“symbol of order j7 morphism. One denotes by o : FIM — gr M
the morphism deduced from the o; and calls it the“principal symbol”
morphism. (One shall be aware that o; is an additive morphism, con-
trarily to o.)

(vi) A filtered ring FIR on X is a filtered sheaf of rings satisfying: 1 € F1yR
and FI,R - FI;R C F1,,;R for all 4, j.

(vii) A filtered R-module F1M, or equivalently an F1R-module, is an R-
module endowed with a filtration satisfying: FI1,R - F1,M C F1,,,; M.

Consider an exact sequence of sheaves
0 M LML M =0

and assume that M is endowed with a filtration F1 M. The induced filtration
on M’ is given by F1; M’ = f~}(F1;M). The image filtration on M”" is given
by Flj./\/l” = g(Fle)

Let us denote by Modﬁl(k x) the category of filtered sheaves. Clearly, the
category Mod™ (kx) is additive and admits kernels and cokernels.

Remark 3.3.3. One shall be aware that the category Mod™(kx) is not
abelian, even when X = pt. Indeed, consider a filtered K-module F1 M and
the identity morhism u : FIM — F1MAM . Its kernel and cokernel are zero,
although this morphism is not an isomorphism in general.
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Here, we shall assume that the filtration is positive, that is,
(3.22) F1,,R =0 for m < 0.

Definition 3.3.4. Let FI'R be a filtered ring and M an R-module.

(i) A filtration FI M on M is locally finite free if it is locally isomorphic
to a finite direct sum of F1IIR.

(ii) A filtration FIM on M is locally finitely generated if it is locally the
image of a finite free filtration.

(iii) One defines similarly the notion of a filtration locally of finite presen-
tation.

(iv) A locally finitely generated filtration is called a good filtration.

If M—N is an epimorphism and M is endowed with a good filtration,
then the image filtration on NV is good. Note that if M is a finitely generated
R-module, then M may be endowed with a good filtration. Namely, if
R™—»M is an epimorphism, one endows M with the image filtration.

We shall give conditions in order that the induced filtration on a submod-
ule is good.

Recall that if R is a sheaf of rings, then R[T] is the sheaf of rings asso-
ciated with the presheaf R ®, k[T

Theorem 3.3.5. Let R be a filtered ring. Assume
(i) groR and gr'R are Noetherian sheaves of rings,
(ii) all griR are locally finitely generated over groR.
Then the sheaves R and R[T] are Noetherian.
Corollary 3.3.6. We make the hypotheses of Theorem 3.3.5.

(i) Let FIM be an FIR-module with F1,, M =0 for m << 0 and assume
that gr M is locally finitely generated (resp. coherent). Then M is
locally finitely generated (resp. coherent).

(ii) Let M be a coherent R-module endowed with a good filtration FI M and
let N be a coherent submodule. Then the induced filtration FIN on N
18 good.

(iii) Let M be a coherent R-module endowed with a good filtration F1 M.
Then gr M is a coherent gr R-module.
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3.4 Almost commutative filtered rings

In this section, for simplicity, we shall not consider sheaves of filtered rings,
but simply filtered rings.

If F1 A is a filtered ring with F1;4 = 0 for « << 0 and a € A, the order
of a, denoted ord(a) is the smallest integer m such that a € Fl,,A.

Poisson bracket

From now on and until the end of this section, we shall assume that
(3.23) [F1,,A,F1,A] C Fl,, 41 A,

Hence, for any a,b € F1 A one has:

(3.24) ord[a, b] < ord(a) + ord(b) — 1.

Clearly, condition (3.23) is equivalent to the fact that gr A is commutative.
One defines a Poisson bracket on gr A by setting for homogeneous element
a,, and a; of order m and [ respectively:

(3.25) {@m, @1} = omyi—1([am, ai]),

where a,, € Fl,,A, a; € F1;A and a,, and @, are the principal symbols of a,,
and a;, respectively. Clearly, the right hand side of (3.25) does not depend
on the choice of a,, and a;. The relations

(3.26) [f,hg] = R[f.g] + g[f. h]
[Lf, gl h] +[lg, b], f1+[[h, f], 9] =0

tell us that the bracket {«, } satisfies the Jacobi identities (3.4).

Definition 3.4.1. A graded ideal gr I of gr A is involutive if it is stable by
the Poisson bracket, that is, a,b € gr [ implies {a,b} € gr 1.

Additivity

Recall that an additive semi-group S is a set endowed with an associative,
commutative law § x § — S, (a,b) — a + b and a zero element 0, such that
0+ a=a for all a.
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Examples 3.4.2. (i) If S is a set and S = P(5) is the set of subsets of S,
then the map S x § — S, (a,b) — a Ub makes § an additive semi-group.
The zero element is the empty set.

(ii) Let B be a commutative ring and let S denote the family of its ideals.
Then the map S xS — S, (I,J) — I - J makes S an additive semi-group.
The zero element is B.

Definition 3.4.3. Let C be an abelian category

(i) The Grothendieck group K (C) of C is the additive group generated by
the isomorphy classes [X] of objects of C wih relations [X]| = [X']4[X"]
if there exists an exact sequence 0 - X' — X — X" — 0.

(ii) Let C’ a full additive subcategory of C stable by isomorphisms in C. One
denotes by K(C’) the semigroup of K (C) of elements [X] with X € C'.

(iii) Let x : Ob(C') — S a function. One says that x is additive if for any
exact sequence 0 — X' - X — X” — 0in C, with X', X, X" in C/,
one has

(3.27) X(X) = x(X') + x(X7).

Clearly, an additive function y as above defines an additive function y :
K({C") — S.

Let F1 A be a filtered ring with gr A commutative. We denote by Mod§ (gr A)
the full additive subcategory of the abelian category Mod®"(gr A) consisting
of finitely generated graded modules.

Theorem 3.4.4. Let x : Mod} (grA) — S be an additive function. We
assume that x is invariant by the shift functors [i]. Let M be an A-module
of finite type. Let us endow M with a finite filtration F1M. Then x(gr M)
does not depend on the choice of the finite filtration.

Proof. (i) Let F1M and F1'M be two finite filtrations on M. There exists
an ng € N such that F1/M C Fl, ., M for all i. Replacing F1M by F1M 7,

we may assume from the beginning that

(3.28) FI'M C FI,M C F1},, M for all i.

i+ng

We shall argue by induction on ng. If ng = 0 the result is clear.
(ii) Assume ng = 1. Consider the exact sequences

0 — @FL,_ M/FI'_ M — @FL'M/Fl’_ M — @;FL'M/FL,_;M — 0.
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Set gr L/ = @, FIM/Fl, (M, gr " = &;F1,M/FI.M. We get exact se-
quences

0—grl —grM —grL"” —0,
0—grl UL = gr'M — gr L — 0.

(iii) Assume ng > 1. Set F17M = F1,_; M + F1/M. Then
F1/M C F1,M C F1/,, M,
FI'M C FI’M C Fl),, M.
Since x(gr M) = x(gr”M) by (ii), the induction proceeds. q.e.d.

Corollary 3.4.5. We make the hypotheses of Theorem 3.3.5. Let 0 — M’ —
M — M" — 0 be an ezxact sequence of finitely generated A-modules. Then

(3.29) X(M) = x (M) + x(M").

Gabber’s theorem

Recall that if B is a commutative ring and I an ideal, the radical v/T of I is
the ideal

z € VI & there exists k > (0 with z* € I.
If N is a B-module, the annihilator Iy of N is the ideal given by
rz€lysrzu=0forallue N.
f0—- M — M — M" — 0is an exact sequence in Mod(B), then clearly

(3.30) VI = Iy 0/ Iy = /Typr - g,

In other words, the map M + /I is additive. If gr M is a graded
gr A-module, then /g 5 is a graded ideal.

Let F1 A be a filtered ring with gr A commutative. Let M be a finitely
generated A-module. Let us endow M with a finite filtration F1 M. Applying
Theorem 3.4.4, we can state:

Definition 3.4.6. Let M is a finitely generated A-module. One sets

(3.31) Icar(M) = \/Ig u1,

where gr M is the graded module associated with a finite filtration F1 M on
M.
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Let us give a direct proof of the fact that Icar(M) does not depend on
the choice of the filtration. Let @ € /I of order p. There exists ¢ such
that a? € I, »s and there exists a € F1,M such that o(a) = a. Then

a®Fl, M C Flyipg— for all k,
a'"F1 M C Fly iy for all k.

If F1’M is another filtration, there exists r such that F1)_ M C F1,M C

Fl}, M. Hence, a"F1} C F1} ., for [ >>0.

As an application, assume moreover that gr A has no zero divisors. let
a#0,b#0in A. Then

A-anA-b#{0}.
Indeed, the sequence below of left A-modules is exact.
0= A/(A-anA-b) > A/A-adA/JA-b—AJ(A-a+A-b) =0
It follows that
0 # Icar(A/A - a) NIcar(A/A-b) C lcar(A/(A-anA-Db).

Theorem 3.4.7. (Gabber’s Theorem.) Assume that gr A is a commuta-
tive Noetherian Q-algebra. Let M be a finitely generated A-module. Then
Icar(M) is involutive.

Note that if @ and b belong to Iy s, then {C:L, b} obviously belongs to I a1
The difficulty is that one assumes that a and b belong to the radical of I, 5.

Involutive basis
Let F1 A and gr A be as in Theorem 3.3.5 with gr A commutative.

Definition 3.4.8. Let I be an ideal of A and {uy, ..., uy,} a system of gener-
ators. One says that this system is an involutive basis if {o(u1),...,0(un,)}
is a system of generators of gr /.

Let m; denote the order of u;. We endow I with the induced filtration
by Fl A. Consider the sequences

(332) @M FIEmIA ZLFIT 0, where FIf(@,0, Zb uj,

(3.33) @;V:Olgr [=mil A —gﬂ; grl — 0, where gr f( EB] Zb ;.
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Proposition 3.4.9. The following conditions are equivalent.

(i) (u1,...,un,) s an involutive basis of I,

(i) the sequence (3.32) is filtered exact,

(iii) the sequence (3.33) is exact,

(iv) for anyl € Z and b; € gri-m,; A such that Zj bjo(u;) = 0, there exists
bj € Fl;_; A such that Zj bju; = 0.

Proof. (i) < (iii) by definition and (ii) < (iii) by Proposition ?7?.
Let us prove that (iv) < (iii). Let grl’ denote the ideal generated by
{o(u1),...,0(upn,)}. Consider the exact sequences

0—grK' — @jy:olgr[_mf]A LiER grl’ =0

0 — Fl Ker(f) — @M FIl-mla 2L pip— o,

where Ker f is endowed with the induced filtration. Then gr I’ = gr I if and
only if gr K’ < gr Ker(f). q.e.d.

Note that since gr A is Noetherian, there always exist involutive basis.

3.5 O-modules

Coherency

Let X be a complex manifold of complex dimension dy, Ox it structural

sheaf.
Theorem 3.5.1. The sheaf Ox is Noetherian.

If Z is a closed complex analytic subset, we shall denote by Z its defining
ideal. Note that Z; is coherent.

One denotes by Modon(Ox) the abelian category of coherent sheaves
of Ox-modules. If S is a closed analytic subset of X, we shall denote by
Modeon(Ox)s the abelian category of coherent sheaves with support in S.
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Cycles

Let Z be a closed analytic irreducible component of S. To each F €
Mod ., (Ox)s one can associates a number multz(F), the multiplicity of F
along 7, as follows. First, assume that Z,F = 0. Then F is an Oz-module,
and generically, Z is smooth and F is free of finite rank r over Oz. Then we
set multz(F) = r. In the general case, since locally at generic points of Z,
supp F C Z, there locally exists an integer N such that ZY 7 = 0 and one
sets

multy(F) = > multy(Z,F /T, F).

Jj=0

Proposition 3.5.2. Let S a closed analytic subset of X and let Z be an
irreducible component of S. The function multz(«) on Modeon(Ox)s is ad-
ditive.

Let us introduce the group 3% of cycles of codimension d as the free
abelian group generated by the symbols [S] where S is a closed irreducible
subset of X of codimension d. One sets

v =P 3%
d

and calls this graded group the group of cycles of X.

If F is a coherent sheaf, S its support, {Z;}; the (locally finite) family
of closed irreducible components of S, the cycle associated with F is defined
by

[F] = Z mult, (F)[Z;].

One shall be aware that [ « | is not additive on the category Modon(Ox).

Example 3.5.3. Let X = C with holomorphic coordinate x and let F =
Ox/2*Ox. Let Z = {0}. Then multz(F) = 2 and [F] = 2[{0}]. On the
other hand [Ox @ F] = [Ox] = [X].

One denotes by [F]?¢ the homogeneous part of degree d of the cycle [F].
Then the function [+]?¢ is additive on the full category of Modc,(Ox) con-
sisting of sheaves F such that codim(supp(F)) > d.
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Operations on O-modules

For a complex manifold X, one denotes by Modeon(Ox) the thick abelian
subcategory of Mod(Ox) consisting of coherent modules. One denotes by
Db (Ox) the full triangulated category of the bounded derived category
DP(Oy) consisting of objects with coherent cohomology.

We shall also encounter the duality functors for O-modules:

wF = RHom ,(F,Ox),
DgF := RHom (F,Qx [dx]).

Recall that dx is the complex dimension of X and Qx = le(x .
Let X and Y be two manifolds. For an Ox-module F and an Oy-module

D
G, we define their external product, denoted FX G, by
D
FHRG = Oxxy @, go, (FHG).

D
Note that the functor F + FXG is exact. Clearly, if F € D2, (Ox) and
D
G € D, (Oy), then FEG € D2, (Oxxy).

coh coh
Let f: X — Y be a morphism of complex manifolds. There is a natural
morphism of rings f~1Oy — Ox. Using this morphism, the direct images
f«F and fiF of an Ox-module are well defined as Oy-modules. One denotes
as usual by Rf, and Rf, their derived functors. The inverse image of an
Oy-module G is defined by f*:=Ox ®;-1, f ~1G. Its right derived functor

is denoted L f*. The following result is left as an exercise.

Proposition 3.5.4. Let G € D (Oy). Then Lf*G € DY, (Ox) and there
1S a natural isomorphism

Lf*D,G ~D,Lf*G.
There is a similar result for direct images:

Theorem 3.5.5. Grauert’s theorem. Let F € DP (Ox) and assume that

coh

f is proper on supp(F). Then Rf\F € D', (Oy) and there is a natural
1somorphism

Rf!]D)ﬁ.FZ DﬁRf|.F

Note that Grauert’s theorem is a relative version of the Cartan-Serre’s
finiteness theorem and the Serre’s duality theorem.
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Homological properties
Recall the well known results.

Theorem 3.5.6. Let X be a smooth manifold and let F be a coherent Ox-
module. Then

(i) 53515’29(]:, Ox) =0 for k < codim supp(F),
(ii) codim(supp(é’xt%(]:, Ox))) > k.
Theorem 3.5.7. (Golovin) The global homological dimension of Ox is dx+1.

In other words, any Ox-module F admits an injectve resolution of length
< dim X +1, or equivalently, for any O x-modules F and G, one has Extjo(]-" ,G) =
0for j > dy -+ 1.

Let us only show that this dimension is at least dx + 1.

Proposition 3.5.8. Let © € X. Then Hj(RF{x}(X;Og(N))) # 0 for j =
dx + 1.

We may assume X = C". Let Y = C*" ! and let f: X — Y be the

projection. We have a short exact sequence 0 — f~10y — Ox Ony Ox —0
form wich we deduce the exact sequence

o HP(RE (X5 0%)) = H™2(RE gy (X £7107)
— H"™ (Rl 5y (X; 00)) = 0.

Since for any sheaf 7 on Y
H7(RT 0y (X5 f71F)) = H (RL (o) (Y F)),

we are reduced to prove the result for n = 1. Let X = P!'(C) denote the
Riemann sphere. Since X is compact, H?(X;Ox[T]) ~ H/(X; Ox)[T] and
this group is zero for j > 0. Therefore, H? , (X; O ~ HY(X\ {0}; Ox[T)).

Lemma 3.5.9. Set X = A(C), the affine line. Then H'(X; Ox|[T]) # 0.

Proof. Let 6(n) denote the Dirac mass at n € X and set u = X,0(n)T" €
[(X;D%[T]). The equation dv = u has no solution in I'(X;D%[T]). The
exact sequence of sheaves

0 — Ox[T] — DY[T] % DYIT] — 0

and the vanishing of H*(X;D%[T]) give the result. q.e.d.
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The Artin-Rees theorem

Theorem 3.5.10. Let Z be a coherent ideal of Ox and let F be a coherent
Ox-module. Then, locally, there exists mg > 0 such that for any m > my,
the morphism

I"Qy F =TI ™ @y, F
factorizes uniquely through
I" @y F = I"F =TI ™ @, F.
In fact, there is a similar theorem in the more general setting of commu-
tative Noetherian rings.

The Grauert theorem

Theorem 3.5.11. Let f: X — Y be a morphism of complex manifolds and
let F € D2, (Ox). Assume that f is proper on supp(F). Then Rf,F belongs

coh

to ch)oh<OY) .

Theorem 3.5.12. Let f: X — Y be a morphism of complex manifolds and
let F € D, (Ox). Assume that f is proper on supp(F). Then there is a

coh
canonical isomorphism

Rf\RHom ,(F,Ox)[dx] ~ RMHom,(RfF,Oy)dy].
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