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Introduction

Theorem (Chevalley-Warning)

Any subscheme of Pf:’:7 defined by equations of degrees di, . .., ds
with di + --- + ds < m has an F4-point.

— any cubic Fg-hypersurface of dimension > 2 contains an
F4-point.

What about Fg-lines? |
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Introduction

The scheme F(X)

X C P,’(’+1 cubic of dimension n.

F(X) C Gr(1, P,’(’H) projective scheme of lines contained in
X.

F(X) connected if n > 3.

Sing(X) finite = F(X) Ici of dimension 2n — 4 and
wEx) = OF(x)(4 — n).

@ X smooth = F(X) smooth.
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Introduction

High dimensions

Any Fg-cubic of dimension > 5 contains an F4-line.

Proof. Let x € X(Fg). The scheme of lines through x contained in
X is the intersection in P" of hyperplane, a quadric, and a cubic
— Chevalley—-Warning when n > 6.

When X is smooth, F(X) is Fano when n > 5

— Esnault, and Fakhruddin—Rajan to extend to all X. J

We now look at cubic surfaces, threefolds, and fourfolds.
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Introduction

Cubic surfaces

The diagonal cubic surface
BHx3+x3+axz =0

contains no Fg-lines when a € F, is not a cube.

a exists whenever g =1 (mod 3)

There are smooth cubic F4-surfaces with no Fg-lines for g
arbitrarily large.
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Introduction

The Galkin—Shinder “beautiful formula”

o X C PE! Fy-cubic

q
e F(X)CGr(1, Pg:rl) scheme of lines contained in X
o Ny (X) := Card(X(F4r))

Ny (X)2 = 2(1 + g")N(X) + Nor(X)
2q2r

N (F(X)) =

+ ("2 N, (Sing(X)).

This formula comes from a relation between the classes of X and
F(X) in the Grothendieck ring of varieties.
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The Weil conjectures

Y smooth projective scheme defined over F

Pi(Y, T):=det(ld —=TF*, H'(Y,Qp)) = ] (1 — Twy) € Z[T]

bi(Y)
j=1 |

where |w;j| = g'/2. The trace formula (n := dim(Y))

bi(Y)
NAY)= > (D' T(F H(Y,Q)) = Y (1)) > wf I
0<i<2n 0<i<2n j=1

implies, for the zeta function,

Z(Y,T):= exp(Z Nr(Y)Tr> — H PiY, T)(,l)iﬂ. I

r>1 0<i<2n
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Threefolds

Zeta function of F(X)

X C Péq smooth cubic.The trace formula reads

Z(X,T) = [Ti<j<10(1 — quw;T) ’

(1-T)1—-qT)(1-q*T)(1-q°T)’

with w; algebraic integers and |w;| = ¢*/2.
The Galkin—Shinder formula implies

Z(F(X), T) =

ngglo(l —w;T) ngglo(l — qw;T)
(1-T)1-¢qT) H1§j<k§10(1 — wjwi T)
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Threefolds

Cohomology of F(X)

This formula gives the Betti numbers of F(X). Actually, the full
Galkin—Shinder relation gives isomorphisms of Gal(F,/F4)-modules

H3(X, Q) —— H*(F(X), Qe(1))

N HY(F(X), Qe) —— H*(F(X), Q)

i i

N HY(A(F(X)), Qe) = H*(A(F(X)), Qu)

The first one can also be obtained using the incidence
correspondence.

The second one can also be deduced by smooth and proper base
change from the statement in char. 0.
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Threefolds

Existence of lines

Any smooth F 4-cubic threefold contains at least 10 F4-lines if
qg>11.

Proof. Write the Frobenius eigenvalues as wq, . ..,ws,©1,...,Ws.
Set rj := wj + W; € [-2,/9,2,/q]. Use the trace formula

Nl(F(X)) = 1- Z rj — Z qrj-|-q2

155 1<<5
+5q + Z (wjwk + Wjwi + wjwi + wjwk)
1<j<k<5
= 1+5¢+¢—(a+1) D 5+ > rnn

1<j<5 1<j<k<5

and study the minimum of this real function... [J
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Threefolds

Examples

We found smooth cubic threefolds over F», F3, F4, and Fg5 with no
lines.
The cubic threefold in Pf:S with equation

2 2 2
xf’ + 2x23 + X5x3 + 3x1X3 + X{ Xa + X1x2Xa + X1X3X4
+ 3x0x3X4 + 4X§X4 + X2X42_ + 4X3xf + 3X22X5 + X1X3X5

+ 3xox3X5 + 3x1XaX5 + 3X§X5 + X2X52 + 3x§’
is smooth and contains no Fg-lines and 126 Fs-points.

Remains F7, Fg, and Fq...
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Threefolds

Average numbers of lines

Average numbers of lines computed on random samples of 10°

F>-cubic threefolds

] ;| |||| b

4 6 8 10 12 14 16 18 20 2 26 2 68101214161820222426
Number of lines Number of lines

>

Percentage of cubics

Percentage of smooth cubics
>

S

all cubics; average ~ 9.651  smooth cubics; average ~ 6.963.
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Threefolds

Singular threefolds

Let X C Pf;q F4-cubic with a single singular point, of type A; or
As.

The curve C of lines in X through the singular point is smooth of
genus 4 and canonically embedded in P,3:q. It has two pencils g%

and h!, used to embed C in C(?) by

X g3 — X

Clemens—Griffiths, Kouvidakis—van der Geer

F(X) is the non-normal surface obtained by gluing in C®@ these
two copies of C.
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Threefolds

Lines on singular threefolds

For any r > 1, set n, := Card(C(F4-)). We have

(2 +m)—nm ifgl # h} are
defined over F;

Card(F(X)(Fq)) = < 2(n? + mp) + ny  if g3 # h} are not

defined over Fg;

5(n2 + o) if g3 = h3.

Again, this can also be obtained with the Galkin—Shinder method.
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Threefolds

Lines on singular threefolds

When q > 4, any cubic threefold X C Pf:q defined over F, with a
single singular point, of type Ay or A, contains an Fg-line.

Proof. We need to exclude
e ny = =1and gi # h} defined over F,. Write
C(Fq) = C(Fp) ={x}, and g = x + X' + x".
g3 is defined over F; = x’ 4 x defined over F,
= x',x" are defined over F p
= X' =x"=x
= gr=3x=h

Contradiction.
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Threefolds

Lines on singular threefolds

@ ng =ny=0. Then g <7 (Howe-Lauter—Top).
Weil conjectures for C:
o Frobenius roots wy, ... ,ws, @1, .., @4, with |wi| = /q;
e H monic with (real) roots rj := w; + @; with |r;| < 2,/q has
integral coefficients;
° Z1g<40 Dicj<s Wi = Q+1_”l =q+1
. Z1§J<4 Z1§J<8(W +2q) = ¢°+8g+1—n, = ¢°+8q+1.
Hence

H(T)=T*—(q+1)T3—-3qT?+ aT + b,

with |b| = |rirar3rg| < 16¢% and |a| = ]Z}‘:l b/rj| < 32¢°/2
integral.

Computer search: such polynomials with 4 such real roots and
q € {2,3,4,5,7} only exist for ¢ < 3. O
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Threefolds

Examples

We found nodal cubics threefolds over F, and F3 with no lines.
Over F:

X5+ X333 + 55 + x1x0xa + X3xa + X3 + XxEx5 4+ x1X3X5 + XX4 X5
contains no F»-lines and
H(T)=T*—3T3—6T%2+24T —15.
Over F3:
2xf’ + 2x12x2 + x1x22 + 2x2x§ + 2x1X0X4 + XoX3X4
+ X1X2 + 2X3 4 Xox3x5 + 2X3X5 + XoxE + Xo
contains no F3-lines and

H(T)=T*—4T3 —9T2 + 47T - 32.
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Fourfolds

Zeta function of F(X)

X C P‘r,éq smooth cubic.The trace formula reads

. 1
Z(X,T)= A-T)(A—qDA-FT)(1—¢*T) [, (1—qu; T)’

with w; algebraic integers, |w;| = g, and w23 = q.
The Galkin=Shinder formula implies

Z(F(X), T) =

1
(1-T)(1-¢*T) [[;(A—w; T)(1=¢*w; T)) [ <, (1—wjwi T) l
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Fourfolds

Cohomology of F(X)

Again, the Galkin—Shinder relation implies that there are
isomorphisms of Gal(F,/Fg)-modules

HA(X, Qe) —— H*(F(X), Qe(1))

Sym? H3(F(X), Q¢) —— H*(F(X), Qu)

The first also follows using the incidence correspondence.

The second one can also be deduced by smooth and proper base
change from statement in char. 0 (Beauville-Donagi, Bogomolov).
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Fourfolds

Existence of lines

Any smooth Fg-cubic fourfold contains at least 26 F4-lines if
q=>5.

One can use another trace formula (Katz). If Sing(X) finite, the
cohomology of OF(xy is very simple (Altman—Kleiman):

dimg, H/(F(X), O (x)) = 1
for j € {0,2,4}, the others are 0, and the multiplication
H2(F(X), OFx)) @ H*(F(X), OF(x)) = H*(F(X), OFx))

is an isomorphism of Galois modules (Serre duality).
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Fourfolds

The Katz trace formula

4
Y (1Y Te(F, H(F(X), O(x))) (mod p)

j=0
14 t+t> (mod p)

Ni(F(X))

Assume q = 2 (mod 3). Any Fq-cubic fourfold with finite singular
set contains an F4-line.

This applies to g = 2 and leaves only the cases g € {3,4} open for
the existence of a line on a smooth cubic fourfold.
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Fourfolds

Final question

The computer found a smooth cubic fourfold over Fy with a single
line.

We found no cubic fourfolds without lines. Do they exist?
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