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Theorem (Chevalley–Warning)

Any subscheme of Pm
Fq

defined by equations of degrees d1, . . . , ds
with d1 + · · ·+ ds ≤ m has an Fq-point.

→ any cubic Fq-hypersurface of dimension ≥ 2 contains an
Fq-point.

What about Fq-lines?
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The scheme F (X )

X ⊂ Pn+1
k cubic of dimension n.

F (X ) ⊂ Gr(1,Pn+1
k ) projective scheme of lines contained in

X .

F (X ) connected if n ≥ 3.

Sing(X ) finite =⇒ F (X ) lci of dimension 2n − 4 and
ωF (X ) = OF (X )(4− n).

X smooth =⇒ F (X ) smooth.
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High dimensions

Theorem

Any Fq-cubic of dimension ≥ 5 contains an Fq-line.

Proof. Let x ∈ X (Fq). The scheme of lines through x contained in
X is the intersection in Pn of hyperplane, a quadric, and a cubic
→ Chevalley–Warning when n ≥ 6.
When X is smooth, F (X ) is Fano when n ≥ 5
→ Esnault, and Fakhruddin–Rajan to extend to all X . �

We now look at cubic surfaces, threefolds, and fourfolds.
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Cubic surfaces

The diagonal cubic surface

x3
1 + x3

2 + x3
3 + ax3

4 = 0

contains no Fq-lines when a ∈ Fq is not a cube.

a exists whenever q ≡ 1 (mod 3)

There are smooth cubic Fq-surfaces with no Fq-lines for q
arbitrarily large.
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The Galkin–Shinder “beautiful formula”

X ⊂ Pn+1
Fq

Fq-cubic

F (X ) ⊂ Gr(1,Pn+1
Fq

) scheme of lines contained in X

Nr (X ) := Card(X (Fqr ))

Nr (F (X )) =
Nr (X )2 − 2(1 + qnr )Nr (X ) + N2r (X )

2q2r

+ q(n−2)rNr (Sing(X )).

This formula comes from a relation between the classes of X and
F (X ) in the Grothendieck ring of varieties.
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Y smooth projective scheme defined over Fq

Pi (Y ,T ) := det(Id−TF ∗,H i (Y ,Q`)) =:

bi (Y )∏
j=1

(1− Tωij) ∈ Z[T ]

where |ωij | = qi/2. The trace formula (n := dim(Y ))

Nr (Y ) =
∑

0≤i≤2n

(−1)i Tr(F ∗r ,H i (Y ,Q`)) =
∑

0≤i≤2n

(−1)i
bi (Y )∑
j=1

ωr
ij

implies, for the zeta function,

Z (Y ,T ) := exp
(∑
r≥1

Nr (Y )
T r

r

)
=

∏
0≤i≤2n

Pi (Y ,T )(−1)i+1
.
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Zeta function of F (X )

X ⊂ P4
Fq

smooth cubic.The trace formula reads

Z (X ,T ) =

∏
1≤j≤10(1− qωjT )

(1− T )(1− qT )(1− q2T )(1− q3T )
,

with ωj algebraic integers and |ωj | = q1/2.

The Galkin–Shinder formula implies

Z (F (X ),T ) =

∏
1≤j≤10(1− ωjT )

∏
1≤j≤10(1− qωjT )

(1− T )(1− q2T )
∏

1≤j<k≤10(1− ωjωkT )
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Cohomology of F (X )

This formula gives the Betti numbers of F (X ). Actually, the full
Galkin–Shinder relation gives isomorphisms of Gal(Fq/Fq)-modules

H3(X ,Q`)
∼ // H1(F (X ),Q`(1))

∧
2H1(F (X ),Q`)

∼ // H2(F (X ),Q`)

∧
2H1(A(F (X )),Q`)

∼ //

∼

OO

H2(A(F (X )),Q`)

∼

OO

The first one can also be obtained using the incidence
correspondence.
The second one can also be deduced by smooth and proper base
change from the statement in char. 0.
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Existence of lines

Theorem

Any smooth Fq-cubic threefold contains at least 10 Fq-lines if
q ≥ 11.

Proof. Write the Frobenius eigenvalues as ω1, . . . , ω5, ω1, . . . , ω5.
Set rj := ωj + ωj ∈ [−2

√
q, 2
√
q]. Use the trace formula

N1(F (X )) = 1−
∑

1≤j≤5

rj −
∑

1≤j≤5

qrj + q2

+ 5q +
∑

1≤j<k≤5

(ωjωk + ωjωk + ωjωk + ωjωk)

= 1 + 5q + q2 − (q + 1)
∑

1≤j≤5

rj +
∑

1≤j<k≤5

rj rk

and study the minimum of this real function... �
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Examples

We found smooth cubic threefolds over F2, F3, F4, and F5 with no
lines.
The cubic threefold in P4

F5
with equation

x3
1 + 2x3

2 + x2
2x3 + 3x1x

2
3 + x2

1x4 + x1x2x4 + x1x3x4

+ 3x2x3x4 + 4x2
3x4 + x2x

2
4 + 4x3x

2
4 + 3x2

2x5 + x1x3x5

+ 3x2x3x5 + 3x1x4x5 + 3x2
4x5 + x2x

2
5 + 3x3

5

is smooth and contains no F5-lines and 126 F5-points.

Remains F7, F8, and F9...
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Average numbers of lines

Average numbers of lines computed on random samples of 105

F2-cubic threefolds

all cubics; average ∼ 9.651 smooth cubics; average ∼ 6.963.
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Singular threefolds

Let X ⊂ P4
Fq

Fq-cubic with a single singular point, of type A1 or
A2.
The curve C of lines in X through the singular point is smooth of
genus 4 and canonically embedded in P3

Fq
. It has two pencils g1

3

and h1
3, used to embed C in C (2) by

x 7→ g1
3 − x

Clemens–Griffiths, Kouvidakis–van der Geer

F (X ) is the non-normal surface obtained by gluing in C (2) these
two copies of C .
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Lines on singular threefolds

Theorem

For any r ≥ 1, set nr := Card(C (Fqr )). We have

Card(F (X )(Fq)) =



1
2 (n2

1 + n2)− n1 if g1
3 6= h1

3 are

defined over Fq;
1
2 (n2

1 + n2) + n1 if g1
3 6= h1

3 are not

defined over Fq;
1
2 (n2

1 + n2) if g1
3 = h1

3.

Again, this can also be obtained with the Galkin–Shinder method.
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Lines on singular threefolds

Corollary

When q ≥ 4, any cubic threefold X ⊂ P4
Fq

defined over Fq with a
single singular point, of type A1 or A2, contains an Fq-line.

Proof. We need to exclude

n1 = n2 = 1 and g1
3 6= h1

3 defined over Fq. Write
C (Fq) = C (Fq2) = {x}, and g1

3 ≡ x + x ′ + x ′′.

g1
3 is defined over Fq ⇒ x ′ + x ′′ defined over Fq

⇒ x ′, x ′′ are defined over Fq2

⇒ x ′ = x ′′ = x

⇒ g1
3 ≡ 3x ≡ h1

3

Contradiction.
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Lines on singular threefolds

n1 = n2 = 0. Then q ≤ 7 (Howe–Lauter–Top).
Weil conjectures for C :

Frobenius roots ω1, . . . , ω4, ω̄1, . . . , ω̄4, with |ωj | =
√
q;

H monic with (real) roots rj := ωj + ω̄j with |rj | ≤ 2
√
q has

integral coefficients;∑
1≤j≤4 rj =

∑
1≤j≤8 ωj = q + 1− n1 = q + 1;∑

1≤j≤4 r
2
j =

∑
1≤j≤8(ω2

j +2q) = q2 +8q+1−n2 = q2 +8q+1.

Hence

H(T ) = T 4 − (q + 1)T 3 − 3qT 2 + aT + b,

with |b| = |r1r2r3r4| ≤ 16q2 and |a| = |
∑4

j=1 b/rj | ≤ 32q3/2

integral.
Computer search: such polynomials with 4 such real roots and
q ∈ {2, 3, 4, 5, 7} only exist for q ≤ 3. �
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Examples

We found nodal cubics threefolds over F2 and F3 with no lines.
Over F2:

x3
2 + x2

2x3 + x3
3 + x1x2x4 + x2

3x4 + x3
4 + x2

1x5 + x1x3x5 + x2x4x5

contains no F2-lines and

H(T ) = T 4 − 3T 3 − 6T 2 + 24T − 15.

Over F3:

2x3
1 + 2x2

1x2 + x1x
2
2 + 2x2x

2
3 + 2x1x2x4 + x2x3x4

+ x1x
2
4 + 2x3

4 + x2x3x5 + 2x2
3x5 + x2x

2
5 + x3

5

contains no F3-lines and

H(T ) = T 4 − 4T 3 − 9T 2 + 47T − 32.
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Zeta function of F (X )

X ⊂ P5
Fq

smooth cubic.The trace formula reads

Z (X ,T ) = 1
(1−T )(1−qT )(1−q3T )(1−q4T )

∏23
j=1(1−qωjT )

,

with ωj algebraic integers, |ωj | = q, and ω23 = q.

The Galkin–Shinder formula implies

Z (F (X ),T ) = 1
(1−T )(1−q4T )

∏
j ((1−ωjT )(1−q2ωjT ))

∏
j≤k (1−ωjωkT )

.
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Cohomology of F (X )

Again, the Galkin–Shinder relation implies that there are
isomorphisms of Gal(Fq/Fq)-modules

H4(X ,Q`)
∼ // H2(F (X ),Q`(1))

Sym2 H2(F (X ),Q`)
∼ // H4(F (X ),Q`)

The first also follows using the incidence correspondence.

The second one can also be deduced by smooth and proper base
change from statement in char. 0 (Beauville–Donagi, Bogomolov).
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Existence of lines

Theorem

Any smooth Fq-cubic fourfold contains at least 26 Fq-lines if
q ≥ 5.

One can use another trace formula (Katz). If Sing(X ) finite, the
cohomology of OF (X ) is very simple (Altman–Kleiman):

dimFq H
j(F (X ),OF (X )) = 1

for j ∈ {0, 2, 4}, the others are 0, and the multiplication

H2(F (X ),OF (X ))⊗ H2(F (X ),OF (X ))→ H4(F (X ),OF (X ))

is an isomorphism of Galois modules (Serre duality).
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The Katz trace formula

N1(F (X )) ≡
4∑

j=0

(−1)j Tr(F ,H j(F (X ),OF (X ))) (mod p)

≡ 1 + t + t2 (mod p)

Corollary

Assume q ≡ 2 (mod 3). Any Fq-cubic fourfold with finite singular
set contains an Fq-line.

This applies to q = 2 and leaves only the cases q ∈ {3, 4} open for
the existence of a line on a smooth cubic fourfold.
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Final question

The computer found a smooth cubic fourfold over F2 with a single
line.

Question

We found no cubic fourfolds without lines. Do they exist?
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