ECOLE NORMALE SUPERIEURE 1ERE ANNEE
ANNEE 2015-2016 ALGEBRE 1

TD8 : Groupe orthogonal (et symplectique)

Exercices x : a préparer a la maison avant le TD, seront corrigés en début de TD.
Exercices xx : seront traités en classe en priorité.
Exercices x x % : plus difficiles.

Exercice 1 : x
Soient K un corps de caractéristique # 2 et I¥ un K-espace vectoriel de dimension finie. Soit ¢ une
forme quadratique non dégénérée sur E. Soit u : E — E une application (pas forcément linéaire a
priori) telle que u(0) = 0 et pour tout =,y € E, q(u(x) —u(y)) = q(x — y).

a) Montrer que u € O(E, q) (on pourra utiliser une base orthogonale).

b) L’hypothese u(0) = 0 est-elle nécessaire ?

Solution de l'exercice 1.

a) On voit d’abord que pour tout € E, on a g(u(z)) = ¢(x) (prendre y = 0 dans I’hypothese).
Ensuite, si on note b la forme polaire de ¢, on a pour tout z,y € E, on a

q(u()) + q(u(y)) — 2b(u(z), u(y)) = q(u(z) — u(y)) = q(z — y) = q(z) + q(y) — 2b(x,y),

donc b(u(x),u(y)) = b(z,y).

On munit alors F d’une base orthogonale pour ¢, notée (eq, ..., e,). Comme ¢ est non dégénérée,
on a q(e;) # 0 pour tout 7. Alors pour tout i # j, on a b(u(e;), u(e;)) = b(e;, e;) =0sii# j et
q(e;) sii = j. Cela assure que (u(e;)) est une base orthogonale de (E, q).

Soit € E. On décompose x = ), \je; sur la base (e;) et u(z) = >, piu(e;) sur la base (u(e;)).
Pour montrer que u est linéaire, il suffit de montrer que \; = p; pour tout ¢. Pour cela, on
calcule en utilisant I'orthogonalité des deux bases :

piq(e;) = b(u(x),u(e;)) = b(x, e;) = Aiq(e;)

ce qui assure que \; = u; puisque g(e;) # 0.
Donc u est linéaire, i.e. u € O(E, q).

b) Oui. En effet, si 'on enleve I'hypothese u(0) = 0, les applications vérifiant ’hypothese sont
exactement les isométries affines de (FE, q), et il existe de telles isométries non linéaires des que
E # {0} (par exemple, les translations de vecteur # 0).

Exercice 2 : x
Soit £ un R-espace vectoriel de dimension finie n > 1.

a) Montrer que tout endomorphisme de E admet un sous-espace stable de dimension 1 ou 2.

b) Soit ¢ une forme quadratique définie positive sur E. Montrer que pour tout v € O(FE,q), il
existe une base orthonormée e de F, des entiers positifs r,s,t tels que n = r + s + 2t et des
réels 01,...,0, € R\ 7Z, tels que

I, 0 0 0
0 —I, 0 0
Mate(u)=| 0 0 Iy 0 '
0 0 0 Ry,
\ . ) cosf —sinf
ou Ry désigne la matrice < sinf cos# >



¢) En déduire que sous les hypotheses précédentes, SO(E, q) est connexe par arcs.

Solution de l'exercice 2.

a) Soit w un endomorphisme de E. On considére un polynéme P € R[X] non nul et annulateur
de u (par exemple le polynéme caractéristique). Il existe des polynéomes Pi, ..., P, de degré 1
ou 2 tels que P = Py ... P,. Alors P(u) = Pi(u) o---0 P.(u) = 0, donc il existe 1 < i < r tel
que P;(u) n’est pas injectif. Donc il existe x € Ker(P;(u)) \ {0}. Alors Vectg(z,u(z)) est un
sous-espace de dimension 1 ou 2 de E qui est stable par w.

b) Les cas n =1 et n = 2 sont classiques (voir le cours). Le cas général se déduit de ces deux cas
par une récurrence immédiate utilisant la question a) : on rappelle que si un sous-espace F' C E
est stable par u, alors F- est stable par u.

c) Soit u € SO(F, q). La question b) assure qu'il existe une base e de E dans laquelle la matrice
P de u est de la forme susmentionnée. Comme det(u) = 1, s est pair, donc on peut écrire P
sous la forme

L. 0 ... 0
0 Reg, ... O

= 0 >
0 0 ... Ry

avec 0; € R. Pour tout x € [0; 1], on pose

I, 0 ... 0
0 Ry, ... O
Pl)=|{ . . . .
0 0 ... Ry,

Alors Papplication f : [0;1] — SO, (R) définie par x — P(z) est bien définie et continue, et
P(0) = I,,, P(1) = P. Cela assure la connexité par arcs de SO(E, q).

Exercice 3 : %
Soit Iy un corps fini & g éléments, de caractéristique différente de 2. Soient n > 1,b € Fyet € € F \FqX2.
Notons S(2n,b), S(2n + 1,b) et S:(2n,b) les nombres respectifs de solutions des équations

oyt Ay =, (1)
-yt a —yn tan = b, (2)
ol —yi+ - ap —eyn =b. (3)
a) Montrer
2n—1 n n—1 :
q +4q" —q sib=0;
S@2n,b) =193 01 .
q —q si b #0;

" sib=0;
S2n+1,b) =< ¢*" — g" sibgéFqX?;

"+ q" sibeFr?

2n—1 n n—1 :
q —q"+q sib=0;

Se(2n,0) =9 o 1 .
q +q sib#0.



b) En déduire

105, (F)| = 2¢"" " V(g" + 1) [T (¢* - 1).

.
Il
—

Solution de 'exercice 3.

a) On montre les formules (1), (2) et (3) par récurrence sur k. Soit b € F,. On a clairement

1 sib=0;
S(L,b) =40 sib¢F 2
2 st —beF)2

Calculons S(2,b). Si b = 0, I’équation (z1 — y1)(x2 — y2) = 0 a 2¢g — 1 solutions. Si b # 0, elle a
les ¢ — 1 solutions suivantes

1/b 1/0b
xlzz(c“)’ “22(c0>’ cefa

Calculons enfin S.(2,b). Soit K = Fy[v/d]. On a K ~ g2 et les éléments de K s’écrivent sous
la forme z 4+ yv/d, avec z,y € Fq. On définit la norme N (z + yvd) = 22 — dy®. On constate
que S.(2,b) est le nombre d’éléments de K de norme b. Or N : K* — F est un morphisme de
groupes surjectif, son noyau ayant pour cardinal ¢ + 1. On en déduit que S.(2,b) = ¢+ 1.
Remarque : les quantités S(2,b) et S:(2,b) s’interprétent géométriquement comme les nombres
de points a coordonnées dans F, de coniques (non dégénérées) définies dans le plan affine (IFq)2.
Or il est classique que I’ensemble des points d’une conique projective non dégénérée et non
vide sur un corps quelconque est en bijection (cette bijection étant donnée par des fractions
rationnelles) avec la droite projective sur ce corps (considérer par exemple I’ensemble des droites
passant par un point fixé de la conique, et regarder 'intersection de ces droites avec la conique).
Cela assure qu’une conique projective non dégénérée sur F, (qui est non vide : compter les carrés
dans F,;) a exactement ¢ + 1 points. Pour passer & une conique affine, il suffit de regarder le
nombre de points de notre conique projective sur la droite & I'infini dans P? (Fq) : dans le cas
de S(2,b), ce nombre vaut 2; dans le cas de S:(2,b), ce nombre vaut 0. Cela explique les deux
entiers obtenus.

Montrons maintenant par récurrence la formule (1) pour n quelconque. Les solutions de (1)
sont exactement les solutions de I’équation

x%—y%—}—---—l—xi_l—yi_lza, x%—yizb—a, aclf,. (4)

Si b =0, le nombre de solution vaut donc

S(2(n —1),0)5(2,0) + Y _ S(2(n — 1),a)S(2,b - a)

aeF;

= @+ "R+ (- )@= ¢" -1
— q2n71 + qn o qnfl

Si b # 0, le nombre des solutions de (1) vaut
S(2(n—1),005(2,b) + S2(n —1),-b)S(2,0)+ > S(2(n—1),a)S(2,b—a)
a€Fy ,a#—b
@+ =" - )+ (P =" )2 - 1)+ (¢ - 2)(¢*" P =" ) g - 1)
2n—1
= q —4q

n—1



Les formules (2) et (3) se prouvent exactement de la méme fagon.

b) Montrons |03 (F,)| = 2¢"" V(g™ — 1) H?:_ll (¢** — 1) (les autres formules se prouvent de facon
analogue).
Le cas ou n = 1 a été fait en cours (et le cas n = 0 est évident). On prouve le cas général par
récurrence.
Soit Q(x1, Y1,y Tn,Yn) = 23 —y3 +- -+ 22 —y2. Alors OF (F,) = O((Fq)2” ,Q). Soit v € F2"
tel que Q(v) = 1 (un tel v existe). Il est facile de voir que l'orbite de v sous 'action de O, (Q, Fy)
est ’ensemble des w € Fg" tels que Q(w) =1 (on peut par exemple compléter v et w en deux
bases orthogonales et considérer la matrice de passage).
On a donc |Orb(v)| = S(2n,1) = ¢**~! — ¢"~L. D’un autre coté, puisque Fg" = (v) @ (v
a Stab(v) = O((v) ") = Og,_1(F,).
On en déduit les formules suivantes en utilisant I'hypothese de récurrence (le cardinal de

)", on

O2n-1(Fy)) :
03,(Fg)] = |Orb(v)|[Stab(v)|
n—2
_ (q2n71 - qnfl)Qq(n71)2 (q2i - 1)
=1
n—1 A
= 2" V(" = 1) [T - D).
=1

Comme mentionné plus haut, les deux autres cas se prouvent de maniere similaire.

Exercice 4 : x%

Soit V' un R-espace vectoriel de dimension 3 muni de la forme quadratique définie positive f(z1, 22, z3) =
2% + 23 + x3. Le but de cet exercice est de montrer que SO(V, f) est simple. Soit N un sous-groupe
distingué non trivial de SO(V, f).

a) Montrer que si N contient un renversement, alors N = SO(V, f).

b) Soit Ny la composante connexe de I'identité de N. Montrer que Ny est un sous-groupe distingué
de SO(V, f).

c) Montrer que N = {id} si et seulement si Ny = {id}.
d) Montrer que la fonction
2 NO — [_17 1]
t -1
)
2
est bien définie et continue.
e) Montrer qu’il existe g € Ny tel que ¢(g) < 0.
f) Montrer qu’il existe g € Ny tel que ¢(g) =0

g) Conclure.

Solution de l’exercice 4.

a) Le cours assure que les renversements engendrent SO(V, f). Montrons que tous les renversements
sont conjugués dans SO(V, f). Remarquons d’abord qu’en dimension 3, un renversement n’est
autre qu’'un demi-tour autour d’une droite, i.e. une rotation d’angle 7. Soient r1 et r9 deux
renversements d’axes respectifs Aj et Ay. Pour montrer que 71 et r sont conjugués, il suffit
de montrer qu'il existe u € SO(V, f) tel que u(A;1) = Ay. Et ceci est évident puisque par
exemple SO(V, f) agit transitivement sur I’ensemble des vecteurs de V' de norme 1. Donc les
renversements engendrent SO(V, f) et sont tous conjugués, or N est distingué, donc N contient
un renversement si et seulement si N = SO(V, f).



b) Vérifions les faits classiques suivants : tout d’abord, la multiplication m : SO(V, f) xSO(V, f) —
SO(V, f) est continue, donc m(Ny x Ny) C N est connexe et contient id, donc il est contenu
dans Ny, donc Ny est stable par composition. De méme, il est stable par inverse. Or il contient
id, donc Ny est un sous-groupe de N. Pour tout g € N, le morphisme ¢, : SO(V, f) = SO(V, f)
défini par cy(z) := grg~! est continu, donc c,(Ng) C N est connexe et contient id, donc
cg(No) C Ny, ce qui assure que Ny est distingué dans N.

c) Le sens direct est évident. Montrons la réciproque : on suppose donc Ny = {id}. Soit g € N.
L’application ¢4 : SO(V, f) — N définie par h — [h, g] est continue, donc Im (¢,) C Ny = {id}.
Cela assure que g € Z(SO(V, f)), donc N C Z(SO(V, f)). Or le cours assure que Z(SO(V, f)) =
{id}, donc N = {id}.

d) II est clair que ¢ est continue (c’est la restriction d’une application linéaire). Pour tout r €
SO(V, f), lexercice 2 assure qu'il existe une base e de V' et 6 € [0, 27| tels que

MaAm__<é £9>7

donc ¢(r) = cos(f). Cela assure que ¢ est bien a valeurs dans [—1; 1].

e) Puisque N # {id}, la question c) assure que Ny # {id}. Donc il existe g # id dans Ny. Notons
©(g) = cos(f), avec 0§ €] — m; 7] \ {0}. Or g~ € Ny, et p(g~!) = —0, donc on supposer que
6 €]0; 7.
Si § <0<, le résultat est démontré.
Sinon, on pose N := FE (2”—9) On a alors

NOST<(N+1)0<T+0<m,

T
2
donc s := ¢Vt € Ny convient.

f) Le groupe Np est connexe, et ¢ est clairement continue, donc ¢(Np) est un connexe de [—1, 1]
contenant ¢(g) < 0 et p(id) = 1. Or, les connexes de R sont les intervalles, donc il existe
g € N tel que p(g) = 0, c’est-a-dire que Np contient une rotation d’angle +7%. Alors I’élément
R := ¢g? € Ny est donc un renversement. Donc la question a) assure que N = SO(V, f), donc
SO(V, f) est un groupe simple.

Exercice 5 : x%
Soit V' un R-espace vectoriel de dimension n > 5 muni de la forme quadratique définie positive
f(z1,...,z) = 2% + - + 22. Le but de cet exercice est de montrer que PSO(V, f) est simple.
Soit N un sous-groupe distingué non trivial de PSO(V, f) et soit N le sous-groupe de SO(V, f) lui
correspondant.

a) Montrer que si N contient un renversement, alors N = PSO(V, f).

b) Supposons qu’il existe un sous-espace U de V' de dimension 3 tel que N N SO(U, f|y) # {id}.
Montrer qu’alors N = PSO(V, f).

¢) Conclure (on pourra considérer le commutateur d’un élément r € N \ {+id} ayant un vecteur
fixe non nul avec la composée de deux réflexions bien choisies).

Solution de l'exercice 5.

a) Cest exactement le méme raisonnement que la question a) de I’exercice 4 : les renversements
engendrent SO(V, f) et sont tous conjugués dans SO(V, f).

b) Par hypothese, N’ := N N SO(U, f) est un sous-groupe distingué non trivial de SO(U, f).
Donc l'exercice 4 assure que N’ = SO(U, f), donc N’ contient un renversement r de (U, f). Il
suffit alors de prolonger r en ' € SO(V, f) en demandant que 7’|’ = idgr1, ce qui fournit un

U

renversement 7’ € N, donc par la question a), on a N = PSO(V, f).



c)

On cherche a construire un sous-espace U de dimension 3 satisfaisant les hypotheses de la

question précédente. Comme N # {£id}, il existe u € N tel que u # +id. Par conséquent, il

existe un plan P C V tel que u(P) # P. Notons r € SO(V, f) le renversement de plan P. On

pose p := [u,r]. Alors p € N car N est distingué, et p est le produit de deux renversements, a

savoir uru~! renversement de plan u(P), et r~! renversement de plan P. Donc cela assure que

la restriction de p & P+ Nu(P)* est I'identité. Or dim(P+ Nu(P)t) >n —4 >4 (car n > 5).

Donc p a un vecteur fixe a € V' \ {0}. Remarquons également que p # +id car u(P) # P.

Il existe également b € V' tel que la famille (b, p(b)) soit libre. On note ¢ := p(b).

i
)

Définissons o := s, 0 s, (ou s, désigne la réflexion orthogonale d’hyperplan z-), et considérons

s := [p,o]. Alors comme N est distingué, on voit que s € N. Et on vérifie que
5 = Sp(b)Sp(a)5aSh = ScSaSaSh = ScSh

est un produit de deux réflexions distinctes, donc s € N fixe un sous-espace W C V de
dimension n — 2 et s # +id. Alors il suffit de considérer un sous-espace U C V de dimension 3
contenant H', et de considérer I’élément s € N NSO(U, f), puis de conclure via la question b).

Exercice 6 : xx
On note Z(y) le sous-anneau de Q formé des rationnels & dénominateur impair. On note G = O3(Q).

a)
b)

Qo

—
= O I I < o O o

¢

o2

—e

.

Montrer que G' C Matg(Zy)).
Pour tout n € N*, on pose G, := {A € G : 3B € Mat3(Z(y)) , A = I3 + 2" B}. Montrer que G,

est un sous-groupe distingué de G.

Montrer que (), ey« G = {13}

Montrer que G1 & G et que G1 ¢ SO3(Q).

Montrer que pour tout n > 1, G411 ; G,

Montrer que pour tout n > 2, G,, C SO3(Q).

Pour tout n > 2, montrer que Gy, /Gp11 =2 (Z/27)3.
Montrer que G/G; = Gs.

Montrer que G /Gy = (Z/27)%.

Comparer la structure de O3(Q) avec celle de O3(R).

Solution de l’erercice 6. Remarquons pour commencer que le quotient de 'anneau Zy) par I'idéal (2")
engendré par I’élément 2" est canoniquement isomorphe & Z/2"Z, ce qui permet de formuler certaines
démonstrations qui suivent de facon un peu plus concise. Par soucis de simplicité, on n’utilisera pas
explicitement cette description dans ce corrigé.

a)

Soit A € G, et soit (z,y,2) € Q3 un vecteur colonne de A. Alors on a z? + y? + 22 = 1.
Supposons que 'un des rationnels xz, y, z ait un dénominateur pair. On multiplie alors ’égalité
précédente par le ppcm des dénominateurs pour obtenir une inégalité du type

A+ + 2 =d?

avec a,b,c,d € Z, d pair et a, b ou ¢ impair. Par symétrie, supposons a impair. On réduit cette
égalité modulo 4. On obtient

1+ 4+ =0[4].
Or les seuls carrés dans Z /47 sont 0 et 1, donc 1’égalité précédente modulo 4 est contradictoire.
Cela assure que tous les dénominateurs des coefficients de A sont impairs, donc A € Mat3(Zs)).
Un calcul simple assure que Gy, est un sous-groupe distingué de G.

Soit A = (ai;) € [\,en+ Gn- Alors pour tout i # j, pour tout n > 1, le numérateur de a;;
est divisible par 2", donc a;; = 0. Et pour tout i, il existe b € Z(y) tel que a;; = 1 + 4b, et
a;; € {£1}, donc a;; = 1. Donc A = I.



d)

On considere la matrice de permutation suivante

0 10
A= 10
0 01
Il est clair que A € G et A ¢ G;.
De méme, la matrice
10 0
B:=101 0
0 -1

est dans G mais pas dans SO3(Q).

L’inclusion G411 C G, est évidente. Montrons qu’elle est stricte. Pour cela, on considére, dans
le cas n > 2, la matrice

1—4n-1 2" 0 _2nt 1 0
1+4n—1 1+4n*} 144n—1 1+4n*11
A, = __2n  l=anT —Jo+9o" | ___ 1 _on—
n Ev T S s S 3% Tr4n—T1 a1 0
0 0 1 0 0 0
On voit donc que 4,, € Gy, \ Gpt1.
Dans le cas n = 1, on consideére la matrice
2 2 _1 1 1
3 3, 3 3 3
3

Al =

[SU[ VNI VP
N
(SNl

Wl

3
Donc A; € Gy et Ay ¢ Gs. Une variante est donnée par la matrice B; := diag(1, 1, —1).

Soit A € Gy, avec n > 2. Par définition, il existe B € Mat3(Zy)) tel que A = I3 + 4B. La
multilinéarité du déterminant assure que det(A) = 1 + 4d, pour un certain d € Z)- Or A est
orthogonale, donc det(A) € {£1}, et I’égalité précédente assure que det(A) = 1 (car 4 ne divise
pas 2 dans 'anneau Z(,)). Donc G, C SO3(Q).

On consideére l'application 7, : G, — Matz(Z/2Z) définie par m,(I3 + 2"B) = B, ol si
B = (b; ), les coefficients (b; ;) de B sont définis par b; ; = 0 si le numérateur de b; ; est pair,
et E = 1 si celui-ci est impair. On vérifie que m, est un morphisme de groupes, notamment
que 7, (AA") = m,(A) + mp(B). En outre, il est clair que Ker(m,) = G+1, donc le théoréeme de
factorisation assure que 7, induit un morphisme injectif

ﬁ : Gn/Gn+1 — Mat3(Z/QZ) .

n

Or pour tout A =I3+2"B € G,,, on a A'A = I3, donc B + 'B + 2"B'B = 0. Par conséquent,
en regardant cette égalité modulo 2, on voit que

Im (7,) C {B € Mat3(Z/2Z) : b; j = b;; et bi; = 0Yi,j} = (Z/27)* .

Enfin, on voit que cette inclusion est une égalité en regardant I'image par 7, de la matrice A,
introduite a la question e), ainsi que les matrices obtenues a partir de A,, en permutant les
vecteurs de la base. Donc finalement G,,/Gpny1 = (Z/2Z)°

On considere le morphisme de groupes 7o : G — O3(Fs) défini par mo(A) := A, ou A est défini
comme en g) et O3(FF2) désigne I’ensemble des matrices A de Matg(IF2) telles que {AA = A'A =
I5. Un calcul simple assure que O3(Fy) = &3 via les matrices de permutations. Or toute matrice
de permutations dans G s’envoie par my sur la matrice de permutations correspondante dans
O3(F2), ce qui assure que 7y est surjectif. Enfin, par définition, on a bien Ker(my) = G, donc

G/Gy =~ ;.



i)

On raisonne comme en g). On considere le morphisme de groupes 71 : G1 — Matg(Z/2Z) définie
par m1(I3 + 2B) := B. On a toujours Ker(m;) = Ga, et I'image de m; se calcule en réduisant
modulo 2 I’égalité déja rencontrée B +'B + 2B'B = 0 : on voit que Im (71) est contenu dans
{B € Mat3(Z/2Z) : bi,j = bj; et >y ,; bix = 0Vi,j}. Or ce dernier sous-groupe de Mat(Z/2Z)
est isomorphe a (Z/ 22)4, engendré par les trois matrices ayant un unique coefficient non nul,
situé sur la diagonale, et par la matrice dont tous les coefficients valent 1. Et ces quatre matrices
sont bien dans 'image de 71, ce que I'on voit en utilisant les matrices A; et By de la question
e). Donc G1/Go = (Z/27)*.

11 suffit de reprendre toutes les questions précédentes. Le groupe O3(Q) n’est pas du tout un
groupe simple (ni SO3(Q)), contrairement a SO3(R). En fait, on a montré que G = O3(Q) est
un groupe pro-résoluble, au sens o la suite de sous-groupes D" (G) vérifie [, .y D"(G) = {id}.
Plus précisément, on peut dire que G est une limite (projective dénombrable) de groupes
résolubles finis.

Exercice 7 : x*x*
Soient K = F, un corps fini de caractéristique impaire et n € N*. On note PQE(K) le quotient du
groupe dérivé de O (K) par son centre.

a)
b)

c)

d)

Déterminer O;(K), SO1(K) et PQy(K).
Montrer que OF (K) est isomorphe au groupe diédral D,_;. Identifier SOJ (K) et PQF (K).

En considérant le corps FF 2, montrer que O, (K) est isomorphe a Dyy1 et identifier SO; (K)
et PQ, (K).

On suppose n = 3. On note V' le K-espace vectoriel des matrices 2 x 2 de trace nulle.
i) Exhiber une base naturelle de V' comme K-espace vectoriel.
ii) Montrer que GL2(K) agit naturellement sur V.
iii) En déduire un morphisme de groupes p : GL2(K) — GL(V) = GL3(K) que l'on explicitera.
iv) Montrer que Ker(p) = K*Is.
v) Montrer que pour tout A € GLy(K), det(p(A)) = 1.
vi) Vérifier que le déterminant définit une forme quadratique non dégénérée sur V.
vii) En déduire des isomorphismes PGLy(K) = SO(V, det) = SO3(K).
viii) Montrer que 1’on a des isomorphismes PGLa(K) x {£1} = O(V,det) = O3(K).
ix) Montrer que PQ3(K) = PSLy(K).

e)

On suppose n = 4. On note W := Maty(K), et pour tout M € W, on note Q(M) := det(M).
i) Montrer que @ est une forme quadratique sur W qui est somme de deux plans hyperboliques.
ii) Montrer que GLy(K) x GLo(K) agit naturellement sur W.

iii) Soit A, B € GL2(K). Montrer que l'action de (A, B) sur W préserve @ si et seulement si
det(A) = det(B), et que cette action est triviale si et seulement s’il existe A € K* tel que
A=B= M.

iv) En déduire un morphisme de groupes injectif i : ((SLa(K) x SLe(K)) x K*) /K* — O(W, Q),
ou l’on explicitera le groupe de gauche.

v) Montrer que (Im (i), T) = O(W,Q), ou T : W — W est défini par T(M) := M et décrire
SO(W, Q).

vi) En déduire que PQJ (K) = PSLy(K) x PSLy(K) si |K| > 3.

vii) Décrire PQJ (F3).

Solution de l’exercice 7.

a)

Il est clair que O (K) = {£1}, SO1(K) = {1} et PQ;(K) = {1}.



b)

d)

Le cours (ou un calcul simple) assure que

o;(K)={<g )\91>:)\€K*}U{<M91 g):MEK*}.

Or K* est un groupe cyclique, donc en notant ¢ un générateur de ce groupe, on pose

R:—<g <91)et5:—<(1) é)

On voit alors que OF (K) = (R, S), que O3 (K) est d’ordre 2(¢ — 1), que R est d’ordre q — 1,
S est d'ordre 2, et RS = SR™!, ce qui assure que Oj (K) est isomorphe au groupe diédral
D,_1 (groupe des isométries planes réelles d'un polygone régulier & ¢ — 1 cotés), I'isomorphisme
envoyant R sur la rotation de centre O (isobarycentre des sommets du polygone) et d’angle
(]2%1 et S sur une symétrie axiale d’axe joignant deux sommets du polygone. On en déduit que
SO (K) = (R) 2 Z/(q — 1)Z et PQJ (K) = {1}.

On fixe un élément ¢ € K*\ (K*)?, et on définit L := K(\/€) := {x +y /e : 2,y € K} (que
'on peut aussi définir comme L := K[X]/(X? — ¢)). Il est clair que L est un corps contenant
K comme sous-corps, de sorte que L est un K-espace vectoriel de dimension 2. On munit L
de l'application “norme” N : L — K définie par N(z + yv/€) := 22 — ey®. 1l est clair que
N est une form quadratique sur le K-espace vectoriel L, de sorte que O(L, N) = O, (K). En
outre, on voit que N induit un morphisme de groupes N : L* — K* tel que N(z) = 7!
pour tout x € L*. Puisque L* est cyclique de cardinal ¢®> — 1, on voit que N est surjectif de
noyau A := {z € L* : 29! = 1} cyclique de cardinal ¢ + 1. Or, pour tout z € A, on définit
mg : L — L par my(y) := xy. Il est clair que m, est K-linéaire et pour tout y € L, on a
bien N(my(y)) = N(xy) = N(z)N(y) = N(y), donc m, € O(L,N). On en déduit donc un
morphisme de groupes injectif A < SO(L, N) défini par x — m;, (il est clair que det(my) = 1).
On dispose également de 'automorphisme de Frobenius Fr: L — L défini par Fr(z) := z? : on
voit que Fr € O(L, N) \ SO(L, N) et que Fr est d’ordre 2. Par cardinalité (voir exercice 3), on
en déduit que (A, Fr) = O(L, N). On vérifie enfin que m, o Fr = From !, ce qui assure que
O3 (K) = Dgy1, SO5 (K) =2 Z/(q+ 1)Z et PQ;, (K) = {1}.

i) Une base de V est donnée par les matrices suivantes :

01 0 0 ot 1 0
00/’\10 0o -1 )"
ii) L’action de GLg(K) sur V est définie par A- M := AMA™! pour tout A € GLy(K) et

MeV.

iii) Le morphisme est induit par l'action précédente, qui est bien linéaire. Explicitement, on
voit que dans la base donnée en d)i), on a :

0 b 1 a? —b*  —2ab
p << )) =— —c?  d? 2cd
¢ d ad — be —ac bd ad+be

iv) La formule explicite de la question d)iii) assure que Ker(p) = K*Is.
v) C’est un calcul avec la formule de la question d)iii).

z T

vi) Soit A = € V. Alors det(A) = —2? — zy est clairement une forme quadratique

—z
non dégénérée (de rang 3) sur V.

vii) Les questions d)iii), d)iv), d)v), et le fait que I’action considérée préserve le déterminant sur
V', assurent que le morphisme p induit un morphisme de groupes injectif

5 : PGLy(K) < SO(V, det) = SO3(K) .

En calculant les cardinaux des deux groupes, on voit que ceux-ci ont tous les deux pour
cardinal ¢(¢ — 1)(¢ + 1), donc p est un isomorphisme de groupes.



viii) Comme V est de dimension impaire, on voit que —idy € O(V,det) \ SO(V,det), ce qui
permet d’obtenir I'isomorphisme Os3(K) = SO3(K) x {£I3}. On conclut en utilisant la
question d)viii).

ix) Avec les questions précédentes, il suffit de dire que le groupe de dérivé de GLy(K) est
SLo(K) pour conclure que Q3(K) = PSLo(K). Enfin, le centre de PSLo(K) est trivial, ce
qui assure que PQ3(K) = PSLy(K).

e) i) Soit M = < : ‘7; ) € W. On a det(M) = ot — yz, donc on voit que ) = det est une forme
quadratique sur W qui est somme de deux plans hyperboliques : les plans {z =t = 0} et
{y=2=0}

ii) Pour tout (A, B) € GLy(K) x GL2(K) et tout M € W, on pose (A,B) - M := AMB™L.
Cela définit bien une action de groupe.

iii) Soient (A, B) € GL2(K)xGLa(K) et M € W.Ona Q((A4, B)-M) = det(A) det(B)~*Q(M).
Donc (A, B) préserve @ si et seulement si det(A) = det(B).

En outre, (A, B) agit trivialement sur W si et seulement si pour tout M € W, on a AM =
M B si et seulement si A = B et pour tout M € W, AM = MA si et seulement si A = B
et A€ Z(GL2(K)) = K*I,.

iv) On note G le sous-groupe de GLo(K) x GLo(K) formé des couples de matrices (A, B) €
GL2(K) x GL2(K) tels que det A = det B. On dispose d’une action de K* sur SLy(K)
donnée par une section de la suite exacte

A = SLy(K) — GLy(K) 2% K — 1.

Par exemple, on peut considérer I'action donnée par \ - A := diag(), 1) Adiag(A~!, 1), pour
tout A € K* et A € SLy(K). Pour simplifier, on notera s(\) := diag(A, 1).

On en déduit une action diagonale de K* sur SLo(K') x SLa(K), ce qui permet de définir un
produit semi-direct (SLa(K) X SLo(K)) x K*. On voit facilement que ’on a un isomorphisme
naturel G = (SLa(K) x SLa(K)) x K*. Considérons alors le morphisme de groupes ¢ : G —
O(W, Q) défini par p(A4,B) : M — AMB™.

Alors la question e)iii) assure que Ker(¢) == K*, donc ¢ induit un morphisme de groupes
injectif i =@ : G/K* — O(W, Q).

v) Un calcul simple (utilisant par exemple le produit de Kronecker des matrices, i.e. le produit
tensoriel des matrices) assure que le déterminant de (A, B) vaut det(A)%2det(B)~2 = 1.
Donc ¢ est a valeur dans SO(W, Q). On a donc un morphisme de groupes injectif i = @ :
G/K* — SO(W,Q), et on voit que T' € O(W, Q) \ SO(W, Q). Donc (Im (i), T) C O(W, Q).
On calcule alors les cardinaux des groupes en question (en utilisant notamment ’exercice 3) :
on a |G/K*| = [SL(K)* = ¢*(¢—1)*(¢+1)*, [SO(W, Q)| = [SO; (K)| = ¢*(¢* ~ 1)(¢* — 1),
donc 'égalité des cardinaux assure que i : G/K* — SO(W, @) est un isomorphisme.

Or SO(W, Q) est un sous-groupe d’indice 2 dans O(W, @), donc (Im (i), T) = O(W, Q).

vi) La question précédente assure que 2 (K) = D((SLa(K) x SL2(K))/K*, donc si |K| > 3, on
a Qf (K) = (SL2(K) x SL2(K))/K*. On en déduit alors P (K) = PSLy(K) x PSLy(K)
si |K| > 3.

vii) On a vu que SOJ (F3) & G/K*. Comme D(SLy(FF3)) C SLa(F3) est isomorphe au groupe
Hy des quaternions d’ordre 8 (voir par exemple TD4, exercice 10), et comme D(GL2(F3)) =
SLy(F3), on constate que 2 (F3) = (SL2(F3) x SLa(F3))/F3, donc P (F3) = PSLy(F3) x
PSLy(F3).

Exercice 8 :
On considere V = F§ muni de la forme bilinéaire z -y = Z?:1 z;y;. On note o := (1,...,1) € V.

a) Donner la définition des groupes Sp,,(K) lorsque K est un corps de caractéristique 2.

b) Montrer que W := zg /Faz( est naturellement muni d’une forme bilinéaire alternée non dégénérée.
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¢) En déduire un morphisme naturel &g — Sp,(F2).
d) Conclure que Spy(F2) = S¢.

Solution de l’exercice 8.
a) voir le cours.

b) Pour tout x € V, on a x -z = x - 9. Donc pour tout =z € 9:&, x-x = 0. Cela assure que
la restriction de la forme bilinéaire au sous-espace x& de dimension 5 est une forme bilinéaire
alternée. Son noyau est exactement la droite engendré par z, donc cette forme alternée induit
une forme alternée b non dégénérée sur W = xg/Faxo.

c) L’action de &g sur V' par permutation des coordonnées induit une action de Sg sur W, dont
on voit facilement qu’elle préserve la forme symplectique précédente. On en déduit donc un
morphisme de groupes injectif &g — Sp(W, b) = Sp,(F2).

d) On calcule les cardinaux et on voit que |&g| = 6! = 720 et |Spy(F2)| = 15.8.3.2 = 720 (le
cardinal des groupes Sp2n(IF,;) se calcule de facon analogue & celui des groupes orthogonaux : cf

exercice 3). On en déduit donc que le morphisme de la question précédente est un isomorphisme,
i.e. Sp4(F2) = 66.

Exercice 9 : **x*

Soit K un corps de caractéristique différente de 2 et soit m > 3. On munit V = K?™ de la forme
bilinéaire alternée usuelle B; on note Sps,,(K) le groupe symplectique correspondant. Soient s,t €
Spom (K) des involutions.

1
a) Montrer qu’il existe une décomposition V = E(s) & E_(s), ou E4(s) et E_(s) désignent les
espaces propres de s associées aux valeurs propres 1 et —1, respectivement.

b) En déduire une bijection entre l’ensemble des involutions de Sp,,,(K) et 'ensemble des sous-
espaces non dégénérés de V.

On dit que 'involution s est de type (2r,2m — 2r) si U'espace E,(s) est de dimension 2r. On parle
d’involution extrémale pour une involution de type (2,2m —2) ou (2m — 2,2). Dans ce cas-1a, on note
Es(s) lespace E4(s) de dimension 2.

¢) En considérant les familles commutatives maximales d’involutions conjuguées dans Sp,, (K),
montrer que tout automorphisme de Sp,,,(K) envoie une involution extrémale sur une involu-
tion extrémale.

On dit que des involutions extrémales s et ¢ forment un couple minimal si on a dim(E2(s)NEa(t)) = 1.
Si S C Spy,,(K) est un ensemble d’involutions extrémales, on note C(S) Iensemble des involutions
extrémales qui commutent & tout élément de S.

d) Montrer que s et ¢t forment un couple minimal si et seulement si (st # ts et pour tous ', ¢’ €
C(C({s,t})) avec s't' At's" on a C(C({s,t})) = C(C({s',t'}))).

e) Déterminer les ensembles maximaux I d’involutions extrémales tels que toute paire d’éléments
de I forme un couple minimal ou commute.

Soit n > 3. Une application ¢ : K™ — K™ est dite semi-linéaire s’il existe un automorphisme de corps
0 : K — K tel que ¢ soit 6-linéaire, c’est-a-dire :

e On a ¢(v+v') = ¢(v) + ¢(v'), pour tous v,v" € K"

e On a ¢(Mv) = 0(\)é(v), pour tout v/ € K™ et tout A € K.

L’ensemble des applications semi-linéaires inversibles forment un groupe, noté I'L,,(K) et appelé le
groupe des transformations semi-linéaires de K.

On admet le théoreme fondamental de la géométrie projective, qui est I’énoncé suivant : soit ¢ :
P"(K) — P"(K) une bijection telle que trois points Ai, Aa, As de P"(K) sont alignés si et seule-
ment si p(A1), p(A2), d(As) le sont. Alors il existe un automorphisme de corps o : K — K et une
transformation o-linéaire v € I'L,,11(K) telle que ¢ soit induite par .

On définit enfin I'Sp,,, (K) comme le sous-groupe de I'La,, (K) des éléments préservant la forme B.
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f) Montrer que tout automorphisme de Spy,,(K) est de la forme x + aza™! pour un certain

élément a € I'Spy,, (K).

Solution de l’exercice 9.

a)

Une involution annule le polynéme X2 — 1, d’ott une décomposition V = E, (s) @ E_(s). Cette
derniere est B-orthogonale puisque si ey et e_ sont des éléments respectivement de E (s) et
E_(s), alors on a

Bley,e ) = B(s(es),s(e_)) = Bles,e_),
donc B(ey,e_) =0.
L’application s — E.(s) est la bijection souhaitée.

Soit F une telle famille. Elle est composée d’involutions de type (2r,2m — 2r) pour un r fixé
(puisque les éléments de F sont conjugués). Comme ils commutent, tous les éléments de F se
diagonalisent dans une base symplectique commune. Aussi, il convient de remarquer que si V' a
pour base symplectique (eq, e, ..., eam) avec b(ezi—1,€2) = —b(ez, e2i—1) = 1, et b(es,e5) =0
sinon, alors on a egj € Ey(s) < ezj—1 € E,(s). De ce fait, E,(s) est déterminé par un choix
de r vecteurs, et on a |F| < ().
En particulier si s est une involution extrémale, alors elle est incluse dans une famille maxi-
male, a m éléments, d’involutions conjuguées commutant deux-a-deux. Parce que cette derniere
propriété est conservée par un automorphisme de Sp,,,(K) et parce que l'on a (T) % m pour
r ¢ {1,m — 1}, tout automorphisme de Sps,,,(K) envoie involutions extrémales sur involutions
extrémales.

Si s et t sont deux involutions extrémales avec s # *t, on a
C({s,t}) = {u extrémale | Eo(u) C Fopm—2(8) N Eoym—2(t), Eom—2(u) 2 Ea(s) + Ea(t)}.
On en déduit
C(C({s,t})) = {u extrémale | Ea(u) C Ea(s) + Ea(t), Fam—2(u) D Eopm—_2(s) N Eom_2a(t)}.

Si s et t forment un couple minimal, alors on a st # ts puisqu’on a dim (E3(t) N Ea(s)) = 1 non
paire. De plus, si §',t" € C(C({s,t})) vérifient s't' # t's', alors Ea(s") + E2(t') C Ea(s) + Ea(t),
qui est de dimension 3. Ainsi on a dim (Ey(s") N E(t')) = 1 et (s, t’) est un autre couple minimal
avec EQ(S,) + Eg(t/) = EQ(S) + Eg(t). Il s’ensuit Egm_g(sl) N Egm_Q(t,) = Egm_g(s) N Egm_g(t)
et C(C({s,t'})) = C(C({s,1})).

Si s et t ne sont pas un couple minimal, alors on a dim (Ez(s) N Ex(t)) € {0,2}. Dans le cas
ou cette dimension vaut 2, la question (b) donne s = +t et on a alors st = ts. Supposons
donc Es(s) N Ea(t) = 0. Dans ce cas-la, Ea(s) + E»(t) est de dimension 4, et on peut trouver
s’ et t' un couple minimal avec Ey(s') + Ex(t') G Ea(s) 4+ Ea(t) et Eap2(s") N Eapa(t') 2
Esm—2(8) N Eopy_o(t). On a alors C(C({s,t'})) # C(C({s,t})).

Si +s, +t, +u sont six éléments distincts de I, 'espace Ea(s) N Ey(t) N Eo(u) est de dimension
1 ou 0. Dans le premier cas, on note V; la droite obtenue et dans le second cas, on a Ea(u) C
Es(s) + Es(t) =: V3. Les ensembles maximaux correspondants sont alors respectivement

I, (V1) := {v involution extrémale | V1 C Es(v)},

I5(V3) := {v involution extrémale | Fa(v) C V3}.
Et tous les ensembles maximaux I sont de I'un de ces deux types.

Si V3 est de dimension 3, on peut trouver V4, DO V3 de dimension 4 et non isotrope. Alors si
w est une involution extrémale avec Vj C Fa,,_o(w), tout élément v de I3(V3) vérifie Ea(v) C
Eom—_2(w) et Ey(w) C Vi~ C Eoyy2(v). De ce fait, w commute avec tout élément de I3(V3). Or
il n’existe pas d’élément non trivial de Sp,,,(K) commutant avec tout élément de I;(V1). On
en déduit que tout automorphisme de Sp,,, (K) préserve {I1(z) | x € P2 1(K)}.

Soit ¢ un automorphisme de Spy,,(K). On lui associe la bijection 6, : P~ 1(K) — P?™~1(K)
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via ¢(I1(z)) = I (04x). Maintenant, z,y € P*™~1(K) sont deux droites orthogonales si et
seulement si elles engendrent un plan anisotrope; ceci est encore équivalent a I(z) N I(y) = 0.
Cette derniere propriété est conservée par ¢, de sorte que 64 préserve I'orthogonalité. On en
déduit que 0, préserve 'alignement, et par le théoréme fondamental de la géométrie projective,
il existe a € T'Lg;,(K) tel que lon ait 64(Kx) = K(az) pour tout z € K?™ \ {0}. Comme
a préserve l'orthogonalité, on a méme a € I'Spy,,(K). Si s est une involution extrémale, on
a {s} = Ii(e1) N Ii(e2) si e1 et ez sont deux droites engendrant Es(s). On en déduit que
¢(s) = asa™!. Si g est un élément de Sp,,,(K), gsg~! est une involution extrémale et on a

agsgra”! = ¢(gsgt) = (9)B(5)p(9) Tt = d(g)asa d(g) .

Ceci s’écrit encore g la " 1¢(g)as = sg~ta"'é(g)a; autrement dit, g~la"1¢(g)a commute a

toute involution extrémale et préserve donc tout plan hyperbolique. Il s’ensuit que g~ 'a='¢(g)a
préserve les droites et est donc une homothétie, disons A(g)I2,,. Mais alors, g — A(g) four-
nit un morphisme Sp,,,(K) — K*. Par simplicité de PSp,,,(K), le noyau de ce dernier est
{1}, Z(Spy,,(K)) ou Spy,,(K). Les deux premiers cas ne permettent pas de factoriser A par
I’abélianisé ; c’est donc le dernier cas qui se présente, et A est trivial.
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