
École Normale Supérieure 1ère année
Année 2015-2016 Algèbre 1

TD8 : Groupe orthogonal (et symplectique)

Exercices ? : à préparer à la maison avant le TD, seront corrigés en début de TD.
Exercices ?? : seront traités en classe en priorité.
Exercices ? ? ? : plus difficiles.

Exercice 1 : ?
Soient K un corps de caractéristique 6= 2 et E un K-espace vectoriel de dimension finie. Soit q une
forme quadratique non dégénérée sur E. Soit u : E → E une application (pas forcément linéaire a
priori) telle que u(0) = 0 et pour tout x, y ∈ E, q(u(x)− u(y)) = q(x− y).

a) Montrer que u ∈ O(E, q) (on pourra utiliser une base orthogonale).

b) L’hypothèse u(0) = 0 est-elle nécessaire ?

Solution de l’exercice 1.

a) On voit d’abord que pour tout x ∈ E, on a q(u(x)) = q(x) (prendre y = 0 dans l’hypothèse).
Ensuite, si on note b la forme polaire de q, on a pour tout x, y ∈ E, on a

q(u(x)) + q(u(y))− 2b(u(x), u(y)) = q(u(x)− u(y)) = q(x− y) = q(x) + q(y)− 2b(x, y) ,

donc b(u(x), u(y)) = b(x, y).

On munit alors E d’une base orthogonale pour q, notée (e1, . . . , en). Comme q est non dégénérée,
on a q(ei) 6= 0 pour tout i. Alors pour tout i 6= j, on a b(u(ei), u(ej)) = b(ei, ej) = 0 si i 6= j et
q(ei) si i = j. Cela assure que (u(ei)) est une base orthogonale de (E, q).

Soit x ∈ E. On décompose x =
∑

i λiei sur la base (ei) et u(x) =
∑

i µiu(ei) sur la base (u(ei)).
Pour montrer que u est linéaire, il suffit de montrer que λi = µi pour tout i. Pour cela, on
calcule en utilisant l’orthogonalité des deux bases :

µiq(ei) = b(u(x), u(ei)) = b(x, ei) = λiq(ei)

ce qui assure que λi = µi puisque q(ei) 6= 0.

Donc u est linéaire, i.e. u ∈ O(E, q).

b) Oui. En effet, si l’on enlève l’hypothèse u(0) = 0, les applications vérifiant l’hypothèse sont
exactement les isométries affines de (E, q), et il existe de telles isométries non linéaires dès que
E 6= {0} (par exemple, les translations de vecteur 6= 0).

Exercice 2 : ?
Soit E un R-espace vectoriel de dimension finie n ≥ 1.

a) Montrer que tout endomorphisme de E admet un sous-espace stable de dimension 1 ou 2.

b) Soit q une forme quadratique définie positive sur E. Montrer que pour tout u ∈ O(E, q), il
existe une base orthonormée e de E, des entiers positifs r, s, t tels que n = r + s + 2t et des
réels θ1, . . . , θt ∈ R \ πZ, tels que

Mate(u) =


Ir 0 0 . . . 0
0 −Is 0 . . . 0
0 0 Rθ1 . . . 0
...

...
. . .

. . . 0
0 0 0 . . . Rθt

 ,

où Rθ désigne la matrice

(
cos θ − sin θ
sin θ cos θ

)
.
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c) En déduire que sous les hypothèses précédentes, SO(E, q) est connexe par arcs.

Solution de l’exercice 2.

a) Soit u un endomorphisme de E. On considère un polynôme P ∈ R[X] non nul et annulateur
de u (par exemple le polynôme caractéristique). Il existe des polynômes P1, . . . , Pr de degré 1
ou 2 tels que P = P1 . . . Pr. Alors P (u) = P1(u) ◦ · · · ◦ Pr(u) = 0, donc il existe 1 ≤ i ≤ r tel
que Pi(u) n’est pas injectif. Donc il existe x ∈ Ker(Pi(u)) \ {0}. Alors VectR(x, u(x)) est un
sous-espace de dimension 1 ou 2 de E qui est stable par u.

b) Les cas n = 1 et n = 2 sont classiques (voir le cours). Le cas général se déduit de ces deux cas
par une récurrence immédiate utilisant la question a) : on rappelle que si un sous-espace F ⊂ E
est stable par u, alors F⊥ est stable par u.

c) Soit u ∈ SO(E, q). La question b) assure qu’il existe une base e de E dans laquelle la matrice
P de u est de la forme susmentionnée. Comme det(u) = 1, s est pair, donc on peut écrire P
sous la forme

P =


Ir 0 . . . 0
0 Rθ1 . . . 0
...

. . .
. . . 0

0 0 . . . Rθt

 ,

avec θi ∈ R. Pour tout x ∈ [0; 1], on pose

P (x) :=


Ir 0 . . . 0
0 Rxθ1 . . . 0
...

. . .
. . . 0

0 0 . . . Rxθt

 .

Alors l’application f : [0; 1] → SOn(R) définie par x 7→ P (x) est bien définie et continue, et
P (0) = In, P (1) = P . Cela assure la connexité par arcs de SO(E, q).

Exercice 3 : ??
Soit Fq un corps fini à q éléments, de caractéristique différente de 2. Soient n ≥ 1, b ∈ Fq et ε ∈ F×q \F×2q .
Notons S(2n, b), S(2n+ 1, b) et Sε(2n, b) les nombres respectifs de solutions des équations

x21 − y21 + · · ·+ x2n − y2n = b, (1)

x21 − y21 + · · ·+ x2n − y2n + x2n+1 = b, (2)

x21 − y21 + · · ·+ x2n − εy2n = b. (3)

a) Montrer

S(2n, b) =

{
q2n−1 + qn − qn−1 si b = 0;

q2n−1 − qn−1 si b 6= 0;

S(2n+ 1, b) =


q2n si b = 0;

q2n − qn si b /∈ F×2q ;

q2n + qn si b ∈ F×2q ;

Sε(2n, b) =

{
q2n−1 − qn + qn−1 si b = 0;

q2n−1 + qn−1 si b 6= 0.
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b) En déduire

|O2n+1(Fq)| = 2qn
2
n∏
i=1

(q2i − 1),

|O+
2n(Fq)| = 2qn(n−1)(qn − 1)

n−1∏
i=1

(q2i − 1),

|O−2n(Fq)| = 2qn(n−1)(qn + 1)

n−1∏
i=1

(q2i − 1).

Solution de l’exercice 3.

a) On montre les formules (1), (2) et (3) par récurrence sur k. Soit b ∈ Fq. On a clairement

S(1, b) =


1 si b = 0;

0 si b /∈ F×2q ;

2 si − b ∈ F×2q .

Calculons S(2, b). Si b = 0, l’équation (x1 − y1)(x2 − y2) = 0 a 2q − 1 solutions. Si b 6= 0, elle a
les q − 1 solutions suivantes

x1 =
1

2

(
b

c
+ c

)
, y1 =

1

2

(
b

c
− c
)
, c ∈ F×q .

Calculons enfin Sε(2, b). Soit K = Fq[
√
d]. On a K ' Fq2 et les éléments de K s’écrivent sous

la forme x + y
√
d, avec x, y ∈ Fq. On définit la norme N(x + y

√
d) = x2 − dy2. On constate

que Sε(2, b) est le nombre d’éléments de K de norme b. Or N : K∗ → F∗q est un morphisme de
groupes surjectif, son noyau ayant pour cardinal q + 1. On en déduit que Sε(2, b) = q + 1.

Remarque : les quantités S(2, b) et Sε(2, b) s’interprètent géométriquement comme les nombres
de points à coordonnées dans Fq de coniques (non dégénérées) définies dans le plan affine (Fq)2.
Or il est classique que l’ensemble des points d’une conique projective non dégénérée et non
vide sur un corps quelconque est en bijection (cette bijection étant donnée par des fractions
rationnelles) avec la droite projective sur ce corps (considérer par exemple l’ensemble des droites
passant par un point fixé de la conique, et regarder l’intersection de ces droites avec la conique).
Cela assure qu’une conique projective non dégénérée sur Fq (qui est non vide : compter les carrés
dans Fq) a exactement q + 1 points. Pour passer à une conique affine, il suffit de regarder le
nombre de points de notre conique projective sur la droite à l’infini dans P2(Fq) : dans le cas
de S(2, b), ce nombre vaut 2 ; dans le cas de Sε(2, b), ce nombre vaut 0. Cela explique les deux
entiers obtenus.

Montrons maintenant par récurrence la formule (1) pour n quelconque. Les solutions de (1)
sont exactement les solutions de l’équation

x21 − y21 + · · ·+ x2n−1 − y2n−1 = a, x2n − y2n = b− a, a ∈ Fq. (4)

Si b = 0, le nombre de solution vaut donc

S(2(n− 1), 0)S(2, 0) +
∑
a∈F×q

S(2(n− 1), a)S(2, b− a)

= (q2n−3 + qn−1 − qn−2)(2q − 1) + (q − 1)(q2n−3 − qn−2)(q − 1)

= q2n−1 + qn − qn−1

Si b 6= 0, le nombre des solutions de (1) vaut

S(2(n− 1), 0)S(2, b) + S(2(n− 1),−b)S(2, 0) +
∑

a∈F×q ,a6=−b

S(2(n− 1), a)S(2, b− a)

= (q2n−3 + qn−1 − qn−2)(2q − 1) + (q2n−3 − qn−2)(2q − 1) + (q − 2)(q2n−3 − qn−2)(q − 1)

= q2n−1 − qn−1.
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Les formules (2) et (3) se prouvent exactement de la même façon.

b) Montrons |O+
2n(Fq)| = 2qn(n−1)(qn − 1)

∏n−1
i=1 (q2i − 1) (les autres formules se prouvent de façon

analogue).

Le cas où n = 1 a été fait en cours (et le cas n = 0 est évident). On prouve le cas général par
récurrence.

Soit Q(x1, y1, . . . , xn, yn) = x21− y21 + · · ·+x2n− y2n. Alors O+
2n(Fq) = O((Fq)2n , Q). Soit v ∈ F2n

q

tel que Q(v) = 1 (un tel v existe). Il est facile de voir que l’orbite de v sous l’action de O2n(Q,Fq)
est l’ensemble des w ∈ F2n

q tels que Q(w) = 1 (on peut par exemple compléter v et w en deux
bases orthogonales et considérer la matrice de passage).

On a donc |Orb(v)| = S(2n, 1) = q2n−1 − qn−1. D’un autre côté, puisque F2n
q = 〈v〉 ⊕ 〈v〉⊥, on

a Stab(v) = O(〈v〉⊥) = O2n−1(Fq).
On en déduit les formules suivantes en utilisant l’hypothèse de récurrence (le cardinal de
O2n−1(Fq)) :

|O+
2n(Fq)| = |Orb(v)||Stab(v)|

= (q2n−1 − qn−1)2q(n−1)2
n−2∏
i=1

(q2i − 1)

= 2qn(n−1)(qn − 1)

n−1∏
i=1

(q2i − 1).

Comme mentionné plus haut, les deux autres cas se prouvent de manière similaire.

Exercice 4 : ??
Soit V un R-espace vectoriel de dimension 3 muni de la forme quadratique définie positive f(x1, x2, x3) =
x21 + x22 + x23. Le but de cet exercice est de montrer que SO(V, f) est simple. Soit N un sous-groupe
distingué non trivial de SO(V, f).

a) Montrer que si N contient un renversement, alors N = SO(V, f).

b) Soit N0 la composante connexe de l’identité de N . Montrer que N0 est un sous-groupe distingué
de SO(V, f).

c) Montrer que N = {id} si et seulement si N0 = {id}.
d) Montrer que la fonction

ϕ : N0 −→ [−1, 1]

g 7−→ tr(g)− 1

2

est bien définie et continue.

e) Montrer qu’il existe g ∈ N0 tel que ϕ(g) ≤ 0.

f) Montrer qu’il existe g ∈ N0 tel que ϕ(g) = 0.

g) Conclure.

Solution de l’exercice 4.

a) Le cours assure que les renversements engendrent SO(V, f). Montrons que tous les renversements
sont conjugués dans SO(V, f). Remarquons d’abord qu’en dimension 3, un renversement n’est
autre qu’un demi-tour autour d’une droite, i.e. une rotation d’angle π. Soient r1 et r2 deux
renversements d’axes respectifs ∆1 et ∆2. Pour montrer que r1 et r2 sont conjugués, il suffit
de montrer qu’il existe u ∈ SO(V, f) tel que u(∆1) = ∆2. Et ceci est évident puisque par
exemple SO(V, f) agit transitivement sur l’ensemble des vecteurs de V de norme 1. Donc les
renversements engendrent SO(V, f) et sont tous conjugués, or N est distingué, donc N contient
un renversement si et seulement si N = SO(V, f).
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b) Vérifions les faits classiques suivants : tout d’abord, la multiplication m : SO(V, f)×SO(V, f)→
SO(V, f) est continue, donc m(N0 × N0) ⊂ N est connexe et contient id, donc il est contenu
dans N0, donc N0 est stable par composition. De même, il est stable par inverse. Or il contient
id, donc N0 est un sous-groupe de N . Pour tout g ∈ N, le morphisme cg : SO(V, f)→ SO(V, f)
défini par cg(x) := gxg−1 est continu, donc cg(N0) ⊂ N est connexe et contient id, donc
cg(N0) ⊂ N0, ce qui assure que N0 est distingué dans N .

c) Le sens direct est évident. Montrons la réciproque : on suppose donc N0 = {id}. Soit g ∈ N .
L’application ϕg : SO(V, f)→ N définie par h 7→ [h, g] est continue, donc Im (ϕg) ⊂ N0 = {id}.
Cela assure que g ∈ Z(SO(V, f)), donc N ⊂ Z(SO(V, f)). Or le cours assure que Z(SO(V, f)) =
{id}, donc N = {id}.

d) Il est clair que ϕ est continue (c’est la restriction d’une application linéaire). Pour tout r ∈
SO(V, f), l’exercice 2 assure qu’il existe une base e de V et θ ∈ [0, 2π[ tels que

Mate(r) =

(
1 0
0 Rθ

)
,

donc ϕ(r) = cos(θ). Cela assure que ϕ est bien à valeurs dans [−1; 1].

e) Puisque N 6= {id}, la question c) assure que N0 6= {id}. Donc il existe g 6= id dans N0. Notons
ϕ(g) = cos(θ), avec θ ∈] − π;π] \ {0}. Or g−1 ∈ N0, et ϕ(g−1) = −θ, donc on supposer que
θ ∈]0;π].

Si π
2 ≤ θ ≤ π, le résultat est démontré.

Sinon, on pose N := E
(
π
2θ

)
. On a alors

Nθ ≤ π

2
< (N + 1)θ ≤ π

2
+ θ ≤ π,

donc s := gN+1 ∈ N0 convient.

f) Le groupe N0 est connexe, et ϕ est clairement continue, donc ϕ(N0) est un connexe de [−1, 1]
contenant ϕ(g) ≤ 0 et ϕ(id) = 1. Or, les connexes de R sont les intervalles, donc il existe
g ∈ N tel que ϕ(g) = 0, c’est-à-dire que N0 contient une rotation d’angle ±π

2 . Alors l’élément
R := g2 ∈ N0 est donc un renversement. Donc la question a) assure que N = SO(V, f), donc
SO(V, f) est un groupe simple.

Exercice 5 : ??
Soit V un R-espace vectoriel de dimension n ≥ 5 muni de la forme quadratique définie positive
f(x1, . . . , xn) = x21 + · · · + x2n. Le but de cet exercice est de montrer que PSO(V, f) est simple.
Soit N un sous-groupe distingué non trivial de PSO(V, f) et soit N le sous-groupe de SO(V, f) lui
correspondant.

a) Montrer que si N contient un renversement, alors N = PSO(V, f).

b) Supposons qu’il existe un sous-espace U de V de dimension 3 tel que N ∩ SO(U, f |U ) 6= {id}.
Montrer qu’alors N = PSO(V, f).

c) Conclure (on pourra considérer le commutateur d’un élément r ∈ N \ {±id} ayant un vecteur
fixe non nul avec la composée de deux réflexions bien choisies).

Solution de l’exercice 5.

a) C’est exactement le même raisonnement que la question a) de l’exercice 4 : les renversements
engendrent SO(V, f) et sont tous conjugués dans SO(V, f).

b) Par hypothèse, N ′ := N ∩ SO(U, f) est un sous-groupe distingué non trivial de SO(U, f).
Donc l’exercice 4 assure que N ′ = SO(U, f), donc N ′ contient un renversement r de (U, f). Il
suffit alors de prolonger r en r′ ∈ SO(V, f) en demandant que r′|

U⊥
= idU⊥ , ce qui fournit un

renversement r′ ∈ N , donc par la question a), on a N = PSO(V, f).
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c) On cherche à construire un sous-espace U de dimension 3 satisfaisant les hypothèses de la
question précédente. Comme N 6= {±id}, il existe u ∈ N tel que u 6= ±id. Par conséquent, il
existe un plan P ⊂ V tel que u(P ) 6= P . Notons r ∈ SO(V, f) le renversement de plan P . On
pose ρ := [u, r]. Alors ρ ∈ N car N est distingué, et ρ est le produit de deux renversements, à
savoir uru−1 renversement de plan u(P ), et r−1 renversement de plan P . Donc cela assure que
la restriction de ρ à P⊥ ∩ u(P )⊥ est l’identité. Or dim(P⊥ ∩ u(P )⊥) ≥ n− 4 ≥ 4 (car n ≥ 5).
Donc ρ a un vecteur fixe a ∈ V \ {0}. Remarquons également que ρ 6= ±id car u(P ) 6= P .

Il existe également b ∈ V tel que la famille (b, ρ(b)) soit libre. On note c := ρ(b).

Définissons σ := sb ◦ sa (où sx désigne la réflexion orthogonale d’hyperplan x⊥), et considérons
s := [ρ, σ]. Alors comme N est distingué, on voit que s ∈ N . Et on vérifie que

s = sρ(b)sρ(a)sasb = scsasasb = scsb

est un produit de deux réflexions distinctes, donc s ∈ N fixe un sous-espace W ⊂ V de
dimension n− 2 et s 6= ±id. Alors il suffit de considérer un sous-espace U ⊂ V de dimension 3
contenant H⊥, et de considérer l’élément s ∈ N ∩SO(U, f), puis de conclure via la question b).

Exercice 6 : ??
On note Z(2) le sous-anneau de Q formé des rationnels à dénominateur impair. On note G = O3(Q).

a) Montrer que G ⊂ Mat3(Z(2)).

b) Pour tout n ∈ N∗, on pose Gn := {A ∈ G : ∃B ∈ Mat3(Z(2)) , A = I3 + 2nB}. Montrer que Gn
est un sous-groupe distingué de G.

c) Montrer que
⋂
n∈N∗ Gn = {I3}.

d) Montrer que G1 $ G et que G1 6⊂ SO3(Q).

e) Montrer que pour tout n ≥ 1, Gn+1 $ Gn.

f) Montrer que pour tout n ≥ 2, Gn ⊂ SO3(Q).

g) Pour tout n ≥ 2, montrer que Gn/Gn+1
∼= (Z/2Z)3.

h) Montrer que G/G1
∼= S3.

i) Montrer que G1/G2
∼= (Z/2Z)4.

j) Comparer la structure de O3(Q) avec celle de O3(R).

Solution de l’exercice 6. Remarquons pour commencer que le quotient de l’anneau Z(2) par l’idéal (2n)
engendré par l’élément 2n est canoniquement isomorphe à Z/2nZ, ce qui permet de formuler certaines
démonstrations qui suivent de façon un peu plus concise. Par soucis de simplicité, on n’utilisera pas
explicitement cette description dans ce corrigé.

a) Soit A ∈ G, et soit (x, y, z) ∈ Q3 un vecteur colonne de A. Alors on a x2 + y2 + z2 = 1.
Supposons que l’un des rationnels x, y, z ait un dénominateur pair. On multiplie alors l’égalité
précédente par le ppcm des dénominateurs pour obtenir une inégalité du type

a2 + b2 + c2 = d2

avec a, b, c, d ∈ Z, d pair et a, b ou c impair. Par symétrie, supposons a impair. On réduit cette
égalité modulo 4. On obtient

1 + b2 + c2 ≡ 0 [4] .

Or les seuls carrés dans Z/4Z sont 0 et 1, donc l’égalité précédente modulo 4 est contradictoire.
Cela assure que tous les dénominateurs des coefficients de A sont impairs, donc A ∈ Mat3(Z(2)).

b) Un calcul simple assure que Gn est un sous-groupe distingué de G.

c) Soit A = (ai,j) ∈
⋂
n∈N∗ Gn. Alors pour tout i 6= j, pour tout n ≥ 1, le numérateur de ai,j

est divisible par 2n, donc ai,j = 0. Et pour tout i, il existe b ∈ Z(2) tel que ai,i = 1 + 4b, et
ai,i ∈ {±1}, donc ai,i = 1. Donc A = I3.
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d) On considère la matrice de permutation suivante

A :=

 0 1 0
1 0 0
0 0 1

 .

Il est clair que A ∈ G et A /∈ G1.

De même, la matrice

B :=

 1 0 0
0 1 0
0 0 −1


est dans G1 mais pas dans SO3(Q).

e) L’inclusion Gn+1 ⊂ Gn est évidente. Montrons qu’elle est stricte. Pour cela, on considère, dans
le cas n ≥ 2, la matrice

An :=

 1−4n−1

1+4n−1
2n

1+4n−1 0

− 2n

1+4n−1
1−4n−1

1+4n−1 0

0 0 1

 = I3 + 2n

 − 2n−1

1+4n−1
1

1+4n−1 0

− 1
1+4n−1 − 2n−1

1+4n−1 0

0 0 0

 .

On voit donc que An ∈ Gn \Gn+1.

Dans le cas n = 1, on considère la matrice

A1 :=

 1
3

2
3

2
3

2
3

1
3 −2

3
2
3 −2

3
1
3

 = I3 + 2

 −1
3

1
3

1
3

1
3 −1

3 −1
3

1
3 −1

3 −1
3

 .

Donc A1 ∈ G1 et A1 /∈ G2. Une variante est donnée par la matrice B1 := diag(1, 1,−1).

f) Soit A ∈ Gn, avec n ≥ 2. Par définition, il existe B ∈ Mat3(Z(2)) tel que A = I3 + 4B. La
multilinéarité du déterminant assure que det(A) = 1 + 4d, pour un certain d ∈ Z(2). Or A est
orthogonale, donc det(A) ∈ {±1}, et l’égalité précédente assure que det(A) = 1 (car 4 ne divise
pas 2 dans l’anneau Z(2)). Donc Gn ⊂ SO3(Q).

g) On considère l’application πn : Gn → Mat3(Z/2Z) définie par πn(I3 + 2nB) := B, où si
B = (bi,j), les coefficients (bi,j) de B sont définis par bi,j = 0 si le numérateur de bi,j est pair,
et bi,j = 1 si celui-ci est impair. On vérifie que πn est un morphisme de groupes, notamment
que πn(AA′) = πn(A) + πn(B). En outre, il est clair que Ker(πn) = Gn+1, donc le théorème de
factorisation assure que πn induit un morphisme injectif

pin : Gn/Gn+1 → Mat3(Z/2Z) .

Or pour tout A = I3 + 2nB ∈ Gn, on a AtA = I3, donc B + tB + 2nBtB = 0. Par conséquent,
en regardant cette égalité modulo 2, on voit que

Im (πn) ⊂ {B ∈ Mat3(Z/2Z) : bi,j = bj,i et bi,i = 0∀i, j} ∼= (Z/2Z)3 .

Enfin, on voit que cette inclusion est une égalité en regardant l’image par πn de la matrice An
introduite à la question e), ainsi que les matrices obtenues à partir de An en permutant les
vecteurs de la base. Donc finalement Gn/Gn+1

∼= (Z/2Z)3

h) On considère le morphisme de groupes π0 : G→ O3(F2) défini par π0(A) := A, où A est défini
comme en g) et O3(F2) désigne l’ensemble des matrices A de Mat3(F2) telles que tAA = AtA =
I3. Un calcul simple assure que O3(F2) ∼= S3 via les matrices de permutations. Or toute matrice
de permutations dans G s’envoie par π0 sur la matrice de permutations correspondante dans
O3(F2), ce qui assure que π0 est surjectif. Enfin, par définition, on a bien Ker(π0) = G1, donc
G/G1

∼= S3.
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i) On raisonne comme en g). On considère le morphisme de groupes π1 : G1 → Mat3(Z/2Z) définie
par π1(I3 + 2B) := B. On a toujours Ker(π1) = G2, et l’image de π1 se calcule en réduisant
modulo 2 l’égalité déjà rencontrée B + tB + 2BtB = 0 : on voit que Im (π1) est contenu dans
{B ∈ Mat3(Z/2Z) : bi,j = bj,i et

∑
k 6=i bi,k = 0∀i, j}. Or ce dernier sous-groupe de Mat2(Z/2Z)

est isomorphe à (Z/2Z)4, engendré par les trois matrices ayant un unique coefficient non nul,
situé sur la diagonale, et par la matrice dont tous les coefficients valent 1. Et ces quatre matrices
sont bien dans l’image de π1, ce que l’on voit en utilisant les matrices A1 et B1 de la question
e). Donc G1/G2

∼= (Z/2Z)4.

j) Il suffit de reprendre toutes les questions précédentes. Le groupe O3(Q) n’est pas du tout un
groupe simple (ni SO3(Q)), contrairement à SO3(R). En fait, on a montré que G = O3(Q) est
un groupe pro-résoluble, au sens où la suite de sous-groupes Dn(G) vérifie

⋂
n∈ND

n(G) = {id}.
Plus précisément, on peut dire que G est une limite (projective dénombrable) de groupes
résolubles finis.

Exercice 7 : ? ? ?
Soient K = Fq un corps fini de caractéristique impaire et n ∈ N∗. On note PΩ±n (K) le quotient du
groupe dérivé de O±n (K) par son centre.

a) Déterminer O1(K), SO1(K) et PΩ1(K).

b) Montrer que O+
2 (K) est isomorphe au groupe diédral Dq−1. Identifier SO+

2 (K) et PΩ+
2 (K).

c) En considérant le corps Fq2 , montrer que O−2 (K) est isomorphe à Dq+1 et identifier SO−2 (K)
et PΩ−2 (K).

d) On suppose n = 3. On note V le K-espace vectoriel des matrices 2× 2 de trace nulle.

i) Exhiber une base naturelle de V comme K-espace vectoriel.

ii) Montrer que GL2(K) agit naturellement sur V .

iii) En déduire un morphisme de groupes ρ : GL2(K)→ GL(V ) ∼= GL3(K) que l’on explicitera.

iv) Montrer que Ker(ρ) = K∗I2.

v) Montrer que pour tout A ∈ GL2(K), det(ρ(A)) = 1.

vi) Vérifier que le déterminant définit une forme quadratique non dégénérée sur V .

vii) En déduire des isomorphismes PGL2(K) ∼= SO(V,det) ∼= SO3(K).

viii) Montrer que l’on a des isomorphismes PGL2(K)× {±1} ∼= O(V,det) ∼= O3(K).

ix) Montrer que PΩ3(K) ∼= PSL2(K).

e) On suppose n = 4. On note W := Mat2(K), et pour tout M ∈W , on note Q(M) := det(M).

i) Montrer que Q est une forme quadratique sur W qui est somme de deux plans hyperboliques.

ii) Montrer que GL2(K)×GL2(K) agit naturellement sur W .

iii) Soit A,B ∈ GL2(K). Montrer que l’action de (A,B) sur W préserve Q si et seulement si
det(A) = det(B), et que cette action est triviale si et seulement s’il existe λ ∈ K∗ tel que
A = B = λI2.

iv) En déduire un morphisme de groupes injectif i : ((SL2(K)× SL2(K)) oK∗) /K∗ → O(W,Q),
où l’on explicitera le groupe de gauche.

v) Montrer que 〈Im (i), T 〉 = O(W,Q), où T : W → W est défini par T (M) := tM et décrire
SO(W,Q).

vi) En déduire que PΩ+
4 (K) ∼= PSL2(K)× PSL2(K) si |K| > 3.

vii) Décrire PΩ+
4 (F3).

Solution de l’exercice 7.

a) Il est clair que O1(K) = {±1}, SO1(K) = {1} et PΩ1(K) = {1}.

8



b) Le cours (ou un calcul simple) assure que

O+
2 (K) =

{(
λ 0
0 λ−1

)
: λ ∈ K∗

}⋃{(
0 µ
µ−1 0

)
: µ ∈ K∗

}
.

Or K∗ est un groupe cyclique, donc en notant ζ un générateur de ce groupe, on pose

R :=

(
ζ 0
0 ζ−1

)
et S :=

(
0 1
1 0

)
.

On voit alors que O+
2 (K) = 〈R,S〉, que O+

2 (K) est d’ordre 2(q − 1), que R est d’ordre q − 1,
S est d’ordre 2, et RS = SR−1, ce qui assure que O+

2 (K) est isomorphe au groupe diédral
Dq−1 (groupe des isométries planes réelles d’un polygone régulier à q−1 côtés), l’isomorphisme
envoyant R sur la rotation de centre O (isobarycentre des sommets du polygone) et d’angle
2π
q−1 et S sur une symétrie axiale d’axe joignant deux sommets du polygone. On en déduit que

SO+
2 (K) = 〈R〉 ∼= Z/(q − 1)Z et PΩ+

2 (K) = {1}.
c) On fixe un élément ε ∈ K∗ \ (K∗)2, et on définit L := K(

√
ε) := {x + y

√
ε : x, y ∈ K} (que

l’on peut aussi définir comme L := K[X]/(X2 − ε)). Il est clair que L est un corps contenant
K comme sous-corps, de sorte que L est un K-espace vectoriel de dimension 2. On munit L
de l’application “norme” N : L → K définie par N(x + y

√
ε) := x2 − εy2. Il est clair que

N est une form quadratique sur le K-espace vectoriel L, de sorte que O(L,N) ∼= O−2 (K). En
outre, on voit que N induit un morphisme de groupes N : L∗ → K∗ tel que N(x) = xq+1

pour tout x ∈ L∗. Puisque L∗ est cyclique de cardinal q2 − 1, on voit que N est surjectif de
noyau A := {x ∈ L∗ : xq+1 = 1} cyclique de cardinal q + 1. Or, pour tout x ∈ A, on définit
mx : L → L par mx(y) := xy. Il est clair que mx est K-linéaire et pour tout y ∈ L, on a
bien N(mx(y)) = N(xy) = N(x)N(y) = N(y), donc mx ∈ O(L,N). On en déduit donc un
morphisme de groupes injectif A ↪→ SO(L,N) défini par x 7→ mx (il est clair que det(mx) = 1).
On dispose également de l’automorphisme de Frobenius Fr : L→ L défini par Fr(x) := xq : on
voit que Fr ∈ O(L,N) \ SO(L,N) et que Fr est d’ordre 2. Par cardinalité (voir exercice 3), on
en déduit que 〈A,Fr〉 = O(L,N). On vérifie enfin que mx ◦ Fr = Fr ◦m−1x , ce qui assure que
O−2 (K) ∼= Dq+1, SO−2 (K) ∼= Z/(q + 1)Z et PΩ−2 (K) = {1}.

d) i) Une base de V est donnée par les matrices suivantes :(
0 1
0 0

)
,

(
0 0
1 0

)
et

(
1 0
0 −1

)
.

ii) L’action de GL2(K) sur V est définie par A ·M := AMA−1 pour tout A ∈ GL2(K) et
M ∈ V .

iii) Le morphisme est induit par l’action précédente, qui est bien linéaire. Explicitement, on
voit que dans la base donnée en d)i), on a :

ρ

((
a b
c d

))
=

1

ad− bc

 a2 −b2 −2ab
−c2 d2 2cd
−ac bd ad+ bc

 .

iv) La formule explicite de la question d)iii) assure que Ker(ρ) = K∗I2.

v) C’est un calcul avec la formule de la question d)iii).

vi) Soit A =

(
z x
y −z

)
∈ V . Alors det(A) = −z2 − xy est clairement une forme quadratique

non dégénérée (de rang 3) sur V .

vii) Les questions d)iii), d)iv), d)v), et le fait que l’action considérée préserve le déterminant sur
V , assurent que le morphisme ρ induit un morphisme de groupes injectif

ρ : PGL2(K) ↪→ SO(V,det) ∼= SO3(K) .

En calculant les cardinaux des deux groupes, on voit que ceux-ci ont tous les deux pour
cardinal q(q − 1)(q + 1), donc ρ est un isomorphisme de groupes.
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viii) Comme V est de dimension impaire, on voit que −idV ∈ O(V,det) \ SO(V,det), ce qui
permet d’obtenir l’isomorphisme O3(K) ∼= SO3(K) × {±I3}. On conclut en utilisant la
question d)viii).

ix) Avec les questions précédentes, il suffit de dire que le groupe de dérivé de GL2(K) est
SL2(K) pour conclure que Ω3(K) ∼= PSL2(K). Enfin, le centre de PSL2(K) est trivial, ce
qui assure que PΩ3(K) ∼= PSL2(K).

e) i) Soit M =

(
x y
z t

)
∈W . On a det(M) = xt− yz, donc on voit que Q = det est une forme

quadratique sur W qui est somme de deux plans hyperboliques : les plans {x = t = 0} et
{y = z = 0}.

ii) Pour tout (A,B) ∈ GL2(K) × GL2(K) et tout M ∈ W , on pose (A,B) ·M := AMB−1.
Cela définit bien une action de groupe.

iii) Soient (A,B) ∈ GL2(K)×GL2(K) et M ∈W . On a Q((A,B)·M) = det(A) det(B)−1Q(M).
Donc (A,B) préserve Q si et seulement si det(A) = det(B).

En outre, (A,B) agit trivialement sur W si et seulement si pour tout M ∈W , on a AM =
MB si et seulement si A = B et pour tout M ∈ W , AM = MA si et seulement si A = B
et A ∈ Z(GL2(K)) = K∗I2.

iv) On note G le sous-groupe de GL2(K) × GL2(K) formé des couples de matrices (A,B) ∈
GL2(K) × GL2(K) tels que detA = detB. On dispose d’une action de K∗ sur SL2(K)
donnée par une section de la suite exacte

A→ SL2(K)→ GL2(K)
det−−→ K∗ → 1 .

Par exemple, on peut considérer l’action donnée par λ · A := diag(λ, 1)Adiag(λ−1, 1), pour
tout λ ∈ K∗ et A ∈ SL2(K). Pour simplifier, on notera s(λ) := diag(λ, 1).

On en déduit une action diagonale de K∗ sur SL2(K)×SL2(K), ce qui permet de définir un
produit semi-direct (SL2(K)×SL2(K))oK∗. On voit facilement que l’on a un isomorphisme
naturel G ∼= (SL2(K)×SL2(K))oK∗. Considérons alors le morphisme de groupes ϕ : G→
O(W,Q) défini par ϕ(A,B) : M 7→ AMB−1.

Alors la question e)iii) assure que Ker(ϕ) =∼= K∗, donc ϕ induit un morphisme de groupes
injectif i = ϕ : G/K∗ → O(W,Q).

v) Un calcul simple (utilisant par exemple le produit de Kronecker des matrices, i.e. le produit
tensoriel des matrices) assure que le déterminant de ϕ(A,B) vaut det(A)2 det(B)−2 = 1.
Donc ϕ est à valeur dans SO(W,Q). On a donc un morphisme de groupes injectif i = ϕ :
G/K∗ → SO(W,Q), et on voit que T ∈ O(W,Q) \ SO(W,Q). Donc 〈Im (i), T 〉 ⊂ O(W,Q).

On calcule alors les cardinaux des groupes en question (en utilisant notamment l’exercice 3) :
on a |G/K∗| = |SL2(K)|2 = q2(q−1)2(q+1)2, |SO(W,Q)| = |SO+

4 (K)| = q2(q2−1)(q2−1),
donc l’égalité des cardinaux assure que i : G/K∗ → SO(W,Q) est un isomorphisme.

Or SO(W,Q) est un sous-groupe d’indice 2 dans O(W,Q), donc 〈Im (i), T 〉 = O(W,Q).

vi) La question précédente assure que Ω+
4 (K) ∼= D((SL2(K)×SL2(K))/K∗, donc si |K| > 3, on

a Ω+
4 (K) ∼= (SL2(K) × SL2(K))/K∗. On en déduit alors PΩ+

4 (K) ∼= PSL2(K) × PSL2(K)
si |K| > 3.

vii) On a vu que SO+
4 (F3) ∼= G/K∗. Comme D(SL2(F3)) ⊂ SL2(F3) est isomorphe au groupe

H8 des quaternions d’ordre 8 (voir par exemple TD4, exercice 10), et comme D(GL2(F3)) =
SL2(F3), on constate que Ω+

4 (F3) ∼= (SL2(F3)× SL2(F3))/F∗3, donc PΩ+
4 (F3) ∼= PSL2(F3)×

PSL2(F3).

Exercice 8 :
On considère V = F6

2 muni de la forme bilinéaire x · y =
∑6

i=1 xiyi. On note x0 := (1, . . . , 1) ∈ V .

a) Donner la définition des groupes Spn(K) lorsque K est un corps de caractéristique 2.

b) Montrer queW := x⊥0 /F2x0 est naturellement muni d’une forme bilinéaire alternée non dégénérée.
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c) En déduire un morphisme naturel S6 → Sp4(F2).

d) Conclure que Sp4(F2) ∼= S6.

Solution de l’exercice 8.

a) voir le cours.

b) Pour tout x ∈ V , on a x · x = x · x0. Donc pour tout x ∈ x⊥0 , x · x = 0. Cela assure que
la restriction de la forme bilinéaire au sous-espace x⊥0 de dimension 5 est une forme bilinéaire
alternée. Son noyau est exactement la droite engendré par x0, donc cette forme alternée induit
une forme alternée b non dégénérée sur W = x⊥0 /F2x0.

c) L’action de S6 sur V par permutation des coordonnées induit une action de S6 sur W , dont
on voit facilement qu’elle préserve la forme symplectique précédente. On en déduit donc un
morphisme de groupes injectif S6 → Sp(W, b) ∼= Sp4(F2).

d) On calcule les cardinaux et on voit que |S6| = 6! = 720 et |Sp4(F2)| = 15.8.3.2 = 720 (le
cardinal des groupes Sp2n(Fq) se calcule de façon analogue à celui des groupes orthogonaux : cf
exercice 3). On en déduit donc que le morphisme de la question précédente est un isomorphisme,
i.e. Sp4(F2) ∼= S6.

Exercice 9 : ? ? ?
Soit K un corps de caractéristique différente de 2 et soit m ≥ 3. On munit V = K2m de la forme
bilinéaire alternée usuelle B ; on note Sp2m(K) le groupe symplectique correspondant. Soient s, t ∈
Sp2m(K) des involutions.

a) Montrer qu’il existe une décomposition V = E+(s)
⊥
⊕ E−(s), où E+(s) et E−(s) désignent les

espaces propres de s associées aux valeurs propres 1 et −1, respectivement.

b) En déduire une bijection entre l’ensemble des involutions de Sp2m(K) et l’ensemble des sous-
espaces non dégénérés de V .

On dit que l’involution s est de type (2r, 2m − 2r) si l’espace E+(s) est de dimension 2r. On parle
d’involution extrémale pour une involution de type (2, 2m− 2) ou (2m− 2, 2). Dans ce cas-là, on note
E2(s) l’espace E±(s) de dimension 2.

c) En considérant les familles commutatives maximales d’involutions conjuguées dans Sp2m(K),
montrer que tout automorphisme de Sp2m(K) envoie une involution extrémale sur une involu-
tion extrémale.

On dit que des involutions extrémales s et t forment un couple minimal si on a dim(E2(s)∩E2(t)) = 1.
Si S ⊆ Sp2m(K) est un ensemble d’involutions extrémales, on note C(S) l’ensemble des involutions
extrémales qui commutent à tout élément de S.

d) Montrer que s et t forment un couple minimal si et seulement si (st 6= ts et pour tous s′, t′ ∈
C(C({s, t})) avec s′t′ 6= t′s′ on a C(C({s, t})) = C(C({s′, t′}))).

e) Déterminer les ensembles maximaux I d’involutions extrémales tels que toute paire d’éléments
de I forme un couple minimal ou commute.

Soit n ≥ 3. Une application φ : Kn → Kn est dite semi-linéaire s’il existe un automorphisme de corps
θ : K → K tel que φ soit θ-linéaire, c’est-à-dire :

• On a φ(v + v′) = φ(v) + φ(v′), pour tous v, v′ ∈ Kn.

• On a φ(λv) = θ(λ)φ(v), pour tout v′ ∈ Kn et tout λ ∈ K.

L’ensemble des applications semi-linéaires inversibles forment un groupe, noté ΓLn(K) et appelé le
groupe des transformations semi-linéaires de Kn.
On admet le théorème fondamental de la géométrie projective, qui est l’énoncé suivant : soit φ :
Pn(K) → Pn(K) une bijection telle que trois points A1, A2, A3 de Pn(K) sont alignés si et seule-
ment si φ(A1), φ(A2), φ(A3) le sont. Alors il existe un automorphisme de corps σ : K → K et une
transformation σ-linéaire γ ∈ ΓLn+1(K) telle que φ soit induite par γ.
On définit enfin ΓSp2m(K) comme le sous-groupe de ΓL2m(K) des éléments préservant la forme B.
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f) Montrer que tout automorphisme de Sp2m(K) est de la forme x 7→ axa−1 pour un certain
élément a ∈ ΓSp2m(K).

Solution de l’exercice 9.

a) Une involution annule le polynôme X2− 1, d’où une décomposition V = E+(s)⊕E−(s). Cette
dernière est B-orthogonale puisque si e+ et e− sont des éléments respectivement de E+(s) et
E−(s), alors on a

−B(e+, e−) = B(s(e+), s(e−)) = B(e+, e−) ,

donc B(e+, e−) = 0.

b) L’application s 7→ E+(s) est la bijection souhaitée.

c) Soit F une telle famille. Elle est composée d’involutions de type (2r, 2m − 2r) pour un r fixé
(puisque les éléments de F sont conjugués). Comme ils commutent, tous les éléments de F se
diagonalisent dans une base symplectique commune. Aussi, il convient de remarquer que si V a
pour base symplectique (e1, e2, . . . , e2m) avec b(e2i−1, e2i) = −b(e2i, e2i−1) = 1, et b(ei, ej) = 0
sinon, alors on a e2j ∈ E+(s) ⇔ e2j−1 ∈ E+(s). De ce fait, E+(s) est déterminé par un choix
de r vecteurs, et on a |F| ≤

(
m
r

)
.

En particulier si s est une involution extrémale, alors elle est incluse dans une famille maxi-
male, à m éléments, d’involutions conjuguées commutant deux-à-deux. Parce que cette dernière
propriété est conservée par un automorphisme de Sp2m(K) et parce que l’on a

(
m
r

)
6= m pour

r /∈ {1,m− 1}, tout automorphisme de Sp2m(K) envoie involutions extrémales sur involutions
extrémales.

d) Si s et t sont deux involutions extrémales avec s 6= ±t, on a

C({s, t}) = {u extrémale | E2(u) ⊆ E2m−2(s) ∩ E2m−2(t), E2m−2(u) ⊇ E2(s) + E2(t)}.

On en déduit

C(C({s, t})) = {u extrémale | E2(u) ⊆ E2(s) + E2(t), E2m−2(u) ⊇ E2m−2(s) ∩ E2m−2(t)}.

Si s et t forment un couple minimal, alors on a st 6= ts puisqu’on a dim (E2(t) ∩ E2(s)) = 1 non
paire. De plus, si s′, t′ ∈ C(C({s, t})) vérifient s′t′ 6= t′s′, alors E2(s

′) +E2(t
′) ⊆ E2(s) +E2(t),

qui est de dimension 3. Ainsi on a dim (E2(s
′) ∩ E2(t

′)) = 1 et (s′, t′) est un autre couple minimal
avec E2(s

′) +E2(t
′) = E2(s) +E2(t). Il s’ensuit E2m−2(s

′) ∩E2m−2(t
′) = E2m−2(s) ∩E2m−2(t)

et C(C({s′, t′})) = C(C({s, t})).
Si s et t ne sont pas un couple minimal, alors on a dim (E2(s) ∩ E2(t)) ∈ {0, 2}. Dans le cas
où cette dimension vaut 2, la question (b) donne s = ±t et on a alors st = ts. Supposons
donc E2(s) ∩ E2(t) = ∅. Dans ce cas-là, E2(s) + E2(t) est de dimension 4, et on peut trouver
s′ et t′ un couple minimal avec E2(s

′) + E2(t
′) $ E2(s) + E2(t) et E2m−2(s

′) ∩ E2m−2(t
′) %

E2m−2(s) ∩ E2m−2(t). On a alors C(C({s′, t′})) 6= C(C({s, t})).
e) Si ±s,±t,±u sont six éléments distincts de I, l’espace E2(s) ∩ E2(t) ∩ E2(u) est de dimension

1 ou 0. Dans le premier cas, on note V1 la droite obtenue et dans le second cas, on a E2(u) ⊆
E2(s) + E2(t) =: V3. Les ensembles maximaux correspondants sont alors respectivement

I1(V1) := {v involution extrémale | V1 ⊆ E2(v)},

I3(V3) := {v involution extrémale | E2(v) ⊆ V3}.

Et tous les ensembles maximaux I sont de l’un de ces deux types.

f) Si V3 est de dimension 3, on peut trouver V4 ⊇ V3 de dimension 4 et non isotrope. Alors si
w est une involution extrémale avec V4 ⊆ E2m−2(w), tout élément v de I3(V3) vérifie E2(v) ⊆
E2m−2(w) et E2(w) ⊆ V ⊥4 ⊆ E2m−2(v). De ce fait, w commute avec tout élément de I3(V3). Or
il n’existe pas d’élément non trivial de Sp2m(K) commutant avec tout élément de I1(V1). On
en déduit que tout automorphisme de Sp2m(K) préserve {I1(x) | x ∈ P2m−1(K)}.
Soit φ un automorphisme de Sp2m(K). On lui associe la bijection θφ : P2m−1(K)→ P2m−1(K)
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via φ(I1(x)) = I1(θφx). Maintenant, x, y ∈ P2m−1(K) sont deux droites orthogonales si et
seulement si elles engendrent un plan anisotrope ; ceci est encore équivalent à I(x) ∩ I(y) = ∅.
Cette dernière propriété est conservée par φ, de sorte que θφ préserve l’orthogonalité. On en
déduit que θφ préserve l’alignement, et par le théorème fondamental de la géométrie projective,
il existe a ∈ ΓL2m(K) tel que l’on ait θφ(Kx) = K(ax) pour tout x ∈ K2m r {0}. Comme
a préserve l’orthogonalité, on a même a ∈ ΓSp2m(K). Si s est une involution extrémale, on
a {s} = I1(e1) ∩ I1(e2) si e1 et e2 sont deux droites engendrant E2(s). On en déduit que
φ(s) = asa−1. Si g est un élément de Sp2m(K), gsg−1 est une involution extrémale et on a

agsg−1a−1 = φ(gsg−1) = φ(g)φ(s)φ(g)−1 = φ(g)asa−1φ(g)−1.

Ceci s’écrit encore g−1a−1φ(g)as = sg−1a−1φ(g)a ; autrement dit, g−1a−1φ(g)a commute à
toute involution extrémale et préserve donc tout plan hyperbolique. Il s’ensuit que g−1a−1φ(g)a
préserve les droites et est donc une homothétie, disons λ(g)I2m. Mais alors, g 7→ λ(g) four-
nit un morphisme Sp2m(K) → K×. Par simplicité de PSp2m(K), le noyau de ce dernier est
{1}, Z(Sp2m(K)) ou Sp2m(K). Les deux premiers cas ne permettent pas de factoriser λ par
l’abélianisé ; c’est donc le dernier cas qui se présente, et λ est trivial.
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