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Introduction

Let E be a vector bundle on a variety X. The

associated projective bundle

P(E) = Proj(
⊕
m≥0

SmE)→ X

comes equipped with a line bundle OP(E)(1).

We say that E is ample if OP(E)(1) is. This

is equivalent to saying that for any coherent

sheaf F on X, the sheaf SmE⊗F is generated

by global sections for all m� 0.

If E is globally generated, it is ample if and

only if the composition

P(E)
ι
↪→ P(H0(X,E))×X pr1−→ P(H0(X,E))

is finite, where ι is the closed immersion in-

duced by the evaluation map

H0(X,E)⊗ OX � E



This talk is about constructing smooth projec-

tive varieties with ample cotangent bundle.

Properties (1) Any subvariety of a smooth

projective variety X with ample cotangent bun-

dle is of general type. In particular, X contains

no rational or elliptic curves, and no nonzero

abelian varieties.

(2) Any smooth complex projective variety X

with ample cotangent bundle is analytically hy-

perbolic: any holomorphic map C→ X is con-

stant.

(3) It is conjectured that a smooth projective

variety with ample cotangent bundle defined

over a number field should have only finitely

many rational points.



Examples (1) A smooth projective curve has

ample cotangent bundle if and only if its genus

is at least 2.

(2) The cotangent bundle of a product of two

positive-dimensional smooth projective varieties

is not ample.

(3) The cotangent bundle of a smooth hyper-

surface in Pn is never ample for n ≥ 3.

(4) Any smooth complex projective variety that

is uniformized by the unit ball Bn in Cn inherits

from the Bergman metric a metric with nega-

tive sectional Riemannian curvature hence has

ample cotangent bundle. A smooth projective

surface has this property if and only if c21 = 3c2
(Borel–Hirzebruch, Yau, Miyaoka). Examples

were constructed by:

• Borel in 1963 (compact quotients of B2 by a

discontinuous group of analytic automorphisms);



• Mumford in 1979 (“fake projective plane”
with c21 = 3, c2 = 1, and b1 = 0);

• Hirzebruch in 1983 (minimal desingulariza-
tions of certain coverings of P2 branched along
a union of lines).

(5) Mostow and Siu constructed in 1980 a
compact Kähler surface not covered by B2,
with negative sectional Riemannian curvature,
hence ample cotangent bundle. No simply con-
nected examples of such surfaces seem to be
known.

(6) Deschamps constructed in 1984 smooth
projective surfaces smoothly fibered over a curve
with everywhere nonzero Kodaira–Spencer map
and proved that their cotangent bundle is am-
ple. Around the same time, Bogomolov pro-
duced many (simply connected) examples: if S
is a smooth projective surface of general type
with c21 > c2, a general linear section of Sm of
dimension ≤ m/3 has ample cotangent bundle.



Subvarieties of abelian varieties

The cotangent bundle to a smooth subvariety

X of an abelian variety A is globally generated.

It is therefore ample if and only if the map

P(ΩX)
ι
↪→ P(ΩA)|X ' P(ΩA,0)×X pr1−→P(ΩA,0)

(x, ξ) −−−−−−−−−−−−−−−−−−−−−−−−−→ ξ

is finite. In other words if, for any nonzero

(constant) vector field ∂ on A, the set

{x ∈ X | ∂(x) ∈ TX,x}

is finite. This is possible only if dim(X) ≤
dim(A)/2, but many other things can prevent

ΩX from being ample. For example, if X ⊃
X1 +X2, where X1 and X2 are subvarieties of

A of positive dimension, and x1 is smooth on

X1, we have

∀ x2 ∈ X2 TX1,x1
⊂ TX,x1+x2

hence ΩX is not ample.



Theorem 1 Let L be a very ample line bundle

on a simple abelian variety A of dimension n.

Let e > n and c ≥ n/2. For H1, . . . , Hc general

in |Le|, the cotangent bundle of H1∩ · · · ∩Hc is

ample.

Proof. We prove that the fibers of the map

P(ΩX) −→ P(ΩA,0)
(x, ξ) 7−→ ξ

all have dimension n − 2c for c ≤ n/2. This

means that for H1, . . . , Hc general in |Le| and

any nonzero (constant) vector field ∂ on A,

dim{x ∈ H1 ∩ · · · ∩Hc | ∂(x) ∈ TX,x} = n− 2c

In other words,

codim(H1 ∩ ∂H1 ∩ · · · ∩Hc ∩ ∂Hc) = 2c

We proceed by induction on c, assuming that

for all ∂ 6= 0, the variety Y∂ = H1 ∩ ∂H1 ∩
· · ·∩Hc−1∩∂Hc−1, with irreducible components

Y∂,1, . . . , Y∂,q, has codimension 2c− 2 in A.



Set Yi = (Y∂,i)red and let

Ue(Y∂) = {H ∈ |Le| | Yi ∩H is integral of

codimension 1 in Yi for all i}

If H ∈ Ue(Y∂), I claim that Y∂ ∩ H ∩ ∂H has

codimension 2 in Y∂: if s ∈ H0(A,Le) defines

H, we have a commutative diagram

H0(H,Le|H) //

��

H1(A,OA)

ρ

��

∂s � // ∂ ^ c1(Le)

H0(Yi ∩H,Le|Yi∩H) // H1(Yi,OYi)

The restriction ρ is injective because Yi gener-

ates A, hence ∂s does not vanish identically on

the integral scheme Yi ∩H.

It follows that for H ∈ Ue(Y∂), the scheme Y∂∩
H ∩ ∂H has codimension 2c in A. Thus, for

Hc ∈
⋂

[∂]∈P(ΩA,0) Ue(Y∂), the intersection

H1 ∩ ∂H1 ∩ · · · ∩Hc ∩ ∂Hc



has codimension 2c in A for all ∂ 6= 0.

An elementary geometric lemma shows that

the complement of Ue(Y∂) in |Le| has codimen-

sion at least e− 1. For e > n, the above inter-

section is nonempty and the theorem follows.

�

Remarks 2 (1) The assumption that A be sim-

ple is unnecessary, although the proof becomes

quite complicated without it.

(2) Izadi and I have recently proved that on a

general Jacobian fourfold, the intersection of

a theta divisor with a translate by a general

point is a smooth surface with ample cotan-

gent bundle.



Cohomology of symmetric tensors

Ampleness has cohomological consequences:

under the hypotheses of the theorem,

∀ q > max{n− 2c,0} Hq(X,SrΩX) = 0

for r � 0.

Claim: for any smooth subvariety X of A, the

restriction

Hq(A,SrΩA)→ Hq(X,SrΩX) is

{
bijective for q < n− 2c

injective for q = n− 2c

Let r � 0. For c < n/2, the only nonzero

cohomology groups of SrΩX are therefore

H0(X,SrΩX) ' H0(A,SrΩA)
...

Hn−2c−1(X,SrΩX) ' Hn−2c−1(A,SrΩA)

Hn−2c(X,SrΩX) ⊃ Hn−2c(A,SrΩA)

For c ≥ n/2, the only nonzero cohomology

group is H0(X,SrΩX).



Proof of the claim. The symmetric powers

of the exact sequence 0 → N∗X/A → ΩA|X →
ΩX → 0 yield, for each r > 0, a long exact

sequence

0→ ∧cN∗X/A ⊗ Sr−cΩA → · · ·

· · · → N∗X/A ⊗ Sr−1ΩA →
→ SrΩA|X → SrΩX → 0

Since NX/A is ample, Hq(X,∧iN∗X/A) = 0 for

n−c−q > c−i and i > 0 by Le Potier’s vanishing

theorem. Since ΩA is trivial, an elementary

homological algebra argument yields

∀ q ≤ n−2c Hq(X,Ker(SrΩA|X → SrΩX)) = 0

The claim follows from the fact that the re-

striction Hq(A,OA) → Hq(X,OX), hence also

the restriction Hq(A,SrΩA) → Hq(X,SrΩA|X),

is bijective for q ≤ n− 2c (Sommese). �



Subvarieties of the projective space

Conjecture 3 The cotangent bundle of the

intersection in Pn of at least n/2 general hyper-

surfaces of sufficiently high degrees is ample.

This conjecture has a more general cohomo-

logical formulation.

Conjecture 4 Let X be the intersection in Pn

of c general hypersurfaces of sufficiently high

degrees and let m be an integer. For r � 0,

∀ q 6= max{n− 2c,0} Hq(X,SrΩX(m)) = 0

For q < 2n − c, this was proved by Schneider

(for all r > 0). The conjecture holds for c ≤ 1

by results of Bogomolov and Demailly that use

the existence on X of (some kind of) a Kähler–

Einstein metric.



Using the same techniques as above, one can
get a weak positivity result in this direction.
If X is a smooth subvariety of Pn, there is a
commutative diagram

0 0
↓ ↓

N∗X/Pn(1) = N∗X/Pn(1)

↓ ↓
0 → ΩPn(1)|X → On+1

X → OX(1) → 0
↓ ↓ ‖

0 → ΩX(1) → E → OX(1) → 0
↓ ↓
0 0

where E is the dual of the pull-back by the
Gauss map X → G(dimX,Pn) of the universal
subbundle on the Grassmannian. It is globally
generated and we have a map

P(E ) ↪→ Pn ×X pr1−→ Pn

(x, ξ)−−−−−−−−−−−→ ξ

whose image is the tangential variety of X.
The vector bundle E is ample if and only if



no point of Pn is on infinitely many tangent

spaces to X.

Theorem 5 For the complete intersection in

Pn of at least n/2 general hypersurfaces of de-

gree ≥ n+ 2, the vector bundle E is ample.

This can be shown to imply that the vector

bundle ΩX(1) is big.


