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Introduction

Let £ be a vector bundle on a variety X. The
associated projective bundle

P(F) = Proj( @ S"E) — X
m>0
comes equipped with a line bundle Op(g)(1).
We say that E is ample if ﬁP(E)(l) is. This
IS equivalent to saying that for any coherent

sheaf .# on X, the sheaf SM"E®.% is generated
by global sections for all m > 0.

If £ is globally generated, it is ample if and
only if the composition

P(E) < P(HOX,E)) x X 2L P(HO(X, E))

is finite, where ( is the closed immersion in-
duced by the evaluation map

HY X, E)® Ox - E



This talk is about constructing smooth projec-
tive varieties with ample cotangent bundle.

Properties (1) Any subvariety of a smooth
projective variety X with ample cotangent bun-
dle is of general type. In particular, X contains
no rational or elliptic curves, and no nonzero
abelian varieties.

(2) Any smooth complex projective variety X
with ample cotangent bundle is analytically hy-
perbolic: any holomorphic map C — X is con-
stant.

(3) It is conjectured that a smooth projective
variety with ample cotangent bundle defined
over a number field should have only finitely
many rational points.



Examples (1) A smooth projective curve has
ample cotangent bundle if and only if its genus
is at least 2.

(2) The cotangent bundle of a product of two
positive-dimensional smooth projective varieties
IS not ample.

(3) The cotangent bundle of a smooth hyper-
surface in P™ is never ample for n > 3.

(4) Any smooth complex projective variety that
is uniformized by the unit ball B,, in C™ inherits
from the Bergman metric a metric with nega-
tive sectional Riemannian curvature hence has
ample cotangent bundle. A smooth projective
surface has this property if and only if c% = 3c¢o
(Borel—Hirzebruch, Yau, Miyaoka). Examples
were constructed by:

e Borel in 1963 (compact quotients of B, by a
discontinuous group of analytic automorphisms);



e Mumford in 1979 (‘'fake projective plane”
with ¢? = 3, cp = 1, and by = 0);

e Hirzebruch in 1983 (minimal desingulariza-
tions of certain coverings of P2 branched along
a union of lines).

(5) Mostow and Siu constructed in 1980 a
compact Kahler surface not covered by B,
with negative sectional Riemannian curvature,
hence ample cotangent bundle. No simply con-
nected examples of such surfaces seem to be
known.

(6) Deschamps constructed in 1984 smooth
projective surfaces smoothly fibered over a curve
with everywhere nonzero Kodaira—Spencer map
and proved that their cotangent bundle is am-
ple. Around the same time, Bogomolov pro-
duced many (simply connected) examples: if S
IS @ smooth projective surface of general type
with c% > co, a general linear section of S of
dimension < m/3 has ample cotangent bundle.



Subvarieties of abelian varieties

The cotangent bundle to a smooth subvariety
X of an abelian variety A is globally generated.
It is therefore ample if and only if the map

P(Q2x) — P(Q2)|x = P(240) x X ZLP(Q24,0)

(z,€) S
is finite. In other words if, for any nonzero
(constant) vector field 9 on A, the set

{x € X |0(z) € Tx 4}

is finite. This is possible only if dim(X) <
dim(A)/2, but many other things can prevent
Qx from being ample. For example, if X D
X1+ Xo, where X7 and X» are subvarieties of
A of positive dimension, and x7 is smooth on
X1, we have

V€ Xp TXl,xl C TX,wl—I—wQ

hence 2y is not ample.



Theorem 1 Let L be a very ample line bundle
on a simple abelian variety A of dimension n.
Let e >n and ¢ > n/2. For Hy,...,H: general
in |L¢|, the cotangent bundle of HyN---NH¢ is
ample.

Proof. We prove that the fibers of the map
P(Q2x) — P(Q240)

(z,§) +— 3
all have dimension n — 2¢ for ¢ < n/2. This
means that for Hy,...,H: general in |L¢| and

any nonzero (constant) vector field 0 on A,
dim{z€ HiN---NHc|0(x) € Tx ,} =n—2c
In other words,
codm(H{NoH1N---NH.NOH:) = 2¢c

We proceed by induction on ¢, assuming that
for all 0 # 0, the variety Y9 = H{ N o0H1 N
---NH._1N0H._1, with irreducible components
Ys.1,---, Y 4 has codimension 2¢—2 in A.



Set Y; = (Yyi)req and let

U(Yy) = {H €|L°||Y;NH is integral of
codimension 1 in Y; for all i}
If H € %Z(Yy), I claim that Yo H N AJH has
codimension 2 in Yy: if s € HO(A, L) defines
H, we have a commutative diagram

HO(H, L g) HY(A,0y)
[ as 0 —ald) ),
\

HO(Y; N H, L®|y.np) H(Y;, Oy,)

The restriction p is injective because Y, gener-
ates A, hence ds does not vanish identically on
the integral scheme Y; N H.

It follows that for H € %Z(Yy), the scheme YyN
H N 0H has codimension 2¢ in A. Thus, for
He € NigleP (o) %e(Ys), the intersection

HiNnoH{N---NH:NOH,



has codimension 2c in A for all 9 #= 0.

An elementary geometric lemma shows that
the complement of % (Yp) in |L¢| has codimen-
sion at least e— 1. For e > n, the above inter-
section is nonempty and the theorem follows.
[]

Remarks 2 (1) The assumption that A be sim-
ple is unnecessary, although the proof becomes
quite complicated without it.

(2) Izadi and I have recently proved that on a
general Jacobian fourfold, the intersection of
a theta divisor with a translate by a general
point is a smooth surface with ample cotan-
gent bundle.



Cohomology of symmetric tensors

Ampleness has cohomological consequences:
under the hypotheses of the theorem,

vV q > max{n — 2¢, 0} H1(X,S"Qx) =0
for r > 0.

Claim: for any smooth subvariety X of A, the
restriction

bijective for g <n — 2c¢c

HI(A,S"Q2 HY(X,S"Qx) is
(4,87€2) = HYU(X,5x) {injective forg=n—2c

Let » > 0. For ¢ < n/2, the only nonzero
cohomology groups of S"Q2x are therefore

HO(X,S"Qy) ~ HYA,S"Q4)

Hn_QC_l(X, STQX) ~ Hn_QC_l(A, STQA)
H"2¢(X,8"Qx) D H" 2¢(A,S"Q4)

For ¢ > n/2, the only nonzero cohomology
group is HO(X,S"Qx).



Proof of the claim. The symmetric powers
of the exact sequence 0 — N;}/A — Qulx —
2x — 0 yield, for each » > 0, a long exact
seguence

0 — A°Ny/a ®S"7°Q — -
= Ny/a®8 71, —
—>STQA|X—>STQX—>O
Since Nx 4 is ample, HI(X, AN ) = 0 for
n—c—q >c—ti1and >0 by Le Potlersvamshmg

theorem. Since 24 is trivial, an elementary
homological algebra argument vields

Vg<n—2c Hq(X, KGF(STQALX — STQX)) =0

The claim follows from the fact that the re-
striction HY(A,0 ) — HY(X,0x), hence also
the restriction H1(A,S"™Q24) — HY(X,S"Q24|x),
is bijective for ¢ < n — 2c¢ (Sommese). [



Subvarieties of the projective space

Conjecture 3 The cotangent bundle of the
intersection in P™ of at least n/2 general hyper-
surfaces of sufficiently high degrees is ample.

This conjecture has a more general cohomo-
logical formulation.

Conjecture 4 Let X be the intersection in P™
of ¢ general hypersurfaces of sufficiently high
degrees and let m be an integer. For r > 0,

V g 7 max{n — 2¢,0} HY(X,S"Q2x(m)) =0

For q < 2n — ¢, this was proved by Schneider
(for all » > 0). The conjecture holds for ¢ < 1
by results of Bogomolov and Demailly that use
the existence on X of (some kind of) a Kahler—
Einstein metric.



Using the same techniques as above, one can
get a weak positivity result in this direction.
If X is a smooth subvariety of P", there is a
commutative diagram

0 0
! !
X/Pn(l) — X/Pn(l)
! !
0 — Qpa(D)|x — 0% — ox(1) — 0
! l
0 - Qx(1) - & - ﬁXHm — 0
! !
0 0

where & is the dual of the pull-back by the
Gauss map X — G(dim X, P"™) of the universal
subbundle on the Grassmannian. It is globally
generated and we have a map

P(&) — P x X 25 pn

(z,8) 2R3
whose image is the tangential variety of X.
The vector bundle & is ample if and only if



no point of P" is on infinitely many tangent
spaces to X.

Theorem 5 For the complete intersection in
P™ of at least n/2 general hypersurfaces of de-
gree > n + 2, the vector bundle & is ample.

This can be shown to imply that the vector
bundle Q2x (1) is big.



