TD d'analyse 8 : analyse fonctionnelle

Exercice 1.

- (a) Soit $f: X \to Y$ une application entre deux espaces métriques. Pour tout $n \in \mathbb{N}^*$, on note $O_n = \{x \in X \mid \exists \delta > 0, \forall y, z \in B(x, \delta), d(f(y), f(z)) < 1/n\}$. Vérifier que les O_n sont des ouverts et que l'ensemble des points de continuité de f est $\bigcap_{n \in \mathbb{N}^*} O_n$.
- (b) Utiliser le théorème de Baire pour en déduire qu'il n'existe pas de fonction continue sur \mathbb{Q} et discontinue sur $\mathbb{R}\backslash\mathbb{Q}$.

Exercice 2. Pour tout $N \in \mathbb{N}$ et $x \in \mathbb{R}$, on note $D_N(x) = \sum_{n=-N}^N e^{inx}$.

- (a) Montrer que $\int_0^{2\pi} |D_N|$ tend vers $+\infty$ quand N tend vers $+\infty$.

 Indication: la fonction sinus cardinal n'est pas intégrable sur \mathbb{R}_+ .
- (b) Soit X l'espace des fonctions continues et 2π -pérodiques de \mathbb{R} dans \mathbb{C} , muni de la norme uniforme. Soit $N \in \mathbb{N}$. Prouver que la formule

$$\forall f \in X, \quad T_N(f) = \int_0^{2\pi} D_N(x) f(-x) dx$$

définit une forme linéaire continue T_N sur X et calculer sa norme.

(c) Utiliser le théorème de Banach-Steinhaus pour en déduire qu'il existe une fonction f de X dont la série de Fourier diverge en au moins un point.

Exercice 3. Soit H un espace de Hilbert possédant une base hilbertienne $(e_i)_{i\in\mathbb{N}}$. On considère une autre famille orthonormée $(f_i)_{i\in\mathbb{N}}$ telle que $\sum_{i=0}^{+\infty} \|e_i - f_i\|^2 < +\infty$.

(a) Montrer que la formule

$$T_N\left(\sum_{i=0}^{+\infty} x_i e_i\right) = \sum_{i=0}^{N-1} x_i e_i + \sum_{i=N}^{+\infty} x_i f_i$$

définit un isomorphisme $T_N: H \to H$ si on choisit N assez grand.

(b) Prouver que $(f_i)_{i\in\mathbb{N}}$ est une base hilbertienne de H.

Indication: que dire du sous-espace V orthogonal à $\overline{\text{Vect}(f_i)_{i>N}}$?

Exercice 4. (Opérateurs compacts) Soit H un espace de Hilbert. L'espace $\mathcal{L}(H)$ des applications linéaires continues de H dans H (= opérateurs) est muni de la norme d'opérateur usuelle. On note $\mathcal{K}(H)$ le sous-espace des opérateurs compacts (i.e. tels que l'image de la boule unité est d'adhérence compacte) et $\mathcal{L}_0(H)$ celui des opérateurs dont l'image est de dimension finie.

(a) Montrer que u est dans $\mathcal{K}(H)$ ssi il existe une suite d'éléments u_n de $\mathcal{L}_0(H)$ qui converge vers u dans $\mathcal{L}(H)$.

- (b) Montrer que, si u est dans $\mathcal{K}(H)$, alors u^* aussi.
- (c) Montrer que, si u est dans $\mathcal{K}(H)$, alors $\operatorname{Ker}(\operatorname{id} + u)$ et $\operatorname{Im}(\operatorname{id} + u)^{\perp}$ sont de dimension finie.
- (d) Montrer que, si u est dans $\mathcal{K}(H)$, alors $\mathrm{Im}(\mathrm{id}+u)$ est fermé.

Exercice 5. (Opérateurs de Hilbert-Schmidt) On reprend les notations de l'exercice précédent et on suppose que H est muni d'une base hilbertienne $(e_i)_{i\in\mathbb{N}}$. Pour

$$u \in \mathcal{L}(H)$$
, on pose : $||u||_{HS} = \sqrt{\sum_{i=0}^{+\infty} ||u(e_i)||^2}$. On dit que u est de Hilbert-Schmidt si $||u||_{HS}$ est fini. On pote $\mathcal{HS}(H)$ l'ensemble des opérateurs de Hilbert-Schmidt.

si $||u||_{HS}$ est fini. On note $\mathcal{HS}(H)$ l'ensemble des opérateurs de Hilbert-Schmidt.

- (a) Soient $u \in \mathcal{L}(H)$ et (f_j) une (autre) base hilbertienne de H. Vérifier la formule: $\sum_{i,j} \langle u(e_i), f_j \rangle^2 = ||u||_{HS}^2.$
- (b) En déduire que, pour $u \in \mathcal{L}(H)$,
 - $-- \|u^*\|_{HS} = \|u\|_{HS};$
 - $||u||_{HS}$ ne dépend pas de la base hilbertienne (e_i) choisie.
- (c) Montrer que $\mathcal{HS}(H)$ est un idéal bilatère de l'algèbre $\mathcal{L}(H)$.
- (d) Montrer que tout $u \in \mathcal{HS}(H)$ vérifie $||u|| \leq ||u||_{HS}$.
- (e) Montrer que $(\mathcal{HS}(H), ||.||_{HS})$ est un espace de Banach.
- (f) Montrer que $\mathcal{L}_0(H)$ est un sous-espace dense de cet espace de Banach.
- (g) En déduire que les opérateurs de Hilbert-Schmidt sont compacts.

Exercice 6. (Espace de Bergman) Soit Ω un ouvert de \mathbb{C} . On note $H(\Omega)$ l'espace des fonctions $f:\Omega\to\mathbb{C}$ qui sont holomorphes et de module au carré intégrable.

- (a) Montrer que, si le disque D(z,r) est inclus dans Ω , $|f(z)|^2 \leq \frac{1}{\pi r^2} \int_{D(z,r)} |f|^2$.
- (b) En déduire que, si K est un compact inclus dans Ω , il existe une constante $\sup_{K} |f| \le c_K \, ||f||_{L^2(\Omega)}.$ c_K telle que :
- (c) Montrer que $(H(\Omega), \|.\|_{L^2(\Omega)})$ est un espace de Hilbert.
- (d) Décrire $H(\mathbb{C})$.
- (e) Maintenant, on s'intéresse au cas du disque unité : $\Omega = D$. Montrer que les fonctions $e_n: z \mapsto \sqrt{\frac{n+1}{\pi}} z^n$, $n \in \mathbb{N}$, forment une base hilbertienne de H(D).
- (f) Démontrer la formule :

$$\forall f \in H(D), \quad \forall z \in D, \quad f(z) = \int_D \frac{f(w)}{\pi (1 - \bar{w}z)^2} d\lambda(w),$$

où λ est la mesure de Lebesgue sur $\mathbb{R}^2 = \mathbb{C}$.