TD d'analyse 7 : Fourier, distributions

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction paire et 2π -périodique définie par $f(x) = \pi - x$ pour $x \in [0, \pi]$.

- (a) Calculer la série de Fourier de f.
- (b) En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ et $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.

Exercice 2. Soit une fonction $f: \mathbb{R} \to \mathbb{C}$, 2π -périodique, de classe C^1 et telle que $\int_0^{2\pi} f(t)dt = 0$. Démontrer l'inégalité

$$\int_0^{2\pi} |f(t)|^2 dt \le \int_0^{2\pi} |f'(t)|^2 dt$$

et caractériser le cas d'égalité.

Exercice 3. Soit $u_0 : \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique et de carré intégrable sur $[0, 2\pi]$. Prouver qu'il existe une unique fonction $u : \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}$ telle que

- u est C^{∞} et vérifie l'équation de la chaleur $\partial_t u \partial_{xx} u = 0$;
- pour tout t > 0, u(t, .) est 2π -périodique;
- u(t,.) converge vers u_0 quand $t \to 0$, dans $L^2([0,2\pi])$.

Exercice 4.

(a) Etant donné un nombre $a\in\mathbb{R}\setminus\mathbb{Z}$, calculer la série de Fourier de la fonction 2π -périodique $f_a:\mathbb{R}\to\mathbb{R}$ définie par

$$\forall t \in]-\pi,\pi], \qquad f_a(t) = \cos(at).$$

(b) En déduire:

$$\forall x \in \mathbb{R} \backslash \pi \mathbb{Z}, \quad \cot(x) = \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{2x}{x^2 - n^2 \pi^2}.$$

(c) Démontrer la formule :

$$\forall z \in \mathbb{C}, \quad \sin(z) = z \prod_{n=1}^{+\infty} \left(1 - \frac{z^2}{n^2 \pi^2}\right).$$

Exercice 5.

(a) Calculer la transformée de Fourier de l'indicatrice de [-1, 1].

(b) Que vaut
$$\int_{\mathbb{R}} \frac{(\sin x)^2}{x^2} dx$$
?

Exercice 6. Dans cet exercice, on note ch $z = \frac{e^z + e^{-z}}{2}$.

- (a) Etant donné R>0, soit γ_R un lacet paramétrant naturellement le bord de $\Omega_R=\{z\in\mathbb{C}/|\mathrm{R}e(z)|< R \text{ et } 0<\mathrm{I}m(z)<\pi\}$, dans le sens direct. Pour tout réel t, calculer l'intégrale $\int_{\gamma_R}\frac{e^{-itz}dz}{(\mathrm{ch}\,z)^2}.$
- (b) En déduire la transformée de Fourier de $x \mapsto 1/(\operatorname{ch} x)^2$.

Exercice 7. (Polynômes de Hermite)

On va travailler dans l'espace de Hilbert $H=L^2(\mathbb{R},\mu)$ associé à la mesure de probabilité μ sur \mathbb{R} définie par $d\mu(x)=\frac{e^{-x^2}}{\sqrt{\pi}}dx$. Pour $n\in\mathbb{N}$ et $x\in\mathbb{R}$, on note

$$h_n(x) = e^{x^2} g^{(n)}(x),$$
 où $g(x) = e^{-x^2}.$

- (a) Montrer que les fonctions h_n sont polynômiales. Déterminer leurs degrés et coefficients dominants.
- (b) Montrer que $(h_n)_{n\in\mathbb{N}}$ forme une famille orthogonale de H et calculer la norme λ_n de chaque élément h_n .
- (c) On veut montrer que la famille $(\lambda_n^{-1}h_n)_{n\in\mathbb{N}}$ est une base hilbertienne de H.
 - (i) Pour $f \in H$ et $x \in \mathbb{R}$, on note $\psi_f(x) = f(x)e^{-x^2}$. Montrer que sa transformée de Fourier $\widehat{\psi_f}$ est bien définie sur \mathbb{R} et s'étend en une fonction holomorphe sur \mathbb{C} .
 - (ii) Pour toute $n \in \mathbb{N}$, calculer la dérivée n-ième $\widehat{\psi_f}^{(n)}(0)$. En déduire que si f est orthogonale à tous les polynômes, alors f est nulle.
 - (iii) Conclure.

Exercice 8. Soit $f \in L^2(\mathbb{R})$.

- (a) Montrer qu'il existe une unique fonction $y \in L^2(\mathbb{R})$ telle que pour tout $\xi \in \mathbb{R}$, $\hat{y}(\xi) = \frac{\hat{f}(\xi)}{1+\xi^2}$.
- (b) Prouver que y vérifie l'équation -y'' + y = f au sens des distributions.

Exercice 9. Vérifier que les formules suivantes définissent des distributions sur \mathbb{R} et calculer leur dérivée :

$$f(x) = |x|,$$
 $g(x) = \frac{x}{|x|},$ $h(x) = \ln(|x|).$

Exercice 10. On s'intéresse à la distribution vp(1/x) obtenue en prenant la valeur principale de 1/x.

(a) Prouver la formule suivante au sens des distributions :

$$\lim_{n \to +\infty} e^{inx} v p(1/x) = i\pi \delta_0(x).$$

- (b) Calculer la transformée de Fourier de vp(1/x), après avoir justifié son existence.
- (c) En déduire une autre preuve de la formule du (a).