TD d'analyse 5 : exercices d'intégration

Exercice 1. Vrai ou faux?

On note (X, \mathcal{A}, μ) un espace mesuré quelconque. On munira toujours \mathbb{R} de sa tribu borélienne et de la mesure de Lebesgue.

- (a) Si $(A_n)_{n\in\mathbb{N}}$ est une suite décroissante d'éléments de la tribu \mathcal{A} , alors $\mu(\cap_{n\in\mathbb{N}}A_n)=\lim_{n\to+\infty}\mu(A_n)$.
- (b) La fonction $f: x \mapsto \frac{\sin x}{x}$ est intégrable sur $]0, +\infty[$.
- (c) Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ une fonction continue et intégrable. Alors $\lim_{x \to +\infty} f(x) = 0$.
- (d) Soit (f_n) une suite de fonctions intégrables sur \mathbb{R} telle que (f_n) tend vers 0 presque partout. Alors $\lim_{n\to\infty}\int_{\mathbb{R}}f_n(x)\,dx=0$.
- (e) Soit (f_n) une suite de fonctions mesurables sur X qui converge presque partout vers une fonction f et telle que la suite $(\|f_n\|_{L^p})$ est bornée pour un certain $p \geq 1$. Alors f définit un élément de L^p .

Exercice 2. Soient (E_1, \mathcal{B}_1) et (E_2, \mathcal{B}_2) deux espaces mesurables. On considère l'espace produit (E, \mathcal{B}) avec $E = E_1 \times E_2$ et $\mathcal{B} = \mathcal{B}_1 \otimes \mathcal{B}_2$. On pose

$$\mathcal{B}_1' = \{B \times E_2 / B \in \mathcal{B}_1\}.$$

- (a) Montrer que \mathcal{B}'_1 est une sous-tribu de \mathcal{B} .
- (b) Soit $F: E_1 \times E_2 \to \mathbb{R}$ une fonction \mathcal{B} -mesurable. Montrer que la fonction F est \mathcal{B}'_1 -mesurable si et seulement s'il existe une fonction mesurable $f: E_1 \to \mathbb{R}$ telle que $F(x_1, x_2) = f(x_1)$.

Exercice 3. On se place sur \mathbb{R} , muni de la tribu borélienne, et on considère deux mesures sur cette tribu : la mesure de Lebesgue λ et une mesure de probabilité μ . Pour tout réel t, on note $\hat{\mu}(t) = \int_{\mathbb{R}} e^{ixt} d\mu(x)$.

- (a) Montrer que $\hat{\mu}$ est bien définie et continue sur \mathbb{R} .
- (b) Montrer que, pour tout réel T>0, on a $\frac{1}{2T}\int_{-T}^T \hat{\mu}(t)d\lambda(t)=\int_{\mathbb{R}}\sigma(Tx)d\mu(x)$, où $\sigma(x)=\frac{\sin x}{x}$ si $x\neq 0$ et $\sigma(0)=1$.
- (c) En déduire l'existence et la valeur de $\lim_{T\to +\infty} \frac{1}{2T} \int_{-T}^T \hat{\mu}(t) d\lambda(t)$.
- (d) Vérifier le résultat en traitant le cas où μ est la mesure de Dirac en 0.

1

Exercice 4. On se place dans l'espace euclidien $(\mathbb{R}^n, ||.||)$, muni de sa mesure de Lebesgue λ_n , et on se propose de calculer le volume V_n de la boule unité.

- (a) Démontrer la formule $\int_{\mathbb{R}^n} e^{-||x||^2} d\lambda_n(x) = \pi^{\frac{n}{2}}$.
- (b) Montrer que si f est une fonction mesurable positive sur \mathbb{R}^n , alors

$$\int_{\mathbb{R}^n} f \ d\lambda_n = \int_0^{+\infty} \lambda_n(\{x \in \mathbb{R}^n / f(x) > t\}) dt.$$

- (c) En déduire : $\int_{\mathbb{R}^n} e^{-||x||^2} d\lambda_n(x) = V_n \int_0^1 (-\ln t)^{\frac{n}{2}} dt$.
- (d) Montrer que $V_n = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$.

Exercice 5. On note $\langle .,. \rangle$ le produit scalaire canonique sur \mathbb{R}^n . Montrer que si A est une matrice symétrique définie positive, alors $\int_{\mathbb{R}^n} e^{-\langle Ax,x \rangle} \ dx = \sqrt{\frac{\pi^n}{\det A}}$.

Exercice 6.

(a) On suppose que f et g sont dans $L^2(\mathbb{R}^d)$. Montrer que la convolution f * g définit une fonction continue sur \mathbb{R}^d , vérifiant

$$||f * g||_{\infty} \le ||f||_2 ||g||_2$$

et tendant vers 0 à l'infini.

Indication: $C_c^0(\mathbb{R}^d)$ est dense dans $L^2(\mathbb{R}^d)$.

(b) On suppose que f et g sont dans $L^1(\mathbb{R}^d)$. Montrer que f * g est bien défini comme élément de $L^1(\mathbb{R}^d)$, avec

$$||f * g||_1 \le ||f||_1 ||g||_1.$$

(c) On suppose que f est dans $L^1(\mathbb{R}^d)$ et g dans $L^2(\mathbb{R}^d)$. Montrer que f*g est bien défini comme élément de $L^2(\mathbb{R}^d)$, avec

$$||f * g||_2 \le ||f||_1 ||g||_2.$$

Indication : écrire $|f| = |f|^{\frac{1}{2}} |f|^{\frac{1}{2}}$ et se ramener au cas précédent.

Exercice 7. Pour t > 0 et $x \in \mathbb{R}$, on définit le noyau de la chaleur : $K_t(x) = \frac{e^{-\frac{x^2}{4t}}}{2\sqrt{\pi t}}$. Etant donnée une fonction f continue et bornée sur \mathbb{R} , on considère la convolution $u(t,x) = (K_t * f)(x)$, pour $x \in \mathbb{R}$ et t > 0.

- (a) Montrer que u vérifie sur $\mathbb{R}_+^* \times \mathbb{R}$ l'équation de la chaleur $\partial_t u = \partial_{xx} u$.
- (b) Montrer que, pour tout $x \in \mathbb{R}$, u(t,x) tend vers f(x) quand t tend vers 0.
- (c) Montrer que la convergence est uniforme sur les compacts.