TD d'analyse 2 : fonctions d'une variable réelle

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et périodique. Prouver que f est uniformément continue.

Exercice 2. On définit une fonction $f: \mathbb{R} \to \mathbb{R}$ en posant

- f(x) = 1/q si x = p/q avec $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$, $\operatorname{pgcd}(p,q) = 1$;
- f(x) = 0 si x est irrationnel.

Démontrer que f est continue en un point x si et seulement si x est irrationnel.

Exercice 3. Pour $x \in \mathbb{R}^*$, on pose $f(x) = |x|^{\frac{3}{2}} \sin(1/x)$. Montrer que f admet un prolongement dérivable sur \mathbb{R} tout entier. Ce prolongement est-il lipschitzien?

Exercice 4. Soit $\theta : \mathbb{R} \to \mathbb{R}$ la fonction définie par $\theta(x) = \exp(-1/x)$ si x > 0 et $\theta(x) = 0$ sinon. Montrer que θ est de classe C^{∞} .

Exercice 5. Soit $f:]a,b[\to \mathbb{R}$ une fonction dérivable. On suppose que f' admet une limite finie en a. Prouver que f se prolonge en une fonction dérivable sur [a,b[.

Exercice 6.

- (a) Prouver que la fonction $f: x \mapsto \ln(1+e^x)$ est convexe sur \mathbb{R} .
- (b) En déduire la formule suivante : pour tous réels strictements positifs a_1, \ldots, a_n et b_1, \ldots, b_n ,

$$\left(\prod_{k=1}^{n} (a_k + b_k)\right)^{\frac{1}{n}} \ge \left(\prod_{k=1}^{n} a_k\right)^{\frac{1}{n}} + \left(\prod_{k=1}^{n} b_k\right)^{\frac{1}{n}}.$$

Exercice 7. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction positive, majorée, deux fois dérivable et telle que $f'' \geq f$.

- (a) Prouver que f est décroissante.
- (b) Prouver que f et f' tendent vers 0 en $+\infty$.
- (c) Démontrer que pour $x \in \mathbb{R}_+$, $f(x) \leq f(0)e^{-x}$. Indication: on pourra étudier la fonction $g: x \mapsto (f'(x) + f(x))e^{-x}$.

1

Exercice 8. (théorèmes de Dini) On considère une suite de fonctions continues $f_n: [a,b] \to \mathbb{R}$ qui converge simplement vers une fonction continue $f: [a,b] \to \mathbb{R}$.

- (a) Donner un exemple où la convergence n'est pas uniforme.
- (b) On suppose ici que chaque fonction f_n est croissante. Prouver que la convergence est uniforme.
- (c) On suppose maintenant que, pour tout $x \in [a, b]$, la suite réelle $(f_n(x))$ est croissante. Prouver que la convergence est uniforme.

Exercice 9. Evaluer $\lim_{n\to+\infty}\sum_{k=0}^{n-1}\frac{n}{k^2+3n^2}$, après avoir justifié l'existence de cette limite, évidemment.

Exercice 10. Soit $f:[a,b] \to \mathbb{R}$ une fonction de classe C^2 . Pour chaque entier $i \in [0,n]$, on pose $x_i = a + i \frac{b-a}{n}$.

(a) Méthode des trapèzes : on considère la fonction $\phi : [a,b] \to \mathbb{R}$ qui est affine sur le segment $[x_{i-1},x_i]$ pour tout $i \in [1,n]$ et vérifie $\phi(x_i) = f(x_i)$ pour tout indice $i \in [0,n]$. Calculer l'intégrale de ϕ et prouver qu'il existe une constante C dépendant de a,b et f telle que

$$\left| \int_{a}^{b} f - \int_{a}^{b} \phi \right| \le \frac{C}{n^{2}}.$$

(b) Méthode des points milieux : on considère une fonction $\phi : [a, b] \to \mathbb{R}$ qui est constante à la valeur $f((x_{i-1} + x_i)/2)$ sur l'intervalle $]x_{i-1}, x_i[$, pour tout $i \in [1, n]$. Calculer l'intégrale de ϕ et prouver qu'il existe une constante C dépendant de a, b et f telle que

$$\left| \int_{a}^{b} f - \int_{a}^{b} \phi \right| \le \frac{C}{n^{2}}.$$

Exercice 11. Soit $\varphi : \mathbb{R} \to \mathbb{R}$ une fonction continue et T-périodique. Montrer que pour toute fonction $f : [a, b] \to \mathbb{R}$ continue par morceaux :

$$\lim_{n\to +\infty} \frac{1}{T} \int_a^b f(t) \varphi(nt) dt = \frac{1}{T} \left(\int_0^T \varphi \right) \left(\int_a^b f \right).$$

Indication: on pourra commencer par traiter le cas où f est constante.

Exercice 12. Soit $f:[1,+\infty[\to\mathbb{R}$ une fonction continue telle que l'intégrale $\int_1^{+\infty} f(t)dt$ converge. Prouver que, pour tout a>0, l'intégrale $\int_1^{+\infty} \frac{f(t)}{t^a}dt$ converge.