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CHAPTER 1

MANIFOLDS

1.1. Topological and differential manifolds

The fundamental objects of differential geometry are called manifolds and
they should be thought of as topological spaces that locally look like Rn. Let
us start with a basic definition.

1.1.1 Definition. — Let M be a topological space. A topological atlas of
dimension n is a family of couples (Ui, φi), indexed by i ∈ I, where (Ui)i∈I is
an open covering of M and, for each i in I, φi is a homeomorphism between
Ui and an open subset of Rn.

The maps φi are called charts or systems of coordinates and the open sets Ui
are the domains of of theses charts. The maps φi ◦ φ−1

j are homeomorphisms
between the open subsets φj(Ui ∩ Uj) and φi(Ui ∩ Uj) of Rn ; they are called
transition functions or changes of coordinates of the atlas.

1.1.2 Definition. — A topological manifold of dimension n is a Hausdorff
topological space endowed with a countable atlas of dimension n.

In this definition, instead of requiring the atlas to be countable, one could
assume that the topological space is a countable union of compact subsets,
or that it admits a countable basis ; these induce equivalent definitions. The
reason for the Hausdorff and countability requirements in the definition lies
the following proposition, giving some of the nice properties of topological
manifolds. They will ensure the existence of the very useful partitions of unity
(see Proposition 1.1.11 below). The proof is an exercise in topology.

1.1.3 Proposition. — A topological manifold is locally compact, locally path-
connected, locally contractible, separable, paracompact, metrizable.
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1.1.4 Remark. — Let M be a set. An abstract atlas of dimension n on
M is a family of couples (Ui, φi), indexed by i ∈ I, satisfying the following
properties.

– For each i in I, Ui is a subset of M and φi is a bijection between Ui and
an open subset of Rn.

– The union of all Ui’s is the whole M .
– For all i and j in I, φi(Ui ∩ Uj) is an open subset of Rn and φjφ−1

i is a
homeomorphism between φi(Ui ∩ Uj) and φj(Ui ∩ Uj).

Then M carries a unique topology for which the Ui’s are open and the φi’s
are homeomorphisms : a subset U of M is open for this topology iff, for each
i, φi(U ∩Ui) is open in Rn. The family ((Ui, φi))i∈I is then a topological atlas
for M , endowed with this topology. This is a way to turn the naked set M
into a topological manifold, provided the topology is Hausdorff and the atlas
is countable.

It turns out that topological manifolds are not nice enough for our purposes :
there is no notion of differentiation on them. This is why we need to introduce
differential manifolds.

1.1.5 Definition. — A smooth atlas is a topological atlas whose transition
functions are C∞ diffeomorphisms (between open sets of Rn).

Two atlas are equivalent if their union is an atlas. Concretely this means
that if φi and ψj are the charts of the first and second atlas, then the com-
posites φi ◦ ψ−1

j are C∞ on the open sets where they are defined.

1.1.6 Definition. — A differential manifold (or smooth manifold) is a topo-
logical manifold admitting a smooth atlas. A smooth structure is an equiva-
lence class of smooth atlases.

One can also define Ck (resp. analytic) manifolds by asking that the transi-
tion functions be Ck (resp. analytic). When the dimension n of the manifold
is even, say n = 2m, the charts take values in Cm = R2m ; if the transition
functions are biholomorphic, then the manifold is called a complex manifold.

1.1.7 Remark. — A theorem of Whitney asserts that any C1 manifold ad-
mits a compatible C∞ atlas, unique up to equivalence : the equivalence class
of C1 atlases defining its C1 structure contains a C∞ atlas and any two such
C∞ atlases are equivalent. In dimension 1, 2 or 3, this is even true for topo-
logical manifolds. In dimension four, things get much more complicated : for
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instance, the (standard) topological manifold R4 admits infinitely many com-
patible smooth structures ! There are also topological manifolds admitting no
differential structure.

In what follows, we will only deal with differential manifolds. So “manifold”
will always mean “differential manifold”. We will often write Mn to express
that M is n-dimensional.

1.1.8. Examples. — By definition, any open set of Rn is an n-dimensional
differential manifold. For instance, it follows that the group of invertible ma-
trices GLp(R) is a manifold of dimension p2.

The unit sphere Sn ⊂ Rn+1 is a beautiful example, owing to to the obvious
geographic interpretation. In coordinates (x0, . . . , xn), its North Pole N and
South Pole S are the points (±1, 0, . . . , 0). Let us define two charts with values
in Rn, considered as the hyperplane {x0 = 0} in Rn+1. For x ∈ Sn − {N}
define the stereographic projection φN (x) from the North Pole to be the point
of Rn where the line passing through N and x meets Rn; the stereographic
projection φS from the South Pole is defined similarly. In formulas:

φN (x0, x1, . . . , xn) = (x1, . . . , xn)
1− x0 , φS(x0, x1, . . . , xn) = (x1, . . . , xn)

1 + x0 .

The transition function is the inversion

φNφ
−1
S (x1, . . . , xn) = (x1, . . . , xn)

(x1)2 + · · ·+ (xn)2 .

This defines a (finite) smooth atlas for the sphere and explains why the sphere
Sn is a smooth manifold of dimension n (it is of course Hausdorff).

By definition, any countable union and any finite product of differential
manifolds is a differential manifold. In particular, the torus Tn = S1×· · ·×S1

(n times) is a manifold of dimension n.
The projective space is the space RPn of all real lines in Rn+1. It can

also be identified with the quotient Sn/(Z/2Z) of the sphere by the antipodal
map ( x 7→ −x). A nonzero vector (x0, . . . , xn) ∈ Rn generates a line in Rn,
that is a point of RPn which is denoted [x0 : · · · : xn]. Of course, if λ is
any non vanishing number, one has [x0 : · · · : xn] = [λx0 : · · · : λxn]. The
[x0 : · · · : xn] are the homogeneous coordinates on RPn. Let us see RPn as
a manifold by giving an explicit atlas. Let Ui ⊂ RPn the open set given by
Ui = {[x0 : · · · : xn], xi 6= 0}. On Ui we have the chart φi : Ui → Rn given by

φi([x0 : · · · : xn]) =
(x0

xi
, . . . ,

x̂i

xi
, . . . ,

xn

xi
)
,
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where the hat means that the corresponding term is omitted. One can check
that transition functions are smooth and the topology is Hausdorff so that RPn
is a smooth n-dimensional manifold. The RPn for different n’s are related in
the following way. The chart open set Un = {xn = 1} is diffeomorphic to Rn
by φn. The complement RPn−Un = {[x0 : · · · : xn−1 : 0]} identifies naturally
with RPn−1. In this way one obtains the RPn inductively: starting from RP 0

which is reduced to a point,
– RP 1 = R ∪ {pt.} is a circle;
– RP 2 = R2 ∪ RP 1 is the union of the plane and the line at infinity;
– more generally, RPn = Rn ∪ RPn−1.

Observe also that all we have done has a meaning if we decide that the xi are
complex coordinates rather than real coordinates. In this way, one obtains the
structure of a complex manifold on the space CPm of complex lines in Cm+1.
We also see that CP 1 = C ∪ {pt} is homeomorphic to a 2-sphere.

1.1.9 Definition. — A map f : Mn → Np between manifolds M and N is
smooth (or C∞) near a point x ∈M if there are charts φ : U ⊂M → Rn and
ψ : V ⊂ N → Rp, with x ∈ U and f(U) ⊂ V , such that the map ψfφ−1 is C∞
on φ(U).

This definition does not depend on the choice of charts, because the transi-
tion between two charts is always a C∞ diffeomorphism, by the very definition
of a differential manifold.

Locally, thanks to the chosen charts, we can identify f with a function
between Rn and Rp, which we write (f1(x1, . . . , xn), . . . , fp(x1, . . . , xn)) ; f is
smooth if and only if each fi is C∞.

A function that is smooth around every point is called smooth. If f : Mn →
Np is a smooth bijection such that f−1 is also smooth, we say that f is a C∞
diffeomorphism. Of course this implies n = p. In that case we say that M
and N are diffeomorphic. The notions of submersion and immersion are local
hence extend to the setting of manifolds. More precisely, we say that a smooth
map f between manifoldsM and N is a submersion (resp. an immersion) near
a point x of M if there are charts φ, ψ as in the definition above, such that
ψfφ−1 is a submersion (resp. an immersion). Again, one can choose any pair
of charts in this definition because transition functions are diffeomorphisms.

1.1.10. Exercise. — Prove that the following maps are smooth:
– the quotient by the antipodal map Sn → RPn;
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– the map S3 → CP 1 taking a vector x ∈ S3 to the complex line that it
generates in C2.

Prove that S2 and CP 1 are diffeomorphic.
Let us finally introduce an important technical tool. As a consequence of

the countability assumption in their definition, manifolds carry partitions of
the unity. They will be used to patch together local objects, typically defined
on the domain of charts, into a global one, defined on the whole manifold.

1.1.11 Proposition. — For every open covering U := (Ui)i∈I of a manifold
M , there is a partition of unity (χj)j∈J subordinate to U : each χj is a smooth
nonnegative function with support in some Ui and, for every point x in M ,
there is a neighborhood of x on which all but a finite number of the χj’s vanish
and

∑
j∈J χj = 1.

The proof is left to the reader (the bibliography might help).

1.2. Submanifolds

A manifold is basically something that locally looks like a vector space Rn.
So a submanifold should be something that locally looks like a vector subspace
of the Rn above.

1.2.1 Definition. — Let M be an N -dimensional manifold. A subset X of
MN is an n-dimensional submanifold of MN if, for every point x of X, there
is a chart φ of M , with domain U containing x and range V ⊂ RN , such that
φ(X ∩ U) = (Rn × {0}) ∩ V ⊂ Rn × RN−n = RN .

The charts mentioned in this definition are called submanifolds charts. A
submanifold X inherits a manifold structure. First, it inherits a Hausdorff
topology with a countable basis, as a topological subspace of a manifold. And
the submanifold charts induce charts on X : if φ is a submanifold chart,
then the corresponding chart for X is π ◦ φ|X , where π is the projection
Rn × RN−n → Rn.

For example, in a manifoldM of dimension n, the submanifolds of dimension
n (or codimension 0) are simply the open subsets of M . Most interesting
examples are built from submersions and immersions.

1.2.2 Theorem. — Let f : MN −→ Np be a submersion. Then for any a
in N , the set f−1(a) is either empty or an (N − p)-dimensional submanifold
of MN .
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It is useful to notice that in this statement we just need f to be a submersion
along f−1(a) (in this case, a is called a regular value).

Proof. — Let x be a point of f−1(a). Picking charts ϕ near x and ψ near a,
with ϕ(x) = 0 and ψ(a) = 0, we obtain a submersion ψfϕ−1 defined between
open sets V ⊂ RN and W ⊂ Rp, mapping 0 ∈ V to 0 ∈W . The constant rank
theorem in calculus provides a local normal form for such a map : it ensures
the existence of a diffeomorphism θ, defined in a smaller neighborhood of 0 in
V such that

ψfϕ−1θ(x1, . . . , xN ) = (xN−p+1, . . . , xN ).

The promised submanifold chart φ is θ−1ϕ.

1.2.3. Examples. — 1) The curve y2 = x3 − x is a smooth curve (i.e. a
1-dimensional submanifold) of R2. Indeed, consider f(x, y) = y2 − x3 + x,
then d(x,y)f = (−3x2 + 1, 2y) which vanishes only at the points (± 1√

3 , 0).
Since these two points are not in f−1(0), the result follows from the theorem
applied to the map f on the open set U = R2 − {(± 1√

3 , 0)}.
2) The sphere Sn = {(x0)2 + · · · + (xn)2 = 1} and the hyperbolic space

Hn = {x0 > 0, (x0)2 − (x1)2 − · · · (xn)2 = 1} are submanifolds of Rn+1.
3) (Exercise) The group O(n) is a submanifold of GLn(R) (the space of n×n

matrices). Apply the theorem to the map f(A) = AAT − 1 from matrices to
symmetric matrices. To prove that f is a submersion at each point x ∈ O(n),
use the invariance f(Ax) = f(A) to reduce to the case x = 1.

4) (Exercise) If f : U ⊂ Rn → RN−n is a smooth map defined on an
open set U in Rn, then the graph M = {(x, f(x)), x ∈ U} is a n-dimensional
submanifold of RN .

To understand the link between immersions and submanifolds, it is useful
to look at some examples. A positive example is provided by the hyperbolic
space : the map Rn → Rn+1 given by (x1, . . . , xn) 7→ (1 + (x1)2 + · · · +
(xn)2, x1, . . . , xn) is an immersion and a bijection from Rn to its image Hn ⊂
Rn+1, the hyperbolic space, which is already known to be a submanifold. But
the two figures below show that the image of an immersion is not always
so nice. They both represent immersions R → R2 whose image is not a
submanifold: the first is not injective, it has a double point; the second one is
injective but not proper.
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An injective immersion f between manifolds is called an embedding if it is
a homeomorphism onto its image.

1.2.4 Theorem. — Let f : Nn −→ MN be an injective immersion between
manifolds.

– If f is proper, then f is an embedding.
– If f is an embedding, then f(N) is an n-dimensional submanifold of M .

Proof. — The first statement is an exercise in topology (it amounts to prove
that a proper map between locally compact spaces is a closed map). As for
the second statement, observe that locally we may find charts ϕ and ψ such
that ψfϕ−1 is an immersion between open neighborhoods of 0 in Rn and RN ,
mapping 0 to 0. The constant rank theorem in calculus provides a local normal
form for such a map : it ensures the existence of a diffeomorphism θ, defined
in a neiborhood of 0 in RN , such that

θψfϕ−1(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

It follows that for any point x in N , there is an open neighborhood W of x
and an open neighborhood V of 0 in RN such that

θψ(f(W )) = (Rn × {0}) ∩ V ⊂ RN .

Since f is a homeomorphism onto its image, there is an open neighborhood U
of f(x) in M such that f(W ) = f(N) ∩ U (and we may assume θψ is defined
on U). Then φ := θψ is a submanifold chart, with domain U .

1.2.5 Remark. — In fact, any differential manifold is diffeomorphic to a
submanifold of RN , for some N (this is an exercise when the manifold is
compact). A theorem of Whitney even ensures that a manifold of dimension
n can be embedded in R2n (cf. the book of Hirsch in the bibliography).
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1.3. Tangent vectors

1.3.1. The case of a submanifold of RN . — There is a natural notion of
tangent vectors for submanifolds of a vector space. Let Mn be a submanifold
of RN and let x be a point of M . A vector X ∈ RN is a tangent vector to M
at x if there exists a smooth curve c :] − ε, ε[→ M ⊂ RN , such that c(0) = x

and c′(0) = X. The space TxM of all tangent vectors to M at x is called the
tangent space of M at x.

For instance, if Mn is an affine subspace of RN , namely M = x0 +V where
V is a vector subspace of RN , then for all x ∈M , one has TxM = V .

Near a point x of a submanifoldMn of RN , we can pick a submanifold chart
φ : U → V ⊂ RN , with φ(M ∩ U) = (Rn × {0}) ∩ V . So φ turns a piece of
M into a piece of the affine subspace Rn × {0} of RN . Since diffeomorphisms
exchange smooth curves, we are back to the example above and we can see that
TxM = (dxφ)−1(Rn × {0}). In particular, TxM is always an n-dimensional
vector subspace of RN .

Let us consider the following subset of RN × RN :

TM = {(x,X) ∈M × RN / X ∈ TxM}.

It is the set of all tangent vectors to the submanifold Mn of RN . We will call
it the tangent bundle of M . It turns out that TM itself is a 2n-dimensional
submanifold of RN ×RN : if φ : U ⊂ RN → RN is a submanifold chart for M ,
then the map Φ : U×RN −→ φ(U)×RN defined by Φ(x,X) = (φ(x), dxφ(X))
is a submanifold chart for TM .

We now turn to the notion of a tangent vector at a point x in a manifold
M . We will introduce an abstract notion of vector by saying that it is a an
equivalence class of curves sharing the same Taylor expansion up to order 1
(in a chart). More precisely :

1.3.2 Definition. — Let M be a manifold and x a point of M .
1. Two paths c1, c2 :] − ε, ε[→ M such that c1(0) = c2(0) = x are called

equivalent if, for any local chart φ at x, one has (φ◦ c1)′(0) = (φ◦ c2)′(0).
2. A tangent vector at x to M is an equivalence class of paths for this

relation.
3. The set of all tangent vectors at x to M is called the tangent space of M

at x and denoted by TxM .

Observe that in the first part of the definition, it is equivalent to ask the
equality of the derivatives for one chart or for all charts.
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Given a smooth map between two manifolds, f : Mn → Np and a path c
at x ∈ M , we can associate a path f(c) at f(x). It is easy to check that if c1
and c2 are equivalent, then so are f(c1) and f(c2). It follows that we obtain a
well defined map

(1.1) dxf : TxM → Tf(x)N.

If f is a diffeomorphism, it is easy to check that (dxf)−1 = df(x)(f−1).
Let us apply this to a local chart φ at x, centered at x, which means that

φ(x) = 0 : the map φ is a diffeomorphism between an open subset U of M
and an open subset V of Rn. We obtain an isomorphism dxφ : TxM−̃→Rn
such that dxφ([c]) = (φ ◦ c)′(0). We would like to deduce that TxM carries a
natural structure of vector space, provided by this identification with Rn. To
ensure that this is true, we need to show that this structure of vector space
does not depend on the choice of the chart φ. This is a good place to check
this kind of statement, that we will use repeatedly. Given another chart ψ,
centered at x, we obtain the following commutative diagram :

TxM
dxφ ↙ ↘dxψ

Rn d0(ψφ−1)−−−−−−→ Rn

So the two different identifications of TxM with Rn coming from the charts φ
and ψ differ by the linear isomorphism d0(ψφ−1), which preserves the vector
space structure. So the vector space structures induced on TxM from dxφ and
dxψ coincide.

Observe that if f : Mn → Np is a smooth map and if x is a point of M ,
then dxf : TxM → Tf(x)N is a linear map (exercise : check it in charts).

1.3.3. Tangent bundle. — We now turn to the problem of constructing
the manifold of all tangent vectors at all points of a manifold M . As a set, we
define the tangent bundle of a manifold Mn by

TM = qx∈MTxM = {(x,X), x ∈M,X ∈ TxM}.

It is endowed with a natural projection π : TM → M given by π(x,X) = x.
So π−1(x) = TxM .

1.3.4 Proposition. — The tangent bundle TM of the manifold Mn is a
manifold of dimension 2n and π is a smooth surjective submersion.

Proof. — To endow TM of a topological and differential structure, we resort
to Remark 1.1.4, so we need to construct a convenient (abstract) atlas. Let
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((Ui, φi))i∈I be a countable atlas for the manifoldM . For every i, we introduce
the map dφi : π−1(Ui) ⊂ TM −→ R2n :

dφi(x,X) = (φ(x), dxφ(X)).

This is a bijection onto φi(Ui) × Rn. Given i and j in I, dφi(Ui ∩ Uj) =
φi(Ui ∩ Uj)×Rn is an open subset of R2n. Finally, the maps dφi and dφj are
related by the following commutative diagram:

(1.2)
π−1(Ui ∩ Uj)

dφi ↙ ↘dφj

φi(Ui ∩ Uj)× Rn
d(φjφ

−1
i )

−−−−−−→ φj(Ui ∩ Uj)× Rn

where, if y ∈ φi(Ui ∩ Uj) and V ∈ Rn, then

d(φjφ−1
i )(y, V ) = (φjφ−1

i (y), dy(φjφ−1
i )(V )).

This is clearly smooth, as well as its inverse d(φjφ−1
i ), and therefore a diffeo-

morphism. All in all, the family ((π−1(Ui), dφi))i is a countable abstract atlas
of dimension 2n in the sense of Remark 1.1.4, so it gives a topology to TM ,
as well as a countable differential atlas.

Observe that π is continuous for this topology : if V is an open subset of
M , dφi(π−1(V ) ∩ π−1(Ui)) = φi(V ∩ Ui)× Rn is open, so π−1(V ) is open (cf.
Remark 1.1.4).

To see that TM is a manifold, the last thing that we have to check is that
the topology induced by the atlas is Hausdorff. Let (x1, X1) and (x2, X2) be
two distinct points of TM . If x1 6= x2, then there are disjoint open subsets
V1 3 x1 and V2 3 x2, for M is Hausdorff. Then, since π is continuous,
π−1(V1) 3 (x1, X1) and π−1(V2) 3 (x2, X2) are two disjoint open subsets of
TM and we are done when x1 6= x2. Now assume x1 = x2 = x, while X1 6= X2
: pick a chart (Ui, φi) around x ∈M and observe that the points (x,X1) and
(x,X2) lie inside the domain π−1(Ui) of the chart dφi, so that they can also be
separated by open subsets (like in an open subset of R2n). So TM is Haudorff,
hence, eventually, a manifold.

Finally, for any i in I, φiπdφ−1
i : φi(Ui) × Rn −→ φi(Ui) is simply the

projection onto the first factor, so it is certainly a smooth surjective submer-
sion.

The tangent bundle of a submanifold of M is a submanifold of TM . For
instance, if f : M −→ N is a submersion and a ∈ N , then the tangent bundle
to the submanifold f−1(a) of M is given by the kernel of the differential of f
: if f(x) = a, then Tx

(
f−1(a)

)
= ker dxf . If f : N −→ M is an embedding,
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then the tangent bundle to the submanifold f(N) is given by the range of the
differential of f : Tf(x)f(N) = ran dxf .

Now, let us come back to a smooth map f : Mn → Np. Then the collection
of the maps dxf : TxM → Tf(x)N gives a smooth tangent map df : TM → TN

and we have the commutative diagram

TM
df−→ TN

↓ ↓
M

f−→ N

where for each x inM , the induced map dxf : TxM → Tf(x)N is a linear map.
An important remark is that the usual chain rule

d(g ◦ f) = dg ◦ df

holds true (exercise : check it in charts).

1.4. Vector bundles

The atlas that we have introduced on the tangent bundle TM of a manifold
Mn is of a special kind: it ensures that TM is locally diffeomorphic to the
product of an open subset of M and of a vector space Rn, in such a way that
each fiber of the projection π : TM −→ M gets locally identified to Rn ;
moreover, the fibers of π carry a structure of vector space that is compatible
with this local identification. It follows that we may see TM as a family of
vector spaces, indexed by a manifold M in a “locally trivial way”, in the sense
that it is locally a product. This kind of structure is a vector bundle and it is
defined as follows.

1.4.1 Definition. — A vector bundle of rank p over a manifold Mn is the
data of a manifold E, of a smooth map π : E → M and of a structure
of vector space on each fiber Ex := π−1(x), x ∈ M , such that, for every
point x in M , there is an open neighborhood U of x and a diffeomorphism
ψ : π−1(U) −→ U × Rp with the following compatibility conditions:

– pr1 ◦ ψ = π ;
– for every x in M , pr2 ◦ ψ|Ex : Ex −→ Rp is a linear isomorphism.

The manifold E is the total space of the vector bundle, the manifold M is
the base of the vector bundle and the maps ψ are called local trivializations.
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The first compatibility condition means the diagram

π−1(U) ψ−→ U × Rp

π ↘ ↙pr1

U

is commutative. Given two local trivializations (U1, ψ1) and (U2, ψ2), we may
introduce the transition function ψ1ψ

−1
2 : (U1 ∩U2)×Rp −→ (U1 ∩U2)×Rp.

The compatibility conditions imply that for x in U1 ∩U2 and ξ in Rp, we have
ψiψ

−1
j (x, ξ) = (x, uij(x)(ξ)), where uij(x) is a linear isomorphism of Rp.

One can define similarly complex vector bundles (replace Rp by Cp in the
definition above).

If (E, π,M) is a vector bundle and if N is a submanifold of M , then
(π−1(N), π|π−1(N), N) inherits a structure of vector bundle, often denoted by
E|N (exercise).

1.4.2 Definition. — A smooth section s of a vector bundle (E, π,M) is a
smooth map s : M −→ E such that π ◦ s = id. This just means that s(x)
belongs to Ex for every x in M . The set of smooth sections of E over M will
be denoted by Γ(M,E) or Γ(E).

In a local trivialization E|Ui ' Ui × Rp, a section is given by p = rankE
coordinates s1(x), . . . , sp(x) that are smooth functions. In particular, there
are many sections in Γ(Ui, π−1(Ui)). Observe that partitions of unity (see
Proposition 1.1.11) make it possible to patch them together into (many) global
sections, i.e. elements of Γ(M,E) : given a family of Ui’s covering M , a
partition of unity (χi) subordinate to this covering and local sections σi ∈
Γ(Ui, π−1(Ui)), we can construct an global section σ ∈ Γ(M,E) : σ :=

∑
i χiσi

(recall this is a locally finite sum).
Given a manifold M , the product M × Rp is a vector bundle of rank p : it

is trivial in that there is a global trivialization (namely, over U = M). It is
useful to remark that a vector bundle of rank p is trivial if and and only if
it admits p sections that are everywhere linearly independent. For instance,
a line bundle (namely, a vector bundle of rank 1) is trivial if and only if it
carries a section that is everywhere nonzero.

The Möbius band provides an example of a non-trivial line bundle. Its
total space E is [0, 1] × R/ ∼, where (0, t) ∼ (1,−t). Its base is the circle S1

(obtained by gluing 0 and 1 in [0, 1]) and its projection π is induced by the
projection onto the first factor [0, 1].
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An interesting example is given by the tangent bundle TM ofM , as we have
seen above ; its rank is dimM . To construct more examples from it, a simple
remark is in order. Given one or several bundles, any algebraic operation on
the underlying vector spaces can be done fiberwise to give rise to a new vector
bundle. For example, if E and F are vector bundles over M , then there is a
natural way to define E⊕F , E⊗F , E∗ (and therefore Hom(E,F ) = E∗⊗F )
as vector bundles over M , whose fibers at x ∈ M are Ex ⊕ Fx, Ex ⊗ Fx, E∗x.
We leave these constructions as an exercise.

In particular, any vector bundle E comes with a vector bundle End(E),
whose fibers consist of the endomorphisms of the fibers of E. When E is a
line bundle (i.e. has rank 1), EndE is always trivial (why ?).

This gives rise to the cotangent bundle of a manifold Mn. This is a vector
bundle, denoted by T ∗M or Λ1M , whose fiber at x ∈ M is the dual T ∗xM =
(TxM)∗ of the tangent space TxM . If f : M → R is a smooth function, its
differential dxf is a linear form on TxM , so dxf ∈ T ∗xM . It follows that df
can be interpreted as a section of T ∗M . Sections of T ∗M are called 1-forms.
Let us consider a chart φ : U −→ Rn and denote by xi the n components
of φ (these are the local coordinates). Then a local basis of T ∗M is given by
the differentials dxi of the coordinates : it means that any element α of T ∗yM
with y in U can be written as α =

∑
i αidx

i, αi ∈ R (note a slight abuse :
dxi = dyx

i), so that α 7→ (α1, . . . , αn) is a local trivialization. In particular,
for any function f , we may write df = ∂f

∂xidx
i. In this formula we dropped

the sum symbol and used the Einstein summation convention: if you
find in a formula the same i as an index and as an exponent, then you must
understand that the result is just the sum on all possible i’s ; an exponent in
a denominator is considered as an index.

More generally, any manifold comes with a wealth of natural vector bundles
built from the tangent bundle by taking duals, tensor products, sums, exterior
and symmetric powers. These are called tensor bundles. We will study some
of them.

1.5. Vector fields

1.5.1 Definition. — The smooth sections of the tangent bundle of a mani-
fold are called vector fields.

Let X be a vector field on a manifold M . Let f be an element of the space
C∞(M) of smooth functions defined on M and with values in R. Then df is a
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section of T ∗M : at each point x ofM , dxf belongs to the dual of TxM . Now,
X(x) belongs to TxM , so we may introduce (LXf)(x) := dxf(X(x)) ∈ R.
The Lie derivative of f along X is the function LXf = df(X) ∈ C∞(M).

It is clear from the formula that LXf(x) depends only on X(x) and not on
the values of X outside x ; in particular, we may compute LXf on some open
set U as soon as f is defined on U (and maybe not elsewhere).

Let us see what this means in a local trivialization of TM , coming from
a chart φ defined on an open subset U of M . TU is identified with U × Rn
(through dφ) and an element of Γ(TU) can be viewed as a smooth map U →
Rn. The standard basis of Rn therefore induces n elements of Γ(TU), which
are constant in the chart :

e1 = dφ−1((1, 0, . . . , 0)), en = dφ−1((0, . . . , 0, 1)).

Any vector field X can then be written as X = Xiei (remind the implicit
summation convention). If f is a function on M , we can consider locally f as
a function of the local coordinates xi (recall these are the components of φ),
f(x1, . . . , xn). Then one can easily check that

(1.3) Leif = ∂f

∂xi
.

This is why the vector field ei is usually identified with the corresponding
derivation : ei = ∂

∂xi . In the sequel we will use the notation ∂
∂xi instead of ei.

Let us generalize this identification. We introduce the space D(M) of all
derivations of C∞(M), i.e. R-linear endomorphisms D of C∞(M) satisfying
the Leibniz rule

D(fg) = (Df)g + fDg.

The reader may check that for any vector field X, the Lie derivative LX is a
derivation of C∞(M). Indeed, a vector field is the same thing as a derivation:

1.5.2 Theorem. — The map X 7→ LX is an isomorphism Γ(TM)→ D(M).

Proof. — The map is clearly linear. To prove the injectivity, we assume LX =
0 for some X. Given local coordinates (x1, . . . , xn) around any point, we get
0 = LXx

i = dxi(X) for each i, so that X vanishes in the domain of any chart,
hence X = 0. So the map is one-to-one.

To prove that it is onto, we let D be a derivation of C∞(M) and seek a
vector field X such that D = LX . We proceed in three steps.

First step. We wish to prove that D is “local”, in that, if U is an open
set, then f |U = 0 implie (Df)|U = 0. To prove it, we pick a function χ with
compact support in U . Then D(χf) = χDf+(Dχ)f . If f |U = 0, then χf = 0,
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so χDf = −(Dχ)f vanishes on U . Since χ is arbitrary, (Df)|U = 0. So D is
local, which implies that if f and g coincide on some U , then D(f − g)|U = 0
so Df and Dg coincide on U : in particular Df(x) depends only on the values
of f on an arbitrary small neighborhood of x. It makes it possible to define
Df for f defined on any open subset of M .

Second step. D(1) = 0 : indeed, from Leibniz rule, we have D(1) = D(12) =
1D(1) +D(1)1 = 2D(1), hence D(1) = 0.

Third step. Let us work in some local coordinates (xi), defined on some
open set U and pick a point p of U . Setting pi := xi(p), we may write

f(x1, . . . , xn) = f(p) + (xi − pi)gi,p(x1, . . . , xn)

for some smooth functions gi,p such that gi,p(p) = ∂f
∂xi (p). Thanks to the first

step, we can apply D to these local functions: using Leibniz identity and the
second step, we get

(Df)(p) = (Dxi)(p)gi,p(p) = (Dxi)(p) ∂f
∂xi

(p).

Defining XU = (Dxi) ∂
∂xi , we see from (1.3) that Df = df(XU ) = LXU

f on U .
We can do this in any domain of chart U . From the (local) injectivity proved
above, we see that, given two domains of charts U and V , XU = XV on the
overlap of their domains. So these local vector fields patch together into a
global smooth section X of TM such that D = LX .

It is easy to check that the commutator of two derivations is still a deriva-
tion. In view of the isomorphism above, we obtain a structure on Γ(TM), a
bracket.

1.5.3 Definition. — If X and Y are two vector fields on M , then their
bracket [X,Y ] is the vector field corresponding to the derivation [LX ,LY ] =
LXLY −LY LX . In other words, L[X,Y ] = [LX ,LY ].

This rather abstract definition corresponds to a simple calculation: taking
local coordinates (xi), we write X = Xi ∂

∂xi and Y = Y i ∂
∂xi , then

LXLY f −LY LXf = Xj ∂

∂xj

(
Y i ∂f

∂xi

)
− Y j ∂

∂xj

(
Xi ∂f

∂xi

)
=
(
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

)
∂f

∂xi
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Therefore

(1.4) [X,Y ] =
(
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

)
∂

∂xi
.

The abstract definition implies the so-called Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0,

while the local expression (1.4) immediately yields the formula

[X, fY ] = f [X,Y ] + (LXf)Y.

If φ : M → N is a diffeomorphism and X a vector field on N , we can define
the pullback φ∗X of X by φ : it is the vector field on M defined by

(φ∗X)x = (dxφ)−1Xφ(x).

The bracket of vector fields behaves well under diffeomorphisms, it is “natural”
: the reader may use the abstract definition of the bracket to see that

φ∗[X,Y ] = [φ∗X,φ∗Y ].

Another consequence of (1.4) is the following property.

1.5.4 Proposition. — Let N be a submanifold of a manifold M and let X,
Y be vector fields on M . If the restrictions of X and Y to N lie inside
TN ⊂ TM |N , then [X,Y ]|N is tangent to N and equals [X|N , Y |N ].

1.5.5. First order ordinary differential equations. — Let c : I → M

be a curve in a manifold, defined on an interval I ⊂ R. By the very definition
of a tangent vector, this defines a vector ċ(t) ∈ Tc(t)M for every t ∈ I (the
dot means derivation with respect to t). Given now a vector field X on the
manifold M , we will look for solutions c : I →M of the equation

(1.5) ċ(t) = X(c(t))

where t belongs to some open interval I of R.
For example, ifM = R2, a vector field is given by X = f(x, y) ∂

∂x+g(x, y) ∂∂y ,
a curve is c(t) = (x(t), y(t)) and the equation (1.5) is the systemẋ = f(x, y)

ẏ = g(x, y).

More generally, in local coordinates (xi), the equation (1.5) becomes

ẋi = Xi(x1, . . . , xn).
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So if we give c(t0) ∈ M , near t0 the path c(t) will remain in the open set
of coordinates and the equation (1.5) translates into a first order system of
ordinary differential equations. Usual results in calculus then ensure that the
equation has a unique solution in some interval containing t0. It follows that if
we give the initial condition c(t0) = x ∈M , there is a unique solution defined
on a maximal interval I 3 t0. We shall denote this solution cx(t).

1.5.6 Definition. — A vector field X on M is complete if, for any initial
condition x, the solution cx the equation (1.5) is defined on R.

1.5.7 Lemma. — If a vector field X has compact support, then it is complete.

Proof. — The only way a solution can exist only on a bounded interval is that
c(t) gets out of any compact of M . But this is impossible since X = 0 outside
a compact set K so that solutions starting from outside K are constant.

Now change the perspective: we consider t as fixed and we vary the initial
condition x : we define φt(x) = cx(t). So φt consists in following the solution
of ċ = X(c) from the initial condition x during a time t. It is the flow at time
t. Unicity of solutions yields that whenever the flow is defined, we have

φt ◦ φt′ = φt+t′ .

In particular, φt ◦ φ−t = id. The following result follows.

1.5.8 Proposition. — If X is a complete vector field on M , then its flow
(φt)t∈R is a 1-parameter group of diffeomorphisms of M .

1.5.9 Example. — 1) Check that the radial vector field X = xi ∂
∂xi generates

an homothety φt of ratio et. 2) Check that the vector field X = x ∂
∂y −y

∂
∂x is a

vector field on S2 ⊂ R3 that generates a rotation of angle t around the z axis.

1.5.10. Flow and bracket. — The Lie derivative of a function f along a
vector field X measures the variation of f along the flow φt of X : a slight
reformulation of the definition of the Lie derivative is

(1.6) LXf(x) = d

dt

∣∣∣
t=0

f ◦ φt(x).

We will see that the bracket of two vector fields admits a similar interpretation.

1.5.11 Lemma. — Let X and Y be two vector fields. We denote by φt and
ψu their respective flows. Then the following identities hold true:

d

du
(φ−t ψu φt) = (φ∗tY ) ◦ (φ−t ψu φt) and d

dt
φ∗tY = φ∗t [X,Y ].
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Proof. — To prove the first identity, we use the chain rule
d

du
(φ−tψuφt(x)) = dψuφt(x)φ−t

(
d

du
ψu ◦ φt(x)

)
and then basic properties of flows:
d

du
(φ−tψuφt(x)) = (dφ−tψuφt(x)φt)−1 (Y (ψu ◦ φt(x))) = (φ∗tY ) (φ−tψuφt(x)) .

Hence the first formula. As a consequence, we find :
d

ds

∣∣∣
s=0

φ∗sY (x) = d

ds

∣∣∣
s=0

d

du

∣∣∣
u=0

(φ−sψuφs(x)) =: Z(x).

To understand the vector field Z hidden behind the right hand side, we look at
the corresponding derivation LZ . Given any smooth function f , we compute

LZf(x) = dxf

(
d

ds

∣∣∣
s=0

d

du

∣∣∣
u=0

(φ−sψuφs(x))
)

= d

ds

∣∣∣
s=0

dxf

(
d

du

∣∣∣
u=0

(φ−sψuφs(x))
)

= d

ds

∣∣∣
s=0

d

du

∣∣∣
u=0

f (φ−sψuφs(x))

= − d

du

∣∣∣
u=0

dψu(x)f (X(ψu(x))) + d

du

∣∣∣
u=0

(dx(fψu)(X(x)))

= − d

du

∣∣∣
u=0

LXf (ψu(x)) + d

du

∣∣∣
u=0

LX(fψu)(x)

= −LY LXf(x) + LXLY f(x).

Hence d
ds

∣∣∣
s=0

φ∗sY = Z = [X,Y ]. Next apply φ∗t and use the group property :

φ∗t [X,Y ] = φ∗t
d

ds

∣∣∣
s=0

φ∗sY = d

ds

∣∣∣
s=0

φ∗tφ
∗
sY = d

ds

∣∣∣
s=0

φ∗s+tY = d

dt
φ∗tY.

Note that the second identity, for X = Y , implies that φ∗tX = X : a vector
field is preserved by its own flow. It also provides an alternative and more
geometric definition for the bracket : [X,Y ] = d

dt

∣∣∣
t=0

φ∗tY . In analogy with
(1.6), we may introduce the Lie derivative of a vector field Y along X :

LXY := d

dt

∣∣∣
t=0

φ∗tY = [X,Y ].

Let us point out another formula, which stems from the computations in the
proof of Lemma 1.5.11:

[X,Y ] = d

ds

∣∣∣
s=0

d

du

∣∣∣
u=0

(ψ−uφ−sψuφs)
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The following corollary explains what it means for two vectors to commute.

1.5.12 Corollary. — The following statements are equivalent.
1. [X,Y ] = 0.
2. The flow φt of X preserves Y : φ∗tY = Y .
3. The flow ψu of Y preserves X : ψ∗uX = X.
4. The flows generated by two vector fields X and Y commute.

Proof. — If the flows commute then the first identity of lemma 1.5.11 implies
Y = φ∗tY , and then, from the second identity of lemma 1.5.11, [X,Y ] = 0.
This proves 4 ⇒ 2 ⇒ 1. Conversely, if [X,Y ] = 0, then, from the second
formula of lemma 1.5.11, φ∗tY is constant, so φ∗tY = Y , and then the first
equation of lemma 1.5.11 says that, for any t, the flow generated by Y and
parameterized by u) is (φtψuφ−1

t ). But this flow is (ψu) by definition, whence
φtψuφ

−1
t = ψu : the flows commute. So 1 ⇒ 4. It follows that 1, 2, 4, and

also 3 (by symmetry of the roles of X and Y ), are equivalent.

The typical example of two vector fields with [X,Y ] = 0 is X = ∂
∂xi and

Y = ∂
∂xj . The corresponding flows translate by t along the xi and xj variables,

so they clearly commute. Somehow this is a very general example, in view of
Frobenius theorem.

1.6. Frobenius theorem

1.6.1 Definition. — A p-dimensional distribution in a manifold Mn is a
subbundle of rank p of the vector bundle TM , namely it is the data at each
point x ∈ M of a p-dimensional subspace Dx ⊂ TxM depending smoothly on
x in the following sense : for any point x0, one can find p smooth vector fields
X1, . . . , Xp defined in a neighborhood U of x0 and such that Dx is the vector
space generated by X1(x), . . . , Xp(x).

For instance, any non-vanishing vector field X defines a 1-dimensional dis-
tribution RX on a manifold M . In this example, the distribution appears as
the tangent bundle to the trajectories of the vector field, that is the solutions
c : I ⊂ R −→ M of ċ = X(c). One says that these trajectories are inte-
gral curves for the distribution. It is natural to ask for a higher dimensional
analogue of this phenomenon : for instance, does a 2-dimensional distribution
induce some surfaces ? In general, for a p-dimensional distribution, the con-
venient replacement for the curves c will be immersions from a p-dimensional
manifold to M .
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1.6.2 Definition. — An integral submanifold for a distributionD onM is an
immersion i : X −→ M such that, for each point x of X, dxi(TxX) = Di(x).
A distribution on M is called integrable if every point of M belongs to the
image of an integral submanifold.

Beware the image of an integral submanifold is not necessarily a submanifold
! Nonetheless, every x in X admits a neighborhood U ⊂ X such that i(U)
is a submanifold (from the local normal form for immersions). The problems
arise when you look at maximal integral submanifolds. An example to keep in
mind is the torus T2 = S1 × S1 = R2/Z2 : given an irrational number α, the
constant vector field (1, α) on R2 is invariant under the action of Z2 so that it
induces a non-vanishing vector field on T2, hence a distribution. Its integral
curves are dense in the torus so they are not submanifolds.

As noticed above, every 1-dimensional is integrable, but in general distribu-
tions need not be integrable. A simple criterion will be provided by Frobenius
theorem below.

1.6.3 Definition. — A distribution D is called involutive if for any vector
fields X and Y lying in D, the vector field [X,Y ] also lies in D.

It is equivalent to ask that, around any point, the distributionD is generated
by vector fields X1, . . . , Xp such that [Xi, Xj ] lies in D for every (i, j).

1.6.4 Lemma. — If D is a p-dimensional involutive distribution of Mn,
then, around any point, there are local coordinates x1, . . . , xn such that D
is generated by the vector fields ∂

∂x1 , . . . ,
∂
∂xp .

This means that, locally, we may identify Mn with Rn in such a way that
the distribution admits the submanifolds Rp×{y} ⊂ Rn, y ∈ Rn−p, as integral
submanifolds. Such a structure is called a foliation.

Proof. — The first step consists in producing vector fields X1, . . . , Xp span-
ning D near x such that [Xi, Xj ] = 0. Choose local coordinates (x1, . . . , xn)
near x, x corresponding to 0, and local vector fields Y1, . . . , Yp generating D
near x. Up to composing by a linear isomorphism of Rn, we can assume that
at the point 0, Yi = ∂

∂xi , 1 6 i 6 p. Then, near 0, write Yi =
∑n
j=1 a

j
i
∂
∂xj and

observe that the matrix (aji )16i,j6p is close to the identity hence invertible,
with inverse (bji ). We then define a new local basis of D, consisting of the
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vectors Xi =
∑p
j=1 b

j
iYj , 1 6 i 6 p. One can check that

Xi = ∂

∂xi
+

n∑
j=p+1

f ji
∂

∂xj
,

where f ji denotes a smooth function vanishing at 0. Then we calculate

[Xi, Xj ] =
n∑

k=p+1
(LXif

k
j −LXjf

k
i ) ∂

∂xk
.

But since D is involutive [Xi, Xj ] ∈ D. From the form of the basis (Xi) of D
we see that this implies [Xi, Xj ] = 0.

The second step in the proof consists in considering the flows φ1, . . . , φp

generated by the vector fields X1, . . . , Xp. We let Y n−p ⊂ Mn be the local
submanifold corresponding to {0} × Rn−p in the local coordinates above and
consider the map

f : Rp × Y −→M

(x1, . . . , xp, y) 7−→ φ1
x1 · · ·φpxp(y) .

The differential at (0, y) of this map is

(x1, . . . , xp,W ) 7−→ x1X1 + · · ·+ xpXp +W,

which is an isomorphism Rp × TyY → TyM (since TyY ⊕ Dy = TyM), so f
is a local diffeomorphism. Since the Xi’s have vanishing brackets, the φixi ’s
commute. It follows that

d(x,y)f

(
∂

∂xi

)
= ∂

∂xi
φ1
x1 · · ·φpxp(y) = ∂

∂xi
φixiφ

1
x1 · · · φ̂ixi · · ·φpxp(y),

where the hat indicates an omitted factor. We deduce :

d(x,y)f

(
∂

∂xi

)
= Xi

(
φixiφ

1
x1 · · · φ̂ixi · · ·φpxp(y)

)
= Xi (f(x, y)) ,

namely f∗Xi = ∂
∂xi . The promised coordinates onM are obtained by applying

f−1 and taking coordinates on Y .

1.6.5 Theorem (Frobenius). — A distribution is integrable if and only if
it is involutive.

Proof. — The implication “involutive⇒ integrable” is clear from lemma 1.6.4.
Now assume the distribution D on M is integrable. Pick a point y in M and
an integral submanifold i : X −→ M such that y = i(x0) for some x0 in X.
As noticed above, we can always shrink X and assume i(X) is a submanifold.
Then if A and B are two vector fields on M , which lie in D, their restriction
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to i(X) are vector fields on the submanifold i(X), so that the restriction of
[A,B] on i(X) lies in D (from Proposition 1.5.4). So [A,B](y) is in Dy, for all
y in M : D is involutive.

1.6.6. Exercise. — Let x, y, z denote the standard coordinates on R3. We
consider the distribution D = Ker(dz − ydx) = Vect(∂y, ∂x + y∂z) on R3. 1)
Check that this is not integrable. 2) Compute the flows φt (resp. ψu) of ∂y
(resp. ∂x + y∂z) and then the commutator ψ−uφ−tψuφt. 3) Deduce that any
two points in R3 can be connected by a (piecewise smooth) path that remains
tangent to D. Compare this phenomenon with what happens on a foliation
(namely, an integrable distribution).

1.6.7. Example. — Many problems can be expressed in terms of the inte-
grability of a distribution and are thus solved by Frobenius theorem. Here is
an example: we explain how the problem of finding a function with given dif-
ferential can be expressed in these terms. Of course the result is a well-known
basic fact, but it will serve for us as a very simple illustration of the use of the
theorem.

So suppose we have a 1-form α on a manifoldMn and we want to understand
conditions on α in order to find a function f such that df = α locally. We
consider the manifold Xn+1 = M × R, with the n-dimensional distribution

D(x,t) = {(ξ, αx(ξ)), ξ ∈ TxM}.

An integral submanifold of D is locally a submanifold Y n ⊂Mn × R tangent
to D. Since D is always transverse to the R factor of TxX = TxM ⊕ R
(meaning that TxX = Dx ⊕ R), such a Y can be seen as the graph of a
function f : M → R. Then T(x,f(x))Y = {(ξ, dxf(ξ)), ξ ∈ TxM} so Y is an
integral submanifold of D if and only if df = α.

So we see that the problem of finding locally f such that df = α is equiv-
alent to finding an integral submanifold of D. By Frobenius theorem, this is
possible if and only if D is involutive. Let us write down the condition in local
coordinates (xi) on M : we have α = αidx

i an the distribution D is generated
by the vector fields Xi = ∂

∂xi + αi
∂
∂t . Now :

[Xi, Xj ] =
(∂αj
∂xi
− ∂αi
∂xj

) ∂
∂t
.

This belongs to D only if it vanishes (because D is transverse to ∂t), and
we recover in this way the fact that α is locally a df if and only if the first
derivatives of α are symmetric : ∂αj

∂xi − ∂αi
∂xj = 0.
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1.7. Differential forms

1.7.1. Linear algebra. — If E is an n dimensional real vector space, we
define ΛkE∗ as the space of alternate k-linear forms on E, also called exterior
forms of degree k. Note ΛkE∗ ⊂ ⊗kE∗. The degree k of the form α ∈ ΛkE∗ is
denoted by |α| or degα. Observe that Λ0E∗ = R, Λ1E∗ = E∗ and ΛkE∗ = {0}
for k > n. Sometimes one considers all k-forms together: Λ•E = ⊕nk=0ΛkE.

Concretely, if (ei)i=1,...,n is a basis of E, and (ei) denotes the dual basis of
E∗, then a basis of ΛkE∗ consists of (ei1 ∧ · · · ∧ eik)i1<···<ik , where the exterior
product α1 ∧ · · · ∧ αk of k one-forms is defined by

α1 ∧ · · · ∧ αk(x1, . . . , xk) =
∑
σ∈Sk

ε(σ)α1(xσ(1)) · · ·αk(xσ(k)).

In particular, the dimension of ΛkE∗ is
(n
p

)
.

The exterior product (or wedge product) extends to all forms to define an
associative product mapping Λk ⊗Λl to Λk+l and satisfying the commutation
rule

β ∧ α = (−1)|α‖β|α ∧ β.

1.7.2. Differential forms on a manifold. — The algebraic constructions
described above can be implemented on each fiber of the tangent bundle of a
manifold M . For every nonnegative integer k, this provides a vector bundle
ΛkT ∗M or simply ΛkM over M , whose fiber ΛkxM at a point x is Λk(TxM)∗
(see section 1.4). This is the bundle of exterior forms of degree k.

1.7.3 Definition. — A k-differential form on a manifold M is a smooth
section of the vector bundle ΛkM .

The set of differential forms of degree k is Γ(ΛkM) =: Ωk(M). For instance,
Ω0(M) = C∞(M), the set of smooth functions on M with values in R, and
Ω1(M) = Γ(T ∗M). We also set Ω•(M) := ⊕kΩk(M).

In local coordinates, we have a basis (dxi) of 1-forms, and a k-differential
form ω is a linear combination∑

i1<···<ik
ωi1···ik(x)dxi1 ∧ · · · ∧ dxik .

1.7.4. Exercise. — Check that the form 4 dx∧dy
(1+x2+y2)2 defined on S2 − {N}

in the coordinates (x, y) given by stereographic projection extends to a global
2-form on S2. (As we will see later, this is the volume form of the sphere, and
its integral gives the volume of the sphere, that is 4π).
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If f : M → N is a smooth map and α is a k-form on N , then one can
define the pull-back of α by f on M , defined at the point x ∈ M , on vectors
X1, . . . , Xk ∈ TxM , by

(f∗α)x(X1, . . . , Xk) = αf(x)(dxf(X1), . . . , dxf(Xk)).

The pull-back satisfies f∗(α ∧ β) = f∗α ∧ f∗β.
Finally, a k-form ω on M defines an alternate C∞(M)-linear form on the

C∞(M)-module Γ(TM) of vector fields onM : (X1, . . . , Xp) 7→ ω(X1, . . . , Xp).
Conversely:

1.7.5 Lemma. — Any C∞(M)-linear alternate k-form α on Γ(TM) is in-
duced by some smooth k-differential form.

One says that the form α is tensorial, namely it comes from a section of a
tensor bundle (in this case : ΛkM ⊂ ⊗kT ∗M).

Proof. — One first prove that such a C∞(M)-linear form α is local, as in
the proof of theorem 1.5.2. Then one is reduced to consider only local vector
fields, and one can use local coordinates (xi): if Xj = Xi

j
∂
∂xi , then by C∞(M)-

linearity

α(X1, . . . , Xk) =
∑

(i1,...,ik)
Xi1

1 · · ·X
ik
k α

(
∂

∂xi1
, . . . ,

∂

∂xik

)
which is induced by the k-differential form∑

i1<···<ik
α

(
∂

∂xi1
, . . . ,

∂

∂xik

)
dxi1 ∧ · · · ∧ dxik .

Let us make the following more general statement. It is often useful in
differential geometry and its proof is the same as the argument above (for
Lemma 1.7.5). The details are left to the reader.

1.7.6 Lemma. — Let E and F be two vector bundles over the manifold M .
Assume P : Γ(E)→ Γ(F ) is a C∞(M)-linear map. Then P can be identified
with an element of Γ(E∗ ⊗ F ) : it is a section of the bundle E∗ ⊗ F whose
fiber over x consists of linear maps from Ex to Fx.

Differential forms come with an extra structure.

1.7.7 Lemma and definition. — The exterior differential d on M is the
unique linear map d : Ω•(M) −→ Ω•(M) with the following properties.

1. d maps Ωk(M) to Ωk+1(M).
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2. d : Ω0(M) −→ Ω1(M) coincides with the differential of smooth func-
tions.

3. d is an odd derivation of Ω•M : for any α ∈ Ωk(M) and β ∈ Ωl(M),
d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.

4. d ◦ d = 0.

Proof. — Uniqueness. We first prove that such a map d is necessarily local :
if α vanishes on some open set U , then dα vanishes on U . The proof consists
in observing that for any point x of U , we may pick a smooth function χ

vanishing on a neighborhood of x and constant to 1 outside U . Then α = χα,
hence dα = dχ∧α+χdα, which implies dα(x) = 0, hence the locality property.
It follows that, even if β is defined only on some open set V , we may define
dβ, on V . Now, given local coordinates, a differential k-form α can always be
written locally as

α = fi1,...,ikdx
i1 ∧ · · · ∧ dxik .

It follows from axioms 3 and 4 that

(1.7) dα = dfi1,...,ik ∧ dx
i1 ∧ · · · ∧ dxik .

Since the right-hand side only uses d on functions, it is well defined by axiom
2, hence the local uniqueness and then the global uniqueness.

Existence. Given a differential form α, formula 1.7 defines dα in any chart.
From the local uniqueness property (applied on the overlap of any two charts),
this defines globally dα on the whole M . Axioms 1 and 2 are clearly satisfied.
To prove 3, it is sufficient to consider

α = fdxi1 ∧ · · · ∧ dxik and β = gdxj1 ∧ · · · ∧ dxjl .

Then we compute from formula 1.7 and Leibniz rule for the differential on
functions:

d(α ∧ β) = d(fg) ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl

= (gdf + fdg) ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl

= df ∧ dxi1 ∧ · · · ∧ dxik ∧ gdxj1 ∧ · · · ∧ dxjl

+(−1)kfdxi1 ∧ · · · ∧ dxik ∧ dg ∧ dxj1 ∧ · · · ∧ dxjl

= dα ∧ β + (−1)kα ∧ dβ.
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To prove 4, we use formula 1.7 twice to get

d2α = d(df ∧ dxi1 ∧ · · · ∧ dxik) = d

(
∂f

∂xa
dxa ∧ dxi1 ∧ · · · ∧ dxik

)
= d

(
∂f

∂xa

)
∧ dxa ∧ dxi1 ∧ · · · ∧ dxik

= ∂2f

∂xb∂xa
dxb ∧ dxa ∧ dxi1 ∧ · · · ∧ dxik .

From Schwarz theorem, ∂2f
∂xb∂xa is symmetric in a and b, while dxb ∧ dxa is

skewsymmetric. So the sum over a and b vanishes : d2 = 0.

As a consequence of unicity, the reader may check that, for any smooth map
f : M → N and ω ∈ Ω•(N), one has f∗dω = d(f∗ω).

It is important to be able to calculate the exterior differential from the point
of view of linear forms on vector fields. The following formula shows that the
exterior differential is somehow a counterpart of the Lie bracket.

1.7.8 Lemma. — For a differential k-form α and vector fields Xi,

dα(X0, . . . , Xk) =
k∑
i=0

(−1)iLXi

(
α(X0, . . . , X̂i, . . . , Xk)

)
+

∑
06i<j6k

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

When k = 1, this formula reduces to

dα(X,Y ) = LX

(
α(Y )

)
−LY

(
α(X)

)
− α([X,Y ]).

Proof. — One checks that the right hand side of the formula is C∞(M)-linear
in X0, X1,. . . , Xk, and is alternate, so it actually defines a (k+ 1)-differential
form. To determine it, it suffices to take the Xj among a local basis of vector
fields ( ∂

∂xi ). Then the calculation becomes very simple because all the brackets
vanish.

As an application of this formula, we may give a reformulation of the Frobe-
nius theorem. Let D be a distribution of rank p on Mn and I(D) denote the
ideal of differential forms β that vanish along D. To understand whether D
is integrable or not, we just need to work locally. So we work with a trivi-
alization of TM by vector fields X1, . . . , Xn and assume X1, . . . Xp generate
D. We let (α1, . . . , αn) denote the dual basis, so that D can be seen as the
intersection of the kernels of αp+1, . . . , αn and I(D) appears as the ideal gen-
erated by αp+1, . . . , αn. Then D is involutive if and only if [Xi, Xj ] ∈ Γ(D)
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for every i, j 6 p, which in view of Lemma 1.7.8 means dαk ∈ I(D) for very
k > p. In other words D is involutive, and therefore integrable, if and only if
dI(D) ⊂ I(D).

For instance, if D = Kerα is a rank two distribution on M3, for some non-
vanishing one-form α, then I(D) = α∧Ω.(M) and the Frobenius integrability
criterion is exactly α∧dα = 0. If on the contrary α∧dα is non-zero everywhere,
one says D is a contact distribution. A theorem, known as the Darboux
theorem, asserts that a contact distribution is always locally isomorphic to
the distribution described in 1.6.6. See also 1.9.3.

1.7.9. Lie derivative. — The Lie derivative of a differential form ω along
a vector field X with flow φt is defined by

(1.8) LXω = d

dt

∣∣∣
t=0

φ∗tω.

Unsurprisingly, it combines nicely with the exterior product and differential :

LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ), LXdα = dLXα.

Given a vector field X on M , we can introduce the interior product ιX :
Ωk+1(M) −→ Ωk(M), defined by the formula

(ιXα)(X1, . . . , Xk) = α(X,X1, . . . , Xk).

This is an odd derivation of the algebra Ω•(M). The Lie derivative on differ-
ential forms can be easily computed as follows.

1.7.10 Lemma (Cartan’s magic formula). — LX = d ◦ ιX + ιX ◦ d.

Proof. — First, observe that d◦ιX+ιX ◦d is a derivation of the algebra Ω•(M)
(because d and ιX are both odd derivations), as well as LX . In particular,
both operators are local, so we only need to check that they coincide locally,
in a chart, on k-forms α = fdxi1 ∧ · · · ∧ dxik . From the derivation property
again, we only need to check that the operators agree on the function f and
one-forms dxi’s. Indeed, since both operators commute with d, we are left to
check that they coincide on functions (f and xi) and this is obvious : they
both map a function f to df(X).

1.8. Orientation and integration

Notice that ΛnRn = R: every alternate n-form is proportional to dx1∧· · ·∧
dxn, the determinant.
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On a manifold Mn, dx1 ∧ · · · ∧ dxn is well defined in local coordinates, but
of course does not extend in general to the whole manifold. If we change
coordinates, (x1, . . . , xn) = ψ(y1, . . . , yn), for some diffeomorphism ψ of Rn,
then, from the usual behaviour of determinants with respect to a change of
basis, we have

(1.9) dx1 ∧ · · · ∧ dxn = J(ψ)dy1 ∧ · · · ∧ dyn

where J(ψ) = det(dψ) is the Jacobian determinant of ψ.

1.8.1 Definition. — A manifold M is called orientable if it admits an atlas
whose transition functions ψ have positive Jacobian determinant : J(ψ) > 0.

Such an atlas is an oriented atlas. Two oriented atlases are called equivalent
if their union is still an oriented atlas. An orientation is an equivalence class
of oriented atlases. A manifold endowed with an orientation is called oriented.

1.8.2 Lemma. — Any oriented manifold Mn carries a volume form, namely
an element ω of Ωn(M) that is positive in the following sense : in any chart
of an oriented atlas, ω = f dx1 ∧ · · · ∧ dxn for some positive function f .

Proof. — Let us pick an oriented atlas ((Ui, φi))i. On each Ui, we may define
an n-form ωi = dx1 ∧ · · · ∧ dxn. Now, we choose a partition of unity (χi)
subordinate to the covering (Ui) and set ω =

∑
i χiωi. It is easy to check

in coordinates that this is positive (since, at any point, one of the χi’s is
nonzero).

1.8.3 Proposition. — Let Mn be a manifold. The following statements are
equivalent.

1. Mn is orientable.
2. M carries a differential n-form that is everywhere nonzero.
3. The line bundle ΛnM is trivial.

Proof. — “2 ⇔ 3” is clear. “1 ⇒ 2” follows from the lemma above. Let us
prove “2⇒ 1”. Let us pick any atlas ((Ui, φi))i ofM . Let ω be a nonvanishing
element of ΛnM . On each Ui we may write ω = fidx

1
i ∧ · · · ∧ dxni in the local

coordinates corresponding to φi. Then fi does not vanish on Ui so it is either
positive or negative. In the case where fi < 0, we change φi by composing
it by a reflection of Rn ; in the new chart φi, fi is changed into −fi so it is
positive. So we assume that fi is positive for all i. Now on each Ui ∩ Uj , we
have fidx1

i ∧· · ·∧dxni = ω = fjdx
1
j∧· · ·∧dxnj so that the Jacobian determinants

of the atlas are given by the quotient fi
fj
> 0, so the atlas is oriented.
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If Mn is orientable, it carries a nowhere vanishing n-form ω and then the
set of nowhere vanishing n-forms splits into the two disjoint subsets {fω/f ∈
C∞(M), f > 0} and {fω/f ∈ C∞(M), f < 0}. The choice of an orientation
is just the choice of one these subsets as the set of volume forms.

When Mn is not orientable, there is a canonical way to find a better be-
haved manifold: the quotient (ΛnM\{zero section}) /R∗+ (quotient by positive
scalings in each fiber) is a non-trivial double cover of M and an orientable
manifold.

1.8.4. Examples. —

1. Rn is orientable.
2. The sphere Sn is oriented, with volume form ι~n(dx1∧· · ·∧dxn+1), where
~n = xi ∂

∂xi is the outward normal vector to Sn. This means that at each
point, a direct basis of Sn is given by (e1, . . . , en) so that (~n, e1, . . . , en)
is a direct basis of Rn+1.

3. The projective space RPn is orientable iff n is odd. Indeed consider
the map π : Sn → RPn. This is a 2:1 local diffeomorphism, given by
quotient by the antipodal map a. If ω is a volume form on RPn, then π∗ω
is a nowhere vanishing n-form on Sn (since π is a local diffeomorphism),
satisfying a∗π∗ω = π∗ω (since π ◦ a = π). This implies that a preserves
the orientation of Sn. Now remark that a∗~n = ~n, so

a∗(ι~n(dx1 ∧ · · · ∧ dxn+1)) = (−1)n+1ι~n(dx1 ∧ · · · ∧ dxn+1),

so a preserves the orientation of Sn if and only n is odd. So if RPn is
orientable then n is odd. Conversely if n is odd, then the standard volume
form of Sn is invariant under a, so it induces a well-defined volume form
on RPn.

4. The tangent bundle of any manifold is orientable.
5. Any complex manifold is an oriented (real) manifold.
6. The Möbius band is not orientable.

Given a volume form ω on a manifold M , we may define the divergence of a
vector field X as the function divω(X) defined by LXω = divω(X)ω. In view
of Cartan’s magic formula, this means divω(X) = d(ιXω)/ω (exercise: check
this definition is consistent with the usual one on Rn). Basicallly, a vector
field has vanishing divergence if and only if its flow preserves the volume form
(φ∗tω = ω).
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1.8.5. Exercise. — Let X2n = T ∗M denote the cotangent bundle of a
manifold Mn. We denote by π the natural projection from X = T ∗M to M .
For any point (x, ξ) of X (namely x ∈ M and ξ ∈ T ∗xM), we set α(x,ξ) :=
ξ ◦ d(x,ξ)π. Check that this defines a (canonical !) one-form on X. It is known
as the Liouville form. The choice of some local coordinates xi on M gives rise
to some local coordinates xi, pi on T ∗M = X. What is α in these coordinates
? Prove that the closed two-form Ω := dα is non-degenerate, i.e. V 7→ Ω(V, .)
is a linear isomorphism between TzX and T ∗zX for every V ∈ TzX, z ∈ X. As
a consequence, Ωn = Ω ∧ · · · ∧ Ω (n times) is a canonical volume form on the
cotangent bundle.

1.8.6. Exercise. — The data of a non-degenerate closed two-form Ω on a
manifold M2n (necessarily of even dimension) is known as a symplectic struc-
ture. Pick a function H on M (H for Hamiltonian). The non-degeneracy of
Ω makes it possible to define a vector field XH by the relation ιXH

Ω = dH.
Check that the flow of XH automatically preserves the symplectic for Ω, as
well as the function H. In particular, its divergence with respect to the volume
form Ωn vanishes.

We refer to the book of Marsden and Ratiu (for instance) for more sym-
plectic geometry and applications to mechanics. Let us just point out that,
like in contact geometry (cf. 1.6.6, 1.7.2), there is a Darboux theorem, assert-
ing that a symplectic structure is always locally isomorphic to the canonical
symplectic structure of the cotangent bundle described above, in that there
are coordinates where it is given by the same expression (cf. exercise 1.9.3).

1.8.7. Integration. — Let Mn be an oriented manifold. We are now going
to define the integral

∫
M ω of any compactly supported n-form ω on M . First

suppose that ω has his support contained in the domain of a chart, with
coordinates xi. Then ω = f(x)dx1 ∧ · · · ∧ dxn where f has compact support,
and we can define ∫

M
ω :=

∫
f(x)dx1 · · · dxn.

The right hand side is just an integral over an open set of Rn, for the Lebesgue
measure. Now, pick other coordinates yj , with (x1, . . . , xn) = ψ(y1, . . . , yn).
On the one hand, formula (1.9) yields :

ω = f(y)J(ψ)(y)dy1 ∧ · · · ∧ dyn.

On the other hand, the formula for the change of variables, in Rn, yields :∫
f(x)dx1 · · · dxn =

∫
f(y)|J(ψ)|(y)dy1 · · · dyn.
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If we work with an oriented atlas, we have J(ψ) > 0, so that our definition of∫
M ω does not depend on the choice of coordinates.
The definition of

∫
M ω is then extended to any ω by a partition of unity

(χi) subordinate to a covering of M by coordinate charts: ω =
∑
χiω and∫

M ω =
∑∫

M (χiω).
The resulting linear form

∫
M : Ωn

c (M) −→ R does not depend on the
partition of unity chosen, it only depends on the orientation chosen on M : if
M+ and M− denote the same manifold M with its two different orientations,
then

∫
M+

= −
∫
M−

.
The fundamental formula of calculus

(1.10) f(b)− f(a) =
∫ b

a
f ′(x)dx

has a powerful extension to the setting of manifolds, known as Stokes formula.
It requires the notion of manifold with boundary.

1.8.8 Definition. — Let M be a Hausdorff topological space. M is a dif-
ferential manifold with boundary of dimension n if there is a countable family
((Ui, φi))i∈I with the following properties.

– (Ui)i∈I is an open covering of M .
– For every i in I, φi : Ui −→ Ωi is a homeomorphism onto an open subset

Ωi of (−∞, 0]× Rn−1.
– For every i and j in I, φi ◦ φ−1

j is smooth.

The boundary ∂M of M is the set of points x ∈ M that are mapped
into {0} × Rn−1 by some φi. It follows that M\∂M is a manifold (without
boundary) of dimension n, while ∂M is a manifold (without boundary) of
dimension n− 1 (charts are obtained by restriction). A simple example is the
closed unit ball in Rn, whose boundary is the unit sphere.

There is a natural notion of differential form on a manifold with boundary
M . If ω is an element of Ωk(M), it induces a k-form on ∂M : i∗ω, where
i : ∂M −→M is the inclusion. This k form i∗ω is usually denoted by ω.

A manifold with boundary Mn is said to be oriented if its transition func-
tions have positive Jacobian determinants. We can define the integral of n-
forms with compact support in M as in the case of manifolds without bound-
ary. Note also that an orientation on M induces an orientation on ∂M :
locally, this is the orientation of Rn−1 ∼= {0} × Rn−1 ⊂ Rn (if (e1, . . . , en) is
the canonical basis of Rn, (e2, . . . , en) is an oriented basis of {0} × Rn−1).
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1.8.9 Theorem (Stokes). — If Mn is an oriented manifold with boundary
and ω is a compactly supported (n− 1)-form on M , then∫

M
dω =

∫
∂M

ω.

In particular, if Mn is a manifold without boundary, then
∫
M dω = 0 for

any compactly supported (n− 1)-form.

Proof. — Using a partition of unity, it is sufficient to check the case where the
support of ω is contained in the domain of some coordinates xi, namely, we
may assume M = {x1 6 0} ⊂ Rn. Then ω = ωidx

1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn, so

dω =
(∑

i

(−1)i−1∂ωi
∂xi

)
dx1 ∧ · · · ∧ dxn,

and ∫
M
dω =

∑
i

(−1)i−1
∫
x160

∂ωi
∂xi

dx1 · · · dxn.

Using formula (1.10), we see that all the terms with i > 1 vanish (because ω
has compact support), while the remaining term, with i = 1, yields∫

M
dω =

∫
x1=0

ω1dx
2 · · · dxn =

∫
∂M

ω.

This theorem contains as special cases some classical identities, well known
to physicists, such as the Gauss-Ostrogradsky formula (involving the diver-
gence of a vector field in R3) or the Kelvin-Stokes formula (involving the curl
operator) or the Green-Riemann formula.

1.9. De Rham cohomology

Let us briefly mention a few facts about de Rham cohomology. Proofs for
what we state, and much more, can be found in the references, in particular
in the book by Bott and Tu. Let Mn be a differential manifold. The vector
space of closed k-forms is

Zk(M) := {α ∈ Γ(ΩkM), dα = 0},

while the vector space of exact k-forms is

Bk(M) := {dβ, β ∈ Γ(Ωk−1M)}.
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Then, since d ◦ d = 0, Bk(M) is a subspace of Zk(M). The k-th group of de
Rham cohomology is defined as the quotient :

Hk(M) = Zk(M)/Bk(M).

For instance, it is clear that H0(M) consists of locally constant functions
on M so, if M has N connected components, then H0(M) = RN .

Locally, on any manifold, if dα = 0 then there exists β such that dβ = α (this
is Poincaré Lemma, cf. exercise 1.9.3), so the cohomology does not depend on
local properties of M . It turns out that Hk(M) is a topological invariant of
M (it depends on the class of M modulo homeomorphisms, and even modulo
homotopy equivalences) ; in fact, it coincides with singular cohomology. If
M is compact, then Hk(M) is finite dimensional and its dimension bk(M) =
dimHk(M) is called the k-th Betti number of M . At the end of this course,
we will discuss Hodge theorem, which makes it possible to see a few general
properties of de Rham cohomology at once. Let us just point out an immediate
application of Stokes’ theorem: on a compact oriented manifold Mn (without
boundary), the integration of n-forms gives rise to a well-defined and surjective
map Hn

DR(M)→ R; so bn(M) is nonzero. This map is in fact an isomorphism,
cf. 3.10.1.

There are some techniques that make it possible to compute the de Rham
cohomology. The cohomology of Rn vanishes except in degree 0. For the
sphere Sn, the cohomology vanishes in every degree, except in degrees 0 and
n, and H0(Sn) = Hn(Sn) = R. For the complex projective space CPn, the
cohomology vanishes in odd degrees, and in even degree 2k for k = 0, . . . , n
one has H2k(CPn) = R.

1.9.1. Exercise. — Let M2n be a compact manifold (without boundary),
endowed with a symplectic form Ω (the definition is given in 1.8.6). Prove
that b2k(M) is non-zero for k = 0, . . . , n. This fact explains the origin of the
cohomology of CPn, which is a symplectic manifold, owing to the following
exercise.

1.9.2. Exercise. — Let us see S2n+1 as the unit sphere in the Hermitian
space (Cn+1, 〈., .〉). For every point z of S2n+1, we may define a unit vector
Tz := iz tangent to S2n+1 and an element ηz of T ∗z S2n+1, by ηz(V ) = 〈iz, V 〉
for all vectors V ∈ TzS2n+1. What is the flow of the vector field T ? Prove
that LT η and ιTdη vanish. Let π denote the natural projection S2n+1 → CPn.
Prove that there is a unique two-form Ω on CPn such that dη = π∗Ω. Prove
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that Ω is symplectic (for instance, prove that η ∧ dηn does not vanish). Ω is
known as the Fubini-Study form.

1.9.3. Exercise. — 1) Let M be a manifold and (ψt)06t61 denote a smooth
one-parameter family of diffeomorphisms ((t, x) 7→ ψt(x) is smooth). Prove
that for any form α, d

dtψ
∗
tα = ψ∗tLXtα, where Xt is the time dependent vector

field defined by Xt = d
dtψt ◦ (ψt)−1. Prove that if α is closed, then

ψ∗1α− ψ∗0α = d

(∫ 1

0
ψ∗t (ιXtα)dt

)
2) Prove the Poincaré lemma: any closed form of positive degree is locally

exact. Hint: use 1) on a small ball of Rn, with ψt(x) = tx and check that the
apparent problem at t = 0 is irrelevant.

3) Prove the Hairy Ball theorem: there is no nonvanishing vector field on
the sphere S2n. Hint: if such a vector field X existed, you could associate
to any point x of S2n the point ψt(x) obtained by rotating x of an angle πt
in the plane containing x and X(x), in the direction of X(x); deduce that
the standard volume form of S2n would be preserved by the antipodal map.
(Observe the previous exercise yields a nonvanishing vector field on the sphere
S2n+1.)

4) Prove the symplectic Darboux theorem: any symplectic form Ω is locally
isomorphic to the standard symplectic form Ω0 =

∑n
i=1 dx

i ∧ dxi+n on R2n,
namely Ω = ψ∗Ω0 for some local diffeomorphism ψ. To prove this, you may
work in coordinates, on a small ball around 0 in R2n, assume Ω and Ω0 coincide
at the origin and consider Ωt = tΩ + (1− t)Ω0. The trick (known as Moser’s
trick) consists in finding a family of diffeomorphisms ψt such that ψ0 is the
identity and ψ∗tΩt is constant in time, so that ψ1 will do the job. In order
to build this family of diffeomorphisms, you will first find the vector fields Xt

by computing the derivative of ψ∗tΩt and then integrate the time-dependent
ordinary differential equation d

dtψt = Xt ◦ ψt.
5) A distribution D of rank 2n on a manifold M2n+1 is called a contact

distribution if it can be written locally as D = Kerα for some one-form α such
that α ∧ dαn does not vanish; it is equivalent to require that the restriction
of dα on D is non-degenerate. Prove the contact Darboux theorem: any
contact distribution D onM2n+1 is locally isomorphic to the standard contact
structure on R2n+1, given by the kernel of α0 = dx2n+1−

∑n
i=1 x

idxi+n. Hint:
Moser’s trick.
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CHAPTER 2

CONNECTIONS

2.1. Connections as covariant derivatives

Here, we address the following problem: find a way to take derivatives of
sections of vector bundles. More precisely, suppose E is a vector bundle over
the manifold M . Pick a section s of E and a vector X ∈ TxM . What we want
to define is a derivative of s along X at x, denoted by (∇Xs)x ∈ Ex. This
should be linear in X ∈ TxM , so at the point x the object (∇s)x should belong
to Hom(TxM,Ex) = T ∗xM ⊗ Ex. This means that ∇s should be a section of
the bundle T ∗M ⊗ E and justifies the following definition.

2.1.1 Definition. — A connection ∇ on a vector bundle E over the manifold
M is a R -linear operator

∇ : Γ(M,E) −→ Γ(M,T ∗M ⊗ E)

satisfying the following Leibniz rule: if f ∈ C∞(M) and s ∈ Γ(M,E), then

∇(fs) = df ⊗ s+ f∇s.

There is an obvious variant on complex vector bundles, requiring the connec-
tion to be C-linear. Note also that connections are sometimes called covariant
derivatives.

If E is the trivial line bundle over M (namely, E = M × R), then Γ(E) =
C∞(M) and an obvious example of connection on E is given by the exterior
differential d : C∞(M) −→ Ω1(M). Letting d act componentwise, we there-
fore obtain a map d : C∞(M,Rp) −→ Ω1(M,Rp). This yields a connection
on the trivial bundle of rank p (E = M ×Rp). Such a connection is said to be
trivial.
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As we have already seen in other contexts, the Leibniz rule implies imme-
diately that any connection ∇ is a local operator: if U is an open set, (∇s)|U
depends only on s|U . In other words, it induces an operator Γ(U,E|U ) →
Γ(U, T ∗U ⊗ E|U ).

By definition of a vector bundle E over M , we can always cover M by
open sets Ui such that E|Ui can be identified with a trivial vector bundle
Ui × Rp over Ui. On every such E|Ui , we have seen above that there is a
connection ∇i (induced by the differential d on Ui). Using a partition of unity
(χi) subordinate to (Ui), we may then build a connection ∇ on E :

∇Xs =
∑
i

χi∇iX|Ui
s|Ui .

The set of connections is therefore always non-empty. It turns out that it
carries a natural affine structure.

2.1.2 Lemma. — The space of connections on a vector bundle E over the
manifold M is an affine space with direction Γ(M,T ∗M ⊗ EndE).

Proof. — First, if ∇ is a connection and a ∈ Γ(M,T ∗M ⊗ EndE), it is easy
to check that ∇ + a is again a connection. Then, using Leibniz rule for two
connections ∇ and ∇′, we obtain that for any vector field X,

(∇X −∇′X)(fs) = f(∇X −∇′X)s,

which means ∇X−∇′X is a C∞(M)-linear endomorphism of Γ(E), hence a sec-
tion of the vector bundle E∗⊗E = EndE, the vector bundle whose fiber over
x consists of endomorphisms of Ex (Lemma 1.7.6). Since it is also C∞(M)-
linear with respect to the vector field X (by the definition of connections), it
follows that it defines a section of T ∗M ⊗ EndE.

2.1.3. The local point of view. — Let E be a vector bundle of rank p
over Mn. We choose a chart of M and a local trivialization of E around
some point of M : this yields local coordinates xi, i = 1, . . . , n, and p linearly
independent local sections e1, . . . , ep of E. Define the Christoffel symbols Γbia
of a connection ∇ by

∇ea = Γbiadxi ⊗ eb.

A general section of E reads s = saea and we can apply Leibniz rule to get

∇s = dsa ⊗ ea + sa∇ea =
(∂sa
∂xi

+ Γaibsb
)
dxi ⊗ ea
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or, equivalently,

∇ ∂

∂xi
s =

(∂sa
∂xi

+ Γaibsb
)
ea.

Therefore we shall write

∇s = ds+ dxi ⊗ Γis,

where Γi = (Γbia) is a matrix, i.e. an endomorphism of E : the connection ∇
is locally given by a 1-form with values in EndE, Γ = dxi⊗Γi, which is called
the connection 1-form. Beware this is only a local section of T ∗M ⊗ EndE,
depending on the chart and the local trivialization.

Let us see what happens when we change of trivialization. Given a new local
basis (fb) of E, such that ea = ubafb, then a section s = sbfb has components
u−1s in the basis (ea) and therefore in this basis∇s writes d(u−1s)+dxiΓiu−1s.
Coming back to the basis (fb), we obtain

∇s = u
(
d(u−1s) + dxiΓiu−1s

)
= ds+

(
− duu−1 + dxiuΓiu−1)s.

In particular, we see that the matrices (Γ′i) in the basis (fb) can be expressed
as

(2.1) Γ′i = − ∂u
∂xi

u−1 + uΓiu−1.

2.1.4. Example : the tautological bundle O(−1) over CP 1. — This
is the complex line bundle whose fiber over a point x ∈ CP 1 is the complex
line x ⊂ C2. Recall that homogeneous coordinates [z1 : z2] on CP 1 yield two
charts. On U1 = {z1 6= 0}, we have one complex coordinate ζ = z2

z1 (namely,
ζ corresponds to the point [1 : ζ]), while on U2 = {z2 6= 0}, ζ ′ = z1

z2 is a
complex coordinate. On U1, O(−1) is trivialized by the non-vanishing section
s1(ζ) = (1, ζ) ; on U2, s2(ζ ′) = (ζ ′, 1) is a non-vanishing section. On U1 ∩ U2,
we have ζ ′ = ζ−1 and s2(ζ ′) = ζ−1s1(ζ) (this ζ−1 is somehow the reason for
the odd notation O(−1)). The transition function u(ζ), in the sense above (cf.
(2.1)), is the multiplication by ζ.

Now we define a connection on O(−1) in the following way: locally we can
consider a section as a map s : CP 1 → C2 such that s(x) ∈ x, and we define

(2.2) ∇Xs = πx(dxs(X)),

where πx is the orthogonal projection on x (in C2). It follows that on U1,

∇Xs1 = π(1,ζ)(0, X) = Xζ̄

1 + |ζ|2 s1.



40 CHAPTER 2. CONNECTIONS

Similarly, on U1 ∩ U2, we have

∇Xs2 = − X

ζ(1 + |ζ|2)s2.

So in the two charts we have the Christoffel symbols Γ = ζ̄dζ
1+|ζ|2 and Γ′ =

− dζ
ζ(1+|ζ|2) . In particular, we get Γ′ = Γ− dζ

ζ , which coincides with (2.1) since
u(ζ) = ζ.

2.1.5. Submanifolds of a Euclidean space. — Note that for any sub-
manifold Mn of RN , one can define a connection on TM much as in the
example above : consider at each point the tangent space TxM as a subspace
of RN and denote by πTxM the orthogonal projection RN → TxM , so that we
can set

(2.3) ∇MX s = πTxM (∇Rn

X s), X ∈ TxM.

It is easy to check that it is indeed a connection on TM .

2.1.6. Induced connections. — Given a connection ∇E on a vector bun-
dle E over M , the dual vector bundle E∗ is automatically endowed with a
connection ∇E∗ : for s ∈ Γ(E), t ∈ Γ(E∗) and X ∈ Γ(TM), we require

(2.4) LX〈t, s〉 = 〈∇E∗X t, s〉+ 〈t,∇EXs〉.

If (ea) is a local basis of sections of E, then the dual basis (ea) is a local basis
for E∗ and the duality bracket reads, for s = saea and t = tbe

b, 〈t, s〉 = tas
a.

The equation (2.4) then gives immediately

∇ ∂

∂xi
t =

(∂ta
∂xi
− Γbiatb

)
ea = ∂t

dxi
− tΓit.

Therefore the (local) connection 1-form for E∗ is −tΓ.
In the same spirit, suppose we have connections ∇E and ∇F on the vector

bundles E and F over M . Then there is a naturally induced connection on
G = Hom(E,F ) = E∗ ⊗ F , defined similarly: we require that if s ∈ Γ(E) and
u ∈ Hom(E,F ), then

(2.5) ∇FX(u(s)) = (∇GXu)(s) + u(∇EXs).

From this it follows quickly that

∇G∂

∂xi
u = ∂u

∂xi
+ ΓFi ◦ u− u ◦ ΓEi .

(Remark that for F = R we recover the previous case G = E∗).
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More generally, by asking that the Leibniz rule (like in 2.5) is true for
algebraic operations, one easily extends a connection on E to all associated
bundles (tensor products, exterior products).

2.2. Parallel transport

If we have a trivial vector bundle E = M ×Rk, then all fibers of the bundle
can be identified with a fixed vector space Rk. But for a general vector bundle
E over M , there is no canonical way to identify the fibers of E. We will see
that a connection provides a way to identify the fibers along curves on the
base.

2.2.1 Lemma. — Let E be a vector bundle over M with a connection ∇.
We consider a curve c : I −→ M and a section s of E. Then, for t in
I, the quantity

(
∇ċ(t)s

)
c(t)

depends only on the values of s along c and in a
neighborhood of c(t).

Proof. — In a local trivialization over a coordinate chart, we have c(t) =
(x1(t), . . . , xn(t)) and s has values in Rp, hence the formula

(2.6) ∇ċs = ẋi( ∂s
∂xi

+ Γis) = ṡ+ Γċs

which justifies the statement.

It follows that, given a curve c : I −→ M , we may look for smooth maps
s : I −→ E such that s(t) ∈ Ec(t) for every t in I and s satisfies the equation

(2.7) ∇ċs = 0,

meaning that (2.6) holds locally. Since it is locally a first order linear ordinary
differential equation on s, given some initial condition s(0), one can construct
a unique solution of (2.7) along c. This leads to the following definition:

2.2.2 Definition. — Let (E,∇) be a bundle with connection over M . If
(c(t))t∈[a,b] is a path inM , then the parallel transport along c is the application
Ec(a) → Ec(b), s(a) 7→ s(b) obtained by solving the equation (2.7) along c.

The parallel transport Ec(a) → Ec(b) is always a linear isomorphism, since
the inverse is obtained by parallel transport along c in the reverse direction.

The connection ∇ can be computed from its parallel transport. Let X be
a tangent vector at x ∈ M and s a section. We consider a curve c defined
on some neighborhood of 0 with c(0) = x and ċ(0) = X. Then for any small
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t we can define the parallel transport of sc(t) along c from c(t) to c(0) = x,
resulting in an element s̃(t) of Ex. Then :

(∇Xs)x = d

dt

∣∣∣
t=0

s̃(t).

2.2.3. Example. — Let E be the quotient of R×Rp by (t, v) ∼ (t− 1, Av),
where A ∈ GL(Rp). This is the total space of a vector bundle over the circle
S1, with a projection π induced by the projection onto the first factor (t). A
section is then a simply a map σ : R→ Rp such that σ(t+ 1) = A−1σ(t). Let
us define a connection ∇ by setting ∇ ∂

∂t
σ = dσ

dt (check it makes sense !). Then
for any path running k times around S1, the parallel transport is given by Ak.
The reader may convince himself that any vector bundle over the circle arises
as such a quotient and is therefore either trivial or the sum of a Moebius plane
bundle and a trivial vector bundle.

2.2.4. Orientation. — Let us make a bunch of rather trivial remarks about
the natural notion of orientation for vector bundles. Each fiber is a vector space
so it carries two different orientations. A vector bundle of rank p is said to
be orientable when it can be endowed with local trivializations such that any
of its transition function (x, ξ) 7→ (x, u(x)ξ) takes its values in GL+(Rp) (the
component of the identity in GL(Rp)) in that u(x) ∈ GL+(Rp) for every point
x. It is then possible to choose an orientation for all fibers in a continuous
manner: locally, the fibers can all be identified with Rp thanks to the local
trivializations and these identifications yields a consistent notion of positive
basis owing to the orientability. Such a choice makes the vector bundle into an
oriented vector bundle. For instance: the tangent bundle TM of a manifold
M is an orientable vector bundle if and only if M is an orientable manifold;
a line bundle is orientable if and only if is trivial; the Moebius plane bundle
is not orientable. What is the interplay between this notion of orientation
and connections ? It is easy to see that the parallel transport with respect to
any connection preserves the orientation of an oriented vector bundle. And
conversely, any connection on a vector bundle (E, π,B) can detect its eventual
non-orientability: if (E, π,B) is not orientable, then there is a closed path
γ : [0, 1]→ B, with γ(0) = γ(1) = x ∈ B, such that the corresponding parallel
transport is an element of GL(Ex)\GL+(Ex). In fact, it even shows that the
restriction of E over the range of γ contains a Moebius plane bundle, as a
subbundle... The Moebius band is the universal source of non-orientability.
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2.3. Metric connections

Given a vector bundle E over M , we may introduce the vector bundle
Sym2(E∗) over M whose fiber Sym2(E∗)x consists of the symmetric bilinear
forms over Ex.

2.3.1 Definition. — A (Euclidean) metric g on the vector bundle E is a
smooth section g of Sym2(E∗) that is positive definite in each fiber. In other
words, it is the smooth data of a positive definite bilinear symmetric form gx
on each fiber Ex.

If E is complex vector bundle, the relevant notion is that of a Hermitian
metric g, which is the smooth data of a positive definite Hermitian form gx
on each fiber Ex .

For instance, if M is a submanifold of RN , the Euclidean inner product on
RN restricts as a metric on the tangent space TM : each fiber TxM ⊂ RN is
endowed with the restriction of the scalar product of RN . Another example
is the bundle O(−1) of example 2.1.4: each fiber is naturally a complex line
of C2 and so inherits a Hermitian metric from that of C2. If M is a manifold,
a metric on TM is called a Riemannian metric on M . It is the subject of the
third chapter.

Again, algebraic operations (sum, tensor product,...) can be used to pro-
duce new metrics. For instance, given a metric g on E, there is an induced
metric on ΛkE∗ : if (e1, . . . , ep) is a g-orthonormal basis of Ex, with dual basis
(e1, . . . , ep), then we decide that the set of ei1 ∧ · · · ∧ eik , for i1 < . . . ik, is an
orthonormal basis of (ΛkE∗)x.

2.3.2 Definition. — If the bundle E has a metric g, we say that a connection
∇ on E is a metric connection or preserves g if for any sections s, t of E and
any vector field X:

LX

(
g(s, t)

)
= g(∇Xs, t) + g(s,∇Xt).

Note that a connection is metric if and only if its parallel transport is an
isometry between fibers. Another equivalent definition is that the induced
connection ∇Sym on Sym2(E∗) kills g: ∇Symg = 0 (exercises).

If E is a complex vector bundle, a connection preserving a Hermitian metric
in the sense above is called a unitary connection.

Using a partition of unity, it is easy to prove that any vector bundle admits
a metric and that any vector bundle with a metric carries a metric connection.
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What does “metric” mean on the Christoffel symbols ? Suppose that (ea)
is a local orthonormal basis of E (it always exists, by Gram-Schmidt), then
for all a, b we must have g(∇Xea, eb) + g(ea,∇Xeb) = 0, whence Γbia = −Γaib
(resp. Γbia = −Γaib in the complex case). This condition characterizes the met-
ric connections. It means that the matrices Γi take values in antisymmetric
or anti-Hermitian endomorphisms of E. We shall denote the bundle of an-
tisymmetric endomorphisms by so(E) and, in the complex case, the bundle
of anti-Hermitian endomorphisms u(E). Then we have proved the following
version of lemma 2.1.2: the space of metric connections of (E, g) is an affine
space with direction Γ(T ∗M ⊗ so(E)) in the real case, Γ(T ∗M ⊗ u(E)) in the
complex case.

2.3.3. Examples. — 1) The standard connection d on M × Rp is metric
with respect to the Euclidean metric induced by the scalar product of Rp. 2)
The connection we defined on O(−1) is a metric connection. 3) The connection
induced on the tangent bundle of a submanifold of RN is a metric connection
for the metric induced by the scalar product of RN .

2.3.4. Exercise. — Consider the two-sphere, endowed with its standard
connection, coming from the embedding in R3. Observe that parallel transport
along a great circle preserves the velocity vector of any parametrization at
constant speed and deduce the parallel transport of any vector along a great
circle. Describe the parallel transport of any path obtained by starting from
the North Pole, going southward along a meridian, following the Equator for
some time, and finally coming back to the North Pole along a meridian.

2.4. Curvature

Schwarz theorem ensures that partial derivatives of functions on Rn com-
mute : ∂2f

∂xixj = ∂2f
∂xjxj . It turns out that this symmetry property is not true

for a general connection ∇ on a vector bundle : in general, ∇ ∂

∂xi
∇ ∂

∂xj
s is

different from ∇ ∂

∂xj
∇ ∂

∂xi
s. The curvature F∇ of ∇ will measure the defect of

commutation : F∇
(

∂
∂xj ,

∂
∂xj

)
= ∇ ∂

∂xi
∇ ∂

∂xj
s−∇ ∂

∂xj
∇ ∂

∂xi
s. More precisely, the

definition is the following.

2.4.1 Definition. — Let E be a vector bundle over the manifold M , with a
connection ∇. The curvature of ∇ is the section F∇ of Λ2M ⊗EndE defined
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by
F∇(X,Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s,

where X and Y are vector fields on M and s is a section of E.

There is something to check : it is not at all obvious that the formula above
defines a section of Λ2M ⊗ EndE for the right hand side seems to depend on
the derivatives of X, Y and s. Using the very definition of a connection, the
reader may check that this expression is indeed tensorial (i.e. C∞(M)-linear)
with respect to X, Y and s, which justifies our claim (Lemma 1.7.6).

In local trivialization and chart, we may write ∇ = d + dxi ⊗ Γi and also
F∇ = dxi ⊗ dxj ⊗ Fij = 1

2dx
i ∧ dxj ⊗ Fij . A direct computation yields

(2.8) Fij = ∂Γj
∂xi
− ∂Γi
∂xj

+ [Γi,Γj ].

2.4.2 Definition. — A connection is said to be flat if its curvature vanishes.

For instance, the connection induced by d on any trivial vector bundle is
flat, because of Schwarz theorem.

2.4.3. Example. — A non-flat example is given by the line bundle O(−1)
over CP 1, with the connection Γ = z̄dz

1+|z|2 . The brackets vanish since we are
on a line bundle, and we get

FO(−1) = − dz ∧ dz̄
(1 + |z|2)2 = 2idx ∧ dy

(1 + x2 + y2)2 ,

which is a 2-form with values in iR = u1 (recall the endomorphism bundle of
a line bundle is trivial).

2.4.4. Exercise. — Let L be a complex line bundle over some (real) man-
ifold M . Since EndL is trivial, any two connections ∇ and ∇′ on L differ
by some complex-valued one-form α (an element of Ω(M)⊗R C). Prove that
F∇ − F∇′ = dα. Prove that for any unitary connection ∇ on L, i

2πF
∇ is a

closed real-valued two-form, whose de Rham cohomology class does not de-
pend on ∇, but only on L. This class is known as the first Chern class of L,
c1(L). Check that c1(L∗) = −c1(L), c1(L1 ⊗L2) = c1(L1) + c1(L2) (where L1
and L2 are two line bundles over M). When M is a compact oriented surface,
the integral of the first Chern class is a well-defined number (owing to Stokes
theorem). Prove that this ‘Chern’ number is −1 for O(−1)) and k for the line
bundle O(k) := (O(−1)∗)⊗k, whose fiber at some point x of CP 1 consists of
the k-linear forms on x. Prove that the Chern number is always an integer,
equal to the index of any section σ of L with isolated zeros, defined as follows:
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for every x such that σ(x) = 0, pick a chart and a local trivialization, so that
σ can be seen as a map from a neighborhood of 0 in R2 to a neighborhood of
0 in R2; on a small circle around 0, σ

|σ| then defines a map from S1 to S1 and
we let kx ∈ Z denote its winding number (or degree), which depends only on
σ and x; the index of σ is defined as the (finite) sum of all kx. Hint : make the
connection trivial in the trivialization of L induced by σ away from its zeros.
This is a version of Gauss-Bonnet formula, due to S.S. Chern. This construc-
tion can be widely generalized: this is the Chern-Weil theory of characteristic
classes.

2.5. The horizontal distribution

Let π : E →M be a vector bundle overM with a connection ∇, and x ∈M .
We have seen in section 2.2 that if we have a path c in M with c(0) = x and
an initial value s0 ∈ Ex, then c can be lifted to a path s in E, the parallel
transport of s0 along c, such that s(0) = s0, π ◦ s = c and ∇ċs = 0.

There is an infinitesimal version of this process: we define the horizontal
lift of X = ċ(0) ∈ TxM at s0 ∈ Ex to be

(2.9) X̃ = d

dt

∣∣∣
t=0

s(t) ∈ Ts0E.

We claim that X̃ does not depend on the choice of c, but only on its initial
speed vector X. To see this, we calculate X̃ in a local trivialization (e1, . . . , er)
of E, over the domain U of a chart of M , with coordinates (xi). Therefore,
locally,

E|U ' U × Rr

with coordinates (xi, sa)i=1,...,n, a=1,...,r, and the corresponding vector fields ∂
∂xi

and ∂
∂sa . Observe that the latter vectors are tangent to the fibers of E. The

connection then locally reads ∇ = d+ Γ, where Γ is a local 1-form with values
in EndE. From equation (2.6) we obtain ṡ(0) = −ΓXs0 and therefore

(2.10) X̃ = (X,−ΓXs0).

For example for X = ∂
∂xi , noting s0 = saea, we obtain

X̃ =
( ∂
∂xi

,−Γis0
)

= ∂

∂xi
− Γaibsb

∂

∂sa
.

.
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2.5.1 Definition. — The horizontal distribution H∇ of (E,∇) is the distri-
bution on E defined at each point s0 ∈ E as the vector space of horizontal
lifts : H∇s0 := {X̃,X ∈ Tπ(s0)M} ⊂ Ts0E.

By definition, the parallel transport of s0 along c can be interpreted as the
unique curve in E that goes through s0, projects onto c and is everywhere tan-
gent to the horizontal distribution. For instance, on the trivial vector bundle
M × Rp, the horizontal distribution is the one that admits the submanifolds
M × {s}, s ∈ Rp, as integral submanifolds and the parallel transport along
any path between x ∈M and y ∈M is just (x, s) 7→ (y, s).

Note that there is a natural notion of vertical distribution V on E, inde-
pendent of any connection : it is simply given by the kernel of dπ, namely at
s0 ∈ E, we set Vs0 := ker dπs0 . In other words, it is the tangent bundle to the
fibers : Vs0 = Eπ(s0) = Ts0(Eπ(x0)) ⊂ Ts0E. If E has rank p andM has dimen-
sion n, the vertical distribution has dimension p, while the horizontal one has
dimension n. It is easy to see that the horizontal and vertical distributions
are supplementary :

(2.11) Ts0E = Vs0 ⊕H∇s0 .

It means dπs0 is an isomorphism between H∇s0 and Tπ(s0)M .

2.5.2 Proposition. — The horizontal distribution of a connection ∇ is in-
tegrable if and only if the vector bundle admits local trivializations in which ∇
is trivial.

An immediate consequence of the proof below is that, if ∇ is a metric
connection, then the local trivializations can be supposed to be orthonormal
(i.e. isometric on each fiber).

Proof. — The implication⇐ has been settled above so we tackle the other one.
Suppose H∇ is integrable. Then for any given point (x, 0) in the zero section
of E, there is an open neighborhood V ⊂ E of (x, 0) and a diffeomorphism
ψ : V −→ L×W such that ψ(x, 0) = (0, 0), L ⊂ Rn, W ⊂ Rp and the integral
submanifolds of H∇ are given by the ψ−1 (L× {w}), w ∈ W . Now consider
the application f : L×W →M ×W defined by

f(l, w) = (π(ψ−1(l, w)), w).

The differential of f at (0, 0) is an isomorphism, so the inverse function theorem
ensures f is a diffeomorphism near (0, 0). It follows that we may shrink V ∈ E
and W ⊂ Rp so as to obtain a diffeomorphism φ : V −→ U ×W , for some
open (connected) neighborhood U of x in M , such that
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– the integral submanifolds of H∇ are still given by φ−1(U×{w}), w ∈W ,
– and we furthermore have π ◦ φ−1(y, w) = y.

In this picture, we see from the structure of integral submanifolds that parallel
transport is given by the identity of W : the parallel transport Pxy from x to
y, along any path between x and y in some neighborhood of x, maps φ−1(x,w)
to φ−1(y, w).

Ex ∩ V
φ−−−−→ {x} ×W ∼= WyPxy

yid
Ey ∩ V

φ−−−−→ {y} ×W ∼= W

Now recall that parallel transport acts by linear isomorphisms between fibers.
It stems from the commutative diagram that if we identify W with the open
subset Ex ∩ V of the vector space Ex through φ, then every diffeomorphism
φ : Ey ∩ V −→ W is indeed linear, hence extends uniquely as a linear iso-
morphism φ : Ey −→ Ex. The map φ therefore extends as a diffeomorphism
φ : π−1(U) −→ U×Ex ∼= U×Rp such that πφ−1(y, w) = y and linear on each
fiber of π : this is local trivialization of E as a vector bundle. Then equation
(2.10) gives immediately Γ = 0 everywhere in this trivialization, so ∇ is the
trivial connection ∇ = d.

2.5.3 Proposition. — The horizontal distribution of a connection is inte-
grable if and only if the connection is flat.

Proof. — The implication ⇒ is obvious in view of Proposition 2.5.2. For the
other one, Frobenius theorem 1.6.5 says that integrable means involutive so
we need to understand what it means for H∇ to be involutive. We pick a local
trivialization and local coordinates on the base to compute like in paragraph
2.1.3 at some point with coordinates (x, s) in E :[

∂̃

∂xi
,
∂̃

∂xj

]
=
[
∂

∂xi
− Γaibsb

∂

∂sa
,
∂

∂xj
− Γajbsb

∂

∂sa

]

=
(
−
∂Γajb
∂xi

+ ∂Γaib
∂xj

+ ΓajcΓcib − ΓaicΓcjb

)
sb

∂

∂sa

= −
(
∂Γj
∂xi
− ∂Γi
∂xj

+ ΓiΓj − ΓjΓi
)

(s),

which is exactly −F∇ij (s), see formula (2.8). It follows that if F∇ = 0, then
H∇ is involutive hence integrable.
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Propositions 2.5.2 and 2.5.3 say that a flat connection is locally trivial :
it is locally completely understood. Given a connection, the basic question
is : is it trivial ? Locally, it amounts to find good coordinates in which one
sees the connection as a mere differential. This problem is a priori very hard,
but Frobenius theorem reduces it to the computation of a single quantity: the
curvature. It is the only obstruction, so we just need to compute it and see
whether it is zero or not ! This kind of idea is central in differential geome-
try, we will see one of its striking occurrences in the chapter on Riemannian
geometry.

In the course of the proof of Proposition 2.5.3, we basically proved that if
[X,Y ] = 0, then

F∇(X,Y ) = −[X̃, Ỹ ],
which yields a nice interpretation of curvature : it measures the commutation
of the lifts of commuting vector fields. To rephrase this, pick a point x and
look at the path σ obtained by starting from x, following the flow of X for
some time t, then Y for some time u, then −X for some time t and finally −Y
for some time u. Since X and Y have vanishing bracket, σ ends up in x, so
the parallel transport along σ gives an endomorphism τ(t, u) of Ex. Then the
curvature is given by

F∇(X,Y ) = − d

dt

∣∣∣
t=0

d

du

∣∣∣
u=0

τ(t, u).

Finally, let us describe all flat vector bundles. Let ∇ be a connection on a
vector bundle E over a connected baseM . Given any point x inM , we consider
the holonomy group Hol(∇, x), defined as the subgroup of GL(Ex) consisting
of the parallel transports of all loops in M based at x. If ∇ is flat, the parallel
transport along a loop only depends on the homotopy class of the loop, so ∇
gives rise to representation ρ of the fundamental group π1(M,x) in GL(Ex).
Up to conjugacy, this does not depend on the choice of x. Conversely, given a
representation ρ of π1(M,x) on Rp, we may build a flat vector bundle: letting
M̃ denote the universal cover of M , we define E as the quotient M × Rp/ ∼,
where (z, v) ∼ (γ.z, ρ(γ)v) for any γ in π1(M), z in M̃ and v in Rp. In this
way, we see that the data of a flat vector bundle of rank p over M is the same
as the data of a representation of the fundamental group of M on Rp.

2.6. Bibliography
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– A Comprehensive Introduction to Differential Geometry, Spivak.



50 CHAPTER 2. CONNECTIONS

– Einstein Manifolds, Besse.



CHAPTER 3

RIEMANNIAN GEOMETRY

3.1. Riemannian metrics

3.1.1 Definition. — Let M be a manifold. A Riemannian metric on M is
a metric g on the vector bundle TM : it is the data for each point x ∈M of a
positive definite quadratic form gx on TxM , depending smoothly on the point
x. A Riemannian manifold (M, g) is manifoldM endowed with a Riemannian
metric g.

A Riemannian metric measures the length of tangent vectors, as well as
angles between them. In local coordinates (xi), it is given by a positive definite
matrix (gij(x)) =

(
g( ∂
∂xi ,

∂
∂xj )

)
, where gij(.) are smooth local functions. This

is often written in the following way:

g = gijdx
idxj .

If we have other coordinates (yj), then it is easy to see that

g = gij
∂xi

∂yk
∂xj

∂yl
dykdyl.

Sometimes, we will write 〈X,Y 〉 for g(X,Y ) and |X| for
√
g(X,X).

Recall that any manifold can be endowed with a Riemannian metric, be-
cause one can patch local Riemannian metrics together thanks to a partition
of unity. This fact relies on the convexity of the set of positive definite sym-
metric matrices. A natural generalization of Riemannian metrics consists in
considering non-degenerate quadratic forms with arbitrary signature. For in-
stance, the smooth data of a quadratic form of signature (1, n) on a manifold
Mn+1 is known as a Lorentz metric; this is the basic object in relativistic
physics, cf. B. O’Neill’s book in the bibliography. A major difference with the
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Riemannian case is that some manifolds cannot carry Lorentz metrics. The
partition of unity argument fails owing to a lack of convexity. Exercise: prove
that the sphere S2 does not carry any Lorentz metric.

3.1.2. Examples. — 1) The Euclidean metric gRn = (dx1)2 + · · ·+ (dxn)2

on Rn. At each point, the tangent space identifies to Rn and the metric is the
standard metric of Rn.

2) The circle S1 is parametrized by an angle θ ∈ [0, 2π[ and a Riemannian
metric is given by gS1 = dθ2. The Euclidean metric of R2 in polar coordinates
(r, θ) reads gR2 = dr2 + r2dθ2, namely the basis ( ∂∂r ,

1
r
∂
dθ ) is orthonormal.

3) More generally, the Euclidean metric of Rn − {0} =]0,+∞[×Sn−1 can
be written as gRn = dr2 + r2gSn−1 where gSn−1 is a Riemannian metric on
the unit sphere Sn−1 ⊂ Rn. In the coordinates yi given by the stereographic
projection (cf. 1.1.8), one calculates

(3.1) gSn−1 = 4
∑

(dyi)2

(1 + |y|2)2 .

The proof consists in using the coordinates yi to express the coordinates of
the corresponding point in Rn, namely 1

1+|y|2 (|y|2 − 1, 2y1, . . . , 2yn−1), and
therefore

g = d

(
|y|2 − 1
1 + |y|2

)2

+ d

(
2y1

1 + |y|2

)2

+ · · ·+ d

(
2yn−1

1 + |y|2

)2

.

Expand and simplify to get the formula above.
4) Any submanifold of a Riemannian manifold inherits a Riemannian met-

ric by restricting the metric of the manifold to the tangent bundle of the
submanifold.

5) Any product of Riemannian manifolds inherits a Riemannian metric
obtained by summing the metrics on each factor. For instance, the torus
Tn = S1 × · · · × S1 is therefore endowed with a metric gTn , induced by the
metric on each factor S1 given by 2).

6) A surface of revolution in R3, say around the z axis. We take polar
coordinates (r, θ) in the xy plane. The surface is given by an equation of the
type r = f(z), but it is more convenient to parameterize it in a different way:
the intersection with the xz plane is a curve, which we parameterize by the
length u. Then the metric of the surface is g = du2 + r(u)2dθ2.

7) The hyperbolic space Hn. We consider Rn+1 endowed with the quadratic
form h = −(dx0)2 + (dx1)2 + · · ·+ (dxn)2, of signature (1, n) : it is a Lorentz
metric and the space we describe is known as Minkowski space R1,n. The
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Riemannian manifold (Hn, gHn) is defined as the component of {−(x0)2 +
(x1)2 + · · · + (xn)2 = −1} with x0 > 0, endowed with the restriction of h
to the tangent bundle of this submanifold. The reader may check that the
restriction of h to each tangent space of this hypersurface is indeed positive
definite.

3.1.3 Remark. — A deep theorem of Nash (Nobel prize in Economics, main
character of the movie A beautiful mind) says that any Riemannian manifold
can be seen as a submanifold of some RN , with the induced metric.

A Riemannian metric gives many structures, many useful objects. For in-
stance, it induces a metric on the vector bundle Λ•M , which can be used to
distinguish a volume form on oriented manifolds.

3.1.4 Definition. — Assume (Mn, g) is an oriented Riemannian manifold.
Its volume form d volg is the unique positive n-form of norm 1.

Beware the (standard) notation d volg is misleading : this is not an exact
form in general. If (ei) is an orthonormal basis of TxM , then d volg = e1 ∧
· · · ∧ en In local coordinates, it is given by the formula

d volg =
√

det(gij)dx1 ∧ · · · ∧ dxn.

LetN be a hypersurface of an oriented Riemannian manifoldM . We assume
there is a unit normal vector field ν ∈ Γ(TM |N ) (it exists iff N is orientable).
ThenN is oriented. Moreover, it can be endowed with the induced Riemannian
metric and the corresponding volume form is given by ινdvolM . .

The (possibly infinite) volume of an oriented Riemannian M is defined by
volg(M) =

∫
M d volg . For instance, the volumes of the spheres are given by

vol(S2n) = (4π)n (n− 1)!
(2n− 1)! , vol(S2n+1) = 2π

n+1

n! .

3.1.5 Remark. — Orientation is necessary to integrate n-forms on a man-
ifold of dimension n and to get Stokes theorem. It also makes it possible to
integrate a function f , by integrating the n-form f dvol, but this is not the best
way to do it. Let (Mn, g) be a Riemannian manifold, possibly non-orientable.
Then ΛnM is a line bundle (trivial iff M is orientable). If we identify ω with
−ω in each fiber of ΛnM , we obtain a “half-line” bundle DM (the bundle
of “densities”), which is always trivial ! Indeed, locally, one can always find
sections of ΛnM with constant norm 1 : there are two possible choices, ω and
−ω. Now these two choices yield the same local section in DM (|ω|). This
uniqueness makes it possible to obtain a well-defined global section, that we
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may call |dvol| (usually, simply dvol). Then one can define the integral of a
function f ,

∫
M f |dvol|, exactly like how we defined the integral of n-forms.

The key is the formula for the change of variables in Rn, which involves the
absolute value of a Jacobian determinant ; the reader will easily guess how this
absolute value relates to the bundle of densities... In particular, the volume
of any Riemannian manifold is well-defined ; for instance, the volume of RP 2

(for the metric induced by that of S2, see below) is 2π, i.e. half the volume of
S2.

3.2. Isometries

Given a smooth map φ between manifolds, one can define the pullback of a
metric as in the case of differential forms :

(φ∗g)x(X,Y )) = gφ(x)(dxφ(X), dxφ(Y )).

3.2.1 Definition. — A diffeomorphism φ : (M, g) → (N,h) is an isometry
if φ∗h = g.

The definition means that φ is a diffeomorphism such that for every point
x, dxφ is a linear isometry between TxM and Tφ(x)N . The isometry group
Isom(M, g) of (M, g) is the set of diffeomorphisms of M that are g-isometric.
A local diffeomorphism φ with φ∗h = g is a local isometry.

3.2.2. Examples. — 1) The antipodal map x→ −x on Sn is an isometry.
As a consequence, since RPn is the quotient of Sn by this isometry, the metric
of Sn induces a metric on RPn (see below for more details on quotients).

2) The isometries of Rn are obtained from orthogonal transformations and
translations: Isom(Rn) = Rn nO(n).

3) Isom(Sn) = O(n+ 1), and Isom(Hn) = Oo(1, n), where the index means
that we take the subgroup preserving the component of {(x0)2 − (x1)2 −
· · · (xn)2 = 1} with x0 > 0 . If we write SO instead of O in these exam-
ples, we obtain the orientation-preserving isometries. These two spaces are
homogeneous spaces, that is the isometry group acts transitively. Therefore
they are quotient of the isometry group by the isotropy group of a point:

Sn = O(n+ 1)/O(n), Hn = O0(1, n)/O(n).

Note that for M = Rn, Sn or Hn, we have given a group that is clearly a
group of isometries, but we have not proved that there is no other isometry.
Nevertheless it is easy to see that these groups have a stronger property than
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being just homogeneous: actually, for any points x et y and any isometry
u : TxM → TyM , there exists an element φ of the group such that φ(x) = y and
dxφ = u (this is because the stabilizer of a point is each time O(n)). We will
see later from the study of the exponential map that for a complete connected
Riemannian manifold, there is at most one isometry with given (x, y, u), cf
Lemma 3.6.6, so this proves that there is no possible other isometry.

3.2.3 Example. — A Lie group G is by definition a manifold endowed with
smooth group operations. Every element γ of G therefore defines a diffeomor-
phism Lγ : x 7→ γx, by multiplication on the left. It turns out that every
Lie group G can be endowed with metrics g that are left-invariant in that
every map Lγ is an isometry of g. The recipe is the following. Pick any scalar
product ge on the tangent space TeG at the identity element e and define g at
any point x ∈ G by

gx := ge
(
(de(Lx))−1(.), (de(Lx))−1(.)

)
.

The corresponding volume form is of course also invariant under left transla-
tions and it gives rise to a Haar measure on G. For instance, a left-invariant
metric on the Lie group GLn(R) is given by gA(B,C) = Tr((A−1B)TA−1C),
for A ∈ GLn(R) and B, C in TAGLn(R) = Mn(R).

In presence of isometries, it is natural to consider quotients. Let us state an
important result on smooth actions of Lie groups G on manifolds M . Recall
that the action of G on M is free if any non-trivial element of G has no fixed
point in M (∃x ∈ M,γx = x⇒ γ = e) and proper if, for any compact subset
K of M , the closure of {γ ∈ G/γK ∩K 6= ∅} is a compact subset of G. Note
that ‘proper’ is automatic if G is compact and, when G is non-compact, it
roughly means that any compact portion of M is really moved away by the
action of most elements of G, those outside a compact part. When G is a
discrete group, it implies that any two points x and y which are not in the
same orbit can be separated by two open subsets U and V ofM such that GU
does not intersect V , i.e. the topological quotient space M/G is Hausdorff!
‘Free’ means we avoid for instance a quotient like R2/± id which has a conical
singularity at the origin.

3.2.4 Proposition. — Let G be a Lie group acting smoothly, freely and prop-
erly on a manifold M . Then M/G carries a unique structure of smooth man-
ifold such that the projection π : M → M/G is a smooth submersion. When
G is a discrete group, π is in fact a covering map.
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When G acts freely and properly by isometries on a Riemannian manifold
(M, g), then M/G inherits a well-defined Riemannian metric ǧ such that for
all vectors v and w in (Ker dxπ)⊥ ⊂ TxM ,

ǧπ(x)(dxπ(v), dxπ(w)) = gx(v, w).

For instance, the standard metrics on the Euclidean space and the spheres
therefore induce metrics on Tn = R/Zn, RPn = Sn/± id and CPn = Sn/S1.

3.3. The Levi-Civita connection

Our aim here is to prove that any Riemannian metric comes with a connec-
tion on the tangent bundle. First, we need a general definition.

3.3.1 Definition. — If ∇ is a connection on the tangent bundle TM of a
manifoldM , the torsion T∇ of∇ is given by TM , called the torsion ofM .given
by

T∇X,Y := ∇XY −∇YX − [X,Y ],

where X and Y are vector fields on M .

The reader may check that T∇ is a section of Λ2M ⊗ TM , given locally by
the formula

(3.2) T∇
(
∂

∂xi
,
∂

∂xj

)
= (Γkij − Γkji)

∂

∂xk
.

In particular, a torsion-free connection, i.e. a connection with zero torsion, is
a connection whose Christoffel symbols satisfy the symmetry property

(3.3) Γkij = Γkji.

A geometric interpretation of the torsion will be given in 3.4.3.

3.3.2 Theorem and definition. — The tangent bundle of any Riemannian
manifold (M, g) carries a unique torsion-free g-metric connection : this is the
Levi-Civita connection of (M, g).

Proof. — Let us deal with the uniqueness. Suppose we have a convenient
connection ∇. Since it is g-metric, we can write

LX〈Y,Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉,
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as well as similar formulas for LY 〈X,Z〉 and LZ〈X,Y 〉, and then use these
identities to compute LX〈Y,Z〉+ LY 〈X,Z〉 −LZ〈X,Y 〉. In view of T∇ = 0,
the result of this computation reads:

(3.4) 2〈∇XY,Z〉 = LX〈Y,Z〉+ LY 〈X,Z〉 −LZ〈X,Y 〉
− 〈X, [Y,Z]〉 − 〈Y, [X,Z]〉+ 〈Z, [X,Y ]〉.

Since g = 〈., .〉 is non-degenerate on each fiber, this equality determines ∇ in
terms of g, hence the uniqueness.

As for the existence, we merely define ∇ by formula (3.4). The reader
may check that (i) the expression really yields a connection (just use basic
properties of Lie derivatives and brackets to see how the formula behaves when
you multiply X, Y or Z by some function f), (ii) it is metric (straightforward)
and (iii) torsion-free (obvious on coordinate vector fields).

Formula (3.4) is known as the Koszul formula. It is very important because
it makes it possible to compute the Levi-Civita connection in any reasonable
context; in particular, it yields an expression for Christoffel symbols in local
coordinates :

(3.5) Γlij = 1
2g

kl(∂gjk
∂xi

+ ∂gik
∂xj

− ∂gij
∂xk

)
,

where (gkl) is the inverse matrix of (gkl).
The Levi-Civita connection of gRn is of course the trivial connection. Any

submanifold of RN inherits a Riemannian metric by restriction of gRn . The
Levi-Civita connection is then induced by the trivial connection on RN (cf.
2.1.5). In particular, this yields the Levi-Civita connection of Sn ⊂ Rn+1 or
Tn = S1×· · ·×S1 ⊂ R2n. The Levi-Civita connection of the hyperbolic space
Hn is also induced by the trivial connection on Rn+1.

3.3.3. Exercise. — Use Koszul’s formula to compute the Levi-Civita con-
nection of a surface of revolution in R3, with the metric g = du2 + r(u)2dθ2

(cf. 3.1.2).
The immediate interest of the Levi-Civita connection is two-fold : firstly, it

yields a notion of geodesics generalizing “straight lines” from affine geometry
to any Riemannian manifold ; secondly, it involves a notion of curvature, which
is a fundamental invariant, generalizing the Gaussian curvature of surfaces.
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3.4. Geodesics

Straight lines in the affine space Rn can be seen as curves c with zero
acceleration : c̈ = 0. Given any connection ∇ on the tangent bundle of a
manifold M , we can define the acceleration vector of a curve c : I →M . This
is the derivative of the velocity vector ċ along the curve, namely along ċ : the
acceleration vector is ∇ċċ. In what follows, we will stick to the case of the
Levi-Civita connection ∇g of a metric g.

3.4.1 Definition. — A curve c on a Riemannian manifold (M, g) is called a
geodesic if ∇gċ ċ = 0.

In other words, the velocity vector is obtained by parallel transport of the
initial velocity vector along the curve. Since the Levi-Civita connection ∇g =
∇ is g-metric, the definition implies d

dt |ċ|
2 = 2〈ċ,∇ċċ〉 = 0, so the velocity

vector ċ of a geodesic has always constant norm.
In local coordinates (xi), we can compute the geodesic equation : for a

curve c(t) = (xi(t)),

∇ċċ = ẋj
(∂ẋi
∂xj

+ Γijkẋk
) ∂
∂xi

=
(
ẍi + Γijkẋj ẋk

) ∂
∂xi

,

so the equations for a geodesic are :

(3.6) ẍi + Γijkẋj ẋk, 1 6 i 6 n.

This is a nonlinear second order differential equation on (xi(t)). It has a
unique solution on some maximal interval as soon as the initial position c(0)
and initial velocity vector ċ(0) are given.

3.4.2. Examples. — 1) On Rn, geodesics are of course straight lines, pa-
rameterized at constant speed.

2) On Sn ⊂ Rn+1 the Levi-Civita connection is the projection of the Levi-
Civita connection of Rn+1 so the geodesics with unit speed can be seen as
curves c in Rn+1 with |c| = 1, |c′| = 1 and whose acceleration vector c′′ in
Rn+1 is normal to the sphere, i.e. c′′ = λc. It follows that λ = 〈c′′, c〉 =
−〈c′, c′〉 = −1 so that c′′ + c = 0. The geodesics of the sphere are therefore
the great circles.

3) The geodesics of Tn = S1×· · ·×S1 are the curves that turn around each
circle S1 at constant speed. This torus can also be seen as Tn = Rn/2πZn
and then the geodesics are simply the projections of straight lines in Rn.
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3.4.3 Remark. — The notion of geodesics extends immediately if ∇ is any
connection on the tangent bundle TM and it allows a geometric interpretation
of its torsion. Let X and Y denote two vectors in TpM , p ∈ M . For small
positive t and u, we let τXY (t, u) denote the point obtained in following way:
start from p, follow the geodesic γX with initial velocity vectorX for some time
t and then follow for some time u the geodesic with initial velocity vector Ỹ (t),
where Ỹ (t) is the parallel transport of Y from p to γX(t), along γX . Another
point τY X(t, u) is obtained by switching the roles of X and Y : let γY be the
geodesic starting from p with velocity Y , let X̃(u) denote the parallel transport
of X from p to γY (u) along γY , and define τY X(t, u) as the point at time t
along the geodesic starting from γY (u) with velocity X̃(u). It is instructive to
compare the Taylor expansions of τXY (t, u) and τY X(t, u) in a chart. Using
the equation of geodesics 3.6 and the equation of parallel transport 2.6, one
finds

τXY (t, u) = p+ tX + uY − tuΓ(X)Y

− t2

2 Γ(X)X − u2

2 Γ(Y )Y + terms of order three.

The expansion of τY X(t, u) follows at once and the outcome is:

τY X(t, u)− τXY (t, u) = tu T∇(X,Y ) + terms of order three.

So the torsion measures the infinitesimal defect of τXY and τY X to coincide.

In the Euclidean space Rn, straight lines yield the shortest paths between
any two points. We will see that a similar property holds true for geodesics
on a Riemannian manifold. First, observe that a Riemannian metric g on M
makes it possible to define the length of a path c : [a, b]→M : it is

L(c) =
∫ b

a

√
g(ċ(t), ċ(t))dt =

∫ b

a
|ċ|.

This is independent of the parameterization of c and one can always change
the parameterization so that c is parameterized by arc length: |ċ| = 1 (as in
Rn). We want to analyze the paths realizing the minimum distance from x to
y (which we call minimizing paths), and for this we will find the critical points
of L. We consider a family of paths cs : [a, b] → M depending on s ∈]− ε, ε[,
namely a smooth map c : [a, b]×]− ε, ε[→M and we wish to calculate d

dsL(cs)
at s = 0.
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Shortening ∂c
∂t into ∂tc and using the fact that ∇ is a metric connection, we

find
d

ds
L(cs) = d

ds

∫ b

a

√
g(∂tc(t, s), ∂tc(t, s))dt =

∫ b

a

g(∂tc,∇∂sc∂tc)
|∂tc|

dt.

Observe that in local coordinates we may write :

∇∂sc∂tc = ∂2c

∂s∂t
+ Γ∂sc∂tc.

In this expression, the first term is symmetric in s and t, because of Schwarz
theorem, and the second one also, because ∇ is torsion free, cf. (3.3). Then
∇∂sc∂tc = ∇∂tc∂sc and we can further compute

d

ds
L(cs) =

∫ b

a

g(∂tc,∇∂tc∂sc)
|∂tc|

dt =
∫ b

a

d
dtg(∂tc, ∂sc)− g(∇∂tc∂tc, ∂sc)

|∂tc|
dt.

Let us assume c0 = c(., 0) is parameterized at constant speed, that is |ċ0| =
v0 := L(c0)

b−a , and define a vector field along c0 by N0(t) = ∂
∂s |s=0 c(t, s). Then

we obtain the formula for the variation of length:
(3.7)

d

ds

∣∣∣
s=0

L(cs) = 1
v0

(
g(ċ0, N0)|t=b − g(ċ0, N0)|t=a −

∫ b

a
g(∇ċ0 ċ0, N0)dt

)
.

We are interested in critical points of L among paths between two given given
points x to y. These are paths c0 : [a, b] −→M parameterized with constant
speed (recall one can always reparameterize to get this) with c0(a) = x and
c0(b) = y such that for any deformation cs of c0 with cs(a) = x and cs(b) = y,
the derivative of L(cs) at s = 0 vanishes. This means that the right hand side
of (3.7) must vanish for any vector field N0 along c0 such that N0(a) = 0 and
N0(b) = 0, namely ∇ċ0 ċ0 = 0 :

3.4.4 Proposition. — A path c : [a, b] → M parameterized with constant
speed is a critical point of the length among paths from c(a) to c(b) if and only
if it is a geodesic.

In particular, up to reparameterization, minimizing paths are geodesics.
The converse cannot be true in full generality. For instance, the geodesics of
the sphere are the great circles, which we can see as paths from some point
x to itself ; these are certainly not minimizing paths between x and x, since
they are beaten by the constant path ! What we will show later (cf. the
study of the exponential map, corollary 3.6.4) is that geodesics are exactly the
locally minimizing paths : given any two close enough points of a geodesic,
the geodesic is the unique minimizing path between them.
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3.4.5. Exercise. — Prove that the critical points of the energy

(3.8) E(c) =
∫ b

a
|ċ|2dt

among paths from c(a) to c(b) are also the geodesics.

3.5. Symmetries and geodesics

Basically, an isometry preserves the metric, so it preserves every natural
object determined by the metric, such as the volume form, the Levi-Civita
connection, the geodesics... The presence of isometries can indeed be used to
understand the geodesics. For instance, let us explain why every geodesics of
the sphere S2 is a great circle, namely the intersection of the sphere with some
plane through 0. We pick a point x and a tangent vector v to the sphere at this
point. Let H be the plane generated by x in v in R3. If the geodesic starting
at x with velocity v did not remain inside H, the reflection in H (which is an
isometry) would yield another geodesic starting at x with velocity v and that
is not possible (because of Cauchy-Lipschitz theorem) : so the geodesic stays
in H, which is what we wanted to prove. The same argument extends to any
dimension and also shows that the geodesics of the hyperbolic space consist
of intersections of Hn with planes.

Now, let us introduce the infinitesimal analogue of an isometry.

3.5.1 Definition. — On a Riemannian manifold, a Killing field is a vector
field whose flow consists of isometries.

Observe there is a natural notion of a Lie derivative of a metric g along a
vector field X (with flow φt):

(3.9) LXg = d

dt

∣∣∣
t=0

φ∗t g.

As for differential forms, we have

(3.10) (LXg)(Y,Z) = LX(g(Y, Z))− g(LXY,Z)− g(Y,LXZ).

Using LXY = [X,Y ] and the properties of the Levi-Civita connection, one
can then see that

(LXg)(Y, Z) = g(∇YX,Z) + g(Y,∇ZX).

In words, (LXg)x is twice the symmetric part of the bilinear form g(∇.X, .)x on
TxM . The reader may check that twice the skew-symmetric part of g(∇.X, .)
is the exterior derivative d(X]) of the one-form X] = g(X, .) that is dual to X
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with respect to the metric g (since g is non-degenerate on each fiber, it yields
an identification between the tangent and the cotangent bundle).

3.5.2 Proposition. — A vector field X on a Riemannian manifold (M, g) is
Killing iff LXg = 0, i.e. g(∇.X, .) is skew-symmetric.

Proof. — The group property of the flow gives d
dtφ
∗
t g = φ∗tLXg. The result

then follows immediately from the remarks above.

3.5.3 Lemma. — If X is a Killing vector field and c a geodesic, then 〈ċ, X〉
is constant along c.

Proof. — One has Lċ〈ċ, X〉 = 〈ċ,∇ċX〉 = 0 (the first equality by the geodesic
equation, the second by the Killing condition).

The quantity 〈ċ, X〉 is preserved along a geodesic, it is a first integral of the
geodesic equation. This is useful for finding the solutions of the geodesic
equation when the metric has symmetries, and we shall now give an example.

3.5.4. Example. — Suppose we have a surface of revolution, with metric
g = du2 +r(u)2dθ2 (see example 3.1.2). The rotation vector X = ∂

∂θ generates
the flow of rotations of the surface, and is therefore a Killing field. Then our
first integral says immediately that along a geodesic c, the quantity r2θ̇ is a
constant, say C; it is known as the Clairaut invariant of the geodesic. If we
assume c is parametrized by arc length and denote by α the angle between
ċ and ∂

∂θ , then cosα = θ̇
r and the Clairaut invariant can be expressed as

r cosα = C.
On the other hand, requiring that ċ has unit length yields u̇2 + r2θ̇2 = 1.

Therefore, up to reversing time, we obtain the system

(3.11) θ̇ = C

r2 , u̇ =

√
1− C2

r2 .

This system of first order differential equations can be solved to provide po-
tential geodesics. Two special kinds of solutions are interesting:

– θ = constant, C = 0 and u(t) = t: these are the meridians and one can
check that they have zero acceleration and are therefore geodesics;

– u(t) = constant = u0, C = r(u0) and θ(t) = t
r(u0) : these are parallels

(i.e. horizontal circles) and they are geodesics if and only if r(u0) is a
critical value, i.e. dr

du |u=u0 = 0 (check it).
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Observe that, in fact, any other solution of 3.11 (i.e. neither a parallel or a
meridian) yields a geodesic. The behaviour of these geodesics c is ruled by
their Clairaut invariant. Owing to r cosα = C, we have r > C. Equations
3.11 allow the following phenomenons. If c(0) lies between two consecutive
parallels with radius r = C non-critical, then c will keep bouncing between
these two parallels forever. If the surface is (complete and) non-compact and
c(0) is not sandwiched like in the previous case, c will escape to infinity, maybe
after bouncing on one parallel with r = C non-critical. If by chance c points
toward (u̇ is monotone) a parallel with radius r = C critical, then it will
accumulate on it.

3.5.5. Exercise. — On the 2-sphere S2 we consider the metric of revolution

g = (1 + f(z))2

1− z2 dz2 + (1− z2)dθ2,

where f : [−1, 1] →] − 1, 1[ is any smooth function with f(−1) = f(1) = 0.
Show that if f is an odd function (f(−z) = −f(z)), then all geodesics of g
are circles of length 2π (Zoll, 1903). Hint: deduce the behaviour of geodesices
from the discussion above and compute the periods of the coordinates z(t) and
θ(t) of a geodesic.

3.6. The exponential map

Let (Mn, g) be a Riemannian manifold. Given x ∈ M and X ∈ TxM , let
γX be the geodesic such that γX(0) = x and ˙γX(0) = X. If γX is defined up
to time 1, we set :

(3.12) expx(X) := γX(1).

This defines a map expx from some subset of TxM to M . This is the expo-
nential map at x.

Now, take any vector X. If r is a small enough real number, then expx is
defined on rX and

(3.13) expx(rX) = γX(r).

It follows that expx is defined on some open star-shaped neighborhood of the
origin in TxM (star-shaped : if X is inside and 0 6 r 6 1, then rX is inside).

Taking the derivative of (3.13) with respect to r at r = 0, we see that
d0 expx(X) = X (with the canonical identification between T0(TxM) and
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TxM). Therefore :

(3.14) d0 expx = idTxM .

Therefore expx is a diffeomorphism between a neighborhood U of 0 in TxM

and a neighborhood V of x in M . Then consider

(3.15) exp−1
x : V −→ U ⊂ TxM ' Rn

is a smooth chart near x. Moreover, TxM carries a natural structure of Eu-
clidean vector space, given by gx, so we may identify TxM with the Euclidean
vector space Rn. What we are saying is that, given a metric g, there is a
canonical chart around any point, well defined up to the action of O(n) on
Rn. The corresponding coordinates are called normal coordinates or geodesic
coordinates or exponential coordinates.

An important notion in Riemannian geometry is the injectivity radius, which
measures the size of the domain of the exponential map: the injectivity radius
at x, denoted by injx, is the largest number r such that expx is a diffeomor-
phism on the ball of radius r and centered in 0 ∈ TxM ; the injectivity radius
inj(M) of M is the infimum of all injx, x ∈M .

The exponential chart is expected to have special properties, so let us write
the metric in normal coordinates: g = gijdx

idxj (in other words, we look at
the pullback metric exp∗x g). Since d0 expx is the identity and we identify TxM
with the Euclidean Rn, we certainly have

(3.16) gij(0) = δij .

In view of (3.13), unit speed geodesics starting from x are given by r 7→
expx(rX) for some unit vector X. In normal coordinates, these geodesics
are thus described by straight rays from the origin : letting r be the radial
coordinate, we have

(3.17) ∇ ∂
∂r

∂

∂r
= 0.

Using this equation at the origin together with T∇ = 0, we find∇ ∂

∂xi

∂
∂xj (0) = 0

for all indices so that Christoffel symbols vanish at the origin:

(3.18) Γkij(0) = 0.

Finally, since ∇ is g-metric, we have
∂gij
∂xk

=
〈
∇ ∂

∂xk

∂

∂xi
,
∂

∂xj
〉

+
〈 ∂
∂xi

,∇ ∂

∂xk

∂

∂xj
〉
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which vanishes at the origin, hence the Taylor expansion :

(3.19) gij = δij +O(r2).

This means that in normal coordinates, the metric is approximated up to
second order by the Euclidean metric

∑
(dxi)2. As we shall see later, it is

not possible in general to obtain a better approximation, because the second
derivatives of the coefficients gij can be interpreted as the curvature of the
Levi-Civita connection.

3.6.1. Examples. — 1) In Rn, one has expx(X) = x+X since the geodesics
are the straight lines. The injectivity radius at every point is +∞.

2) In Rn×S1, one has exp(x,z)(X, t∂θ) = (x+X, zeit). The injectivity radius
at every point is π.

3) In Sn, in the stereographic projection from the north pole, the geodesics
issued from the south pole become straight lines, but the velocity in the coor-
dinates is not constant, see formula (3.1). To obtain the normal coordinates,
it is therefore sufficient to re-parameterize each ray by arc length: this gives
the change of coordinates ρ = 2 arctan r (so ρ < π), and the formula

(3.20) g = dρ2 + sin2(ρ)gsn−1 .

The injectivity radius at every point is π.
4) Similarly prove that the hyperbolic metric can be written in normal

coordinates as

(3.21) g = dρ2 + sinh2(ρ)gSn−1 .

The injectivity radius at every point is +∞.

3.6.2. Exercise. — 1) Prove that any compact Lie group carries a bi-
invariant Riemannian metric, i.e. invariant under both left translations (Lγ :
x 7→ γx, γ ∈ G) and right translations (Rγ : x 7→ xγ).

2) Let X be a left-invariant vector field on a Lie group G. (i.e. L∗γX = X

for every γ ∈ G). Let φt denote the flow of X and γ(t) := φt(e). Prove the
formula

φt(x) = xγ(t) = Lx(γ(t)) = Rγ(t)(x).
3) Let G be a Lie group endowed with a bi-invariant metric 〈〉, with levi-

Civita connection ∇. Prove that for any left-invariant vector fields X and
Y ,

(3.22) ∇XY = 1
2[X,Y ].
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Hint: use 2) and 1.5.11 to prove that 〈[X, .], .〉 is skewsymmetric. Why does
it completely determine ∇? Deduce that the exponential map is given by the
flow of left-invariant vector fields, or in other words expe(tXe) = γ(t), where
γ is like in 2).

4) Let us work out the example of SO(n). We endow TInSO(n) (the space of
skewsymmetric matrices) with the scalar product 〈A,B〉 = TrATB = −TrAB
and extend it into a left-invariant metric on SO(n). a) Prove that it is a bi-
invariant metric. b) Write down in terms of matrices what left invariant vector
fields look like, and what their flow and Lie bracket are. c) Prove that expIn

is the usual exponential map on matrices :

expIn
A =

∞∑
k=0

Ak

k! .

d) Prove that the injectivity radius at any point of SO(n) is
√

2π.

3.6.3 Gauss Lemma. — Let γ be a geodesic issued from γ(0) = x with
inital velocity vector X = γ̇(0) ∈ TxM . If Y ∈ TxM is orthogonal to X then
dX expx(Y ) is also orthogonal to dX expx(X) = γ̇(1).

We already know that expx maps straight rays to geodesics issued from x.
What Gauss Lemma says is that any vector orthogonal to a straight ray is
mapped to a vector orthogonal to the corresponding geodesic. In other words,
the image of any sphere in TxM is orthogonal to all the geodesics issued from
the point x.

Proof. — Let σ(s) be any path in TxM such that σ(0) = X, σ′(0) = Y and
|σ(s)| = |X| : σ starts at X, orthogonally to X and wanders on the sphere
of radius |X|. We consider c(t, s) = expx(tσ(s)). This is a deformation of the
geodesic γ with fixed starting point c(0, s) = x. Moreover, every path c(., s)
has length |X| (because |σ(s)| = |X| and 0 6 t 6 1). The formula (3.7) for
the variation of the length then reads

0 = 1
|X|
〈∂tc(1, 0), ∂sc(1, 0)〉.

Now, ∂tc(1, 0) is the derivative at t = 1 of expx(tX) = γ(t), so we have
dX expx(X) = γ̇(1), and ∂sc(1, 0) is the derivative at s = 0 of expx(σ(s)),
which is certainly dX expx(Y ), hence the result.

This lemma has several important consequences. First it tells us that in
normal coordinates, the rays from the origin are orthogonal to the concentric
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spheres, which implies that we have polar coordinates in the following sense :

(3.23) g = dr2 + gr

where gr denotes metrics on the sphere Sn−1, depending smoothly on r. Be-
sides, from the Taylor expansion of g at 0, we get

gr = r2gSn−1 +O(r4),

For the Euclidean metric gr = r2gSn−1 , for the sphere and the hyperbolic
space, see the formulas (3.20) and (3.21).

3.6.4 Corollary. — Let x and y be two point in M such that y belongs to
the image of the ball B(0, injx) by expx. Then there is a unique shortest path
from x to y. It is given by the geodesic t 7→ expx(tX), where |X| < injx and
expx(X) = y.

In particular, any small part of a geodesic is length minimizing : geodesics
are locally minimizing.

Proof. — The geodesic t 7→ expx(tX) has length |X| by definition of the
exponential map. So we must show that any other path γ from x to y has
length greater than or equal to |X|. Let T be the first time t such that
|γ(t)| = |X| and let γ̄ be the restriction of γ to [0, T ] : γ̄ is shorter than γ and
remains in B(0, injx). Gauss Lemma yields

L(γ̄) =
∫ T

0
|dr( ˙̄γ)|dt+

∫ T

0

√
gr( ˙̄γ, ˙̄γ)dt.

It follows that

L(γ̄) >
∫ T

0
dr( ˙̄γ)dt = r(γ̄(T ))− r(γ̄(0)) = |X|.

So the length of γ is at least |X|.

Our definition of the length of a path does not require much regularity on
the path : we may consider paths that are only piecewise C1 for instance. A
consequence of Gauss Lemma (cf. the proof above) is that minimizing paths
are bound to be smooth because they must be geodesics.

On any connected Riemannian manifold (M, g) there is a natural distance :
the distance dg(x, y) between x and y is defined as the infimum of the lengths
of paths from x to y. The corollary above tells us that the image of any small
ball Bgx(0, t) of TxM by expx is the ball Bdg (x, t). Note that the topology
induced by this distance is the same as the topology of the manifold.
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We say that a connected Riemannian manifold (M, g) is complete if the
metric space (M,dg) is complete. Hopf-Rinow theorem explains what it means
to be complete.

3.6.5 Hopf-Rinow theorem. — On a connected Riemannian manifold
(M, g), the following statements are equivalent:

1. (M, g) is complete;
2. for any x ∈M , expx is defined on TxM ;
3. there exists x ∈M , such that expx is defined on TxM ;
4. closed balls are compact.

If (M, g) is complete, then any two points of M can be joined by a minimizing
geodesic.

In words, a Riemannian manifold is complete if all its geodesics are defined
on R, they are not allowed to reach “infinity” in finite time.

The examples mentionned previously are complete but it is easy to build
non-complete Riemannian manifolds, like this one : Rn − {0} is not complete
since a geodesic running towards the origin must stop in finite time.

Proof. — 1. ⇒ 2. Let γ be a geodesic defined on [0, T [ with T < +∞. Then
|γ̇| is constant so that γ(t) satisfies Cauchy criterion near T . By complete-
ness, γ can therefore be extended continuously to [0, T ]. Now, pick (normal)
coordinates around γ(T ) and look at the geodesic equation γ̈k = −Γkij(γ)γ̇iγ̇j .
The right-hand side is bounded near t = T so γ̈ is bounded and γ̇ also ex-
tends continuously at t = T . We can then solve the geodesic equation on a
neighborhood of T to extend γ beyond T . So γ is defined up to +∞.

2. ⇒ 3. Trivial.
3. ⇒ (every point of M can be joined to x by a minimizing geodesic). Let

y ∈M . We shall construct a geodesic from x to y of length d(x, y). As a first
step, we pick a small number δ < injx and observe that there exists a point z
in the sphere ∂B(x, δ) such that

d(x, z) = δ and d(x, y) = d(x, z) + d(z, y).

Indeed, the sphere ∂B(x, δ) is compact (it is the image of a standard sphere
by expx) so there is a point z of ∂B(x, δ) such that d(z, y) = d(∂B(x, δ), y).
Then, any path σ from x to y goes through ∂B(x, δ), say for the first time
at zσ, which implies L(σ) > δ + d(zσ, y) > δ + d(z, y). This is true for any
σ so d(x, y) > d(x, z) + d(z, y). And this is indeed an equality by triangle
inequality.
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The points x and z can be connected by a unique unit speed geodesic γ
thanks to the choice of δ and we know by assumption that γ is defined on R.
The second step consists in proving that γ(d(x, y)) = y. We consider the set

I = {t ∈ [0, d(x, y)] / d(x, γ(t)) = t and d(x, y) = d(x, γ(t)) + d(γ(t), y)}.

Then I is an interval containing [0, δ]. Let t ∈ I with t < d(x, y). As in the
first step, for any small enough ε > 0, there exists w ∈ ∂B(γ(t), ε) such that

d(γ(t), y) = d(γ(t), w) + d(w, y).

With t ∈ I, it follows that

d(x,w) > d(x, y)− d(y, w) = d(x, γ(t)) + d(γ(t), y)− d(w, y)
= d(x, γ(t)) + d(γ(t), w) > d(x,w).

This is therefore an equality, which implies that the path γ|[0,t] followed by the
unique geodesic from γ(t) to w has length d(x, γ(t)) + d(γ(t), w) = d(x,w),
hence is a minimizing path and thus a smooth geodesic: it must be γ|[0,t+ε].
Then w = γ(t+ ε) and t+ ε ∈ I. So I is open in the interval [0, d(x, y)]. It is
also closed and non-empty : I = [0, d(x, y)]. And d(x, y) ∈ I means that γ is
a minimizing geodesic from x to y.

3. ⇒ 4. The previous statement ensures that for any point y of M , y =
expx Y with |Y | = d(x, y), so closed balls are in the image through expx of
closed balls in TxM , which are compact.

4. ⇒ 1. A Cauchy sequence is bounded, so from 4. one can extract a
converging subsequence. But then the whole sequence converges, for it is
Cauchy.

Completeness makes it possible to play with geodesics. For instance, any
local isometry f : M −→ N maps geodesics to geodesics, hence

(3.24) f
(
expMx X

)
= expNf(x) (dxf(X)) ,

provided that the geodesic t 7→ expMx (tX) is well defined on [0, 1]. If M is
complete, expMx is well defined on TxM and onto M , so the left-hand side
with x fixed determines f . It follows that the right-hand side, for some fixed
x, determines f , hence

3.6.6 Lemma. — Let f1 and f2 be two local isometries between complete
connected Riemannian manifolds M and N . Assume there is a point x ∈ M
such that f1(x) = f2(x) and dxf1 = dxf2. Then f1 = f2.

Another useful application of completeness is the following result.
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3.6.7 Lemma. — If M and N are complete connected Riemannian mani-
folds, then any local isometry f : M −→ N is a covering map.

Proof. — Firstly, observe that f is onto owing to completeness and (3.24).
Secondly, for any y inN , if r > 0 is small (smaller than injy), then f−1(B(y, r))
is the disjoint union of the balls B(xi, r), xi ∈ f−1(y). Details are left to the
reader (hint : push geodesics downstairs or lift them upstairs, by f).

3.7. Riemannian curvature

The curvature of the Levi-Civita connection of a Riemannian metric g is
a crucial invariant. It is often called the Riemann curvature tensor. In this
text, we will denote it by R. A Riemannian manifold is said to be flat if its
Levi-Civita connection is flat, i.e. R = 0.

Beware the two sign conventions for the curvature tensor are widely used
in the literature ! The convention chosen here is the most natural from the
viewpoint of general connections but it will force us to discreetly slip an unde-
sired minus in the appropriate formulas, basically because you know that the
sphere has positive curvature.

Since the Levi-Civita connection is very specific, the Riemann curvature
tensor benefits from several special symmetries.

3.7.1 Proposition. — The Riemann curvature tensor satisfies the following
algebraic properties.

1. RX,Y = −RY,X .
2. 〈RX,Y Z, T 〉 = −〈RX,Y T,Z〉.
3. RX,Y Z +RY,ZX +RZ,XY = 0 (algebraic Bianchi identity).
4. 〈RX,Y Z, T 〉 = 〈RZ,TX,Y 〉.

The identities 1., 2. and 4. can be summed up by saying that the curvature
tensor is a section of Sym2(Λ2M).

Proof. — 1. is very general : the curvature of any connection on TM is in
Λ2M ⊗ EndTM .

2. is due to the fact that the Levi-Civita connection is metric.
3. comes from the fact the Levi-Civita connection is torsion-free. Indeed,

the left-hand side is

∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z +∇Y∇ZX −∇Z∇YX−∇[Y,Z]X

+∇Z∇XY−∇X∇ZY −∇[Z,X]Y
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The three underlined terms give [X, [Y, Z]]. Gathering the other terms sim-
ilarly, we get [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]], which vanishes in view of
Jacobi identity.

4. is a mess. The algebraic Bianchi identity yields

〈RX,Y Z, T 〉+ 〈RY,ZX,T 〉+ 〈RZ,XY, T 〉 = 0.

Now rotate the roles of the four vector fields to obtain four identities and add
them up ! With 1., 2. and patience, you will find the formula.

From these symmetries, we see for example that in dimension 2, the cur-
vature is determined by only one of its coefficients, K = 〈Re1,e2e2, e1〉, in
any orthonormal basis (e1, e2) ; this is the Gauss curvature of the surface.
In higher dimension, one defines analogous 2-dimensional curvatures in the
following way:

3.7.2 Definition. — Let (M, g) be a Riemannian manifold, and P ⊂ TxM

a 2-plane. The sectional curvature of the plane P is given by

K(P ) = K(e1 ∧ e2) := 〈Re1,e2e2, e1〉

for any orthonormal basis (e1, e2) of P .

The reader can check that this definition makes sense. Owing to the sym-
metries of the curvature tensor, the sectional curvatures of all 2-planes in TxM
completely determines the curvature tensor at the point x.

3.7.3. Examples. — 1) The curvature of the flat Rn vanishes and therefore
all the sectional curvatures vanish.

2) For the sphere Sn, we first observe that the isometry group SO(n + 1)
is transitive on 2-planes: indeed it is transitive on the points of Sn, and the
isotropy group of a point is SO(n) which acts transitively on 2-planes of Rn.
Since the curvature and the sectional curvatures are canonically defined from
the metric, they are preserved by isometries and it follows that all the sectional
curvatures of Sn equal a fixed constant (+1, as we shall see later).

3) Similarly the hyperbolic space Hn has constant sectional curvature.
4) The sectional curvatures of λ2g, where λ is a positive number, are related

to that of g by the relation

(3.25) Kλ2g = 1
λ2K

g.

This comes immediately from the fact that g and λ2g have the same Levi-
Civita connection (check it !) and therefore the same curvature tensor R. The
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formula corresponds to the idea that if we make a sphere very big (λ big),
then its curvature becomes small, that is it becomes almost flat. Indeed the
Earth looks locally very flat !

The following theorem is fundamental in Riemannian geometry. In fact,
it was outlined in the first text on Riemannian geometry by B. Riemann, in
1854. It says that a Riemannian manifold has vanishing curvature iff it is
locally isometric to the Euclidean space.

3.7.4 Theorem. — A Riemannian manifold (M, g) is flat if and only if near
any point there exist local coordinates xi such that g =

∑
(dxi)2.

Proof. — If the Levi-Civita connection ∇ on TM is flat, then Propositions
2.5.2 and 2.5.3 ensure that near each point we have parallel vector fields
X1, . . . , Xn (parallel means ∇Xi = 0) forming an orthonormal basis. In par-
ticular, since ∇ is torsion-free, we have [Xi, Xj ] = ∇XiXj−∇XjXi = 0. From
the proof of lemma 1.6.4, it follows that there exist local coordinates such that
Xi = ∂

∂xi . The other implication is clear.

3.8. Second fundamental form

Suppose that (Mn, g) is an oriented Riemannian manifold, and Nn−1 ⊂M
is a Riemannian submanifold oriented by the unit normal vector ~n. Similarly
to the case of submanifolds of Rn, the Levi-Civita connection of N is

(3.26) ∇NXY = π
(
∇MX Y

)
,

where for every x in N , π : TxM → TxN is the orthogonal projection. There-
fore, for two vector fields X, Y on N , the covariant derivative ∇MX Y decom-
poses as

(3.27) ∇MX Y = ∇NXY + I(X,Y )~n.

Then II is tensorial in its variables and, developing the torsion-free condition
∇MX Y −∇MY X = [X,Y ] with (3.27), we obtain the symmetry condition

(3.28) I(X,Y ) = I(Y,X).

3.8.1 Definition. — The formula I(X,Y ) = 〈∇MX Y,~n〉 defines a section of
Sym2 T ∗N , called the second fundamental form of N .

Directly from the definition, using the properties of ∇M , one also gets:

(3.29) I(X,Y ) = −〈∇MX ~n, Y 〉.

This gives another formula for the second fundamental form: I = −∇M~n.
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In order to obtain a more geometric interpretation, let us consider the ap-
plication φ : R×N →M , defined by

φ(r, x) = expx(r~n).

(IfM is not complete, then φ may be defined only on an open subset of R×N).
This means that from each point x ∈ N we draw the geodesic from x which is
orthogonal to N , and we parameterize it by its arc length r. The differential
of φ at a point (0, x) is d(0,x)φ(r,X) = r~n + X, so it is an isomorphism
R× TxN → TxM . It follows that φ is a diffeomorphism from a neighborhood
of {0}×N ⊂ R×N onto a neighborhood of N ⊂M . There is an analogue of
Gauss lemma 3.6.3 in this situation, with a similar proof.

3.8.2 Lemma. — The geodesics normal to N are orthogonal to the hyper-
surfaces φ({r} ×N).

It follows that on the open set where φ is a diffeomorphism, one has

(3.30) φ∗g = dr2 + gr, gr metric on N.

The normal vector ~n can then be extended to a neighborhood of N as φ∗ ∂∂r .
If X is a vector field on N , one can extend it to a neighborhood of N as being
independent of the R variable in the product R ×N ; equivalently, this is the
unique extension so that [~n,X] = 0. Choose two vector fields X, Y on N and
extend them in this way: then from (3.29) one deduces

I(X,Y ) = −〈∇M~n X,Y 〉+ 〈[~n,X], Y 〉 = −〈∇M~n X,Y 〉

and by symmetry we get

I(X,Y ) = −1
2
(
〈∇M~n X,Y 〉+ 〈∇M~n Y,X〉

)
= −1

2L~n〈X,Y 〉.

This proves the formula:

(3.31) I = −1
2
∂gr
∂r

∣∣∣
r=0

,

which gives an interesting way to calculate I, as well as a geometric inter-
pretation : any Riemannian submanifold comes with a natural deformation,
generated by the (normal) exponential map, and the second fundamental form
is simply the derivative of the deformed metric in the normal direction, up to
a factor −1

2 .
Often we will need to consider I as a g-symmetric endomorphism of TN

instead of a quadratic form: therefore we define theWeingarten endomorphism
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A by the formula

(3.32) I(X,Y ) = g(A(X), Y ), A(X) = −∇MX ~n.

Using the notation of Definition 3.7.2, which relates the sectional curvatures
of the submanifold N and the sectional curvature of the ambient manifold M ,
through the second fundamental form.

3.8.3 Lemma. — If X and Y are two unit and orthogonal vectors in TxN ,
then

KM (X ∧ Y ) = KN (X ∧ Y ) + I(X,Y )2 − I(X,X)I(Y, Y );(3.33)

KM (X ∧ ~n) = 〈(L~nA−A2)X,X〉.(3.34)

The Lie derivative L~nA is defined as usual by computing the derivative of A
along the flow of ~n or equivalently by the Leibniz rule (L~nA)X = L~n(AX)−
A(L~nX). The reader may check that L~nA = ∇~nA.

Proof. — To prove the lemma, we first extend X and Y in a neighborhood
of x in M , in such a way that X and Y are tangent to N along N and
[X,Y ] = [~n,X] = [~n, Y ] = 0 (pick coordinates on N and the normal coordinate
r given by φ). In this proof, we will write ∇ for ∇M and R for RM . Then for
any other vector fields Z, T tangent to N along N , we have at x :

〈∇X∇Y Z, T 〉 = 〈∇X(∇NY Z + I(Y,Z)~n), T 〉

= 〈∇NX∇NY Z + I(Y, Z)∇X~n, T 〉

= 〈∇NX∇NY Z, T 〉 − I(Y, Z)I(X,T ).

Therefore

(3.35) 〈RX,Y Z, T 〉 = 〈RNX,Y Z, T 〉 − I(Y, Z)I(X,T ) + I(X,Z)I(Y, T ).

The first formula follows, with Z = Y and T = X.
Now let us prove the second formula. Since ∇~n~n = 0 (~n is the velocity

vector of the geodesics normal to N) and ∇~nY = ∇Y ~n = −A(Y ), we have

〈R~n,XY,~n〉 = 〈(∇~n∇X −∇X∇~n)Y,~n〉
= L~n〈∇XY,~n〉+ 〈∇X(A(Y )), ~n〉
= L~n〈A(X), Y 〉+ 〈A(X), A(Y )〉.

With L~nX = L~nY = 0 and L~ng = −2I = −2〈A., .〉 (cf. (3.31)), we have
L~n〈A(X), Y 〉 = −2〈A2X,Y 〉 + 〈(L~nA)X,Y 〉. Since A is g-symmetric, we
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finally obtain

(3.36) 〈R~n,XY, ~n〉 = 〈(L~nA−A2)X,Y 〉.

The second formula follows, when X = Y .

3.8.4. Examples. — 1) gRn+1 = dr2 +r2gSn is flat, the second fundamental
form of the sphere of radius r is ISn(r) = −1

2
d
drr

2gSn = −rgSn (hence A(r) =
−1
r ). Put r = 1 and use the lemma to find the sectional curvature of the unit

sphere Sn : 0 = KSn − 1, hence KSn = 1.
2) There is a similar way to compute the curvature of Hn. Unfortunately,

it requires to write down the analogue of the lemma in a pseudo-Riemannian
setting (namely, by allowing non-positive-definite metrics), which we do not
want to do here. Just note (at least heuristically) that gR1,n = dr2 − r2gHn is
flat so that the computation formally yields K(−gHn) = 1. Since the formula
of the sectional curvature changes sign when g is replaced by −g, we obtain
KHn = −1. Let us give a purely Riemannian proof. We already know, from
the structure of isometries, that Hn has constant sectional curvature so we
only need to compute the sectional curvature of one plane. Besides, we know
that in normal coordinates, gHn = dr2 + (sinh r)2gSn−1 . So Sn−1 can be
seen as a Riemannian submanifold of Hn, defined by sinh r = 1. Its second
fundamental form is given by −1

2
d
dr

∣∣
sinh r=1(sinh r)2gSn−1 = −

√
2gSn−1 , so the

lemma gives KHn = KSn−1 − (
√

2)2 = −1.
3) If we have a surface S ⊂ R3, then the two eigenvalues λ1 and λ2 of I are

called the principal curvatures of S. The first equation gives us the well-known
formula for the Gauss curvature:

KS = λ1λ2.

The principal curvatures depend on the embedding S ⊂ R3 but the product
depends only on the intrinsic geometry of S, which is known as Theorema
Egregium, by Gauss. Also

H = λ1 + λ2

is called the mean curvature. Surfaces with H = 0 are called minimal surfaces:
this is the equation satisfied by soap bubbles.

Finally, if the surface S is given by an equation z = f(x, y), then the reader
will check the following explicit formulas: the metric on S is given by

g11 = 1 + (∂xf)2, g12 = ∂xf∂yf, g22 = 1 + (∂yf)2,
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the normal vector is
~n = (−∂xf,−∂yf, 1)√

1 + (∂xf)2 + (∂yf)2
,

from which one deduces the second fundamental form:

I11 = ∂2
xxf√

1+(∂xf)2+(∂yf)2 , I12 = ∂2
xyf√

1+(∂xf)2+(∂yf)2 , I22 = ∂2
yyf√

1+(∂xf)2+(∂yf)2 .

It follows that the curvature of S is given by

K = det(Iij)
det(gij)

=
∂2
xxf∂

2
yyf − (∂2

xyf)2

1 + (∂xf)2 + (∂yf)2

and this formula allows a geometric interpretation. If K > 0, the surface is
strictly convex while if K < 0, it is saddle-shaped.

3.8.5. A geometric interpretation of the curvature. — The sectional
curvatures of a Riemannian metric g can be seen as coefficients in the Taylor
expansion of the metric in normal coordinates. As a consequence of Gauss
Lemma, we know that the pullback metric exp∗x g on TxM (namely, g in normal
coordinates) has the following Taylor expansion :

exp∗x g = dr2 + gr = dr2 + r2(gSn−1 + r2γ + · · · ).

Here γ is a section of Sym2 T ∗Sn−1 and we introduce the corresponding sym-
metric endomorphism : γ = gSn−1(G., .). Then we can expand the second
fundamental form of the spheres centered in 0 :

I = −1
2
∂g

∂r
≈ −rgSn−1 − 2r3γ = −rgSn−1(1 + 2r2G).

Since gr ≈ r2gSn−1(1 + r2G, .), we have gSn−1 ≈ r−2gr(1 − r2G, .), so that
I ≈ −1

rgr((1− r
2G)(1 + 2r2G)., .) and

A ≈ −1
r
− rG.

Now, take two orthogonal unit vectors X and Y in (TxM, gx). We can use
Lemma 3.8.3 to compute the sectional curvature of the plane generated by X
and Y = ∂r at rY : this is

gr(∂rA−A2)X,X)
gr(X,X) ≈ gr(−3GX,X) = −3r2γ(X,X).

This gives γ in terms of the sectional curvature, hence

(3.37) (exp∗x g)rY (X,X) = 1− 1
3K

M (X ∧ Y )r2
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Then for any X and Y in TxM :

(3.38) (exp∗x g)Z(X,Y ) = 〈X,Y 〉+ 1
3〈R(X,Z)Y, Z〉+ o(|Z|2)

So the information contained in the Riemann curvature tensor at some point x
is exactly the Taylor expansion of g in normal coordinates centered at x, up to
order two. The local behaviour of geodesics can then be compared with that of
the Euclidean space (K = 0), whose geodesics are straight lines. Typically, if
you look at two unit speed geodesics making an angle α at x, in a surface with
sectional curvature K at x , then after a small time r, their mutual distance
along the circle of radius r is about εr

√
1− Kr2

3 :
– when K > 0, the geodesics look like the geodesics of a sphere (the great

circles), they get closer to each other ;
– when K < 0, the geodesics look like in the hyperbolic space, they get far

away from each other.

3.9. Comparison theorems

3.9.1 Lemma. — If (Mn, g) has constant sectional curvature, then in nor-
mal coordinates exp∗ g coincides with the metric of Rn, Sn or Hn (up to a
multiplicative constant).

In other words, it is locally isometric to such a space form.

Proof. — We use normal coordinates around a point x: then g = dr2 + gr,
with gr a metric on Sn−1. The second formula of lemma 3.8.3 yields

∂rA−A2 = k,

where k is the (constant) sectional curvature. When r → 0 we have the
asymptotic behavior A ∼ −1

r . In particular, A is invertible near 0 (but not
defined at 0). We consider B = A−1 and observe that B extends at 0, with
with

∂rB = −1− kB2, B(0) = 0.
It is thus easy to find B and therefore A ; gr is then deduced through (3.31).

– If k = 0, then A = −1
r and gr = r2;

– If k > 0, then A = − cot(
√
kr)√
k

and gr = sin2(
√
kr)

k ;

– If k < 0, then A = − coth(
√
−kr)√
−k and gr = sinh2(

√
−kr)√
−k .
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It is natural to try and extend this kind of result so as to obtain global
results. We basically need to improve our understanding of the exponential
map. In section 3.6 we have seen the notion of injectivity radius—the supre-
mum of the r > 0 such that expx is a diffeomorphism on the ball of radius r.
Here we will use another notion, the conjugacy radius, that is the supremum
of the r > 0 such that expx is a local diffeomorphism on the ball of radius r.
This is equivalent to exp∗x g being a metric on the ball of radius r, so we can
define alternatively the conjugacy radius at x by

(3.39) ρconj(x) = inf{r > 0,det(exp∗x g) vanishes at some point of S(r)}.

As in the proof of lemma 3.9.1, by Gauss lemma we have exp∗x g = dr2 + gr
and on the ball of radius ρconj(x), one has, for |X |= 1,

(3.40) 〈(∂rA−A2)X,X〉 = K(∂r ∧X).

In particular, when K 6 0, we have ∂rA − A2 6 0 and, like in the proof of
Lemma 3.9.1, we deduce A 6 −1

r and then gr > r2gSn−1 from (3.31). It follows
that det(exp∗x g) can never vanish and we obtain the first part of:

3.9.2 Proposition. — If K 6 0, then ρconj = +∞. If K 6 k with k > 0,
then ρconj > π√

k
.

Proof. — It remains to deal with K 6 k: the same argument gives us gr >
sin2(

√
kr)

k and therefore det(exp∗x g) cannot vanish for r < π√
k
.

3.9.3 Cartan-Hadamard theorem. — If (Mn, g) is a complete connected
Riemannian manifold with K 6 0, then expx : TxM → M is a covering. In
particular, if M is simply connected, then M is diffeomorphic to Rn.

Proof. — We have just seen that expx is a local diffeomorphism, so that expx :
(TxM, exp∗x g) → (M, g) is a local isometry between complete Riemannian
manifolds (for the completeness of TxM , observe that its exponential at 0 is
clearly defined on the whole TxM ; it consists of straight rays). So it is a
covering map from Lemma 3.6.7.

3.9.4 Theorem. — A connected and simply connected Riemannian manifold
with constant curvature is isometric to Rn, Sn or Hn, up to a constant.

The universal cover M̃ of any Riemannian manifold (M, g) with constant
curvature carries a metric with constant curvature g̃ (the pullback metric).
The Theorem says that (M̃, g̃) is Rn, Sn or Hn up to a constant. (M, g) is
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therefore obtained as a quotient of one of these models by a discrete group of
isometries.

Proof. — In the case of negative or zero curvature, this is just the Cartan-
Hadamard theorem, and the fact that we have an explicit formula for a con-
stant curvature metric in normal coordinates.

In the case of positive curvature, we can suppose that K = 1. Then by
corollary 3.9.2, the map expx is a local diffeomorphism on the ball B(0, π) ⊂
TxM , and since K = 1,

exp∗x g = dr2 + sin2(r)ds2
Sn−1 on B(0, π).

Now if we consider Sn, we know that the exponential from the North pole
expN is a diffeomorphism B(0, π) → Sn\{−N} (−N is the antipodal point,
the South pole if you like) such that exp∗N gSn has exactly the same expression
as exp∗x g in B(0, 1). So we deduce a local isometry f : Sn\{−N} → M from
the composition

Sn\{−N}
exp−1

N−−−−→ (B(0, π), dr2 + sin2(r)ds2
Sn−1) expx−−−→M.

Now, if we choose a point p in Sn, outside the North and South poles, we
obtain a local diffeomorphism f̃ : Sn\{−p} −→M by setting

f̃ = expf(p) ◦dpf ◦ (expp)−1.

But from (3.24 at p), we find f̃ = f outside a circle arc between −N and −p.
By continuity, they therefore coincide outside −N and −p. Since f̃ is smooth
at −N , we can thus smoothly extend f on the whole Sn and therefore obtain
a local isometry f : Sn → M , which is therefore a covering map (Lemma
3.6.7).

To conclude this section, let us explain a comparison theorem about the di-
ameter. The diameter diam(M, g) of a connected Riemannian manifold (M, g)
is defined as the supremum of the distances between points of M . The most
striking feature of the following result is its topological consequences : very
Riemannian assumptions force the manifold we work with to be compact and
have finite fundamental group.

3.9.5 Bonnet-Myers Theorem. — If (Mn, g) is a complete connected Rie-
mannian manifold, satisfying (Bonnet)

K > k > 0,
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or the weaker hypothesis (Myers)

Ric > (n− 1)k > 0,

then M is compact and π1(M) is finite. Moreover, the diameter of M satisfies
diam(M, g) 6 π√

k
.

Here Ric denotes the Ricci tensor, defined by

(3.41) Ric(X,Y ) = Tr(Z 7→ RZ,XY ).

It is a section of Sym2 T ∗M . If |X| = 1, we can complete X into an orthonor-
mal basis (X = e1, . . . , en), and

(3.42) Ric(X,X) =
n∑
i=1
〈Rei,XX, ei〉 =

n∑
i=2

K(X ∧ ei).

Then it is clear that the first hypothesis of the theorem is stronger than the
second one.

Before giving a proof of the theorem, we outline another approach, more in
the spirit of what we have just done. At a point x, we have exp∗x g = dr2 + gr.
As above, we consider the equation (3.40) and here take its trace

∂ Tr(A)
∂r

− Tr(A)2

n− 1 > Ric( ∂
∂r
,
∂

∂r
) > (n− 1)k > 0,

which implies Tr(A) > −(n− 1)
√
k cot(

√
kr) and det(gr) 6

( sin(
√
kr)√
k

)n−1. On
each ray from the origin, we see that det(gr) must vanish at a radius r 6 R

with R = π√
k
, that is d expx has a kernel on each ray at most at distance R.

One says that x has a conjugate point on every geodesic from x at distance
at most R. But it is known that a geodesic cannot be minimizing after a
conjugate point, and it follows that all points of M are at most at distance
R from x. The proof of this last fact requires the theory of Jacobi fields that
will not be developed in these notes.

Proof. — The proof relies on the second variation of arc length: if (cs(t)) is
a family of paths defined on [a, b], with fixed endpoints, and c0 is a geodesic,
then

(3.43) d2L(cs)
ds

∣∣
s=0 =

∫ b

a

(
|∇ċ0Ñ |2 − 〈Rċ0,Ñ

Ñ , ċ0〉
)
dt

where N = ∂c
∂s and Ñ is the projection of N orthogonally to ċ0. The proof of

this formula is similar to that of the first variation of arc length (3.7) and is
left to the reader.
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Pick two points x, y ∈ M . By Hopf-Rinow theorem 3.6.5, there exists
a minimizing geodesic c from x to y, of length L = d(x, y). Now choose
vectors E1,. . . ,En−1 along c0 such that (ċ, E1, . . . , En−1) is a parallel basis of
orthonormal vectors along c. For i = 1, . . . , n− 1 choose

Ni = sin
(
π
t

L

)
Ei.

These vectors vanish at the endpoints of [0, L]. Fix i and choose a variation
(cs) of c with fixed endpoints, such that ∂c

∂s |s=0 = Ni. Since c is a minimizing
geodesic, we have d2L(cs)

ds2 |s=0 > 0, and therefore∫ L

0
|∇ċNi|2 − 〈Rċ,NiNi, ċ〉 > 0.

But ∇ċNi = π
L cos(πtL )Ei so after summation over i we obtain

(n− 1) π2

L2

∫ L

0
cos(πtL )2 >

∫ L

0
sin(πtL )2

n−1∑
1
K(ċ, Ei) =

∫ L

0
sin(πtL )2 Ric(ċ, ċ).

The hypothesis gives (n − 1) π2

L2 > (n − 1)k so L2 6 π2

k , hence the bound on
the diameter.

Since the diameter is finite and (M, g) is complete, Hopf Rinow theorem
implies immediately that M is compact. Observe that one can pull back
the metric of M to its universal cover M̃ , so that M̃ itself inherits a metric
satisfying the assumptions of the theorem : M̃ is therefore compact, which
implies that π1(M) is finite.

Note that formula (3.43) can be rewritten as

(3.44) d2L(cs)
ds

∣∣
s=0 = −

∫ b

a
〈∇ċ∇ċÑ +RÑ,ċċ, Ñ〉dt

The vector fields J satisfying the second order linear ODE ∇ċ∇ċJ + RJ,ċċ =
0 are the Jacobi fields alluded to above. They conceal a lot of geometric
information, cf. the literature.

3.9.6. Exercise. — 1) Let G denote a Lie group endowed with a bi-invariant
metric 〈, 〉. Using 3.6.2, prove that for any left-invariant vector fields X, Y ,
Z, T :

〈RX,Y Z, T 〉 = −1
4〈[X,Y ], [Z, T ]〉,

so that in particular G has non-negative sectional curvature!
2) Prove that SLn(R) does not carry any bi-invariant metric.
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3.9.7 Remark. — To get a feeling about Ricci curvature Ric, it is useful to
observe that a consequence of (3.38) is the following Taylor expansion of the
volume form in normal coordinates :

(exp∗x dvol)Z =
(

1− 1
6 Ric(Z,Z) + o(|Z|2)

)
dx1 ∧ · · · ∧ dxn.

So the Ricci curvature controls the local behaviour of the Riemannian volume.
Nonnegative Ricci curvature means that the volume of balls of radius r will be
smaller than the volume of a ball of radius r in Rn. The Ricci tensor appears
in many interesting contexts. For instance, Riemannian manifolds satisfying
Ricg = λg for some constant λ are called Einstein manifolds (because their
Lorentz analogues are the models for empty universes in Einstein’s theory of
General Relativity) and Besse’s book (cf. the bibliography) might convince
you that they are really nice objects to look at. The so-called Ricci flow,
briefly mentioned below, is one of the most exciting current research subject.

3.10. The Hodge Theorem

In this last section, we wish to introduce another facet of Riemannian ge-
ometry : geometric analysis. Any Riemannian metric comes with a wealth of
natural differential operators. The study of their properties, for instance of
their kernel, is bound to depend on the topological and geometrical features
of the manifold. So solving the corresponding Partial Differential Equation
requires some geometric knowledge. And conversely, if by chance you know
something about the PDE, this might help you understand the manifold. It
turns out that it is a very powerful way to investigate Riemannian manifolds
and more generally differential manifolds, once a Riemannian metric is cho-
sen. A striking exemple is the proof of the Poincaré conjecture given by G.
Perelman in 2002. He used PDE and Riemannian techniques to prove that
the sphere is the unique compact connected and simply-connected topological
manifold of dimension 3 (recall that in dimension 3, differential and topologi-
cal manifolds coincide). This is a tremendous result, based on the study of the
so-called Ricci flow, a parabolic PDE whose unknown is a Riemannian metric
g(t) on a fixed differential manifold :

∂g(t)
∂t

= −2 Ricg(t) .

This is a hard subject so, in this section, we will be more modest. The theorem
we wish to describe gives an interpretation of de Rham cohomology in terms
of a geometric PDE.
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3.10.1. The Hodge Laplacian. — We consider a compact oriented(1) man-
ifold Mn, endowed with a Riemannian metric g. Recall that g = 〈, 〉 defines
a metric on the bundle Λ•M , which we also denote by 〈, 〉. This also deter-
mines a scalar product on the vector space Ω•(M) = Γ(Λ•M) : for α and β
in Ω•(M),

〈〈α, β〉〉 =
∫
M
〈α, β〉dvolg.

In view of the orientation, we may write the scalar product in another
way. Given an orthonormal basis (e1, . . . , en) of TxM , the volume form reads
dvolx = e1 ∧ . . . en. We define the Hodge star ∗ : ΛkxM −→ Λn−kx M by

∗(ei1 ∧ . . . eik) = ej1 ∧ . . . ejn−k if ei1 ∧ . . . eik ∧ ej1 ∧ . . . ejn−k = dvol.

By definition, ∗1 = dvol. It is characterized by

α ∧ ∗β = 〈α, β〉dvol,

so that the scalar product on Ω•(M) reads

(3.45) 〈〈α, β〉〉 =
∫
M
α ∧ ∗β.

It is useful to note that ∗∗ = (−1)k(n−k) on forms of degree k.
We wish to introduce natural differential operators. The most basic is

d : ΩkM −→ Ωk+1M , depending only on the differential structure. The
Riemannian structure makes it possible to consider a (formal) adjoint for this
operator, the codifferential d∗ : Ωk+1M −→ ΩkM . It is given on (k+1)-forms
by

d∗ = (−1)nk+1 ∗ d∗
and satisfies

(3.46) 〈〈dα, β〉〉 = 〈〈α, d∗β〉〉.

To prove this, just use (3.45), Leibniz rule and Stokes theorem. In particular,
since d2 = 0, we have

(d∗)2 = 0.
Observe that d∗ : Ω1M −→ Ω0M determines by duality a map div that
associates to any vector field X a function divX, called the divergence of X.
Exercise : LXdvol = div(X)dvol, which means divX measures the variation
of volume along the flow of X. Similarly, d induces a map grad from functions
to vectors fields, the (Riemannian) gradient.

(1)The orientability assumption is not necessary for the Hodge theorem to hold, but it makes
life a bit more simple.
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We then introduce the Hodge Laplacian :

∆ = (d+ d∗)2 = dd∗ + d∗d.

It maps a form of degree k to a form of degree k and satisfies

(3.47) 〈〈∆α, β〉〉 = 〈〈dα, dβ〉〉+ 〈〈d∗α, dβ〉〉.

In particular, it is (formally) self-adjoint. In degree 0, i.e. on functions, we
have ∆ = d∗d = div grad. Beware this formula means that for g = gRn , ∆f =
−
∑
i ∂xixif (and divX = −

∑
i ∂xiXi). Our sign convention is standard in

geometric papers and books, while PDE specialists tend to prefer the opposite
sign.

A differential form of degree k is called harmonic if it is in the kernel H k

of the Hodge Laplacian. With (3.47), we see that

H k = {α ∈ Ωk(M) / dα = 0 and d∗α = 0}.

Using (3.46) together with d2 = (d∗)2 = 0, we then obtain :

Ωk(M) ⊃ dΩk−1(M)
⊥
⊕ d∗Ωk+1(M)

⊥
⊕H k.

3.10.2 Hodge decomposition theorem. — If (M, g) is a compact oriented
Riemannian manifold, then

Ωk(M) = dΩk−1(M)
⊥
⊕ d∗Ωk+1(M)

⊥
⊕H k.

In this decomposition, the space Zk(M) of closed forms of degree k is exactly
dΩk−1(M)

⊥
⊕H k (just play with 3.46 to see it), so the quotient of Zk(M) by

the subspace of exact forms identifies with the space of harmonic forms.

3.10.3 Corollary. — Let M be a compact oriented manifold. For any Rie-
mannian metric g on M ,

H•DR(M) ∼= H •(M, g).

The isomorphism is given by orthogonal projection : in each de Rham class,
there is a unique harmonic form and it minimizes the L2-norm.

This isomorphism is a miracle ! The Hodge Laplacian strongly depends on
g and it is not at all obvious that its kernel only depends on the topology of
Mn (recall de Rham cohomology is a topological invariant). Now, you can
play with this isomorphism. For instance, the proof of the Hodge theorem
will ensure the Hodge Laplacian has a finite dimensional kernel, hence the
finiteness of Betti numbers on a compact manifold. Observe also that the
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Hodge star clearly commutes with the Hodge Laplacian, so that it induces an
isomorphism H n−k ∼= H k. Hence

3.10.4 Poincaré duality. — For any compact oriented manifold Mn,

Hk
DR(M) ∼= Hn−k

DR (M).

For instance, the case k = 0 means Hn
DR(M) ∼= R, with an isomorphism

given by integration. We refer to the exercises below for more applications.
Now, let us explain how to prove Hodge theorem. Basically, all we need to

do is to prove that for any β ∈ Ωk(M), if β is orthogonal to H k, then there
is a form α ∈ Ωk(M) such that ∆α = β. This is based on quite standard
functional analysis, which you can look up in the bibliography (cf. Brezis,
Taylor).

We need Sobolev spaces Hp = Hp(Λk(M)), p ∈ Z, on the compact Rie-
mannian manifold (M, g). To define them, we choose a finite atlas, with a
subordinate partition of unity (χi) , and we define the Hp-norm of a smooth
form α to be the sum of the Hp norms of χiα (that is the sum of the L2 norms
of the derivatives up to order p, computed in Rn thanks to the ith chart). The
Hilbert space Hp is then defined as the completion of Ωk(M) for this norm
; in fact, it does not depend on the choice of atlas. We identify H0 with its
dual and set H−p = (Hp)∗. Then formula (3.47) implies that ∆ determines a
continuous linear operator H1 → H−1.

3.10.5 Lemma. — There are positive constants A and B such that for any
α ∈ Ωk(M),

〈〈∆α, α〉〉 > A ‖α‖2H1 −B ‖α‖2H0 .

Proof. — It is sufficient to prove this locally so we work in local coordinates.
The reader may check that the Laplacian reads ∆ = gij∂xixj +Ei∂xi +F , where
(gij) is the inverse of the matrix of g and is therefore bounded from below.
It then follows from integration by parts that there are positive constants A′,
B′, C ′ such that

〈〈∆α, α〉〉 > A′ ‖α‖2H1 −B′ ‖α‖2H0 − C ′ ‖α‖H1 ‖α‖H0 .

Then write ‖α‖H1 ‖α‖H0 6 ε ‖α‖2H1 + 1
4ε ‖α‖

2
H0 and pick small enough ε, so

that A′ − C ′ε > 0.

3.10.6 Lemma. — There exists a Hilbert basis (ψi)i∈N of H0 consisting of
elements ψi of H1 such that

∆ψi = λiψi,
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for some non-decreasing sequence of numbers λi > 0 going to +∞.

The sequence of eigenvalues (λi)i (in degree k = 0) is called the spectrum of
the compact Riemannian manifold (M, g). Note that the eigenvectors ψi are
in fact smooth.

Proof. — As a consequence of Lemma 3.10.5, for any α in H1,

‖(∆ +B)α‖H−1 > A ‖α‖2H1

so that ∆ + B : H1 −→ H−1 is injective and has closed range. Its range is
moreover dense for its orthogonal (in (H−1)∗ = H1) coincides with the kernel
of ∆+B, which is {0}. In conclusion, ∆+B : H1 −→ H−1 is an isomorphism.
Then we look at the composition

P : H0 ↪→ H−1 (∆+B)−1
−→ H1 ↪→ H0.

Since M is compact, the inclusion H1 ↪→ H0 is a compact operator (this is
Rellich theorem, the Sobolev analogue of Ascoli theorem). P is thus compact,
self-adjoint and positive. The spectral theorem for such operators ensures the
existence of a Hilbert basis (ψi)i∈N of H0 such that Pψi = µiψi, for some
non-increasing sequence of positive numbers µi going to 0. By construction of
P , ψi lies in H1 and ∆ψi = λiψi with λi = 1

µi
−B.

In particular, this lemma says that the kernel of the Hodge Laplacian on
k-forms has finite dimension, denoted by D. A k-form β is then orthogonal to
the kernel of ∆ iff we can decompose β into

β =
∞∑
i=D

βiφi.

For i > D, we have λi > λD > 0, so we can set

α :=
∞∑
i=D

βi
λi
φi.

Then ∆α = β. Our construction does not a priori ensure that α is smooth.
But the following inequality can be proved as in Lemma 3.10.5 : for any p,
there are constants Ap and Bp such that

‖α‖Hp+2 6 Ap ‖α‖H0 +Bp ‖∆α‖Hp .

Since ∆α = β is smooth and α is in H0 by construction, α is automatically
in Hp for every p, which implies that it is smooth (as in Rn). This completes
the proof of Hodge decomposition theorem.
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Note the compactness assumption on M is crucial in the proof, because of
Rellich theorem. Hodge theorem is generally false on non-compact manifolds.

3.10.7. Exercises. — 1) Compute the Hodge Laplacian on the flat torus
Tn = Rn/Zn in the standard trivialisation of Λ.Tn induced by the coordinates
of Rn. Deduce the cohomology of the torus.

2) Prove that if N is a finite cover of a compact oriented manifold M , then
bk(N) > bk(M) for very degree k.

3) Prove that orientation-preserving isometries map harmonic forms to
harmonic forms. Deduce that a compact non-orientable manifold Mn has
Hn(M) = 0.

4) Let G be a connected Lie group acting by isometries on a compact ori-
ented Riemnnian manifold M . Prove that for every element γ of G and every
harmonic form α onM , γ∗α = α. Hint : use question 1 in exercise 1.9.3. Prove
that SO(n) does not fix any non-trivial exterior k-form on Rn for 0 < k < n

and deduce the cohomology of Sn.
5) Consider the Riemannian product of two compact oriented Riemannian

manifolds M and N . Use the Hilbert bases given by Lemma 3.10.6 on M

and N to produce a Hilbert basis of the space of L2 forms on M × N con-
sisting of eigenvectors of the Laplacian. Deduce the Kunneth formula for the
cohomology of the product of two (compact oriented) manifolds.

3.11. One last exercise.

To sum up, we wish to study a nice family of Riemannian metrics on the
sphere S3. Let us identify R4, with coordinates x1, y1, x2, y2, and C2, with
complex coordinates z1 = x1 + iy1, z2 = x2 + iy2. The following formulas yield
three vector fields on R4 = C2:

X1 =
(
iz1
iz2

)
= x1

∂

∂y1
− y1

∂

∂x1
+ x2

∂

∂y2
− y2

∂

∂x2
,

X2 =
(
−z̄2
z̄1

)
= x1

∂

∂x2
− x2

∂

∂x1
+ y2

∂

∂y1
− y1

∂

∂y2
,

X3 =
(
−iz̄2
iz̄1

)
= x1

∂

∂y2
− y2

∂

∂x1
+ y1

∂

∂x2
− x2

∂

∂y1
.

1. Prove that the restrictions of these vector fields on S3 are tangent to S3

and provide a global trivialization of TS3.
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2. Prove that the Lie brackets obey [X1, X2] = −2X3, [X2, X3] = −2X1 et
[X3, X1] = −2X2. For every point x ∈ S3, we set Hx := Vect(X2, X3). Prove
that H is not integrable and is therefore a contact distribution on S3.

3. Prove that S3 is diffeomorphic to the Lie group SU(2) in such a way
that X1, X2 and X3 are left-invariant. Compute their Lie brackets again.

Let (α1, α2, α3) denote the dual coframe of (X1, X2, X3) on each tangent
space of S3 and let λ be a positive number. We consider the Riemannian
metric gλ = λ2α2

1 + α2
2 + α2

3 on S3. The Riemannian manifolds (S3, gλ) are
known as ‘Berger spheres’, after the great French geometer Marcel Berger.
Note that g1 is the standard round metric on S3.

4. In view of 2., prove that the metrics gλ are left-invariant. Are they
bi-invariant?

5. Prove that the volume of (S3, gλ) goes to zero as λ goes to zero.
6. What is the flow φt of X1? Prove that it is isometric with respect to

every metric gλ.
Let π denote the standard projection §3 → CP 1. The Fubini-Study metric

gCP 1 on CP 1 is the (quotient metric) induced by g1.
7. Prove that all metrics gλ induce the same quotient metric, gCP 1 .
8. Given p ∈ CP 1, compute the length of the circle π−1({p}) with respect

to gλ.
Let ∇λ denote the Levi-Civita connection of gλ.
9. Let i, j, k ∈ {1, 2, 3}. Explain why gλ

(
∇λXi

Xj , Xk

)
= −gλ

(
∇λXi

Xk, Xj

)
and why gλ

(
∇λXi

Xj , Xk

)
= 0 as soon as two of the indices i, j, k coincide.

Using these remarks, compute ∇λX1, ∇λX2 and ∇λX3.
10. Deduce that any integral line of X1, X2 or X3 is a geodesic. What can

you say about the injectivity radius of (S3, gλ) as λ goes to zero?
11. Compute, at every point of S3, the sectional curvature of the planes

Vect(X1, X2) and Vect(X2, X3) with respect to gλ. Deduce all the sectional
curvatures of (S3, gλ).

M. Gromov introduced a very useful metric structure on the set of all Rie-
mannian manifolds and the family of Berger spheres illustrate an interesting
phenomenon within this theory. Let us give a general definition. Let (X, dX)
and (Y, dY ) denote two compact metric spaces. Given a positive number ε,
we say that f : X → Y is an ε-approximation if the following properties are
satisfied:

– for every y ∈ Y , there is an x ∈ X such that dY (f(x), y) 6 ε ;
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– for every x, x′ ∈ X, |dY (f(x), f(x′))− dX(x, x′)| 6 ε.
Note we do not require f to be continuous. The Gromov-Hausdorff distance
dGH(X,Y ) between X and Y is defined as the infimum of all ε > 0 such
that there exists an ε-approximation f1 : X → Y and an ε-approximation
f2 : Y → X. This yields in particular a distance between compact connected
Riemannian manifolds (for the Riemannian distance). Beware that two Rie-
mannian manifolds can be Gromov-Hausdorff close, while being very different
as manifolds, for instance, they can obviously have different dimensions.

12. Let (M, g) be a compact connected Riemannian manifold with diameter
D and let P denote the one-point metric space. Prove that dGH ((M, g), P ) is
at most D.

By scaling, it is therefore easy to obtain sequences of Riemannian manifolds
that converge in Gromov-Hausdorff sense to a point. But the curvature blows
up in this process.

13. Pick a compact Riemannian manifold (Mn, g) and an integer m >
0. Construct a sequence of metrics gi on M × Tm with uniformly bounded
curvature and which converges to (M, g) in Gromov-Hausdorff topology.

A sequence of Riemannian manifolds (Mn, gi)i with uniformly bounded cur-
vature which converges to a lower dimensional Riemannian manifold is said
to collapse. The previous question provides an example, but it might seem a
bit artificial. Now let us estimate the Gromov-Hausdorff distance between a
Berger sphere and CP 1.

14. Let x ∈ S3 and let γ : [0, L]→ CP 1 be a smooth path with γ(0) = π(x).
Prove that there is a unique path γ̂ : [0, L]→ S3 such that γ̂(0) = x, π◦ γ̂ = γ

and, for all t ∈ [0, L], dγ̂(t)
dt ∈ Hγ̂(t) (the distribution H is defined in 2.). What

is the length of γ̂ with respect to gλ?
15. Prove that dGH

(
(S3, gλ), (CP 1, gCP 1)

)
goes to zero as λ goes to zero.

In other words, with 11., this means that the spheres (S3, gλ) collapse onto
CP 1, which is also the round sphere S2 of radius 1/2.
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