Examen de Géométrie différentielle

Durée : trois heures. Seuls les documents de cours sont autorisés. You can answer in English if you wish.

Problème.

On se place sur une variété riemannienne (M^n, g) compacte, orientée et connexe, dont la connexion de Levi-Civita sera notée ∇ . On dira qu'un champ de vecteurs X sur M est de Killing si son flot ϕ_t est constitué d'isométries, i.e.

$$\forall t \in \mathbb{R}, \quad \phi_t^* g = g.$$

- **1. Exemples.** On se place sur la sphère $\mathbb{S}^4 = \{x \in \mathbb{R}^5, \ x_1^2 + \dots + x_5^2 = 1\}$, munie de la métrique induite par le produit scalaire standard de \mathbb{R}^5 .
- a) Montrer que le champ de vecteur $X \in \Gamma(T\mathbb{S}^4)$ défini par $X_x = x_1 \frac{\partial}{\partial x_2} x_2 \frac{\partial}{\partial x_1}$ est un champ de Killing. Montrer que l'ensemble des points x où $X_x = 0$ est une sous-variété de dimension 2.
- b) Donner un exemple de champ de Killing sur \mathbb{S}^4 qui s'annule seulement en des points isolés.
- **2.** Caractérisations. Soit X un champ de vecteurs de flot ϕ_t . On rappelle que la dérivée de Lie $L_X g$ est donnée par

$$L_X g = \frac{d}{dt}\Big|_{t=0} \phi_t^* g.$$

- a) Montrer que X est de Killing si et seulement si $L_X g = 0$.
- b) Etant donnés $Y, Z \in \Gamma(TM)$, vérifier la formule

$$(g(Y,Z)) \circ \phi_t = (\phi_t^* g)(\phi_t^* Y, \phi_t^* Z)$$

c) En déduire que X est de Killing si et seulement si pour tous $Y, Z \in \Gamma(TM)$,

$$g(\nabla_Y X, Z) = -g(\nabla_Z X, Y).$$

- **3. Lieu des points fixes.** Soit X un champ de Killing sur M de flot ϕ_t . On va s'intéresser aux propriétés du lieu où X s'annule : $F = \{x \in M \mid X_x = 0\}$.
- a) Montrer que $F = \{x \in M / \forall t \in \mathbb{R}, \quad \phi_t(x) = x\}.$
- **b)** Pour $x \in F$, on note $V_x = \{v \in T_x M / \forall t \in \mathbb{R}, d(\phi_t)_x(v) = v\}$. Montrer que $\exp_x(V_x) \subset F$.
- c) Montrer que pour $x \in F$ et $\epsilon > 0$ assez petit, \exp_x établit une bijection entre $V_x \cap B(0, \epsilon)$ et $F \cap B(x, \epsilon)$.
- d) En déduire que les composantes connexes de F sont des sous-variétés de M.
- e) Montrer que si $\gamma: \mathbb{R} \to M$ est une géodésique tangente à F en un point, alors $\gamma(\mathbb{R})$ est inclus dans F (on dit alors que F est totalement géodésique).
- f) Montrer que si x est un point de F, alors pour tout vecteur $v \in T_xM$,

$$(\nabla_v X)_x = \frac{d}{dt}\Big|_{t=0} d(\phi_t)_x(v)$$

(on étendra v en un champ de vecteurs Y et on calculera $[X,Y]_x$ de deux façons différentes).

- g) Soient $x \in F$ et $v \in T_xM$. Montrer que $(\nabla_v X)_x = 0$ si et seulement si $v \in V_x$. En déduire que les composantes connexes de F sont de codimension paire.
- h) On suppose qu'il existe un point x de F où $(\nabla X)_x = 0$. Montrer que X = 0.
- **4. Opérateurs.** Dans cette partie, on introduit quelques outils qui serviront dans la partie 5. Etant donnée une fonction $f \in C^{\infty}(M)$, on peut définir son gradient $\nabla f \in \Gamma(TM)$ et sa hessienne $\text{Hess } f \in \Gamma(T^*M \otimes T^*M)$ par les relations :

$$g(\nabla f, v) = df(v)$$
 et $\operatorname{Hess} f(v, w) = g(\nabla_v \nabla f, w),$

où v et w désignent des vecteurs tangents à M. Pour tout champ de vecteur Y, on introduit aussi sa divergence $\operatorname{div} Y \in C^{\infty}(M)$: c'est la trace de $\nabla X \in \Gamma(\operatorname{End} TM)$. Autrement dit, pour toute base g-orthonormée (e_1, \ldots, e_n) ,

$$\operatorname{div} Y = \operatorname{Tr} \nabla X = \sum_{i=1}^{n} g(\nabla_{e_i} X, e_i).$$

Enfin, le la placien d'une fonction $f \in C^{\infty}(M)$ est la fonction donnée par

$$\Delta f = \operatorname{div} \nabla f = \operatorname{Tr} \operatorname{Hess} f.$$

- a) Montrer que pour toute fonction f, Hess f est un champ de formes bilinéaires symétriques.
- **b)** Montrer que si $f \in C^{\infty}(M)$ atteint un minimum en x, alors $(\nabla f)_x = 0$ et $(\text{Hess } f)_x$ est positive.
- c) Montrer que pour tout champ de vecteur Y, on a $d(\iota_Y dvol) = \text{div } Y dvol$, où dvol désigne la forme volume riemannienne (on pourra calculer au centre d'une carte exponentielle).
- d) En déduire que pour toute fonction f, $\int_{M} \Delta f dvol = 0$.
- 5. Champs de Killing et courbure. On va étudier la fonction $f = \frac{g(X, X)}{2}$, où X est un champ de Killing.
- a) Démontrer les formules suivantes :

$$\nabla f = -\nabla_X X,$$

$$\forall v \in TM, \quad \text{Hess } f(v, v) = g(\nabla_v X, \nabla_v X) - g(\text{Rm}(v, X)X, v),$$

$$\Delta f = |\nabla X|^2 - \text{Ric}(X, X).$$

- Ici, Rm désigne la courbure de ∇ , Ric la courbure de Ricci et $|\nabla X|$ la norme euclidienne de l'endomorphisme ∇X , i.e. $|\nabla X|^2 = \sum_i g(\nabla_{e_i} X, \nabla_{e_i} X)$, où (e_i) est une base g-orthonormée.
- **b)** En déduire que si la courbure de Ricci est partout définie négative, alors (M,g) ne porte pas de champ de Killing non nul. Que dire si on a seulement Ric < 0?
- c) Démontrer que si (M, g) est une variété compacte de dimension paire à courbure sectionnelle strictement positive, alors tout champ de Killing s'annule au moins en un point.
- d) Et si la dimension est impaire?