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Abstract. Schoen-Webster theorem asserts a strictly pseudocon-
vex CR manifold whose automorphism group acts non properly is
either the standard sphere or the Heisenberg space. The purpose
of this paper is to survey successive works around this result and
then provide a short geometric proof in the compact case.
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Among the many aspects of geometric rigidity, the vague principle
according to which a given geometry is rigid when �few manifolds admit
a large automorphism group� has a fairly rich history. In this survey
paper, we try to show how strictly pseudoconvex CR geometry �ts into
this concept of rigidity.
André Lichnerowicz �rst raised the question in the conformal case.

It is well known that the isometry group of a compact Riemannian
manifold is compact, due to the compactness of the group O(n) (see
Section 1.2). Since the corresponding group CO(n) of conformal ge-
ometry is not compact, one might expect some compact manifolds to
have noncompact conformal groups. There is a simple example: the
Euclidean sphere has conformal group SO(1, n + 1). The Lichnerow-
icz conjecture stating that there are no other examples was settled in
the early seventies by Jacqueline Ferrand [LF71] and in a weak form
by Morio Obata3 [Oba72]; it was extended by Ferrand a while later
[Fer96].
A few years after Obata and Ferrand's works, it appeared that Lich-

nerowicz conjecture was not speci�c to conformal geometry: Sidney
Webster extended parts of the proof of Obata in the setting of (strictly
pseudoconvex) CR geometry [Web77]. The question raised a lot of in-
terest again in the nineties, several mathematicians trying to work their
way out from Webster's result to the full statement. Richard Schoen
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3It appeared later that the proof was �awed at some point, but Jacques La-
fontaine gave a corrected proof in [Laf88]
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2 THE SCHOEN�WEBSTER THEOREM

gave the �rst complete proof, using original analytic methods related to
the Yamabe problem [Sch95]. In fact, he gave a proof in the conformal
case that adapts to CR geometry and obtained the following result.4

Theorem (Schoen�Webster) � Let M be a strictly pseudoconvex CR
manifold, not necessarily compact. If its automorphism group Aut(M)
acts non-properly, then M is either the standard CR sphere S or S
with one point deleted.

Let us recall that an action of a topological group G is proper if for
any compact subset K of M , the subset

GK = {g ∈ G; g(K) ∩K 6= ∅}
of G is compact. In particular if M is compact, Aut(M) acts properly
if and only if it is compact.
The paper is organised as follows. The �rst section is devoted to pre-

liminaries, including CR geometry, two properties that are important
in the sequel and (G, X)-structures. We then survey the successive
works on the Schoen�Webster Theorem, trying to give for (almost)
each result the �avor of the proof without getting into too much detail.
The word �proof� will therefore often be followed by quite imprecise
arguments. The last section is devoted to a cleaned geometric proof of
the theorem when M is compact, based on some of the ideas exposed.
Before getting started, let us point out that Bun Wong proved a

very close theorem for domains of Cn+1 [Won77]. Many developments
arose from his result and parts of the Schoen�Webster Theorem can
be deduced from this work. Indeed, unless n = 1, a compact strictly
pseudoconvex CR manifold M2n+1 can always be embedded as the
boundary of a domain of Cn+1 and its automorphisms can be extended
to automorphisms of the domain. See [Lee96] for details due to Daniel
Burns.
However, we will not discuss Wong's theorem and its improvements.

First, it cannot be of any help for the least dimensional case. Second,
we are interested in more intrinsic methods of proof, independant of any
embedding. For further informations on this topic, the reader should
refer to [Won03].
For the sake of completeness, note that in [Pan90] Pierre Pansu gave

a hint of how one could try to adapt Ferrand's proof to the CR case.

1. Preliminaries

1.1. Basics of CR geometry. We only give a glimpse on CR geom-
etry. The interested reader can refer to [D'A93] or [Jac90].
Given a 2n + 1-dimensional manifold M , a CR structure on M is a

couple (ξ, J) where:

4We chose to name it after both Webster, who initiated the topic, and Schoen,
who gave the �rst complete proof.
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(1) ξ is a 2n-dimensional subbundle of TM ,
(2) J is a pseudocomplex operator on ξ:

Jx : ξx → ξx, J2
x = −Id ∀x ∈ M,

(3) for all vector �elds X, Y tangent to ξ, the vector �eld [JX, Y ]+
[X, JY ] is tangent to ξ and the following integrability condition
holds:

J([JX, Y ] + [X, JY ]) = [JX, JY ]− [X, Y ].

Any smooth hypersurface H in a complex manifold X admits a nat-
ural CR-structure: denoting by J the complex structure of X, one can
de�ne ξ = TH ∩ J(TH) so that J acts on ξ; note that the vanishing
of the Nijenhuis tensor implies the integrability condition.
A di�erentiable map between two CR manifolds is a CR map if it

conjugates the hyperplanes distributions and the pseudocomplex oper-
ators. An automorphism of a CR manifold M is a di�eomorphism of
M that is a CR map. The group of those is denoted by Aut(M) and
its identity component by Aut0(M).

1.1.1. Calibrations, the Levi form and the Webster metric. Given a CR
structure (ξ, J) on M , a (possibly local) 1-form θ such that ξ = ker θ
is called a (local) calibration. One can always �nd local calibrations. If
M is orientable, one can always �nd a global calibration. However, a
calibration need not be preserved by automorphisms.
From now on, all the manifolds under consideration are assumed

to be connected and orientable; all the calibrations are assumed to be
global.
Given a calibration θ, one de�nes on ξ the Levi form:

Lθ(·) = dθ(·, J ·).
As a consequence of the integrability condition, the Levi form is a
quadratic form.
A change of calibration induces a linear change in the Levi form:

(1) Lλθ = λLθ,

thus its signature is, up to a change of sign, a CR invariant.
A CR structure is said to be strictly pseudoconvex if its Levi form

is de�nite (and then we choose our calibrations so that it is positive
de�nite). It implies that dθ is nondegenerate on ker θ, that is θ is a
contact form. If the Levi form vanishes at each point, the CR structure
is said to be Levi-�at. Then dθ is zero on ξ and the Frobenius Theorem
shows that ξ de�nes a foliation.
One should therefore not think of CR geometry as one geometry

: each signature of the Levi form corresponds to a geometry of its
own, just like Lorentzian and Riemannian geometry (or foliations and
contact structures) are related, but di�erent kind of geometries.
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Figure 1. The Reeb vector �eld of a calibration

Given a calibration θ on a strictly pseudoconvex CR manifold, there
is a single vector �eld X, called the Reeb vector �eld of θ, that satis�es:

(2) θ(X) = 1 and X y dθ = 0.

See Figure 1.
Denote by π : TM → ξ the linear projection on ξ along the direction

of X. If the Levi form is positive de�nite, one gets a Riemannian metric
on M called the Webster metric:

(3) Wθ = Lθ ◦ π + θ2.

A change of calibration θ′ = λθ changes the metric by a factor λ along
ξ and by a factor λ2 �transversally� that is, on the quotient TM/ξ.
Therefore, the Webster metric does not de�ne a canonical conformal
structure on a CR manifold.
Note that if M has dimension 2n + 1, the calibration θ de�nes a

volume form θ ∧ dθn which is compatible with the Webster metric.

1.1.2. The Webster scalar curvature and the pseudoconformal Lapla-
cian. There is also a natural metric connection ∇θ on TM , the so
called Tanaka-Webster connection; beware its torsion Torθ does not
vanish in general. Contracting the curvature Rmθ of this connection
along ξ, we obtain a scalar curvature Rθ. A subelliptic Laplacian ∆θ

arises by taking (minus) the trace over ξ of the Hessian corresponding
to ∇θ; the following integration by parts formula holds:

∀u, v ∈ C∞
c (M),

∫
M

(∆θu)vθ ∧ dθn =

∫
M

Lθ (du|ξ, dv|ξ) θ ∧ dθn,

where ξ and ξ∗ are identi�ed thanks to Lθ. To understand the relevance
of this operator, consider another calibration θ′, which we write θ′ =
u

2
n θ for some smooth positive function u. The scalar curvature then
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transforms according to the following law:

Rθ′ = b(n)−1u−
n+2

n Lθ u

where b(n) = n+1
4n+2

and Lθ = ∆θ + b(n) Rθ.
This formula is pretty similar to a conformal one. Indeed, given

conformally equivalent metrics g and h = u
4

n−2 g, for some positive
function u, the Riemannian scalar curvatures of g and h are related
the same kind of formula, where b(n) should be replaced by n−2

4(n−1)

and Lθ by the conformal Laplacian (and ∆θ by the Laplace-Beltrami
operator). This analogy turns out to be very e�cient: it is the key idea
behind Schoen's proof (see Section 4).

1.1.3. The �at models. The standard CR sphere S2n+1 (we will often
omit the superscript) is the unit sphere on Cn+1:

S =
{

(z0, . . . , zn) ∈ Cn+1;
∑

|zk|2 = 1
}

endowed with the corresponding CR structure. It is a strictly pseudo-
convex CR manifold; its automorphism group is Aut(S) = PU(1, n+1),
a �nite quotient of SU(1, n + 1). It is noncompact, connected and acts
transitively on S.
The Heisenberg group is the CR noncompact manifoldH obtained by

removing one point of S. It is therefore di�eomorphic to the Euclidean
space R2n+1. Its automorphism group is the stabilizer of the removed
point in Aut(S), it acts non properly and transitively and is connected.
These two CR manifolds are homogeneous and obviously locally iso-

morphic; they are referred to as the �at models. They play the role
of the Euclidean space in Riemannian geometry, or of the sphere and
Euclidean space in conformal geometry.
For instance, there are local normal coordinates in any Riemannian

manifold, where the metric is very close a Euclidean one. There is an
analogous local model for calibrated strictly-pseudoconvex manifolds:
[JL89] provides local �normal� coordinates in which the geometry is
close to that of the Heisenberg group H. In the Riemannian case, the
local model (i.e. the Euclidean space) is global for simply connected
complete �at manifolds. The following statement is the CR analogue.

Proposition 1.1 � A simply connected complete calibrated strictly-
pseudoconvex CR manifold with vanishing curvature and torsion is CR
equivalent to the Heisenberg group.

Let us precise what �complete� means. The form θ being contact
implies that any two points in M can be connected by a curve that
is everywhere tangent to the contact distribution. By minimizing the
length of such curves, one de�nes the Carnot distance dθ. It is a genuine
distance, but does not derive from a Riemannian metric. By �balls� of
M , we mean balls with respect to the Carnot distance. A strictly
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pseudoconvex CR manifold is said to be complete if closed balls are
compact.

Definition 1.2 � We say that an open subset U of a strictly pseudo-
convex CR manifold M is �at if any x in U has a neighborhood which
is CR isomorphic to an open subset of S.

1.2. Finite order rigidity. For a general reference on local rigidity,
see [Kob95], Theorems 3.2 and 5.1.
Let us start with the well-known rigidity of Riemannian geometry.

Proposition 1.3� A Riemannian metric on a manifold M is rigid to
order 1, that is: two isometries that have the same value and di�erential
at some point are the same.

In fact this result follows from a stronger statement. Let OM be the
bundle of orthonormal frames on M and Isom(M) its isometry group.
We look at its action on OM . For each element F of the total space
OM (F is thus the data of a point x ∈ M and an orthonormal frame
of TxM), one de�nes the map

Isom(M) → OM

f 7−→ f(F).

Proposition 1.3 asserts that this map is injective. In fact, it is an
embedding and its image is a closed submanifold of OM . The group
Isom(M), endowed with the corresponding di�erential structure, is a
Lie group.
As a consequence, since the �bers of OM are compact, the isometry

group of a compact Riemannian manifold is compact. One even gets:

Corollary 1.4 � Let U be an open set on a manifold M , K ⊂ U
be a compact set with nonempty interior, g be a Riemannian metric
de�ned on U and G be a Lie group acting on M and preserving K and
g. Then G is compact.

Now we turn to the rigidity of strictly pseudoconvex CR geometry.

Proposition 1.5 � Let M be a strictly pseudoconvex CR manifold.
The group Aut(M) is a Lie group and is rigid to order 2, that is: if two
automorphisms f , f ′ have the same 2-jet (the data of their derivatives
up to order 2) at some point, then f = f ′.

As before, there is a principal bundle on M in which Aut(M) em-
beds, but the �bers are no longer compact and Aut(M) can thus be
noncompact even when M is compact.
As a direct consequence of Proposition 1.5, two CR automorphisms

of M that coincide on an open set are the same.
The strict pseudoconvexity condition is of primary importance. For

example, the product S1 × Σ of the circle and any Riemann surface
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is a Levi�at CR manifold, and the action of the in�nite-dimensional
di�eomorphism group of S1 preserves the CR structure.

1.3. North-south dynamics. The following result is a common fea-
ture of all �rank 1 parabolic geometries�, that is of boundaries of nega-
tively curved symmetric spaces. The standard CR sphere S2n+1 is one
of them: it bounds the complex hyperbolic space, seen as the unit ball
of Cn+1. Note that by an unbounded sequence in a topological space,
we mean a sequence that is not contained in any compact set.

Proposition 1.6 � Let (φk)k be an unbounded sequence in Aut(S).
There exists a subsequence, still denoted by (φk)k, and two points (that
may be the same) p+ and p− on S such that:

lim φk(p) = p+ ∀p 6= p−(4)

lim φ−1
k (p) = p− ∀p 6= p+(5)

and the convergences are uniform on compact subsets of S − {p−},
S − {p+} respectively.
Moreover if the φk's are powers of a single automorphism φ, then

p± are �xed point of φ. The same result holds for a noncompact �ow,
which has thus either one or two �xed points.

An unbounded �ow or automorphism5 is said to be parabolic if it has
one �xed point, hyperbolic if it has two of them. A bounded �ow or
automorphism is said to be elliptic.

Proof. The principle is to look at the action of Aut(S) not only on the
sphere S, but also in the complex hyperbolic space it bounds and on
the projective space CPn+1 it is embedded in.
The case when the φk's are powers of an automorphism φ, or the case

of a �ow, are simple linear algebra results. They are roughly described
by Figure 2, which shows the link between negative curvature of the
hyperbolic spaces and north-south dynamics: when a geodesic γ is
translated, any other geodesic is shrinked toward one of the ends of γ.
The general case can be deduced from the KAK decomposition: ev-

ery element φ of the group Aut(S) writes down as a product φ = k1ak2

where k1, k2 are elements of a maximal compact subgroup K ⊂ Aut(S)
and a is an element of a maximal noncompact closed abelian subgroup
A. The dimension of A is the real rank of Aut(S), namely 1. More
precisely, A corresponds to a hyperbolic �ow, that is a noncompact �ow
with two �xed point on S (one attractive, one repulsive). The general
result then follows from the compactness of K.

5an automorphism is said to be unbounded if the sequence of its powers is
unbounded
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Figure 2. North-south dynamics.

1.4. (G, X)-structures. The notion of (G, X)-structure is a formali-
sation of Klein's geometry. In our setting, they arise as a description of
�at CR structures in term of the model sphere S and its automorphism
group.
Let X be a manifold and G a Lie group acting transitively on X.

Assume that the action is analytic in the following sense: an element
that acts trivially on an open subset of X acts trivially on the whole
of X. A (G, X)-structure on a manifold M is an atlas whose charts
take their values in X and whose changes of coordinates are restrictions
of elements of G. A di�eomorphism of M is an automorphism of its
(G, X)-structure if it reads in charts as restrictions of elements of G.
Let us consider the case when G = PU(1, n + 1) and X = S. A �at

strictly pseudoconvex manifold M carries a (G, X)-structure and its
CR automorphisms coincide with its (G, X) automorphisms. Indeed,
the �atness of M means that it is locally equivalent to S, thus it is
su�cient to prove that any local automorphism of S can be extended
into a global automorphism. This, in turn, follows from the order 2
rigidity and the following fact: any 2-jet of a local automorphism of S
can be realized as the 2-jet of a global automorphism (see e.g. [Spi97]).
The main tool we will need to study (G, X)-structures is the so-

called developping map. Let M be a manifold endowed with a (G, X)-
structure and M̃ be its universal covering. Then there exists a di�er-
entiable map

D : M̃ → X

that is a local di�eomorphism and such that for all automorphism f of
M̃ , there exists some φ ∈ G satisfying

(6) D ◦ f = φ ◦ D.
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Note that in general, this developping map need not be a di�eomor-
phism onto his image, nor a covering map. It is unique, up to compo-
sition with an element of G. More details on (G, X)-structures can for
example be found in the classical [Thu97].

2. Webster: a local Theorem

In 1977, Sydney Webster published the �rst work toward the Schoen�
Webster Theorem, [Web77]. Until the end of the paper, M denotes a
strictly pseudoconvex CR manifold of dimension 2n + 1.

Theorem 2.1 � If M is compact and Aut0(M) is noncompact, then
M is �at.

There are several reasons why this result has raised a lot of e�orts
to be improved. First, it is a local statement though Webster gave in
the same paper a very speci�c global result:

Theorem 2.2 � If M is compact and has �nite fundamental group
and Aut0(M) is noncompact, then M is globally equivalent to the stan-
dard sphere.

Second, he assumes that M is compact and that the identity com-
ponent Aut0(M) is noncompact. We refer to these hypotheses as the
compactness assumption and the connectedness assumption.
His paper also contains a result on connected groups of CR auto-

morphisms having a �xed point we shall discuss brie�y.

Theorem 2.3 � If M is compact and Aut0(M) admits a noncompact
one-parameter Lie subgroup G1 that has a �xed point p0, then M is
globally equivalent to the standard sphere S.
Let us turn to the proofs of these three results.

2.1. Canonical calibration. The following result is the key to the
local statement.

Lemma 2.4 � For each calibration θ on M there is a continuous non-
negative function Fθ on M such that:

(1) Fθ vanishes on a given open set U if and only if U is �at,
(2) on the open set where Fθ is positive, it is smooth,
(3) the family (Fθ)θ is homogeneous of degre −1 :

(7) Fλθ = |λ|−1 Fθ.

Such a family of functions (Fθ)θ is called a relative invariant after
Cartan's one (see the proof below). Most of the time, the are given by
the norm of a curvature tensor.
A point where Fθ vanishes for some (thus for all) calibration θ is said

to be umbilic.
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Let us show the interest of such functions. Pick any calibration θ of
M whose Levi form is positive and de�ne

(8) θ∗ = Fθθ.

Then θ∗ is a continuous 1-form that vanishes on the �at part of M and
is a smooth calibration everywhere else. It is canonical, for if θ′ = λθ
is another calibration with λ > 0 (that is, whose Levi form is positive),

θ′∗ = Fλθλθ

= λ−1Fθλθ

= θ∗.

We call θ∗ the canonical calibration of M although it is not a genuine
calibration unless M contains no umbilic points. If M is �at, θ∗ is zero
and, therefore, useless.

Proof. Lemma 2.4 follows from the study of invariants of calibrated CR
manifolds.
If n > 1, one can derive from the Chern-Mother curvature a tensor

S on some bundle T over M that only depends upon the CR structure
and vanishes on an open set U if and only if U is �at. A calibration
θ induces, via the Levi form, a metric on T . The corresponding norm
‖S‖θ of S yields the desired function. See [BS76, page 201] or [Web78,
page 35] for details.
If n = 1, S is always zero even when M is not �at so that Cartan's

relative invariant is needed. It is a function rθ on M , associated to a
calibration θ, that vanishes on an open set if and only if it is �at; the
family (rθ) is homogeneous of order −2, thus Fθ =

√
r does the job.

For details, one can look at Élie Cartan's work [Car32a, Car32b] or,
for a more modern presentation, at the book of Howard Jacobowitz
[Jac90].

2.2. The local theorem. Let us give an outline of the proof of Theo-
rem 2.1 given by Webster. We shall see later that a stronger statement
can be proved with the same tools.

Proof. Assume M is not �at; we will show that any one-parameter
subgroup of Aut0(M) has a compact closure, which implies the com-
pactness of Aut0(M) by a theorem of Deane Montgomery and Leo
Zippin [MZ51].
Let G1 be a nontrivial one-parameter subgroup of Aut0(M) with

in�nitesimal generator Y on M . Choose some calibration θ; by as-
sumption Fθ is positive on an open set U . Since the vanishing of Fθ is
independent of θ, U is invariant under the �ow of Y .
Consider the function η = θ∗(Y ), on U . Assume it vanishes identi-

cally. Then Y lies in the contact distribution. Moreover, since θ∗ is a
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CR invariant form, LY θ∗ vanishes. Cartan's magic formula yields:

0 = LY θ∗ = Y y dθ∗ + dη = Y y dθ∗,

so Y is identically zero, which contradicts the order two rigidity.
We may therefore assume that η > 0 somewhere, replacing Y by −Y

if necessary. Choosing ε su�ciently small, the set Uε de�ned by the
inequation η(p) > ε has non empty interior. It is closed in M , thus is
compact, and is invariant under the �ow of Y .
The closure G1 of G1 in Aut0(M) is a Lie group that preserves the

compact Uε and the Webster metric of θ∗ on it, thus is compact (Corol-
lary 1.4).

2.3. The global result. Webster derives Theorem 2.2 from a weak
form of Proposition 1.6 and a (now) standard use of (G, X)-structures.

Proof. By Theorem 2.1, M and its universal covering M̃ are �at. There-
fore they can be developped as (SU(1, n + 1),S)-structures. Since M
has �nite fundamental group, M̃ is compact and the developping map
D : M̃ → S is a covering map. But S admits no nontrivial covering
and M̃ is globally equivalent to S. By Montgomery-Zippin Theorem
[MZ51], there exists some closed noncompact one-parameter subgroup
G1 of Aut0(M). This group lifts to a one parameter subgroup G̃1 acting
on M̃ = S.
>From Proposition 1.6, we know that G̃1 has either one or two �xed

points. In both cases G1 has at least a �xed point.
Let p be a �xed point of G1. The lifts of p are �xed points of G̃1

of the same type (attractive, repulsive or both). But G̃1 has at most
one �xed point of a given type, thus M̃ → M must be a one-sheeted
covering.

2.4. One-parameter subgroups with a �xed point. Theorem 2.3
is based on a principle of extension of local conjugacy, making use of
the dynamics on the model space. We detail a similar argument at
the end of the paper, using it in the proof of the compact case of the
Schoen�Webster Theorem.

Proof. Let Y be an in�nitesimal generator of G1. According to Theo-
rem 2.1, M is �at so there is an isomorphism between a neighborhood
U of p0 and an open set U ′ of S. Denote by Y ′ the vector �eld on U ′

corresponding to the restriction of Y to U . Then Y ′ extends uniquely
to a CR vector �eld on S, which has a �xed point p′0.
If Y ′ is elliptic, then it follows from the �nite order rigidity that G1 is

compact, in contradiction with the assumptions. If Y ′ is parabolic, then
one can use it to extend the conjugacy between U and U ′ to the basins
of attraction and repulsion of p′0, therefore M is globally equivalent to
S. If Y ′ is hyperbolic, the same argument shows that there is an open
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set V ⊂ M that is conjugate to either S or S with a point (namely the
second �xed point of Y ′) deleted. Since Y is a complete vector �eld
with isolated zeros, M itself must be globally equivalent to either S or
S with a point deleted.

3. Kamishima and Lee: two ways from local flatness to

global rigidity

Yoshinobu Kamishima seems to be the �rst to prove the local to
global statement (under both the compactness and connectedness as-
sumptions) in a workshop in honor of Obata held at Keio University
in 1991. He announced the result in the proceedings [Kam93] and the
complete proof appeared a while after [Kam96].

Theorem 3.1 � If M is �at, compact and Aut0(M) is noncompact
then M is globally equivalent to the standard sphere.

We will not detail his proof at all, but let us quote an interesting
corollary he gave in relation with the so-called Seifert conjecture. This
celebrated conjecture states that any non singular vector �eld on the
3-dimensional sphere has at least one closed orbit. It was disproved for
C 1 vector �elds by Paul Schweitzer [Sch74], then in C∞ regularity by
Krystyna Kuperberg [Kup94]. The question was then raised for vec-
tor �elds preserving some geometric structure. Kamishima's following
result gives an answer for vector �elds preserving a CR structure.

Corollary 3.2 � If M is a rational homology sphere endowed with
a strictly pseudoconvex CR structure, then any nonsingular CR vector
�eld on M has a closed orbit.

In [Lee96], John Lee proved Theorem 3.1 independently of Kamishi-
ma. His method relies on Webster's Theorem 2.3: he proves

Theorem 3.3 � If M is compact and Aut0(M) admit a closed non-
compact one-parameter subgroup G1, then G1 has a �xed point.

Once again, the Montgomery�Zippin Theorem is used to deduce The-
orem 3.1 from Theorems 3.3, 2.1 and 2.3.

Proof. Let Y be an in�nitesimal generator of G1 and assume by con-
tradiction that Y has no zero on M .
Note �rst that Y must be somewhere tangent to the contact dis-

tribution ξ: otherwise Y would be the Reeb vector �eld of a unique
calibration, thus would preserve the associated Webster metric.
The �rst part of the proof consists in understanding the set of points

where Y ∈ ξ; it is a classical computation that involves only the contact
structure on M : pick any calibration θ of M and de�ne η = θ(Y ). Then
one can show, using that Y has no zero, that 0 is a regular value of
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η. Therefore H = {η = 0} ⊂ M is a nonempty, compact, embedded
hypersurface along which Y is tangent to both H and ξ.
The next step consists in proving that one can �nd a new calibration

such that LY θ = 0 and LY dθ = 0 at every point of H. It is easy to get
the �rst condition by rescaling θ; then a rather tedious computation
allows Lee to re�ne the rescaling in order to get the second condition.
These two conditions imply that the Webster metric on TM is pre-

served by the �ow of Y along H. It follows for any sequence (fi) in
G1, (fi|H) converges in C∞ topology. Using the complex operator J , it
is then possible to prove that the 2-jets of the sequence (fi) converge
at all points of H. By the order 2 rigidity, (fi) is convergent in G1, a
contradiction.

4. Schoen: Yamabe problem methods

The aim of this section is to survey the proof of Schoen�Webster
theorem by R. Schoen in [Sch95]. For convenience, we only deal with
the compact case, even though [Sch95] also considers the non-compact
case with the same kind of techniques, based on global analysis. R.
Schoen �rst proves that the conformal group is compact for any closed
Riemannian manifold which is not conformally equivalent to the stan-
dard sphere. Then he explains how to adapt the proof in a CR setting,
which is what we want to develop below. Another proof of the con-
formal group compactness is given in [Heb97] : it is a bit shorter but
relies on the positive mass theorem, which makes it less elementary
than what follows.

4.1. Yamabe theorem. The celebrated Yamabe problem is basic in
conformal geometry: is there a metric with constant scalar curvature
in each conformal class of a given closed manifold ? This question was
the beginning of a long story: see the excellent [Heb97] or [LP87] for
an exhaustive account. The answer to the problem is yes and the proof
relies on a careful study of the conformal Laplacian.
As explained in [JL87], there is a deep analogy between conformal

and CR geometry. In particular, Yamabe theory has a counterpart
in the CR realm, which enables R. Schoen to extend his conformal
geometry arguments to the CR case.
In order to develop a Yamabe theory in the CR setting, one needs a

Sobolev-like analysis. In the conformal case, the natural conformal op-
erator is elliptic, so that its analysis is rather standard. In the CR case,
the corresponding natural operator Lθ is only subelliptic. G. Folland
and E. Stein [FS74] (see also paragraph 5 of [JL87]) have nonetheless
developped a powerful theory which yields the necessary tools.
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As in conformal geometry, given a calibration θ, we de�ne the CR
Yamabe invariant Q(M, θ) as the in�mum of the functional∫

M

φLθ φ θ ∧ dθn

over the elements φ of the unit sphere in the Lebesgue space L
2n+2

n (M).
The choice of this exponent is related to the transformation law for the
volume form: if θ′ = u

2
n θ for some positive function u, then

θ′ ∧ (dθ′)n = u
2n+2

n θ ∧ dθn.

It turns out that Q(M, θ) is a CR invariant.
D. Jerison, J. M. Lee [JL87], N. Gamara and R. Yacoub [Gam01],

[GY01] adapted the proof of the conformal Yamabe theorem to prove
the

Theorem 4.1 � A closed strictly pseudoconvex CR manifold admits
a calibration with constant scalar curvature 1 (resp. 0 and −1) if its
CR Yamabe invariant is positive (resp. zero and negative).

We will only need the nonpositive (and easiest) case, which was
settled by [JL87].

4.2. The proof. Theorem 4.1 leads to the

Proposition 4.2 � When the CR Yamabe invariant is nonpositive,
the CR automorphism group is compact.

Proof. We prove that CR automorphisms are isometries for the Webster
metric of a calibration; since the isometry group of a closed Riemannian
manifold is compact, the result will follow. Endow M with a calibration
θ.
If Q(M) = 0, we can assume θ has vanishing scalar curvature (Yam-

abe). A CR automorphism F of M then obeys F ∗θ = u
2
n θ with

Lθ u = ∆θu = 0 (F ∗θ has scalar curvature F ∗Rθ = 0). An integra-
tion by parts yields

0 =

∫
u∆θu =

∫
Lθ (du|ξ, du|ξ) θ ∧ dθn.

So we can write du = fθ, which implies 0 = df ∧ θ + fdθ. Since dθ is
de�nite on the kernel ξ of θ, f vanishes, so u is constant. Since

volθ(M) = volθ(F (M)) = volF ∗θ(M) = u
2n+2

n volθ(M),

u is constant to 1: F preserves θ hence Wθ.
If Q(M) < 0, we can make a similar argument: we are left to show

that a solution u of

∆θu = b(n)
(
u− u

n+2
n

)
is constant to 1. It follows from a weak maximum principle. At a
maximum point, ∆θu is nonnegative so that the equation ensures u ≤ 1.
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At a minimum point, one �nds u ≥ 1 for the same reason. Therefore
u is constant to 1.

The following lemma is the key to complete the proof. We denote
by Dr the ball of radius r in R2n+1. To avoid technical details, we do
not give the precise statement (cf. [Sch95]).

Lemma 4.3 � Let F : (D1, θ) → (N, σ) be a CR di�eomorphism. We
assume θ is close to the Heisenberg calibration and σ has vanishing
scalar curvature. If λ :=

√
(F ∗σ/θ)(0) denotes the dilation factor at

0, then:

• the dilation factor is almost constant to λ, i.e. F ∗σ/θ ≈ λ on
D1/2 ;

• images of balls have moderate eccentricity, i.e. F (D1/2) ≈
B(F (0), λ/2) ;

• the total curvature and the torsion are small when the dila-
tion factor is large, i.e. |Rmσ| . λ−2 and |Torσ| . λ−2 on
B(F (0), λ/2).

Proof. By scaling σ, we can assume λ = 1. Write F ∗σ = u
2
n θ and

observe that Rσ = 0 implies Lθ u = 0. Since θ is close to the Heisenberg
calibration, Lθ is close to the Heisenberg subelliptic Laplacian, so that
u satis�es a Harnack inequality ([JL87], 5.12) : sup u ≤ C inf u, with a
controlled constant. The �rst and second assertions follow. Subelliptic
regularity ([JL87], 5.7) also yields a C2 bound on u, hence the third
assertion.

Now we can �nish the proof of the

Theorem 4.4 (Schoen�Webster) � The CR automorphism group of
a closed strictly pseudo-convex CR manifold which is not CR equivalent
to a standard sphere is compact.

Here, we only deal with C0 topology. Thanks to a bootstrap argu-
ment, [Sch95] proves that all Ck topologies, k ≥ 0, are the same. They
also coincide with the Lie group topology.

Proof. Assume M2n+1 is a closed strictly pseudo-convex CR manifold
with non-compact conformal group and choose a calibration θ. As-
coli theorem yields CR automorphisms Fi and points xi such that the
dilation factors

λi :=
√

(F ∗
i θ/θ)(xi) = max

√
(F ∗

i θ/θ)

go to in�nity.
The rough idea of the proof consists in multiplying the calibration

θ by suitable Green functions so as to build a sequence of conformal
scalar �at blow ups; then lemma 4.3 will enable us to �nd a sequence
of larger and larger balls endowed with a calibration of smaller and
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smaller curvature and torsion: taking a limit, we will realize M minus
a point as a Heisenberg group; a last e�ort will seal the fate of the
missing point.
To begin with, we can choose a small ε > 0 such that the geometry

of all the balls of radius ε in M is close to that of the Heisenberg group.
Then we choose points yi outside Fi(B(xi, ε)) and use a standard trick
in Yamabe theory. Since the CR Yamabe invariant is positive (4.2),
the operator Lθ is positive. Therefore, there are Green functions Gi,
i.e. preimages of Dirac distributions δyi

(cf. [Gam01] for instance):
outside yi, they are smooth, satisfy Lθ Gi = 0 and we can normalize
them so that their minimum value is 1. Put zi := Fi(xi) and consider
the calibration

θi :=

(
Gi

Gi(zi)

) 2
n

θ,

de�ned outside yi. It has vanishing scalar curvature.
We can assume yi converges to y, zi converges to z and Gi converges

to G on compact sets of M−{y}. Besides, one can show that Gi(zi) re-
mains bounded, that is y 6= z: it stems from a convenient use of lemma
4.3 and from a Harnack inequality for the dilation factor between F ∗

i θi

and θ. So we can assume Gi(zi) converges.
Therefore θi tends to a calibration θ∞ = cG

2
n θ on the compact sets

of M − {y}. Now lemma 4.3 ensures that, roughly, θi has curvature
and torsion of magnitude λ−2

i on Fi(Bθ(xi, ε/2)) ≈ Bθi
(zi, λiε/2), so

that letting i go to in�nity, we conclude our manifold, outside y, is CR
equivalent to a calibrated strictly pseudo-convex CR manifold with
vanishing curvature and torsion; and it happens to be complete and
simply connected (it is a nondecreasing union of topological balls), so
that it is H2n+1.
Thus there is a CR di�eomorphism F between M minus y and the

standard sphere minus some point, ∞. In the neighbourhood of ∞
in S2n+1, consider a CR equivalent Heisenberg calibration σ. Writing
F ∗σ = u

2
n θ, we obtain Lθ u = 0 outside y, since σ has vanishing scalar

curvature. Extending F at y amounts to show that u has a removable
singularity at y. But the integral of u

2n+2
n over some ball is exactly the

volume of the image of this ball through F , which is bounded by the
volume of the standard sphere; it follows (proposition 5.17 in [JL87])
that u is a weak solution of the equation Lθ u = 0 over a neighborhood
of y so that it extends as a smooth function in the neighborhood of y
(5.10, 5.15 in [JL87]). Thus (M, θ) is CR equivalent to the standard
sphere.
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5. Frances: a unified dynamical proof

Charles Frances recently gave a uni�ed proof of the Ferrand-Obata
and Schoen�Webster Theorems [Fra06]; in fact he also proves analogu-
ous results for quaternionic-contact and octonionic-contact geometries.
To obtain these results, he uses the setting of Cartan geometries

(see [Sha97] for a detailed account on this topic). Given a model ho-
mogeneous space X = G/P , a Cartan geometry modelled on X on a
manifold M consists of:

• a P -principal bundle B → M and
• a 1-form ω on the total space B with values in the Lie algebra

g.

The form ω is called the Cartan connection of the structure and is
supposed to satisfy some compatibility conditions we do not detail.
The points of B play the role of �adapted� frames (like orthonormal

frames for Riemannian geometry). The Cartan connection is used to
identify in�nitesimally B with G: in particular, it is asked that at each
point p ∈ B, ωp is an isomorphism between TpB and g.
The geometries Frances is concerned with are modelled on the ho-

mogeneous spaces ∂KHd = G/P where KHd is the hyperbolic space
based on K = R, C, H or O, G is the isometry group of KH and P is
the stabilizer of a boundary point. Note that when K = C, X = S.
For each of these Cartan geometries, the �equivalence problem� has

been solved, that is: there exists a construction that gives for any con-
formal, strictly pseudoconvex CR, etc. structure on M a corresponding
Cartan structure B, ω such that isomorphisms of the original structure
induce isomorphisms of the Cartan structure and reciprocally. The
Cartan structure is not unique, one can impose further assumptions.
In particular the Cartan connection can be chosen �regular� (a technical
condition involving the curvature of ω) for the geometries considered
here.
We can now state the result of Frances.

Theorem 5.1 � Let (M, B, ω) be a Cartan geometry modelled on
X = ∂KHd, with regular connection. If Aut(M, ω) acts nonproperly on
M , then M is isomorphic to either X or X with a point deleted.

Proof. The �rst and main step is to prove that any sequence (fk) of
automorphisms of M that acts nonproperly admit a subsequence that
shrinks an open set U ⊂ M onto a point p. The principle is to use
some sort of developping map from the space of curves on M passing
through p to the space of curves on X passing through a given base
point o. Then, choosing an appropriate family of curves in the model
and its north-south dynamics, one gets the desired property on M .
Then one proves that an open set that collapses to a point must be

�at. Note that in the CR case, one could use the Webster metric of
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the canonical calibration (see Section 2). As a consequence, one can
choose U to be of the form

U = Γ\(X − {o})
where Γ is a discrete subgroup of the stabilizer P of o ∈ X.
The �nal step is a result on geometrical rigidity of embeddings: if a

�at manifold Γ\(X−{o}) embeds in M , then either M = Γ\(X−{o})
or Γ = {Id}. In the latter case, M = X or M = X − {o}.
The conclusion follows since the automorphism group of Γ\(X−{o})

acts properly when Γ is not trivial.

6. Gathering a geometric proof in the compact case

In this last section, we give a geometric proof of the Schoen�Webster
Theorem under the compactness assumption. It is not elementary, as it
makes use of Lemma 2.4. However: it is a geometric proof, thus gives an
alternative to Schoen's techniques; it do not rely on the Montgomery-
Zippin Theorem, holds without the connectedness assumption and is
quite short, which makes it an improvement of those of Webster, Ka-
mishima and Lee together.
It does not pretend to originality, since it relies on arguments of

Webster [Web77] and Frances and Tarquini [FT02], rephrased.

6.1. The local statement.

Theorem 6.1 � If M is compact and Aut(M) is noncompact, then
M is �at.

Proof. Suppose that M is not �at; then the canonical calibration θ∗

de�ned thanks to Lemma 2.4 does not vanish identically. Denote by W
the Webster metric associated with θ∗: it is continuous on M , smooth
and positive de�nite on the open set U of nonumbilic points and zero
on its complementary F . For all x and y in M let

d(x, y) = inf
γ

∫
γ

√
W (γ̇)

de�ne the natural semimetric associated to W (not to be confused with
the Carnot metric of Section 1.1.3 : here the in�mum is taken on all
curves connecting x to y). We have d(x, y) = 0 if and only if x and y
are in F , in particular d is a genuine metric on U .
If U = M , then Aut(M) preserves a Riemannian metric, thus is

compact. Otherwise, F is nonempty, the distance d(x, F ) is �nite for
every x ∈ M and we can de�ne the set Uε = {x ∈ U ; d(x, F ) > ε} for
any positive ε. This set is compact and has nonempty interior for ε
small enough.
Now Aut(M) preserves Uε and its Webster metric, thus is compact.
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6.2. The local-to-global statement.

Theorem 6.2 � If M is �at and Aut(M) acts nonproperly, then M
is globally equivalent to the standard CR sphere S or to S with a point
deleted.

This result follows, by a principle of �extension of local conjugacy�,
from the dynamics of unbounded sequences of Aut(S). Note that we
do not use the compactness assumption for this part.
The end of the section is dedicated to the proof of Theorem 6.2.

Note that it holds as it is for any �rank-one parabolic� (G, X)-structure
(namely X = ∂KHn with K = R, C, H or O).

6.2.1. Set up: developping the dynamics. We assume that M is �at,
thus carries a (SU(1, n + 1),S)-structure, and that Aut(M) acts non-
properly: there is a convergent sequence xi ∈ M and a sequence
fi ∈ Aut(M) going to in�nity (that is, having no convergent subse-
quence), such that yi = fi(xi) converges in M . We set x∞ = lim xi and
y∞ = lim yi.
Let M̃ be the universal cover of M . There are lifts (x̃i)i∈N∪{∞},

(ỹi)i∈N∪{∞} and f̃i such that lim x̃i = x̃∞, lim ỹi = ỹ∞ and ỹi = f̃i(x̃i).
Moreover, the sequence (f̃i) has no convergent subsequence in Aut(M̃).
Let D : M̃ → S be the developping map of M and φi be a sequence of

Aut(S) such that Df̃i = φiD. If (φi) had a convergent subsequence, by
the order 2 rigidity and since φi and f̃i are locally conjugated, so would
(f̃i). Thus (φi) is unbounded and admit a North-South dynamics,
whose poles are denoted by p+ and p−.
Since D(ỹi) = φiD(x̃i), we have either D(ỹ∞) = p+ or D(x̃∞) = p−.

Up to inverting the fi's and exchanging the xi's and the yi's, we assume
that D(ỹ∞) = p+.

6.2.2. Stretching injectivity domains. A subset of M̃ is said to be an
injectivity domain if the developping map is one-to-one on its closure.
We denote by U0 an open connected injectivity domain containing

ỹ∞ and we let V0 = D(U0). We choose an open connected injectivity
domain Ω containing x̃∞ and having connected boundary Bd Ω whose
image D(Bd Ω) does not contain p−. Up to extracting a subsequence,
we can assume that for all i, x̃i ∈ Ω and ỹi ∈ U0.
According to Proposition 1.6, there is an increasing sequence of open

sets Vi ⊂ S (i > 0) such that, extracting a subsequence if necessary:

(1) for all i, D(Bd Ω) ⊂ Vi,
(2)

⋃
Vi = S − {p−},

(3) for all i, φi(Vi) ⊂ V0.

Let δ : U0 → V0 be the restriction of D and de�ne the following
open connected injectivity domains: Ui = f̃−1

i ◦ δ−1 ◦ φi(Vi). Since we
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assumed x̃i ∈ Ω and ỹi ∈ U0, we get

(9) Ui ∩ Ω 6= ∅ ∀i
and by construction we have

(10) D(Bd Ω) ⊂ D(Ui) = Vi ⊂ D(Ui+1) = Vi+1 ∀i.

6.2.3. Monotony and consequences. We prove that (Ui) (or a subse-
quence) is an increasing sequence.
If we can extract a subsequence such that Ui ⊂ Ω for all i, since Ω is

an injectivity domain and (DUi) is increasing, (Ui) must be increasing.
Otherwise we use the following Lemma.

Lemma 6.3 � Let A, B be two injectivity domains such that B is
open, A is connected and A ∩B 6= ∅. If D(A) ⊂ D(B), then A ⊂ B.

Proof. Since A is connected, we only have to prove that A∩B is open
and closed in A.
First, B is open so that A∩B is open in A. Second, let y be a point

in A∩B. Since D(A) ⊂ D(B), there is a z ∈ B such that D(z) = D(y).
But since B is an injectivity domain and y belongs to the closure of B,
z = y and y ∈ B. Therefore, A ∩B is closed in A.

When Ui 6⊂ Ω, Bd Ω∩Ui 6= ∅ and we can apply Lemma 6.3: Bd Ω ⊂
Ui. But then Ui ∩ Ui+1 6= ∅ thus by the same argument: Ui ⊂ Ui+1.
Now let U∞ =

⋃
Un; D is a di�eomorphism from U∞ to S − {p−}.

If U∞ 6= M̃ , let x be a point of the boundary of U∞. If D(x) were in
S − {p−}, for any neighborhood W of x, D(W ∩ U∞) would meet any
neighborhood of any inverse image ofD(x), contradicting the injectivity
of D on U∞. Therefore the boundary of U∞ consists of x alone and D
is a global di�eomorphism from M̃ = U∞ ∪ {x} to S.
We thus proved that M̃ is equivalent to either S or S −{p−}. More-

over, any inverse image of y∞ in M̃ is an attracting point, thus is ỹ∞:
M̃ is one-sheeted and M is itself equivalent to either S or S − {p−}.
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