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Abstract: We prove a positive mass theorem on ALF manifolds, i.e. complete
noncompact manifolds that are asymptotic to a circle fibration over a Euclidean
base, with fibers of asymptotically constant length.

Introduction

In general relativity [ADM], one can define the mass of an asymptotically Eu-
clidean spatial slice (Mn, g) in a spacetime by the formula

µg =
1
ωn

lim
R−→∞

∫

Sn−1(R)

[∂jgij − ∂jgii]ι∂idx. (1)

where Sn−1(R) is the standard sphere with radius R in Rn and ωn is the volume
of Sn−1(1). The terminology “asymptotically Euclidean” means M minus a com-
pact subset is diffeomorphic to Rn minus a ball and the metric g is asymptotic
to the standard metric on Rn. The positive mass conjecture asserts this mass, if
defined, is nonnegative when the scalar curvature Scalg is nonnegative, vanishing
only when (Mn, g) is isometric to Rn. It is a theorem in dimension 3 ≤ n ≤ 8
([SY1,SY2]) and on spin manifolds of any dimension ([Wit]). J. Lohkamp [Loh]
recently announced a proof of the positive mass theorem in all dimensions, with-
out spin assumption. Moreover, R. Bartnik [Bart] proved the mass is a genuine
Riemannian invariant (under sharp assumptions). The interested reader should
certainly have a look at [LP,He1]. The mathematical interest of such a theorem
is the rigidity result it involves: under a nonnegative curvature assumption, it
asserts a model metric at infinity (the Euclidean metric, here) cannot be ap-
proached at any rate, the obstruction being precisely the mass.

Positive mass theorems were proved in other settings. Asymptotically (real)
hyperbolic manifolds were studied from this point of view in [MO,AD,CH], while
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asymptotically complex hyperbolic manifolds are treated in [He2,BH]. Motivated
by theoretical physics considerations, Xianzhe Dai [Dai] pointed out a positive
mass theorem for spin manifolds that are asymptotic to the product of a Eu-
clidean space with a compact simply connected Calabi-Yau manifold.

In this paper, we are interested in manifolds that are asymptotic to a circle
fibration over a Euclidean base, with fibers of asymptotically constant length. For
instance, there are complete Ricci flat metrics on R2×Sn−2 that are asymptotic
to the standard metric on Rn−1×S1 ; in dimension four, an example is provided
by the Euclidean Schwarzschild metric

g =
dr2

1− 2µ
r

+ r2dω2 +
(
1− 2µ

r

)
dt2

where (r, ω, t) ∈ R∗+×Sn−1×S1. Another kind of example, adapted to the Hopf
fibration at infinity, is the hyperkähler Taub-NUT metric on R4:

g =
(
1 + 2µ

r

) (
dr2 + r2dω2

)
+

1
1 + 2µ

r

η2,

where η is the standard contact form on the three-spheres (lots of details will be
given about these formulas in the text). In these expressions, the parameter µ is
bound to be nonnegative (so as to get a complete metric) and it is interpreted as
a mass by physicists. It is tempting to ask for a positive mass theorem involving
this µ in these examples.

Some motivation comes from the study of gravitational instantons, i.e. hy-
perkähler four-manifolds with decaying curvature at infinity (an example is pro-
vided by the Taub-NUT metric). These manifolds arise in Euclidean quantum
gravity and string theory, but also in gauge theory, so that it is of interest to
try and understand their geometry. The main result of [Mi2] asserts that grav-
itational instantons with cubic volume growth are always asymptotic to circle
fibrations over a Euclidean base (up to a finite group action) with an approxima-
tion rate of order r−1, where r is the distance to some point. More generally, the
result applies to a class of Ricci flat metrics, including Schwarzschild examples
for instance. With this in mind, it seems interesting to wonder if there are non
trivial examples of Ricci flat metrics g that are closer to their model at infinity,
namely for instance: g = gR3×S1 + O(r−1−ε), with ε > 0? The corresponding
question with a nontrivial circle fibration at infinity can also be addressed. This
paper will prove in particular that the answer is no, because of a positive mass
theorem.

To introduce the class of metrics we will work with, we first consider the total
space Xm+1 of a principal S1-bundle π over Rm\Bm (the exterior of the unit ball
in Rm, m ≥ 3). Given a positive number L, we introduce the vector field T that
is equal to L

2π times the infinitesimal generator of the S1 action and consider a
“model” metric h on X , given by

h = π∗gRm + η2,

where η is a connection one-form, namely a S1 invariant one-form on X such
that η(T ) = 1. Observe the fibers have length L. For such a one-form η, one
may write dη = π∗ω for some two-form ω on the base B and we will assume this
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“curvature” two-form ω decays at infinity, in that there is a positive number τ
such that

Diω = O(r−τ−1−i), 0 ≤ i ≤ 2. (2)

We will consider Riemannian manifolds (Mm+1, g) such thatM minus a compact
set is diffeomorphic to such an X and such that g is asymptotic to h in the
following sense :

∇h,i(g − h) = O(r−τ−i), 0 ≤ i ≤ 3. (3)

Such metrics g are known as “ALF metrics”.
Our main result is a positive mass theorem, valid for any circle fibration at

infinity under a nonnegativity assumption on the Ricci curvature. We will denote
by BR the preimage by π of the ball of radius R on the base.

Theorem 1. Let (Mm+1, g), m ≥ 3, be a complete oriented manifold with non-
negative Ricci curvature. We assume that, for some compact subset K, M\K
is the total space of a circle fibration over Rm\Bm, which can be endowed with
a model metric h such that (2) and (3) hold with τ > m−2

2 . Then the quantity
defined by

µGB
g = − 1

ωmL
lim sup
R−→∞

∫

∂BR

∗h

(
divh g + dTrh g − 1

2d g(T, T )
)
.

is a nonnegative Riemannian invariant and vanishes exactly when (M, g) is the
standard Rm × S1.

We stress the fact that the assumption Ric ≥ 0 is too strong for the asymp-
totically Euclidean setting (for Bishop-Gromov theorem immediately implies the
manifold is isometric to Rn), while it allows many interesting examples when the
volume growth is slower. The assumption τ > m−2

2 is classical (cf. [Bart] for in-
stance). Considering products of asymptotically Euclidean manifolds with S1,
one can rely on [DS] to see that this hypothesis is optimal (see also the remark
before theorem 4.3 in [Bart]). The assumption on the third derivative of g is only
used to ensure the mass is a Riemannian invariant, namely does not depend on
h.

A cheap adaptation of our argument yields another positive mass theorem,
valid for asymptotic trivial fibrations, with a spin assumption and a nonnega-
tivity assumption on the scalar curvature.

Theorem 2. Let (Mm+1, g), m ≥ 3, be a complete spin manifold with nonnega-
tive scalar curvature. We assume there is a compact set K and a spin preserving
diffeomorphism between M\K and Rm\Bm × S1 such that for some τ > m−2

2 :

Di(g − gRm×S1) = O(r−τ−i), 0 ≤ i ≤ 3.

Then the quantity defined by

µD
g = − 1

ωmL
lim sup
R−→∞

∫

∂BR

∗h0

(
divh0 g + dTrh0 g

)
.

is a nonnegative Riemannian invariant and vanishes exactly when (M, g) is the
standard Rm × S1.
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There is a definite link with Dai’s work [Dai]. In his paper, he points out
he cannot include Schwarzschild-like metrics in the discussion because the spin
structure on the circles at infinity is not trivial. Indeed, physicists even built
examples of complete spin manifolds asymptotic to R3 × S1, with nonnegative
scalar curvature and with a negative mass ([BrH,CJ])! Here, we can “justify”
the positivity of the mass of genuine Schwarzschild metrics, relying on the fact
that their Ricci tensor vanishes (see section 4).

Moreover, we can cope with nontrivial fibrations at infinity, which is inter-
esting in view of the Taub-NUT example. In this case, the “model” at infinity
cannot be realized by a complete metric, so that the mass cannot vanish. It
seems that it is the first positive theorem with such a feature.

In these positive mass theorems, the base of the circle fibration at infinity is
a Euclidean space. One might ask for a generalization to the case of Riemannian
manifolds asymptotic to a circle fibration over a finite quotient of Rm (this
occurs for the so-called Dk gravitational instantons). It fails. For instance, M.
Atiyah and N. Hitchin [AH,Hit] introduced a famous hyperkähler (hence Ricci-
flat) metric on the moduli space of two monopoles. Its asymptotic shape is that
of (R3×S1)/Z2 endowed with a metric of Taub-NUT form, except that the mass
parameter µ is bound to be negative ! This problem with finite quotients was
already noticed for Asymptotically Locally Euclidean manifolds [Dah,Le1,Nak].

The paper is organized as follows. In a first section, we introduce the class of
metrics we are interested in. In a second section, we describe the analytical tools
required for our arguments. We could have relied on Mazzeo-Melrose machinery;
yet, we have chosen to include elementary proofs for everything we need. An
advantage is we never use complete Taylor expansions at infinity; the theory
is thus simpler, closer to what is usually done in the asymptotically Euclidean
case and it does not require any familiarity with pseudo-differential calculus.
We emphasize nonetheless that the paper [HHM] greatly inspired us, as well as
the text of some lectures given by Frank Pacard [Pac]. In a third section, we
prove the positive mass theorems. In the last section, we discuss examples and
counter-examples.

We will often use an Einstein summation convention without mentionning it:
when an index is repeated, the expression should be summed over this index
(with a range depending on the context).

1. Metrics adapted to a circle fibration at infinity

Let us work on the total space Xm+1 of a principal circle fibration π over Bm :=
Rm\Bm, m ≥ 3. From a topological point of view, there are two families of
such fibrations. In any dimension, we can consider the trivial circle fibration π0

over B = Rm\Bm. The total space is X = Rm\Bm × S1. In dimension four (i.e.
m = 3), the Hopf fibration S3 −→ S2 induces non trivial fibrations πk, k ∈ N∗,
where the total space X is the quotient of R4\B4 by Zk; the action of Zk is the
complex scalar action of the kth unit root group on C2 = R4.

We wish to define a class of “model” metrics h on X . Their first feature is
that the fibers of π will have constant length L (0 < L < +∞). It is therefore
natural to introduce the vertical vector field T that is equal to L

2π times the
infinitesimal generator of the S1-action; the flow of T goes around the fibers
in time L. As a second feature, h should pullback the Euclidean metric on Rm



A mass for ALF manifolds. 5

as much as possible, i.e. on the orthogonal of the fibers. The way to do this is
to pick a “connection” one-form η, namely a S1-invariant one-form η such that
η(T ) = 1. We define the corresponding model metric on X by

h := π∗gRm + η2 = dx2 + η2,

where xi := π∗x̌i, 1 ≤ i ≤ m, denote the lifts of the canonical coordinates x̌i on
the base B ⊂ Rm. In addition, we will require some decay for the curvature dη
of this connection. To express it, let us define r :=

√
x2

1 + · · ·+ x2
m and observe

dη = π∗ω for some two-form ω on the base B (dη is S1-invariant and Cartan’s
magic formula LT η = ιT dη + d(ιT η) implies ιT dη = 0). We will assume

ω = O(r−τ−1) and Dω = O(r−τ−2)

for some positive number τ (D is the flat connection on Rm).

Example 1 (Trivial fibration). In the trivial fibration case, we can choose a triv-
ialization (x1, . . . , xm, e

it) and put η = η0 := dt. Since dη0 = 0, any τ is con-
venient. Observe η0 defines foliations over r−1(R) for any R, corresponding
to the product foliation of Rm × S1 by circles. The model metric is the flat
h0 := dx2 + dt2.

Example 2 (Hopf fibration). In the Hopf fibration case, we define a connection
form η on R4\ {0} = C2\ {0} by the formula η(z) := |z|−2

gR4(T, .), where T
is the infinitesimal generator of the scalar action of S1 ⊂ C∗. Then τ = 1 is
convenient. Note η is nothing but the standard contact form on S3 and h :=
dx2 + η2 is the model at infinity for the Riemannian Taub-NUT metric (see
example 4.3 at the end of the paper).

Let us describe a few features of such metrics. The coframe (dx1, . . . , dxm, η)
is obviously orthonormal. We let (X1, . . . , Xm, T ) be the dual frame. Unique-
ness of the Levi-Civita connection ensures that, for horizontal vector fields X,
Y (namely η(X) = η(Y ) = 0), π∗∇h

XY = Dπ∗Xπ∗Y . The computation of
brackets of horizontal vector fields, together with T , contains the geometric in-
formation about the fibration. First, since η([Xi, T ]) = −dη(Xi, T ) = 0 and
π∗[Xi, T ] = [π∗Xi, π∗T ] = 0, T commutes with any vector field Xi. Besides,
with η([Xi, Xj ]) = −dη(Xi, Xj) and π∗[Xi, Xj ] = [π∗Xi, π∗Xj ] = 0, we obtain
[Xi, Xj ] = −dη(Xi, Xj)T . Koszul formula then yields:

∇hη =
dη

2
and ∇hdxi =

ιXidη ⊗ η + η ⊗ ιXidη

2
. (4)

In other words, the only non trivial Christoffel coefficients are

h(∇h
Xi
T,Xj) = h(∇h

TXi, Xj) = −h(∇h
Xi
Xj , T ) =

dη(Xi, Xj)
2

.

It is important to keep in mind that ∇hXi and ∇hT are O(r−τ−1).
Moreover, a short computation yields ∆hu = −Xi ·Xi · u− T · T · u. Given a

local section of the circle bundle, one may consider a local vertical coordinate t
and work in the coordinates (x1, . . . , xm, t). Observe ∂t = T and η = dt+Aidxi

for some functions Ai independent of t. Then Xk = ∂k −Ak∂t and

∆h = −∂kk − ∂tt + 2Ak∂kt −A2
k∂tt + ∂kAk∂t. (5)
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2. Analysis on asymptotic circle fibrations

In this section, we work on a complete Riemannian manifold (Mm+1, g), m ≥ 3,
such that for some compact subset K, M\K is diffeomorphic to the total space
X of a principal circle fibration π over B := Rm\Bm, with a model metric h as
in section 1, such that:

g = h+O(r−τ ) and ∇hg = O(r−τ−1).

Recall τ is assumed to be positive. We intend to study the equation ∆gu = f in
weighted L2 spaces. The presentation is deeply influenced by [HHM] and [Pac].
Given a real number δ and a subset Ω ofM , we first define the weighted Lebesgue
space

L2
δ(Ω) :=

{
u ∈ L2

loc

/ ∫

Ω\K
u2r−2δdvolh <∞

}

and endow it with the norm ‖u‖L2
δ(Ω) :=

(∫
Ω∩K

u2dvolg +
∫

Ω\K u2r−2δdvolh

) 1
2
.

Changing K only produces equivalent norms. We will often write L2
δ for L2

δ(M).
The following should be kept in mind: ra ∈ L2

δ(M\K) ⇔ δ > m
2 + a. Note the

Riemannian measures dvolg and dvolh on M\K can always be interchanged,
thanks to our asymptotic assumption. For the same reason, the Riemannian
connections ∇g and ∇h will be completely equivalent outside K.

Any function u ∈ L2
loc(M\K) can be written u = Π0u + Π⊥u where Π0u

is obtained by computing the mean value of u along the fibers: (Π0u)(x) =
1
L

∫
π−1(x)

u η. It corresponds to a Fourier series decomposition along the fibers:
Π0u is the part in the kernel of −T 2 = −∂tt while Π⊥u lies in the positive
eigenspaces of −∂tt. The point is ∆h commutes with the projectors Π0 and Π⊥:
for any function u, one can use (5) to write locally (Π0∆hu)(x) as

1
L

∫ (−∂kk − ∂tt + 2Ak(x)∂kt −Ak(x)2∂tt + ∂kAk(x)∂t

)
u(x, t)dt.

This simplifies into

(Π0∆hu)(x) = − 1
L

∫
∂xxu(x, t)dt = −∂xx

1
L

∫
u(x, t)dt = ∆h

(
1
L

∫
u(x, t)dt

)
,

which ensures Π0∆h = ∆hΠ0 and also Π⊥∆h = ∆hΠ⊥.
Since this decomposition will prove useful, we introduce the following Hilbert

spaces, depending on two real parameters δ and ε:

L2
δ,ε(Ω) :=

{
u ∈ L2

loc(Ω)
/
‖Π0u‖L2

δ(Ω\K) <∞ and ‖Π⊥u‖L2
ε(Ω\K) <∞

}
.

They are endowed with the following Hilbert norm:

‖u‖L2
δ,ε(Ω) :=

(
‖u‖2L2(K∩Ω) + ‖Π0u‖2L2

δ(Ω\K) + ‖Π⊥u‖2L2
ε(Ω\K)

) 1
2
.
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We also introduce the Sobolev space

H2
δ :=

{
u ∈ H2

loc

/
‖∇gdΠ0u‖L2

δ−2(K
c) + ‖dΠ0u‖L2

δ−1(K
c) + ‖Π0u‖L2

δ(Kc) <∞

and ‖∇gdΠ⊥u‖L2
δ−2(K

c) + ‖dΠ⊥u‖L2
δ−2(K

c) + ‖Π⊥u‖L2
δ−2(K

c) <∞
}

endowed with the obvious Hilbert norm.
In what follows, we will always write AR for the “annulus” defined by R ≤ r ≤

2R and Aκ
R for 2−κR ≤ r ≤ 2κ+1R (κ ≥ 0). Similarly, the “balls” K ∪ {r ≤ R}

will be denoted by BR. The letter c will always denote a positive constant whose
value changes from line to line. Its precise dependence on parameters will often
be clear in the context; otherwise, we will write c(. . . ) to clarify it.

2.1. A priori estimates.

2.1.1. A priori estimates on the kernel of Π⊥. We aim at some a priori esti-
mates for ∆h on X . Let us begin with the kernel of Π⊥: basically, we work with
functions defined on exterior domains in Rm and the Laplace operator is the
standard one! What follows is therefore standard (it is in [Pac] and can be com-
pared with [LP,Bart,HHM]). We will nonetheless provide details of the proofs,
in order to use them later.

Lemma 1. Given δ in R, there is a positive number c = c(m, δ) such that for
any R0 ≥ 1 and any u in L2

δ ∩KerΠ⊥,

∥∥∇hdu
∥∥

L2
δ−2(B

c
2R0

)
+ ‖du‖L2

δ−1(B
c
2R0

) ≤ c
(
‖∆hu‖L2

δ−2(B
c
R0

) + ‖u‖L2
δ(Bc

R0
)

)
.

Proof. Scaling the usual Garding inequality for the Laplacian on Rm yields

‖Ddu‖2L2
δ−2(AR) + ‖du‖2L2

δ−1(AR) ≤ c
(
‖∆hu‖2L2

δ−2(A
1
R) + ‖u‖2L2

δ(A1
R)

)
.

The formulas for the connection of h imply
∣∣∇hdu

∣∣ ≤ c |Ddu| + cr−τ−1 |du| so
we can replace D by ∇h in the estimate above. Using it for R = 2i+1R0, i ∈ N,
and summing over i, we get the desired inequality. ut

To carry on, we need to use a L2 spectral decomposition for the Laplace
operator∆S on the unit sphere Sm−1 in Rm. Its eigenvalues are λj := j(m−2+j),
with j ∈ N, and we denote by Ej the corresponding eigenspaces. We also set

δj :=
m

2
+ j and ν±j :=

2−m

2
± (δj − 1)

for j ∈ N. This simply means ν+
j = j and ν−j = 2 −m − j. These numbers ν±j

are usually called “indicial roots”. Their basic property is the following: given
an element φj of Ej , we have ∆ (rνjφj(ω)) = 0 outside 0. It can easily be seen
from the formula

∆ = −∂rr − m−1
r ∂r + 1

r2∆S − ∂tt. (6)

Definition 1. We will say δ is critical if δ = δj or δ = 2− δj for some j in N.
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2− m
2

1− m
2

m
2

+ 1

m
2

. . . . . .

m
2

+ 2−m
2

Fig. 1. The critical exponents.

Lemma 2. If δ is not critical, there is a positive number c = c(m, δ) such that
for any R0 ≥ 1 and any u in L2

δ ∩KerΠ⊥,

‖u‖L2
δ(Bc

2R0
) ≤ c

(
‖∆hu‖L2

δ−2(B
c
R0

) + ‖u‖L2
δ(AR0 )

)
.

Proof. If we first perform a spectral decomposition with respect to ∆S , our
problem reduces to find an estimate on solutions uj ∈ L2(R+, r

m−1−2δdr) to the
radial equation

−∂rruj − m−1
r ∂ruj + λj

r2 uj = fj .

Setting r := es, vj(s) := u(r) and gj(s) = r2fj(r), we turn the equation into

d

ds

(
v′j(s)e

(m−2)s
)

= (λjvj(s)− gj(s))e(m−2)s (7)

And we work in L2(R+, dµδ), with dµδ := e(m−2δ)sds. Given a radial truncature
function χ vanishing on BR0 and equal to 1 outside B2R0 , integration by parts
provides

∫
((χvj)′)2dµδ

=
∫
χ′2v2

jdµδ +
∫

(χ2vj)′
(
v′je

(m−2)s
)
e(2−2δ)sds

=
∫
χ′2v2

jdµδ −
∫

(χ2vj)(λjvj − gj)dµδ − (1− δ)
∫
χ2(v2

j )′e(m−2δ)sds

=
∫ [

χ′2 + (1− δ)(χ2)′
]
v2

jdµδ

+ [(1− δ)(m− 2δ)− λj ]
∫

(χvj)2dµδ +
∫
χ2vjgjdµδ.

One might then use the Hardy inequality (m−2δ)2

4

∫
(χvj)2dµδ ≤

∫
((χvj)′)2dµδ

to deduce the estimate

(δj − δ)(δj + δ − 2)
∫

(χvj)2dµδ ≤
∫ [

χ′2 + (1− δ)(χ2)′
]
v2

jdµδ +
∫
χ2vjgjdµδ.

For all indices j such that (δj − δ)(δj + δ − 2) > 0, Young inequality yields

∫ ∞

2R0

(χvj)2dµδ ≤ c

∫ 2R0

R0

v2
jdµδ + c

∫
χ2g2

jdµδ,
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which is what we need. For the finitely many indices j such 2 − δ < δj < δ, we
consider the function wj := 1

2(1−δj)
(wj,+ − wj,−), with

wj,±(s) :=
∫ s

R0

eν±j (s−σ)gj(σ)dσ. (8)

Since w′j,± = ν±j wj,± + gj , integration by parts leads to

(m− 2δ)
∫ R∞

R0

w2
j,±(s)e(m−2δ)s

= −2ν±j

∫ R∞

R0

w2
j,±dµδ − 2

∫ R∞

R0

wj,±gjdµδ + w2
j,±(R∞)e(m−2δ)R∞

︸ ︷︷ ︸
≥0

.

Since m− 2δ + 2ν±j > 0, it implies (Cauchy-Schwarz inequality):
∫ ∞

R0

w2
j,±dµδ ≤ c

∫ ∞

R0

g2
jdµδ.

Now, wj is a solution of (7) as well as vj , so from ODE theory, wj−vj is a linear
combination of eν±j s. Its L2(dµδ)-norm over [R0,+∞[ can therefore be estimated
by its L2(dµδ)-norm over [R0, 2R0[. It follows that vj can be estimated by

∫ ∞

R0

v2
jdµδ ≤ c

∫ ∞

R0

g2
jdµδ + c

∫ 2R0

R0

v2
jdµδ.

The remaining case, δ < δj < 2 − δ can be dealt with in a similar way. One
defines an explicit solution wj as above, replacing only R0 by +∞ in formula
(8). The integration by parts argument still works (because wj,± = o

(
e(δ−

m
2 )s

)
)

and the fact that vj and wj belong to L2(R+, dµδ) forces them to coincide. ut

2.1.2. A priori estimates on the kernel of Π0. The following lemma shows that
estimates are basically better on the kernel of Π0.

Lemma 3. Given δ ∈ R and a large number R0, there is a constant c such that
for any function u in L2

δ ∩KerΠ0,
∥∥∇hdu

∥∥
L2

δ(Bc
2R0

)
+‖du‖L2

δ(Bc
2R0

)+‖u‖L2
δ(Bc

2R0
) ≤ c

(
‖∆hu‖L2

δ(Bc
R0

) + ‖u‖L2
δ(AR0 )

)
.

Proof. Given parameters R >> 1 and 0 ≤ κ < κ′ ≤ 1, we can always choose a
smooth nonnegative function χ that is equal to 1 on Aκ

R, vanishes outside Aκ′
R , is

S1-invariant and has gradient bounded by c(κ, κ′)R−1. The integration by part
formula ∫

|d(χu)|2 dvolh =
∫
|dχ|2 u2dvolh +

∫
χ2u∆hu dvolh.

can be used together with Young inequality to obtain

‖du‖2L2(Aκ
R) ≤ c(ε) ‖∆hu‖2L2(Aκ′

R ) + ε ‖u‖2L2(Aκ′
R ) , (9)
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where ε can be chosen arbitrarily small provided R is sufficiently large. Since
Π0u = 0, we have

∫

fiber

(−T 2u)u η =
∫

fiber

du(T )2 η ≥ c

∫

fiber

u2 η.

This implies ‖u‖L2(Aκ
R) ≤ c ‖du‖L2(Aκ

R) and therefore, with (9):

‖u‖2L2(Aκ
R) + ‖du‖2L2(Aκ

R) ≤ c(ε) ‖∆hu‖2L2(Aκ′
R ) + ε ‖u‖2L2(Aκ′

R ) . (10)

To get an order two estimate, we first write

∫
χ2

∣∣∇hdu
∣∣2 =

∫
(∇h(χ2du),∇hdu)− 2

∫
χ(dχ⊗ du,∇hdu).

The Bochner Laplacian ∇h,∗∇h and the Hodge Laplacian ∆h = dd∗h + d∗hd only
differ by the Ricci endomorphism, so an integration by parts provides:

∫
χ2

∣∣∇hdu
∣∣2 =

∫
χ2(∆hdu, du)−

∫
χ2 Rich(du, du)− 2

∫
χ(dχ⊗ du,∇hdu).

Since the Hodge Laplacian commutes with d, another integration by part yields

∫
χ2(∆hdu, du) =

∫
(d∆hu, χ

2du) =
∫
χ2 |∆hu|2 − 2

∫
χ(dχ, du)∆hu.

Putting these formulas alltogether and using Young inequality, we obtain:

∫
χ2

∣∣∇hdu
∣∣2 ≤ 4

∫
χ2 |∆hu|2 + 6

∫
|dχ|2 |du|2 − 2

∫
χ2 Rich(du, du).

The upshot of this formula is the following estimate (observe Rich is bounded):

∥∥∇hdu
∥∥2

L2(Aκ
R)
≤ c ‖∆hu‖L2(Aκ′

R ) + c ‖du‖2L2(Aκ′
R ) .

With (10), we deduce:

‖u‖2L2(Aκ
R) + ‖du‖2L2(Aκ

R) +
∥∥∇hdu

∥∥2

L2(Aκ
R)
≤ c(ε) ‖∆hu‖2L2(Aκ′

R ) + ε ‖u‖2L2(Aκ′
R ) .

We then set ε = 0.5, κ = 0, κ′ = 1, we multiply these inequalities by R−2δ and
sum them for R = 2kR0, k ∈ N∗ (R0 is chosen large) to find:

‖u‖2L2
δ(Bc

2R0
) + ‖du‖2L2

δ(Bc
2R0

) +
∥∥∇hdu

∥∥2

L2
δ(Bc

2R0
)
≤ c ‖f‖2L2

δ(Bc
R0

) + c ‖u‖2L2
δ(AR0 ) .

ut
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Remark 1. When the fibration is trivial, one can also study the integral kernel
of the resolvent, as in [Dav]. Using a Fourier decomposition, we are left to prove
that for positive k, the integral kernel

P (x, y) :=
(

1 + d(o, y)
1 + d(o, x)

)δ

(∆Rm + k2)−1(x, y)

defines a bounded operator on L2(Rm). Indeed, it is true for instance on a
complete manifold with Ric ≥ 0 and ∀t ≥ 1, Atν ≤ volB(x, t) ≤ Btν for some
ν > 2. Noticing

(∆Rm + k2)−1 =
1√
π

∫ ∞

0

e−t∆e−k2t

√
t

dt and
1 + d(o, y)
1 + d(o, x)

≤ 1 + d(x, y),

we can use Li-Yau Gaussian estimate on the heat kernel [LY] to get

P (x, y) ≤ c(1 + d(x, y))
∫ ∞

0

e−
d(x,y)2

ct

volB(x,
√
t)
e−k2t

√
t
dt.

It implies P (x, y) ≤ ce−
d(x,y)

c and therefore
∫
P (x, y)dx ≤ c and

∫
P (x, y)dy ≤ c,

which is enough to ensure the boundedness of P on Lp, 1 < p <∞.

2.1.3. The main estimate.

Proposition 1. If δ is not critical, there is a constant c and a compact set B
such that for any u in L2

δ,δ−2, ‖u‖H2
δ
≤ c

(
‖∆gu‖L2

δ−2
+ ‖u‖L2(B)

)
.

Proof. Since ∆h commutes with Π0 and Π⊥, we can write the equation ∆gu = f
outside a large ball BR0 as follows:

{
∆hu0 = f0 +Π0(∆h −∆g)u
∆hu⊥ = f⊥ +Π⊥(∆h −∆g)u

We have denoted Π0u by u0, Π⊥u by u⊥, etc, to make the equations easier to
read. We apply lemmata 1 and 2 to the first equation and lemma 3 to the second
equation, which results in

∥∥∇hdu0

∥∥
L2

δ−2(B
c
2R0

)
+ ‖du0‖L2

δ−1(B
c
2R0

) + ‖u0‖L2
δ(Bc

2R0
)

+
∥∥∇hdu⊥

∥∥
L2

δ−2(B
c
2R0

)
+ ‖du⊥‖L2

δ−2(B
c
2R0

) + ‖u⊥‖L2
δ−2(B

c
2R0

)

≤ c ‖f‖L2
δ−2(B

c
R0

) + c ‖u‖L2
δ(B2R0 ) + c ‖(∆h −∆g)u‖L2

δ−2(B
c
R0

) .

Since
|(∆h −∆g)u| ≤ c |g − h|

∣∣∇hdu
∣∣ + c

∣∣∇g −∇h
∣∣ |du| , (11)

there is a function ε going to zero at infinity such that

‖(∆h −∆g)u‖L2
δ−2(B

c
R0

) ≤
∥∥ε(r)∇hdu

∥∥
L2

δ−2(B
c
R0

)
+

∥∥r−1ε(r)du
∥∥

L2
δ−2(B

c
R0

)
.
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Therefore, ‖(∆h −∆g)u‖L2
δ−2(B

c
R0

) can be bounded by

ε(R0)
( ∥∥∇hdu0

∥∥
L2

δ−2(B
c
2R0

)
+

∥∥∇hdu⊥
∥∥

L2
δ−2(B

c
2R0

)
+ ‖du0‖L2

δ−1(B
c
2R0

)

)

+ ε(R0)
(
‖du⊥‖L2

δ−2(B
c
2R0

) +
∥∥∇hdu

∥∥
L2

δ−2(AR0 )
+ ‖du‖L2

δ−2(AR0 )

)
.

Using this and choosing R0 large enough, we find

∥∥∇hdu0

∥∥
L2

δ−2(B
c
2R0

)
+ ‖du0‖L2

δ−1(B
c
2R0

) + ‖u0‖L2
δ(Bc

2R0
)

+
∥∥∇hdu⊥

∥∥
L2

δ−2(B
c
2R0

)
+ ‖du⊥‖L2

δ−2(B
c
2R0

) + ‖u⊥‖L2
δ−2(B

c
2R0

)

≤ c ‖f‖L2
δ−2(B

c
R0

) + c ‖u‖L2(B2R0 ) + c
∥∥∇hdu

∥∥
L2(B2R0 )

+ c ‖du‖L2(B2R0 ) .

Owing to the asymptotic of the metric, ∇h can be changed into ∇g in this
estimate. Since the standard Garding inequality provides

‖∇gdu‖L2(B2R0 ) + ‖du‖L2(B2R0 ) ≤ c ‖f‖L2(B4R0 ) + c ‖u‖L2(B4R0 ) ,

we can conclude: ‖u‖H2
δ
≤ c ‖f‖L2

δ−2,δ−2
+ c ‖u‖L2(B4R0 ) . ut

2.2. Mapping properties. We are interested in the unbounded operator

Pδ : D(Pδ) −→ L2
δ−2,δ−2

u 7→ ∆gu

whose domain D(Pδ) is the dense subset of L2
δ,δ−2 whose elements u have their

Laplacian in L2
δ−2,δ−2.

2.2.1. Fredholmness. Proposition 1 has a direct consequence. In view of Rel-
lich’s theorem and Peetre’s lemma (cf. [LiM], p. 171), it implies KerPδ is finite
dimensional (for any δ) and RanPδ is closed (for any noncritical δ). The usual
L2 pairing identifies the topological dual space of L2

δ,δ−2 (resp. L2
δ−2,δ−2) with

L2
−δ,2−δ (resp. L2

2−δ,2−δ). For this identification, the adjoint P ∗δ of Pδ is

P ∗δ : D(P ∗δ ) −→ L2
−δ,2−δ

u 7→ ∆gu

where the domain D(P ∗δ ) is the dense subset of L2
2−δ,2−δ whose elements u have

their Laplacian in L2
−δ,2−δ. Observing KerP ∗δ ⊂ KerPη for some large non crit-

ical η, we see that KerP ∗δ is always finite dimensional. We have proved the

Proposition 2. If δ is not critical, then Pδ is Fredholm.
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2.2.2. Solving an exterior problem. We first solve the equation ∆hu = f on an
exterior domain.

Lemma 4. Given a noncritical δ and a large number R0, there is a bounded
operator Gh : L2

δ−2(B
c
R0

) −→ H2
δ (Bc

R0
) such that ∆h ◦Gh = id.

Proof. We will define Gh in three steps, relying on an orthogonal decomposition
of L2

δ−2(B
c
R0

).
For the first step, we pick a function f in L2

δ−2∩KerΠ⊥ and we assume it has
no component along the eigenspaces Ej of ∆S such that (δj − δ)(δj + δ−2) > 0.
Given R >> R0, we can use standard elliptic theory to solve the equation
∆huR = f in L2(BR\BR0), with Dirichlet boundary condition. Adapting the
proof of lemma 2 (on BR\BR0 , with χ = 1), we obtain

‖uR‖L2
δ(BR\BR0 ) ≤ c ‖f‖L2

δ−2(BR\BR0 ) , (12)

with c independent of R. Elliptic regularity then bounds the H2 norm of uR

over compact subsets in terms of ‖f‖L2
δ−2

, so that we can use Rellich theorem
and a diagonal argument to extract a sequence uR converging to a function u
in H1

loc, with ∆hu = f and u = 0 on ∂BR0 . Taking a limit in (12), one gets
‖u‖L2

δ−2(B
c
R0

) ≤ c ‖f‖L2
δ−2(B

c
R0

). From (1) (plus standard elliptic arguments near

∂BR0), we deduce an estimate on the derivatives:

‖u‖H2
δ (Bc

R0
) ≤ c ‖f‖L2

δ−2(B
c
R0

) . (13)

We need to show that such a u is uniquely defined, i.e. independent of the choice
of extracted sequence. The difference v between two such functions u obeys
∆Rmv = 0 so, from ODE theory, its modes read vj(r, ω) = rν+

j φ+
j (ω)+rν−j φ−j (ω)

with φ±j in Ej . Since vj is in L2
δ and vanishes on the boundary, we have φ±j = 0,

so v = 0. We can therefore set Ghf := u.
As a second step, we observe the same approach can be used for a function

f in L2
δ−2 ∩ KerΠ0. We can still obtain the functions uR by solving the same

problem and the proof of lemma 3 can be adapted to provide the estimate (12),
provided R0 is large enough. This makes it possible to extract a converging
subsequence as above, yielding a function u such that ∆hu = f , u = 0 on ∂BR0

and satisfying (13). As for unicity, we consider the difference v between two such
functions u: v is in L2

δ,δ−2∩KerΠ0, vanishes on ∂BR0 and obeys ∆hv = 0. Given
a large number R, we can choose a cutoff function χ that is equal to 1 on AR,
vanishes on A1

R and has gradient bounded by 10/R. Then
∫
|d(χv)|2 =

∫
|dχ|2 v2 +

∫
χ2v∆hv

implies ‖dv‖L2
η(AR) ≤ c ‖v‖L2

η−1(A
1
R) for any exponent η. Since Π0v = 0, we get

‖v‖L2
η(AR) ≤ c ‖dv‖L2

η(AR) ≤ c ‖v‖L2
η−1(A

1
R) for any exponent η.

This improves L2
η estimates into L2

η−1 estimates. So v ∈ L2
δ implies v ∈ L2

η for
any η. In particular, v is in L2 and thus vanishes. So u is well defined and we
can set Ghf := u.
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As a third step, we consider those f in L2
δ−2∩KerΠ⊥ whose only component

in the spectral decomposition of ∆S is in Ej , with (δj − δ)(δj + δ − 2) < 0. In
case 2− δ < δj < δ, we set Ghf := u, with

u(r, ω) :=
1

2(1− δj)

(
rν+

j

∫ r

R0

t1−ν+
j f(t, ω)dt− rν−j

∫ r

R0

t1−ν−j f(t, ω)dt
)
, (14)

The proof of lemma 2 yields

‖u‖L2
δ(Bc

R0
) ≤ c ‖f‖L2

δ−2(B
c
R0

) . (15)

With lemma 1, we obtain:

‖u‖H2
δ (Bc

2R0
) ≤ c ‖f‖L2

δ−2(B
c
R0

) . (16)

Since u vanishes on ∂BR0 , standard elliptic estimates improve (16) into

‖u‖H2
δ (Bc

R0
) ≤ c ‖f‖L2

δ−2(B
c
R0

) .

The case δ < δj < 2 − δ is dealt with similarly, replacing R0 by +∞ in (14).
Note u does not vanish on ∂BR0 in this setting. But it can be bounded by
c ‖f‖L2

δ−2(B
c
R0

) on ∂BR0 ; since ∆Suj = λjuj , ‖u‖H2(∂BR0 ) is then bounded by

c ‖f‖L2
δ−2(B

c
R0

), so the argument above still works. ut

A perturbation argument extends this result to a more general setting.

Proposition 3. Given a noncritical δ and a large number R0, we can define a
bounded operator Gg : L2

δ−2(B
c
R0

) −→ H2
δ (Bc

R0
) such that ∆g ◦Gg = id.

Proof. Thanks to lemma 4, we can write ∆g = ∆h [id+Gh (∆g −∆h)] . With
(11), we can estimate ‖(∆h −∆g)u‖L2

δ,δ−2(B
c
R0

) by ε(R0) ‖u‖H2
δ (Bc

R0
). Since Gh

is bounded from L2
δ,δ−2(B

c
R0

) to H2
δ (Bc

R0
), we deduce that Gh (∆g −∆h) defines

a bounded operator on H2
δ (Bc

R0
), with norm strictly inferior to 1 for R0 large

enough. So id + (∆g −∆h)∆−1
h is an automorphism of H2

δ (Bc
R0

) and Gg :=
[id+Gh (∆g −∆h)]−1

Gh is a bounded operator from L2
δ,δ−2(B

c
R0

) to H2
δ (Bc

R0
),

with ∆gGg = ∆hGh = id. ut
This lemma can be used to build functions which are harmonic outside a

compact set and have some prescribed asymptotics.

Corollary 1. Given j ∈ N and φ ∈ Ej, there are functions ℵ±j,φ that are har-

monic outside a compact set and can be written ℵ±j,φ = rν±j φ+v± with v+ in H2
η

for any η > δj − τ and v− in H2
η for any η > 2− δj − τ .

Proof. For noncritical δ > δj , since rν+
j φ is in L2

δ and ∆h(rν+
j φ) = 0, lemma 1

implies rν+
j φ is in H2

δ . With (11), we deduce ∆g(rν+
j φ) ∈ r−τL2

δ−2 = L2
δ−τ−2.

Now we can use lemma 3 to solve ∆gu = −∆g(rν+
j φ) outside a compact set

and put ℵ+
j,φ := χ(rν+

j φ + u) for some smooth nonnegative function χ which
vanishes on a large compact set and is equal to 1 outside a larger compact set.
The construction of ℵ−j,φ follows the same lines. ut
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2.2.3. Decay jumps. The following lemma is the key to understand the growth
of solutions to our equations.

Lemma 5. Suppose ∆hu = f with u in L2
δ(B

c
R0

) and f in L2
δ′−2(B

c
R0

) for non-
critical exponents δ > δ′ and a large number R0. Then there is an element v of
L2

δ′,δ′−2(B
c
R0

) such that u− v is a linear combination of the following functions:

– rν+
j φj with φj in Ej and δ′ < δj < δ;

– rν−j φj with φj in Ej and δ′ < 2− δj < δ.

Proof. We will build v step by step, starting from the solution ṽ of ∆hṽ = f
provided by lemma 4: ṽ is in L2

δ′−2,δ′(B
c
R0

). Consider w := Π0(u − ṽ) and look

at its modes wj . The equation ∆hwj = 0 implies wj = rν+
j φ+

j + rν−j φ−j with φ±j
in Ej . Observing rν+

j ∈ L2
η ⇔ η > δj and rν−j ∈ L2

η ⇔ η > 2 − δj , one can see
that each term is either in L2

δ′−2,δ′ , so that we can add it to ṽ and forget it, or
satisfies the conditions in the statement. What about z := Π⊥(u − ṽ) ? This z
satisfies ∆hz = 0, Π0z = 0 and z ∈ L2

δ . As in the proof of lemma 4, for any η,
L2

η estimates on z improve into L2
η−1 estimates, so z ∈ L2

δ implies z ∈ L2
η for any

η and the proof is complete. ut
Let us generalize this to ∆g.

Proposition 4. Suppose ∆gu = f with u in L2
δ(K

c) and f in L2
δ′−2(K

c) for
noncritical exponents δ > δ′. Then, up to enlarging K, there is an element v of
L2

δ′,δ′−2(K
c) such that u− v is a linear combination of the following functions:

– ℵ+
j,φj

with φj in Ej, if δ′ < δj < δ;
– ℵ−j,φj

with φj in Ej, if δ′ < 2− δj < δ.

Proof. Thanks to lemma 1, the equation ∆gu = f , with u in L2
δ,δ−2 and f in

L2
δ′−2, ensures u ∈ H2

δ . With (11), we obtain

∆hu ∈ L2
δ′−2 + L2

δ−τ−2.

So if we pick any noncritical η ≥ max(δ′, δ − τ), we have ∆hu ∈ L2
η−2. Lemma

5 then says u admits a decomposition

u = u1 +
∑

j+

r
ν+

j+φ+
j+

+
∑

j−

r
ν−j−φ−j−

where u1 belongs to L2
η,η−2, η < δj+ < δ and 2 − δ < 2 − δj− < 2 − η. With

lemma 1, we can therefore write

u = u2 +
∑

j+

ℵ+

j+,φ+
j+

+
∑

j−

ℵ−
j−,φ−j−

with u2 in L2
η,η−2, η < δj+ < δ and 2− δ < 2− δj− < 2− η.

If δ − τ ≤ δ′, we are done.
If not, observe ∆gu2 = f outside a compact set and u2 belongs to L2

η,η−2. So
we can repeat the argument with u2 in the role of u and η in the role of δ. In a
finite number of steps, we are in the first case. ut
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Corollary 2. Pδ is surjective for any noncritical value δ > 2− m
2 .

Proof. For any noncritical δ ≥ 1, KerP ∗δ consists of harmonic functions u ∈ L2
1.

For every large number R, there is a smooth function 0 ≤ χR ≤ 1 such that
χR = 1 on BR, χR = 0 outside B2R and |dχR| ≤ 10

R . Then
∫

M

|d(χRu)|2 =
∫

M

|dχR|2 u2+
∫

M

χ2
Ru∆gu implies

∫

BR

|du|2 ≤ c

∫

AR

u2r−2

and, letting R go to infinity, one finds du = 0, hence u = 0 : KerP ∗δ = {0}. So Pδ

is surjective as soon as δ ≥ 1 is noncritical (recall it is Fredholm). Now, choose
some δ′ in ]2 − m

2 , 1[ and pick some function f in L2
δ′−2. In particular, f is in

L2
1−2, so there is a solution u ∈ L2

1,1−2 of ∆gu = f . Proposition 4, with δ = 1
and δ′ = δ′, implies u ∈ L2

δ′,δ′−2, for there is no critical exponent in ]δ′, 1[ ! Pδ′

is therefore surjective. ut

2.3. An extension to the Dirac operator. If we endow Rm×S1 with its trivial spin
structure, we can define a Dirac operator 6Dh0

whose square 6D2
h0

acts diagonally
as the Laplace operator ∆h0 in a constant trivialization. As a consequence, the
a priori estimates that we have proved for ∆h0 are also available for 6D2

h0
. We

wish to work on a complete spin Riemannian manifold (Mm+1, g), m ≥ 3, such
that for some compact subset K, M\K is spin-diffeomorphic to Rm\Bm × S1,
with: g = h0 +O(r−τ ), ∇h0g = O(r−τ−1) and ∇h0,2g = O(r−τ−2), τ > 0.
A perturbation argument easily yields the

Proposition 5. If δ is not critical, there is a constant c and a compact set B
such that for any ψ in L2

δ,δ−2,

‖ψ‖H2
δ
≤ c

(∥∥6D2
g ψ

∥∥
L2

δ−2
+ ‖ψ‖L2(B)

)
.

The functional spaces are defined in the obvious way, using a constant trivi-
alization. The proof is basically the same as that of proposition 1. Note however
the estimate on the second derivative of g: we need this to control the differ-
ence between the model Dirac Laplacian 6D2

h0
and the operator 6D2

g, and more
precisely the 0th order term (which of course vanishes for the Laplace operator
on functions). Indded, we bound

∣∣ 6D2
g ψ − 6D2

h0
ψ

∣∣ by a constant times

|g − h0|
∣∣∇h0,2ψ

∣∣ +
∣∣∇h0g

∣∣ ∣∣∇h0ψ
∣∣ +

(∣∣∇g −∇h0
∣∣2 +

∣∣∇h0,2g
∣∣
)
|ψ| .

The Fredholmness of the corresponding operator Pδ, δ noncritical, follows
immediately. The decay jump phenomenons carry over to this setting in exactly
the same way. The proof of corollary 2 can be adapted to get the

Corollary 3. If Scalg ≥ 0, Pδ is surjective for any noncritical value δ > 2− m
2 .

Proof. Lichnerowicz formula and the assumption Scalg ≥ 0 ensure the L2
1 kernel

of 6D is trivial: just use the integration by part formula∫

M

|∇(χRψ)|2 =
∫

M

|dχR|2 |ψ|2 +
∫

M

χ2
R(ψ, 6D2 ψ)− 1

4

∫

M

χ2
R Scal |ψ|2 .

The end of the proof is the same as for the Laplace operator. ut
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3. Towards a mass

In this section, we introduce a notion of mass for ALF metrics. The first para-
graph contains a few (classic) algebraic computations which are useful in the
sequel. The second and third paragraph develop two points of view correspond-
ing to the two standard examples of Dirac type operators.

3.1. Algebraic preliminaries. Let Mn be a Riemannian manifold and let E be a
bundle of left modules over the Clifford algebra bundle Cl(TM). For definitions
and basic facts about spin geometry, we refer to [LM]. We assume E is endowed
with a compatible Euclidean metric (., .) and metric connection ∇, whose cur-
vature tensor is R. This data determines a Dirac type operator D on E and a
section R of EndE. In a local orthonormal basis (ea)a, these are

D =
n∑

a=1

ea · ∇ea
and R =

1
4

n∑

a,b=1

[ea·, eb·]Rea,eb
.

Remark 2. Commutators are easier to handle than Clifford products, for the
latter are not antisymmetric. The identity

[ea·, eb·] = 2(δab + ea · eb·) (17)

makes the translation. Moreover, brackets are skew-symmetric with respect to
the Euclidean metric:

([ea·, eb·]ψ,ψ) = 0. (18)

Given sections α and β of E, we define a one-form ζα,β on M by the following
formula (as in [AD,He2,Dai]):

ζα,β(X) := (∇Xα+X · Dα, β).

The point is: d∗ζα,β = (Dα,Dβ) − (∇α,∇β) − (Rα, β). We can integrate this
Lichnerowicz-type formula over a domain Ω to get

∫

Ω

[(∇α,∇β) + (Rα, β)− (Dα,Dβ)] dvol = −
∫

Ω

d∗ζα,βdvol =
∫

Ω

d ∗ ζα,β

Stokes formula then provides
∫

Ω

[
(∇α,∇β) + (Rα, β)−

∫

Ω

(Dα,Dβ)
]
dvol =

∫

∂Ω

∗ζα,β . (19)

If ωα,β is the two-form defined by ωα,β(X,Y ) = ([X·, Y ·]α, β), one can com-
pute d∗ωα,β = 4ζα,β − 4ζβ,α. Stokes theorem thus implies:

∫

∂Ω

∗ζα,β =
∫

∂Ω

∗ζβ,α. (20)
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3.2. The Gauss-Bonnet case. Let us consider a complete oriented Riemannian
manifold (Mm+1, g), m ≥ 3, such that for some compact subset K, M\K is
diffeomorphic to the total space of a circle fibration π over Rm\Bm, which we
endow with a model metric h = dx2 + η2 as in section 1. Recall dη = π∗ω, with

ω = O(r−τ−1) and Dω = O(r−τ−2). (21)

We assume g is asymptotic to h in the following sense:

g = h+O(r−τ ), ∇hg = O(r−τ−1) and ∇h,2g = O(r−τ−2). (22)

For what follows, it is important to require : τ > m−2
2 . To simplify the statement

of lemma 6, we will also suppose τ ≤ m− 2 (if not, take τ := m− 2).
In this paragraph, we work on the exterior bundle ΛM(=: E), endowed with

the Levi-Civita connection ∇g and we use the Gauss-Bonnet operator d + d∗

as Dirac-type operator D. The Clifford product v· := εv − ιv is obtained from
the exterior product εv := (v, .)∧ and the interior product ιv. In this setting, R
preserves the form degree. In degree 1, it reduces to the natural action of the
Ricci tensor.

Let us introduce the vector space Z spanned by X1, . . . , Xm. As a first step
toward the definition of a mass, we wish to build g-harmonic one-forms that are
asymptotic to any element of the dual vector space Z∗. We fix a small positive
number ε (say 0 < ε < 1/2 and ε < τ − m−2

2 ).

Lemma 6. For any element α̃ in Z∗, there is a one-form α on M such that
(d+ d∗)α = 0 and α = α̃+ β, with β = O(rε−τ ) and ∇gβ ∈ L2

ε−τ−1+ m
2
.

Remark 3. It is important to stick to asymptotically horizontal forms: this lemma
cannot be generalized by choosing α̃ = η. A counter-example is provided by the
Taub-NUT metric : g = V dx2 + 1

V η
2 with V = 1 + 2m

r (cf. the end of the paper
for more details). In this Riemannian manifold, if there were a one-form α with
(d + d∗)α = 0 and α asymptotic to η (in the sense above), it would have to be
η/V (for it is harmonic and asymptotic to this one-form ; a similar argument
can be found in the proof of corollary 3). But this one-form is not closed, hence
is not suitable. This fact explains the difference between the formulas for µGB

g

and µD
g . In the Gauss-Bonnet case, we will define the mass by taking a trace

over the horizontal directions (because of this lemma), whereas we would have
needed a full trace to recover the same mass as in the Dirac setting.

We will need a Sobolev inequality. Indeed, the assumptions on h and g imply
Ricg ≥ cr−2, so we can use [SC] (or [Mi1]) to ensure the following family of
scaled Sobolev inequalities: with n = m+1, any smooth function u with compact
support in AR satisfies

‖u‖
L

2n
n−2

≤ c
R

(volBR)
1
n

‖du‖L2 .

This allows Moser iterations, turning integral estimates into pointwise estimates
([GT]; more precisely, lemma 3.9 in [TV] and lemma A.3 in [Mi2]):

‖u‖L∞ ≤ c

(vol BR)
1
2
‖u‖L2 + cR2 ‖∆gu‖L∞ . (23)
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Since Ricg ≥ cr−2, this estimate also holds for one-forms (∆g is then replaced
by the Hodge Laplacian (d + d∗)2) and for spinors (with the Dirac Laplacian
6D2).

Proof. It is enough to prove the claim for α̃ := dxk. Let us choose a truncature
function χ that vanishes on a large compact set and is equal to 1 outside a
larger compact set. Since ∆gxk is in L2

δ′−2 for any δ′ > 1 + m
2 − τ , we can apply

weighted analysis (corollary 2 ; observe δ′ > 2 − m
2 because of our assumption

τ ≤ m − 2) to construct a function uk in H2
δ′ such that ∆guk = −∆g (χxk),

for any noncritical δ′ > 1 + m
2 − τ . Setting βk := duk, we therefore obtain

(d+d∗)βk = −(d+d∗)d (χxk), with βk ∈ L2
δ and ∇βk ∈ L2

δ−1, for any δ > m
2 −τ

such that δ′ = δ + 1 is not critical. We may choose δ = m
2 − τ + ε. Then the

one-form αk := d (χxk) + βk obeys (d + d∗)αk = 0. The pointwise estimate on
βk follows from (23), using βk ∈ L2

δ and ∆gβk = O(r−τ−2) (this coincides with
d∆gxk outside a compact set). ut

Now, the basic formula we need is given by (19) and (20): for any one-form
α as in lemma 6 and any large number R, we have
∫

BR

[
|∇gα|2 + Ricg(α, α)

]
dvol =

∫

∂BR

∗ζeα,eα + 2
∫

∂BR

∗ζeα,β +
∫

∂BR

∗ζβ,β . (24)

Our next aim consists in understanding the asymptotic behaviour of the right
hand-side as much as possible. The mass is to be the limit of this quantity when
the domains BR are larger and larger. Let us tackle the second and third terms
on the right-hand side. The assumption τ > m−2

2 kills them at infinity.

Lemma 7. There is a sequence (Ri)i going to infinity such that

lim
i−→∞

∫

∂BRi

∗ζeα,β = 0 and lim
i−→∞

∫

∂BRi

∗ζβ,β = 0

Proof. Since β is in L2
m
2 +ε−τ and ∇β is in L2

m
2 +ε−τ−1, one can find a sequence

Ri going to infinity such that
∫

∂ΩRi

(
|β|2 + r2 |∇gβ|2

)
dvol = o(Rm−2τ+2ε−1

i ).

The lemma then follows from Cauchy-Schwarz inequality and ∇gα̃ = O(r−τ−1),
with τ > m−2

2 . ut
We need to compute the first term in the right-hand side of (24). Observe h
identifies Z and Z∗, so any Z in Z corresponds to a well defined α̃ = α̃Z in Z∗.

Lemma 8. ζeα,eα = −(divh g)(Z)α̃− 1
2 [d(Trh g)(Z) α̃+ d (g(Z,Z))] +O(r−2τ−1).

Proof. Let us g-orthonormalize the frame field (X1, . . . , Xm, T ) into (ea)a and
set ωcd := g(∇gec, ed)−g(∇hec, ed). Since the connection on the tangent bundle
TM reads ∇g = ∇h + ωcd ec ⊗ ed, the connection on the cotangent bundle
satisfies: ∇gα̃ = ∇hα̃−ωdc α̃(ec)ed. Therefore, we can write ζeα,eα = ξ1 + ξ2, with

ξ1 =
1
2
g([ea·, eb·]∇h

eb
α̃, α̃)ea and ξ2 = −1

2
ωdc(eb) α̃(ec)g([ea·, eb·]ed, α̃)ea.
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We are lead to estimate terms like

g([ea·, eb·]ed, α̃) = g([εea − ιea , εeb
− ιeb

]ed, α̃) = −g([ιea , εeb
]ed + [εea , ιeb

]ed, α̃)

(recall α̃ is a one-form). A little algebra provides [εea , ιeb
]ed = 2δbde

a−δabe
d and

therefore:
1
2
g([ea·, eb·]ed, α̃) = δadα̃(eb)− δbdα̃(ea). (25)

Formula (25) implies ξ1 reads g
(∇h

eb
α̃, ed

)
[δadα̃(eb)− δbdα̃(ea)] ea, namely ξ1 =

∇h
Z α̃− g

(∇h
eb
α̃, eb

)
α̃. With (4), we deduce ξ1 = ∇h

Z α̃+ (d∗hα̃)α̃+O(r−2τ−1) =
O(r−2τ−1) is a negligible term. As for ξ2, we use (25) again to obtain ξ2 =
ωdc(eb) α̃(ec) [δbdα̃(ea)− δadα̃(eb)] ea. Since Koszul formula provides

2ωxy(ew) = −g(ew, [ex, ey])− g(ex, [ew, ey]) + g(ey, [ew, ex])− 2g(∇h
ew
ex, ey)

= −g(ew,∇h
ex
ey)− g(ex,∇h

ew
ey) + g(ey,∇h

ew
ex) + g(ew,∇h

ey
ex)

+g(ex,∇h
ey
ew)− g(ey,∇h

ex
ew)− 2g(∇h

ew
ex, ey)

= (∇h
ex
g)(ey, ew)− (∇h

ey
g)(ex, ew) + (∇h

ew
g)(ex, ey),

we eventually find:

2ξ2 = (∇h
eb
g)(Z, eb) α̃− (∇h

Zg)(eb, eb) α̃+ (∇h
eb
g)(eb, Z) α̃

−(∇h
ea
g)(Z,Z) ea + (∇h

Zg)(ea, Z) ea − (∇h
Zg)(ea, Z) ea.

We then use the asymptotic of g and (4) simplify this expression into the
promised −2(divh g)(Z)α̃− d(Trh g)(Z) α̃− d (g(Z,Z)), up to O(r−2τ−1). ut

The computations are done, it is time to draw a theorem, which requires a
definition.

Definition 2. On M\K, we define a one-form qg,h with values in the quadratic
forms on Z by the formula

qg,h(Z) = −(divh g)(Z)α̃Z − 1
2 [d(Trh g)(Z) α̃Z + d (g(Z,Z))] .

The “mass” quadratic form Qg,h is the quadratic form defined on Z by:

Qg,h(Z) :=
1

ωmL
lim sup
R−→∞

∫

∂BR

∗h qg,h(Z),

where ωm is the volume of Sm−1 and L is the asymptotic length of fibers.

Why this normalization constant? The factor 1/L is there to make the mass
independent of the length of the asymptotic circles. The normalization by the
volume of a sphere is more anecdotic. This corresponding positive mass theorem
is the following.

Theorem 3. Let (Mm+1, g), m ≥ 3, be a complete oriented manifold with non-
negative Ricci curvature. We assume that, for some compact subset K, M\K
is the total space of a circle fibration over Rm\Bm, which can be endowed with
a model metric h such that (21) and (22) hold with τ > m−2

2 . Then Qg,h is
a nonnegative quadratic form. It vanishes exactly when (M, g) is the standard
Rm × S1.
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Proof. Formula (24), together with Ric ≥ 0, lemma 7 and lemma 8, provides
∫

M

[
|∇gαZ |2 + Ricg(αZ , αZ)

]
dvol ≤ ωmL Qg,h(Z). (26)

Since Ric ≥ 0, we deduce Qg,h(Z) ≥ 0.
Now we assume Qg,h = 0. In view of (26), the g-harmonic one-forms αZ are

then g-parallel. We have therefore built m g-parallel one-forms α1, . . . , αm that
are asymptotic to dx1, . . . , dxm. We also put αm+1 := ∗g(α1 ∧ · · · ∧ αm), so as
to obtain m + 1 g-parallel one-forms that are linearly independent outside a
compact set, hence linearly independent on the whole M . This yields a global
parallel coframe field on M . In particular, (M, g) is flat, so it is a flat vector
bundle over a compact flat manifold and g is naturally induced by the flat
connection ([CG] p. 281). Since the volume growth of (M, g) is comparable to
that of Rm, the fibers of this bundle are m-dimensional. This means (M, g) is
a flat Rm-bundle over S1, namely it is obtained as a quotient of Rm+1 by the
group generated by a rigid motion ρ: ρ(x) = Ax+ v, with A ∈ O(m+ 1), v 6= 0
and Av = v. For such a manifold, the holonomy group is generated by A. But we
have built a global parallel coframe on (M, g), so the holonomy group is trivial:
A is the identity. It follows that (M, g) is obtained as a quotient of Rm+1 by a
translation : it is isometric to the standard Rm × S1. ut

Note Qg,h vanishes if and only if its trace vanishes. So µGB
g,h := TrQg,h plays

the role of a numerical mass. We have:

µGB
g,h = − 1

ωmL
lim sup
R−→∞

∫

∂BR

∗h

(
divh g + dTrh g − 1

2d(g(T, T ))
)
. (27)

In this formula, the integrand can be replaced by the Hodge star of
[
(−∇h

Xj
g)(Xi, Xj) +Xi · g(Xj , Xj)− (∇h

T g)(Xi, T ) + d(g(T,T ))(Xi)
2

]
dxi.

This can be simplified for we can use (4) and the closeness of g to h to get
(∇h

T g)(Xi, T ) ∗h dxi = T · g(Xi, T ) ∗h dxi +O(r−2τ−1), which can be rephrased

as d
(
g(Xi, T )∗h (dxi∧η)

)
+Xi ·g(Xi, T )∗hη+O(r−2τ−1). So this part integrates

to zero at infinity! In the same spirit, (∇h
Xj
g)(Xi, Xj) equals Xj · g(Xi, Xj) up

to O(r−2τ−1), so the mass µGB
g,h reduces to

µGB
g,h =

1
ωmL

lim sup
R−→∞

∫

∂BR

∗h

(
[Xj · g(Xi, Xj)−Xi · g(Xj , Xj)] dxi− d(g(T,T ))

2

)
.

The term between brackets is similar to the usual expression of the mass
in the asymptotically Euclidean setting (see (1) in the introduction). It is the
contribution from the base. More precisely, one can average the metric along the
fibers and compute the mass of the asymptotically Euclidean metric induced on
the base: it is this term. The other term is related to the variation of the length
of fibers.

We now turn to the geometric invariance of the mass: does the mass really
depends on h or is it a Riemannian invariant of g ? To ensure the answer is yes,
we replace the assumptions (21) and (22) by

Diω = O(r−τ−1−i), 0 ≤ i ≤ 2. (28)
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and
∇h,i(g − h) = O(r−τ−i), 0 ≤ i ≤ 3. (29)

If there is a model metric h such that these estimates hold, the corresponding
mass µGB

g,h does not depend on h but only on g : it is a Riemannian invariant.
Before embarking into the proof, let us explain what the assumptions (28) and
(29) are for. If we go back to the crucial lemma 6, we observe the derivative
of β is only controlled in an L2 norm, which explains why we have to choose a
convenient sequence of radii Ri in lemma 7 and why we define the mass with a
limsup instead of a simple limit. Our new assumptions provide a C1 estimate on
β, which allows us to get rid of the limsup.

Lemma 9. If (28) and (29) hold, then the mass can be written as

µGB
g,h =

1
ωmL

lim
R−→∞

∫

∂BR

∗hqg,h(Xk)

=
1

ωmL

m∑

k=1

∫

M

[
|∇αk|2 + (Ric(αk), αk)

]
dvol.

Proof. As explained above, it amounts to obtain a C1 bound on the one-form
βk obtained in lemma 6 if α̃ = dxk. Let ∆ denote the rough Laplacian ∇∗∇.
A slight computation yields ∆∇βk = ∇∆βk + Rm�∇βk +∇Rm�βk, where �
denotes any bilinear pairing obtained by contracting with respect to the metric.
The Bochner formula ∆βk = (dd∗ + d∗d)βk − Ric(βk) implies that, outside a
compact set, we have ∆βk = −d∆gxk − Ric(βk), hence

(∆− Rm�)∇βk = −∇d∆gxk +∇Rm�βk = O(r−τ−3) (30)

thanks to (28) and (29). Since Rm = O(r−τ−2), the term Rm� can be treated
as a perturbation and we can use a Moser iteration (cf. lemma A.3 in [Mi2]) in
order to find

‖∇βk‖L∞(AR) ≤ c

(vol BR)
1
2
‖∇βk‖L2(A′R) + cR2

∥∥(∆− Rm�)∇βk

∥∥
L∞(AR)

,

with AR = B2R\BR and A′R = B2.5R\B0.5R. With (30) and lemma 6 (to get an
L2 bound on ∇βk), we end up with : ∇βk = O(rε−τ−1). With this and lemma
6, we can deduce from formula (24) and lemma 8 that

∫

BR

[
|∇αk|2 + (Ric(αk), αk)

]
dvol =

∫

∂BR

∗hζdxk,dxk
+ o(1)

=
∫

∂BR

∗hqg,h(Xk) + o(1),

with αk = dxk + βk. Since Ric ≥ 0, the left-hand side admits a limit in [0,+∞],
so

∫
∂BR

∗hqg,h(Xk) goes to an element of [0,+∞] as R goes to infinity. Summing
over k, we see that the limsup in the definition of µGB

g,h can be turned into a
genuine limit, in [0,+∞], hence the lemma.

Proposition 6. If h and h′ are two model metrics satisfying (28) and (29), then
µGB

g,h = µGB
g,h′ .
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Proof. The metrics h = dx2 + η2 and h′ = dx′2 + η′2 come with two circle
fibrations π and π′, with connections as above. We can assume (28) and (29)
hold for h and h′ with the same τ . The proof of the unicity of the mass is in three
steps (compare [Bart,CH,Chr]). We first prove that, given an adapted (i.e. as
above) h-orthonormal frame field (X1, . . . , Xm, T ), we can find an adapted h′-
orthonormal frame field (X ′

1, . . . , X
′
m, T

′) that is r−τ -close to (X1, . . . , Xm, T ).
Secondly, we show that the computation of the mass term does not depend on
the choice of “spheres at infinity” (∂BR = r−1(R) or ∂B′R = r′−1(R)). And
finally, we prove that the difference between the integrands corresponding to h
and h′ is the sum of an exact form and of a negligible term.

For the first step, we need to prove that the infinitesimal generators T and
T ′ of both circle actions are r−τ -close. Note that, since h and h′ are asymptotic
to g (and because the fibers of π and π′ have bounded length), the quotient r/r′
is bounded from above and below outside a compact set and, indeed, both r
and r′ are comparable to the g-distance to a fixed point. Observe also that by
assumption :

|T ′|h = 1 +O(r−τ ) = |T |h +O(r−τ ). (31)

For every point x with r(x) sufficiently large, we introduce the smooth loop
β defined by β(0) = x and β̇(t) = T ′β(t) ; we can push it into a smooth loop
γ := π ◦ β on Rm. Observe L = L′ is well defined since it is the injectivity
radius at infinity. The idea of the proof is the following. Suppose T ′x were not
close to Tx (nor to −Tx). Then its h-horizontal component would be substantial,
so that the curve γ would have a substantial initial speed vector (π∗T ′)x. We
will prove that γ has a very small acceleration, so that it remains close to a
straight line, which is not compatible with the fact that γ has to come back
to its origin in a time L. So T ′x has to be close to Tx. To make this argument
effective, we decompose T ′ as the sum of its h-horizontal part H and h-vertical
part W ; observe (31) bounds the norm of H and W by a constant. Since π is a
Riemannian submersion between h and the flat metric on Rm, we have

Dπ∗T ′π∗T ′ = π∗(∇h
HH) = π∗(∇h

HT
′)− π∗(∇h

HW ). (32)

The first term, π∗(∇h
HT

′), is bounded by a constant times
∣∣∇hT ′

∣∣
h
, which is

O(r−τ−1) in view of (28), (29) and (4). To bound the second term, we use (4)
to compute

h(∇h
HW,Xi) = −h(W,∇h

HXi) =
1
2
η(W )dη(H,Xi).

This isO(r−τ−1), by (28). With (32), this ensuresDπ∗T ′π∗T ′ = O(r−τ−1). Given
a point x , the acceleration γ̈ of the corresponding loop γ is Dγ̇ γ̇ = Dπ∗T ′π∗T ′

(by definition of γ), so it obeys : ∀ t, |γ̈| ≤ cr(x)−τ−1. Since γ(L) = γ(0), Taylor
formula provides Lγ̇(0) =

∫ L

0
tγ̈(t)dt. With the bound on γ̈, we deduce |γ̇(0)| ≤

cr(x)−τ−1. Since, by definition of γ, γ̇(0) = (π∗T ′)x, we can conclude that the h-
horizontal part Hx of T ′x is bounded by a constant times r(x)−τ−1. Therefore, up
to an error term of order r−τ−1, the vector fields T and T ′ are colinear. Since they
have the same h-norm up to O(r−τ ) by (31), we may assume T = T ′ +O(r−τ )
(changing T ′ into −T ′ if necessary). Now, given an adapted h-orthonormal frame
field (X1, . . . , Xm, T ), we average the vectors π′∗Xi along the fibers of π′, so as
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to get a frame field (X̌1, . . . , X̌m) on the base Rm of π′. Now we can proceed
on the base as in the asymptotically Euclidean setting (cf. [Chr]). Since each X̌i

has derivative bounded by r−1−τ , X̌i = vi +O(r−τ ) for some (constant) vector
vi on Rm (Cauchy criterion) ; moreover, (v1, . . . , vm) is an orthonormal frame
in Rm. We define X ′

i as the h′-horizontal lift of vi. Then (X ′
1, . . . , X

′
m, T

′) is an
h′-adapted frame field that is r−τ -close to (X1, . . . , Xm, T ).

To complete the second step of the proof, we rely on lemma 9 :

µGB
g,h′ =

1
ωmL

lim
R−→∞

∫

∂B′R

∗h′qg,h′(X ′
k)

=
1

ωmL

m∑

k=1

∫

M

[
|∇α′k|2 + (Ric(α′k), α′k)

]
dvol.

Since the ratio of the distance functions r/r′ is bounded from above and below
(as detailed in [Chr]), the end of the proof of lemma 9 can be adapted to obtain

∫

BR

[
|∇α′k|2 + (Ric(α′k), α′k)

]
dvol =

∫

∂BR

∗h′ζdx′k,dx′k + o(1)

=
∫

∂BR

∗h′qg,h′(X ′
k) + o(1).

Letting R go to infinity, we find

∫

M

[
|∇α′k|2 + (Ric(α′k), α′k)

]
dvol = lim

R−→∞

∫

∂BR

∗h′qg,h′(X ′
k),

hence µGB
g,h′ =

1
ωmL

lim
R−→∞

∫

∂BR

∗h′qg,h′(X ′
k), which can be computed by

1
ωmL

lim
R−→∞

∫

∂BR

∗h′
( [
X ′

j · g(X ′
i, X

′
j)−X ′

i · g(X ′
j , X

′
j)

]
dx′i −

d(g(T ′,T ′))
2

)
,

where ∂BR = r−1(R) is defined with respect to h.
Let us turn to the third step, which consists in proving the equality

lim
R−→∞

∫

∂BR

∗h′
( [
X ′

j · g(X ′
i, X

′
j)−X ′

i · g(X ′
j , X

′
j)

]
dx′i −

d(g(T ′,T ′))
2

)

= lim
R−→∞

∫

∂BR

∗h

(
[Xj · g(Xi, Xj)−Xi · g(Xj , Xj)] dxi − d(g(T,T ))

2

)
.

First observe the difference d(g(T ′, T ′))− d(g(T, T )) reads

(∇h′g)(T ′, T ′)− (∇h′g)(T, T )︸ ︷︷ ︸
O(r−2τ−1)

+2g(∇h′T ′, T ′)︸ ︷︷ ︸
O(r−2τ−1)

− 2g(∇h′T, T )︸ ︷︷ ︸
2η′(∇h′T )+O(r−2τ−1)

,
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which implies ∗h′d(g(T ′, T ′))−∗hd(g(T, T )) = 2 ∗h η
′(∇h′T )+O(r−2τ−1). Now,

a slight computation (using [Xi, T ] = 0) leads to

∗hη
′(∇h′T ) = η′(∇h′

Xi
T ) ∗h dxi + η′(∇h′

T T ) ∗h η

= η′(∇h′
T Xi) ∗h dxi + η′(∇h′

T T ) ∗h η

= T · η′(Xi) ∗h dxi + η′(∇h′
T T ) ∗h η +O(r−2τ−1)

= d (∗h(η′ ∧ η)) +Xi · η′(Xi) ∗h η + η′(∇h′
T T ) ∗h η +O(r−2τ−1).

Since the terms involving ∗η integrate to zero on ∂BR, Stokes formula yields

lim
R−→∞

∫

∂BR

[∗h′d(g(T ′, T ′))− ∗hd(g(T, T ))] = 0.

To tackle the remaining term, we expand it as follows:
[
X ′

j · g(X ′
i, X

′
j)−X ′

i · g(X ′
j , X

′
j)

]− [Xj · g(Xi, Xj)−Xi · g(Xj , Xj)]

=
[
(∇h′

X′
j
g)(X ′

i, X
′
j) + g(∇h′

X′
j
X ′

i, X
′
j) + g(X ′

i,∇h′
X′

j
X ′

j)− (∇h′
X′

i
g)(X ′

j , X
′
j)

−2g(∇h′
X′

i
X ′

j , X
′
j)

]
−

[
(∇h′

Xj
g)(Xi, Xj) + g(∇h′

Xj
Xi, Xj)

+g(Xi,∇h′
Xj
Xj)− (∇h′

Xi
g)(Xj , Xj)− 2g(∇h′

Xi
Xj , Xj)

]
.

Using the closeness of the frames and ∇h′g = O(r−τ−1), one can see that the
contribution of the terms involving ∇h′g is of order r−2τ−1, hence negligible. Be-
sides, using the closeness of g to h′ and (4), we have g(∇h′

X′
i
X ′

j , X
′
k) = O(r−2τ−1),

which ensures many terms above are lower order terms. Another simplification
comes from the fact that the commutator [Xi, Xj ] is π-vertical and of order
r−τ−1: it implies ∇h′

Xi
Xj and ∇h′

Xj
Xi only differ by a lower order term. All in

all, we find
[
X ′

j · g(X ′
i, X

′
j)−X ′

i · g(X ′
j , X

′
j)

]− [Xj · g(Xi, Xj)−Xi · g(Xj , Xj)]

= g(∇h′
Xi
Xj , Xj)− g(Xi,∇h′

Xj
Xj) +O(r−2τ−1).

We now introduce the (m−1)-form h′(Xj , X
′
i)∗h(dxi∧dxj). Its exterior derivative

d (h′(Xj , X
′
i) ∗h (dxi ∧ dxj)) is g(∇h′

Xj
Xj , Xi) ∗h dxi − g(∇h′

Xi
Xj , Xi) ∗h dxj plus

lower order terms. After changing ∇h′
Xi
Xj into ∇h′

Xj
Xi (which costs only a lower

order term) and switching summation indices i and j in the second term, we
turn this into g(∇h′

Xj
Xj , Xi) ∗h dxi − g(∇h′

Xi
Xj , Xj) ∗h dxi + O(r−2τ−1). This

computation can be combined with Stokes formula to ensure

lim
R−→∞

∫

∂BR

∗h′
[
X ′

j · g(X ′
i, X

′
j)−X ′

i · g(X ′
j , X

′
j)

]
dx′i

= lim
R−→∞

∫

∂BR

∗h [Xj · g(Xi, Xj)−Xi · g(Xj , Xj)] dxi.

We have proved: µGB
g,h′ = µGB

g,h . ut
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3.3. The spin case, with a trivial fibration. In this paragraph, we would like to
explain a spin analogue to the construction above. The setting is a complete
spin manifold (Mm+1, g), m ≥ 3 with nonnegative scalar curvature, such that
for some compact subset K, M\K is diffeomorphic to Rm\Bm × S1, which we
endow with the standard flat metric h0 = dx2 + dt2. We assume the metric g is
asymptotic to h0 in the following sense: for some τ > m−2

2 ,

g = h0 +O(r−τ ), Dg = O(r−τ−1) and D2g = O(r−τ−2).

As previously, we can choose τ ≤ m − 2. We furthermore assume the spin
structure of M coincides outside K with the trivial spin structure on Rm\Bm×
S1.

We work on the spinor bundle ΣM := ΣgM(=: E) corresponding to the
metric g and we enow it with the pullback of the Levi-Civita connection. Then
D is the standard Dirac operator 6D and R is the multiplication by 1

4 Scal ([LM]).
Outside K, ΣM is not the bundle corresponding to h0, but we can identify them
in a natural way. To make it precise, we denote by P the unique g-symmetric
section of EndTM such that h0 = g(P., P.). One can also see P as a natural
bijection between the principal bundles of orthonormal frames so that it lifts
as an identification of the spin bundles and therefore identify Σh0(M\K) with
Σg(M\K) = Σ(M\K). The Levi-Civita connection D of h0 induces a flat metric
connection ∇euc on (TM, g), given by the formula ∇euc

X Y = PDX(P−1Y ). Since
it is a metric connection, it induces a metric connection∇euc on the spinor bundle
ΣgM = ΣM . To sum up, we have three connections on TM : ∇g is metric for g
and torsionless; ∇euc is metric for g, is flat but has torsion; D is metric for h0,
flat and torsionless. Only two of them lift to ΣM : ∇g and ∇euc.

Now, the spinor bundle Σ(M\K) is trivial and ∇euc-flat, so we can find a
unit ∇euc-parallel spinor field α0. If ε is a small positive number, we can adapt
lemma 6.

Lemma 10. There is a spinor field α := α̃+ β such that 6Dα = 0, with α̃ = α0

outside a compact set, β = O(rε−τ ) and ∇β ∈ L2
m
2 +ε−τ−1.

Proof. If χ is a convenient truncature function χ, we can see α̃0 := χα0 as
a section of ΣM . Set γ := − 6D(χα0). Since γ = O(r−τ−1), it belongs to
L2

ε−τ−1+ m
2
. From analysis in weighted spaces (corollary 3), we obtain a solu-

tion σ ∈ H2
ε−τ+1+ m

2
of the equation 6D2 σ = γ. Put β = 6Dσ. The estimates on β

follow as in lemma 6. ut
As in the Gauss-Bonnet case, we can use formula 19 to find

∫

M

[
|∇gα|2 + Scalg |α|2g

]
dvol ≤ lim sup

R−→∞

∫

∂BR

∗ζα0,α0 . (33)

Lemma 11. ζα0,α0 = −1
4

(dTrh0 g + divh0 g) +O(r−2τ−1).

Proof. The proof is by now standard. We consider the frame field (∂a)a :=
(∂1, . . . , ∂m, ∂t). It is orthonormal for the model metric h0. Putting ea := P∂a,
we obtain an orthonormal frame field for g. We need to understand ζα0,α0 =
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1
2g([ea·, eb·]∇g

eb
α0, α0)ea. Since α0 is ∇euc-parallel, with ωcd := g(∇gec, ed) and

∇g −∇euc = 1
8ωcd[ec·, ed·] ([LM]), we obtain

ζα0,α0 =
1
16
ωcd(eb)g([ea·, eb·][ec·, ed·]α0, α0)ea. (34)

In order to compute the connection one-form, we resort to Koszul formula:

2ωcd(eb) = −g(eb, [ec, ed])− g(ec, [eb, ed]) + g(ed, [eb, ec]).

Expanding the brackets thanks to the torsionless connection D, one finds:

2ωcd(eb) = −(Ded
g)(eb, ec) + (Dec

g)(eb, ed) + g(Deb
ec, ed)− g(Deb

ed, ec). (35)

Let us denote by H the g-symmetric endormorphism such that g−h0 = g(H., .).
From P 2 = I−H and ec = P∂c, we getDeb

ec = −Deb
H

2 ∂c+O(r−2τ−1). And since
H is g-symmetric, we have g((Deb

H)∂c, ∂d) = g((Deb
H)∂d, ∂c) +O(r−2τ−1). So

we deduce g(Deb
ec, ed)− g(Deb

ed, ec) = O(r−2τ−1). Plugging this into (35) and
then (34), we see that ζα0,α0 can be approximated by

1
32

(∂cgbd − ∂dgbc) g([ea·, eb·][ec·, ed·]α0, α0)ea +O(r−2τ−1)

=
1
16
∂cgbd g([ea·, eb·][ec·, ed·]α0, α0)ea +O(r−2τ−1)

=
1
4
∂cgbd g((δabδcd + δabeced + δcdeaeb + eaebeced) · α0, α0)ea +O(r−2τ−1).

In view of (17) and (18), every term like g(ea · eb · α0, α0) can be replaced by
−δab |α0|2. Moreover, using (17), we can write

∂cgbd g(eaebeced ·α0, α0) = −∂cgbd

2 g(ea[eb, ed]ec ·α0, α0)+∂cgbdg(δbdeaec ·α0, α0).

Since ∂cgbd is symmetric with respect to b and d whereas [eb, ed] is antisymmetric,
the first term vanishes. These observations lead to :

ζα0,α0 = 1
4∂cgbd (δabδcd − δabδcd − δcdδab − δbdδac) |α0|2 ea +O(r−2τ−1),

which reduces to ζα0,α0 = 1
4 (−∂cgac − ∂agbb) ea +O(r−2τ−1). ut

The corresponding positive mass theorem involves

µD
g,h = − 1

ωmL
lim sup
R−→∞

∫

∂BR

∗h

(
divh0 g + dTrh0 g

)
. (36)

Theorem 4. Let (Mm+1, g), m ≥ 3, be a complete spin manifold with nonnega-
tive scalar curvature. We assume there is a compact set K and a spin preserving
diffeomorphism between M\K and Rm\Bm × S1 such that

g = gRm×S1 +O(r−τ ), Dg = O(r−τ−1) and D2g = O(r−τ−2)

with τ > m−2
2 . Then µD

g,h is nonnegative and vanishes exactly when (M, g) is
isometric to the standard Rm × S1.
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Proof. Since Scalg ≥ 0, formula 33 leads to
∫

M
|∇gα|2 dvol ≤ ωmL

4 µD
g,h, hence

the nonnegativity of µD
g,h. When µD

g,h vanishes, every constant spinor α0 in the
model gives rise to a harmonic and parallel spinor field α that is asymptotic
to α0. This makes it possible to produce a parallel trivialization of the spinor
bundle. It follows that (M, g) has trivial holonomy ([MS]) and we can conclude
as in theorem 3. ut

Finally, the proof of proposition 6 can be adapted to prove that µD
g,h does not

depend on h but only on g, under the assumptions of theorem 2.

4. Examples

4.1. Schwarzschild metrics. These are complete Ricci flat metrics on R2×Sn−2,
n ≥ 4, given by the formula:

gγ = dρ2 + Fγ(ρ)2dθ2 +Gγ(ρ)2dω2.

ρ, θ are polar coordinates on the R2 factor, dω2 is the standard metric on Sn−2,
Fγ and Gγ are smooth functions defined by

G′γ(ρ) =

√
1−

(
γ

Gγ

)n−3

, Gγ(0) = γ and Fγ = 2γ
n−3

√
1−

(
γ

Gγ

)n−3

,

for some positive parameter γ. Gγ increases from γ to ∞ and Gγ ∼ ρ at infinity ;
Fγ increases from 0 to 2γ

n−3 and Fγ ∼ ρ near 0. Setting r := Gγ(ρ) and t = 2γ
n−3θ,

we can write

gγ =
dr2

1− (
γ
r

)n−3 + r2dω2 +
[
1− (

γ
r

)n−3
]
dt2

In this way, it is apparent that gγ is asymptotic to the flat metric on Rn−1×S1,
with circle length equal to L := 4πγ

n−3 at infinity. Observe M = R2 × Sn−2 is spin
(with a unique spin structure, since it is simply connected). To compute the

masses, we introduce “isotropic” coordinates: putting r = u
[
1 + 1

4

(
γ
u

)n−3
] 2

n−3
,

we get

gγ =
[
1 + 1

4

(
γ
u

)n−3
] 4

n−3
(du2 + u2dω2) +

[
1− 1

4

(
γ
u

)n−3

1 + 1
4

(
γ
u

)n−3

]2

dt2

for u > 0. We can then choose Cartesian coordinates x1, . . . , xn−1 corresponding
to the polar coordinates (u, ω) and keep in mind the first order terms:

gγ ≈
[
1 + γn−3

n−3 u
3−n

]
dx2 +

[
1− γn−3u3−n

]
dt2.

With h0 = dx2 + dt2, this readily provides µD
gγ

= γn−3 and µGB
gγ

= n−1
2 γn−3.

For instance, in dimension n = 4, the masses reduce to the parameter γ (up to
a universal constant), which is basically what we hoped (cf. introduction).

The mass is therefore positive, but we cannot deduce it from the “spin”
version of the positive mass theorem: the spin structure at infinity is not the
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trivial spin structure! Indeed, the spin structure on the asymptotic S1 comes
from the spin structure of the unit circle in the R2 factor of R2×Sn−2. This spin
structure is therefore induced by the (unique and trivial) spin structure on the
unit disk: it is the non trivial spin structure on the circle (see [Bar]). In the next
paragraph, we will give examples showing that this non trivial spin structure at
infinity really allows negative mass in nonnegative scalar curvature. But here,
since the Ricci curvature of Schwarzschild metrics is nonnegative, we can use
the Gauss-Bonnet point of view and explain the positivity of the mass: it is a
consequence of Ric ≥ 0 and not of Scal ≥ 0.

4.2. Reissner-Nordström metrics. In four dimensions, the Schwarzschild metric
gγ belongs to a broader family of complete scalar flat metrics on R2 × S2 that
are asymptotic to R3 × S1, with the non trivial spin structure at infinity. These
Reissner-Nordström metrics [Dai,BrH,CJ,PK] are given by the same ansatz g =
dρ2 + F (ρ)2dθ2 +G(ρ)2dω2, with

G′ =
√

1− 2m
G − q2

G2 and F = G2
0

G0−m

√
1− 2m

G − q2

G2

and G(0) := G0 = m +
√
m2 + q2. The behaviour of G and F is similar to the

Schwarzschild analogue. The new feature is m can be chosen negative: the metric
is then still complete, provided q is nonzero. Setting r := G(ρ) and t = G2

0
G0−mθ,

we can obtain a more familiar formula:

g =
dr2

1− 2m
r − q2

r2

+
[
1− 2m

r − q2

r2

]
dt2 + r2dω2.

The formulas for doubly-warped products [Pet] (or geometric arguments as in
[Bes], 3.F) make it possible to compute the curvature. The eigenvalues of the
Ricci tensor are q2

G4 , along ∂ρ and ∂t, and − q2

G4 , along the S2 factor. It therefore
has no sign but the scalar curvature vanishes. To compute the mass µD

g , we
can again use isotropic coordinates. The new radial coordinate u is given by
r = u

[
1 + m

u + m2+q2

4u2

]
and we find

g =
[
1 + m

u + m2+q2

4u2

]2

(du2 + u2dω2) +

[
1− m2+q2

4u2

1 + m
u + m2+q2

4u2

]2

dt2.

Comparing to the Schwarzshild formula, one can see that the asymptotic is the
same up to O(u−2), so the mass µD

g is 2m. Since we can choose m negative, this
yields a whole family of metrics with negative mass!

4.3. Multi-Taub-NUT metrics. The Taub-NUT metric is the basic non triv-
ial example of ALF gravitational instanton. In particular, it is hyperkähler
hence Ricci flat. For details, the reader is referred to [Le2,HHM]. Basically,
it is a complete metric on R4 which is adapted at infinity to the Hopf fibration
R4\ {0} −→ R3\ {0}. It can be written outside one point as g = V dx2 + 1

V η
2

where V = 1 + 2m
r for some positive parameter m and η is a connection form
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with curvature ∗R3dV . Up to a constant, η is the standard contact form on the
three-spheres (cf. section 1). With h = dx2 + η2, we can compute µGB

g = 3m: as
expected, the mass is essentially the parameter m.

The same computations apply to the multi-Taub-NUT metrics (cf. [Le2,
HHM]). These metrics are again hyperkähler and their asymptotic is adapted to
a principal circle bundle over S2 with Chern number −k. They can be written
oustide k points as g = V dx2 + 1

V η
2 with V = 1+

∑k
i=1

2m
|x−xi| and η is a connec-

tion form on a S1 bundle over R3\ {x1, . . . , xk} whose curvature is ∗R3dV . The
mass µGB of these metrics is 3km.
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Montréal, Montreal, QC, 1987.

[LM] H. Blaine Lawson, Jr, Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical
Series, 38. Princeton University Press, Princeton, NJ, 1989.

[Le1] C. Lebrun, Counter-examples to the generalized positive action conjecture, Comm. Math.
Phys. 118 (1988), no. 4, 591–596.

[Le2] C. Lebrun, Complete Ricci-flat Kähler metrics on Cn need not be flat, Several complex
variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 297–304, Proc. Sympos.
Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991.

[LP] J. M. Lee, T. H. Parker, The Yamabe problem, Bull Amer. Math. Soc. New. Series 17,
(37-91) 1987.

[LY] P. Li, S.T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156
(1986), no. 3-4, 153–201.
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