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Abstract. We give a simple and uniform construction of essentially all known
deformation classes of gravitational instantons with ALF, ALG or ALH asymp-
totics and nonzero injectivity radius. We also construct new ALH Ricci flat
Kähler metrics asymptotic to the product of a real line with a flat 3-manifold.

Introduction

The aim of this paper is to give a direct and uniform construction for several
Ricci-flat Kähler four-manifolds with prescribed asymptotics, ‘ALF’, ‘ALG’ or
‘ALH’. This basically means that these complete Riemannian manifolds have only
one end, which is diffeomorphic, up to a finite covering, to the total space of a
T4−m-fibration π over Rm minus a ball and carries a metric that is asymptotically
adapted to this fibration in the following sense. When the fibration at infinity is
trivial, the metric merely goes to a flat metric on Rm×T4−m (without holonomy).
When m = 3, the fibration at infinity may be non-trivial and in this case, the
metric goes to π∗gR3 + η2 where η is a connection one-form on the S1-fibration,
up to scaling (cf. [23] for details). The metric is called ALF when the ‘dimension
at infinity’ m is 3, ALG when m = 2, ALH when m = 1. These asymptotics are
generalizations of the familiar ALE (Asymptotically Locally Euclidean) case, for
which the model at infinity is the Euclidean four-space (in a nutshell: m = 4).

Most of our examples of Ricci-flat Kähler four-manifolds are simply-connected,
hence hyperkähler (i.e. with holonomy inside SU(2)), providing examples of grav-
itational instantons, namely non-compact hyperkähler four-manifolds with decay-
ing curvature at infinity. These manifolds are of special interest in quantum
gravity and string theory, hence some motivation to understand examples. Previ-
ous constructions of gravitational instantons were either explicit [9, 10], based on
hyperkähler reduction [17, 8], gauge theory [2, 5, 6], twistorial methods [14, 4] or
on the Monge-Ampère method of Tian and Yau [27, 28], see also [15, 16, 13, 26].

The technique we advertise here is inspired from the famous Kummer construc-
tion for K3 surfaces: starting from the torus T4 = C2/Z4, we may consider the
complex orbifold T4/±, which has 16 singularities isomorphic to C2/±; blowing
them up, we obtain a K3 surface. The physicist D. Page [25] noticed that this
point of view makes it possible to grasp some idea of what the Ricci flat Kähler
metric provided by Yau theorem on the K3 surface looks like. The recipe is
the following. The desingularization of C2/± carries an explicit Ricci-flat Kähler
metric known as the Eguchi-Hanson metric [9]. So the Ricci flat metric on the
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K3 surface should look like this Eguchi-Hanson metric near each exceptional di-
visor and resemble the flat metric (issued from T4) away from them. Such an
idea has been carried out rigorously by twistorial methods in [19, 29]. N. Hitchin
[14] also pointed out a twistorial argument leading to a Ricci-flat metric on the
(non-compact) minimal resolution of {x2 − zy2 = z} ⊂ C3.

In this short paper, we carry out a rather elementary deformation argument
providing Ricci-flat Kähler metrics on the minimal resolution of numerous Ricci-
flat Kähler orbifolds. Here is the list of examples that can be constructed using
this technique:

(1) ALF case: there are two classes of ALF gravitational instantons, Ak and
Dk gravitational instantons, whose boundary is the quotient of the 3-sphere
by a cyclic group (Ak) or a binary dihedral group (Dk). There are simple
explicit formulas for the Ak metrics, in terms of the Gibbons-Hawking
ansatz. We give a construction of Dk metrics: we start from the quotient
X of the A0 ALF gravitational instanton (this is the standard Taub-NUT
metric on R4 [12, 18]), by the binary dihedral group of order 4(k − 2),
where k > 2. We note X̂ the crepant resolution of the orbifold X: the
singular point is replaced by a configuration of p = k (−2)-rational curves.

(1’) ALF D2 case: this is the Hitchin metric, it can be constructed starting
from X = R3 × S1/Z2, with 2 orbifold points, so the desingularization X̂
has p = 2 exceptional curves.

(2) ALG case: we start from the possible quotients of R2 × T2, that is from
a flat orbifold X = (R2 × T2)/Zk, for k = 2, 3, 4, 6. For k 6= 2, the
action of Zk on T2 exists only for special lattices (square lattice for k = 4,
hexagonal lattice for k = 6). Then X̂ is the crepant resolution of X, with
a configuration of p exceptional curves (k − 1 at each fixed point).

(3) ALH hyperkähler case: we start from X = R × T3/±, this is an orbifold
with 8 singular points, and the desingularization X̂ contains p = 8 curves
Ej of selfintersection −2. The boundary is T3.

(3’) ALH Ricci flat Kähler case: we start from the orbifold X2 = R × F2/Z2,
where F2 is the flat 3-manifold F2 = T3/Z2. Then X2 is a Ricci flat Kähler
(non hyperKähler) orbifold, it has p = 4 singular points of type C2/±, and
the desingularization X̂2 has boundary F2.

(3”) ALH Ricci flat case: we start from X2,2 = R×F2,2/Z2 = X2/Z2, where F2,2
is the flat 3-manifold with monodromy Z2×Z2, that is F2,2 = T3/Z2×Z2.
This is not Kähler because the last Z2 action is antiholomorphic. The
action extends to the desingularization X̂2, so one gets a desingularization
X̂2,2 = X2/Z2.

Theorem 0.1. Let (X,ω0) denote any of the complex Kähler orbifolds in the list
above (all examples but the last one), and X̂ be its minimal resolution. We denote
the exceptional −2 curves by E1, . . . , Ep and the Poincaré dual of Ej by PD[Ej].
Let a1, . . . , ap denote some positive parameters. Then for every small enough
positive number ε, there is a Ricci-flat Kähler form ω on X̂ in the cohomology
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class [ω0] − ε
∑
ajPD[Ej]; it is moreover asymptotic to the initial metric ω0 on

X. Finally, (X̂, ω) is hyperkähler if (X,ω) is hyperkähler.
The last desingularization X̂2,2 also carries Ricci flat metrics, obtained as quo-

tients of X̂2 by an antiholomorphic involution.

The proof of the theorem relies on a simple gluing procedure and is essentially
self-contained. Even though most of the metrics we build have already been
constructed in the literature by other ways (cf. paragraph below), we believe that
our construction is interesting, because it is very simple and gives a very good
approximation coming from the desingularization procedure. More precisely, the
construction described in this paper provides a way to build members of nearly all
known deformation families of ALF gravitational instantons, by starting from the
explicit Taub-NUT metric and Kronheimer’s ALE gravitational instantons [17].
The ‘nearly’ accounts for the Atiyah-Hitchin metric [2], which seems to play a
special role. And more generally, apart from the Atiyah-Hitchin metric, we have
the striking fact that this construction yields members of all known deformation
families of gravitational instantons with positive injectivity radius. So we somehow
get a global and concrete understanding of all these families.

Let us detail the relations with the existing constructions. In case (1), the
metrics that we obtain probably coincide with the Dk gravitational instantons of
[5, 4]. The same procedure using an action of a cyclic group instead of Dk would
lead to the ALF gravitational instantons of cyclic type, that is multi-Taub-NUT
metrics, given by the Gibbons-Hawking ansatz [23]. In case (1’), we obtain a direct
PDE construction of the Hitchin metric mentioned above [14], complementing the
twistorial initial description; this is a D2 ALF gravitational instanton of dihedral
type (in the sense of [23]). Together, cases (1) and (1’) give constructions of ALF
gravitational instantons in all known ALF deformation classes, except D0 (the
Atiyah-Hitchin metric) and D1 (its double cover), that cannot be obtained in this
way because they have ‘negative mass’.

The ALG and ALH examples (2) and (3) have been constructed recently in a
general Tian-Yau framework on rational elliptic surfaces in [13] (see also [16, 26]);
in [13], they correspond to isotrivial elliptic fibrations. Here we obtain exactly
all the classes with positive injectivity radius, but we miss the classes where the
injectivity radius goes to 0 at infinity.

Finally, the non hyperkähler examples (3’) and (3”) are just global quotients of
a previous ALH space, but can be obtained by desingularization of a flat orbifold
space, as shows theorem 0.1. They are asymptotic to R+×F2 and R+×F2,2, where
F2 and F2,2 are the compact flat orientable 3-manifolds arising as flat T2 bundles
over S1 with monodromy Z2 and Z2 × Z2. It is natural to ask whether there are
ALH Ricci-flat Kähler metrics with an end asymptotic to R+×F , where F is one
of the other orientable flat 3-manifolds: F = F3, F4, F6, where Fj (j = 3, 4, 6) is
the flat 3-manifold with monodromy Zj. We answer positively to this question:

Theorem 0.2. For each orientable flat 3-manifold F , there exists an ALH Ricci
flat manifold with one end asymptotic to R+ × F . It is Kähler except in the case
F = F2,2, where it is only locally kähler.
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The new metrics do not arise as desingularizations of flat orbifolds, but as
global quotients of ALH hyperkähler manifolds. The proof of the theorem consists
therefore in constructing ALH hyperkähler manifolds admitting actions of finite
groups: the examples come from certain elliptic fibrations, and the metric arises
from the solution of a Monge-Ampère equation, invariant under a finite group
action (solving the Monge-Ampère equation in this setting is now more or less
standard, so we just refer to the literature: the point here is the construction of
examples admitting finite group actions).

Finally, the classification of gravitational instantons is an important open ques-
tion. The ALE gravitational instantons were classified by Kronheimer, and the
Ak ALF instantons by the second author [23]. The other possible class of ALF
instantons is the class of Dk ALF gravitational instantons, with boundary S3/Dk,
where Dk is the binary dihedral group of order 4(k − 2), for k > 2 (and we have
proposed a new construction of these instantons in theorem 0.1). This gives all the
possible topologies for the boundaries of an ALF gravitational instantons, but the
possible orientations of the boundary are less clear (the two possible orientations
correspond to ‘positive mass’ or ‘negative mass’). For k = 0, the D0 gravita-
tional instanton (the Atiyah-Hitchin metric) has the same boundary as the D4
one, endowed with the opposite orientation. The same is true for the D1 instan-
ton (the double cover of the D0 one) and the D3 instanton. Finally the flat space
R3 × S1/± admits an orientation reversing isometry, so the opposite orientation
of the boundary of the D2 instanton is realized by the same space. We prove that
these are the only possible cases:

Theorem 0.3. There is no dihedral ALF gravitational instanton with boundary
equal to S3/Dk with negative orientation for k > 4.

The theorem is a consequence of theorem 4.1, where we relate the Euler char-
acteristic of an ALF gravitational instanton with the adiabatic η invariant of its
boundary: this determines the b2 of an ALF gravitational instanton in terms of
its oriented boundary, since the η invariant is sensitive to the orientation.

The paper is organized as follows. In the first section, we have chosen to give
a detailed proof of theorem 0.1 in the simplest case, that is X = R × T3/±.
The necessary adaptations for the other cases are explained in the second section.
In the third section, we give a construction of the other ALH Ricci-flat Kähler
surfaces, proving theorem 0.2. The last section contains the proof of the formula
on the η invariant, leading to theorem 0.3. Finally, an appendix briefly reviews
some facts about the weighted analysis on ALF, ALG or ALH manifolds, needed
for the construction.
Acknowledgments. We thank Sergei Cherkis for useful discussions, and Hans-
Joachim Hein for carefully checking the paper and suggesting proposition 2.2.
Finally we thank the referee for his useful suggestions, making the paper much
more readable.
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1. A Kummer construction

In this section, we carefully build an ALH gravitational instanton asymptotic to
R×T3. First, we consider the quotient X := R×T3/±. This is a complex orbifold
with eight singular points, corresponding to the fixed points of minus identity on
T3 = R3/Z3. These are all rational double points and we may blow them up to
get a non-singular complex manifold X̂. We will build an approximately Ricci-flat
metric on X̂ by patching together two type of metrics : the flat metric away from
the exceptional divisors and the Eguchi-Hanson metric near the divisors.

1.1. The approximately Ricci-flat Kähler metric. The Eguchi-Hanson met-
ric can be described as follows. Take C2/± and blow up the origin to get the
minimal resolution π : T ∗CP 1 −→ C2/±. Outside the zero section CP 1 = π−1(0)
in T ∗CP 1, this map π is a biholomorphism. Let z = (z1, z2) denote the standard
complex coordinates on C2. The formula

φEH(z1, z2) := 1
2

(√
1 + |z|4 + 2 log |z| − log

(
1 +

√
1 + |z|4

))
,

defines a function on C2/± and therefore on T ∗CP 1\π−1(0). Then ωEH := ddcφEH
extends on the whole T ∗CP 1 as a Kähler form, which turns out to be Ricci-flat.
Moreover, the Kähler form ωEH is asymptotic to the flat Kähler form ωEH,0 =
ddcφEH,0, with φEH,0(z) = |z|2

2 :

∇k(φEH − φEH,0) = O(|z|−2−k) and ∇k(ωEH − ωEH,0) = O(|z|−4−k).
For future reference, let us point that the Eguchi-Hanson metric admits a parallel
symplectic (2, 0) form, extending (the pull-back of) dz1 ∧ dz2.

Now pick a smooth non-increasing function χ on R+ that is identically 1 on
[0, 1] and vanishes on [2,+∞). Given a small positive number ε, we introduce the
cut-off function χε(z) := χ(

√
ε |z|), on T ∗CP 1, and we define

(1) φEH,ε := χεφEH + (1− χε)φEH,0.
Then ωEH,ε := ddcφEH,ε is a (1, 1)-form on T ∗CP 1 which coincides with the Eguchi-
Hanson Kähler form for |z| ≤ 1√

ε
and coincides with the flat Kähler form on C2/±

for |z| ≥ 2√
ε
. In between, we have the following controls:∣∣∣∇k(φEH,ε − φEH,0)

∣∣∣ ≤ c(k)
√
ε

2+k and
∣∣∣∇k(ωEH,ε − ωEH,0)

∣∣∣ ≤ c(k)
√
ε

4+k
.

In particular, for small ε, ωEH,ε is a Kähler form on the whole T ∗CP 1. (The letter
c will always denote a positive constant whose value changes from line to line and
we sometimes write c(. . . ) to insist on the dependence upon some parameters.)

We can now describe precisely our approximately Ricci flat Kähler metric ωε on
X̂. Let ρ denote the distance to the singular points in the flat orbifold R×T3/±.
The function ρ can also be seen as the ω0-distance to the exceptional divisors in
X̂. We will denote the connected components of N :=

{
ρ ≤ 1

8

}
by Nj, 1 ≤ j ≤ 8,

and the remaining part of X̂ by W . Each Nj contains an exceptional divisor
Ej and Nj\Ej is naturally a punctured ball of radius 1

8 and centered in 0 in
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C2/± ∼= T ∗CP 1\CP 1. Thanks to a 1
ε
-dilation, we may therefore identify Nj with

the set N(ε) :=
{
|z| ≤ 1

8ε

}
in T ∗CP 1 and then define ωε on Nj by ωε := ε2ωEH,ε.

On W , we then let ωε coincide with the flat ω0. Owing to the shape of ωEH,ε, this
defines a smooth Kähler metric on the whole X̂. By construction, ωε is the flat
ω0 for ρ ≥ 2

√
ε, a (scaled) Eguchi-Hanson metric for ρ ≤

√
ε and obeys

(2)
∣∣∣∇k(ωε − ω0)

∣∣∣ ≤ c(k)ε2− k2

between these two areas (beware the scaling induces a nasty ε−k−2 factor). The
Ricci form Ricε vanishes outside the domain {

√
ε ≤ ρ ≤ 2

√
ε} and obeys |Ricε| ≤

cε: it is small. We now wish to deform this approximately Ricci-flat Kähler metric
into a genuine Ricci-flat Kähler metric.

1.2. The nonlinear equation. In view of building a Ricci-flat Kähler form ω =
ωε + ddcφ in the Kähler class of ωε, we wish to solve the complex Monge-Ampère
equation
(3) (ωε + ddcψ)2 = efεωε ∧ ωε,
where fε is essentially a potential for the Ricci form Ricε of ωε : Ricε = 1

2dd
cfε.

This is the classical approach of Aubin-Calabi-Yau (cf. [15] for instance). Our
framework gives an explicit function fε, which we can describe as follows. Let
ζ1, ζ2 denote the complex coordinates on C2 and consider the (2, 0) form dζ1 ∧ dζ2
on R × T3 = C2/Z3. It is still defined on X = R × T3/± and then lifts into
a holomorphic (2, 0) form Ω on X̂. Since X̂ is a crepant resolution of X, this
(2, 0) form Ω does not vanish along the exceptional divisors, providing a genuine
symplectic (2, 0) form. We can then choose the following function fε:

(4) fε := log
(

Ω ∧ Ω̄
ωε ∧ ωε

)
.

In other words, the right-hand side of (3) is simply Ω∧ Ω̄. Observe fε is compactly
supported inside {

√
ε ≤ ρ ≤ 2

√
ε} and obeys:

(5)
∣∣∣∇kfε

∣∣∣ ≤ c(k)ε2− k2 .

1.3. The linear estimate. The linearization of the Monge-Ampère operator is
essentially the Laplace operator ∆ε. We need to show that it is an isomorphism
between convenient Banach spaces and that its inverse is uniformly bounded for
small ε. Let us introduce the relevant functional spaces. We denote the R-variable
in R×T3 by t and let r := |t|. We may choose a smooth positive function rε with
the following properties:

• it is equal to r wherever r is larger than 1;
• it coincides with the distance ρ to the exceptional divisors wherever 2ε ≤
ρ ≤ 1

8 ;
• it is identically ε wherever ρ ≤ ε;
• it is a non-decreasing function of ρ in the domain where ε ≤ ρ ≤ 2ε;
• it remains bounded between 1

8 and 1 on the part of X̂ where ρ > 1
8 and

r < 1.
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Let k be a nonnegative integer and α be a number in (0, 1). Given positive real
numbers a and b, we let wε,i denote the continuous function which coincides with
ra+i
ε on W and rb+iε on N . Then we define the Banach space Ck,α

ε,a,b as the set of
Ck,α functions u for which the following quantity is finite:

‖u‖Ck,α
ε,a,b

:=
k∑
i=0

sup
∣∣∣wε,i∇i

εu
∣∣∣
ε

+ sup
dε(x,y)<injε

∣∣∣∣∣min(wε,k+α(x), wε,k+α(y))∇
k
εu(x)−∇k

εu(y)
dε(x, y)α

∣∣∣∣∣
ε

.

This formula provides the norm. The subscripts ε mean that everything is com-
puted with respect to the metric gε; in particular, injε denotes the positive injectiv-
ity radius of gε. In this definition, since dε(x, y) < injε, we can compare the values
of ∇kuε at x and y through the parallel transport along the unique minimizing
geodesic from x to y.

On the exterior domain W , a Ck,α
ε,a,b control on u means it decays like r−a (with

a corresponding natural estimate on the derivatives). As expected, the parameter
ε only matters near the exceptional divisors. Recall each Nj is identified with the
domain N(ε) :=

{
|z| ≤ 1

8ε

}
in T ∗CP 1. Accordingly, we may carry any function

u on Nj to a function uε on N(ε). A C0
ε,a,b control on u basically means |uε| ≤

cε−b |z|−b for 2 ≤ |z| ≤ 1
8ε and |uε| ≤ cε−b where |z| ≤ 2. Note that standard

(scaled) Schauder estimates imply the following control:

(6) ‖u‖Ck+2,α
ε,a,b

≤ c(k, ε)
(
‖u‖C0

ε,a,b
+ ‖∆εu‖Ck,α

ε,a+2,b+2

)
.

In this asymptotically cylindrical setting, we may have used exponential weights
instead of polynomial weights. We have made this choice because 1) these weights
suffice for our purpose here and 2) they will be adapted to the other settings
(ALG, ALF, cf. appendix).

The relevant Banach spaces for us will turn out to be

Ea,b
ε := Rr̃ ⊕ C2,α

ε,a,b and F a,b
ε := C0,α

ε,a+2,b+2.

The notation r̃ stands for the function φ◦r, where φ is any smooth non-decreasing
function on R+ which is identically 1 on [0, 1] and coincides with the identity on
[2,+∞). We fix the norm on Rr̃ by setting ‖r̃‖ := 1 and we endow Ea,b

ε with the
sum of the norms of the two factors. Note we have dropped the dependence on α,
which will not play a major role. The Laplacian ∆ε defines a bounded operator
between Ea,b

ε and F a,b
ε and we need to invert it.

Lemma 1.1. The map ∆ε : Ea,b
ε −→ F a,b

ε is an isomorphism.

Proof. Any function u in Ea,b
ε has the following asymptotics: u = λr + O(r−a).

When u is harmonic, integration by part yields for large R:

0 =
∫
BR

∆εu = −
∫
∂BR

∂ru = −λ+O(R−a−1),
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with BR = {r ≤ R}. So λ = 0 and u goes to zero at infinity, hence vanishes. This
proves injectivity. Let us turn to surjectivity. Given f ∈ F a,b

ε , weighted analysis
(cf. appendix) provides a solution u to ∆εu = f , with

u = λr̃ + η + v

for some constants λ and η, and some C2,α
loc function v bounded in C2,α

ε,a,b (this
estimate follows from (A.3) and (6)). Of course, the constant η can be dropped
(for there is only one end) and we have proved the surjectivity. Note the parameter
b is not relevant here. It enters the picture only when one seeks uniform bounds,
which is the next topic we tackle. �

Lemma 1.2. Let a and b be positive numbers, with b < 2. Then there is a constant
c such that for every small ε and every u ∈ Ea,b

ε ,
‖u‖Ea,bε ≤ c ‖∆εu‖Fa,bε

.

Proof. Assume this statement is false. Then there is a sequence of positive num-
bers εi and a sequence of functions ui such that: (εi)i goes to zero, ‖ui‖Ea,bεi = 1
and ‖∆εiui‖Fa,bεi

goes to zero. Then ui = λir̃ + vi, with (λi) bounded in R and
(vi) uniformly bounded in C2,α

εi,a,b
. In particular, we may assume that (λi) goes to

some λ∞ and, with Arzela-Ascoli theorem, that (vi) converges to v∞ on compact
subsets of X̂ minus the exceptional divisors. Moreover, u∞ := λ∞r̃ + v∞ is a
harmonic function on the regular part of R × T3/± (with its flat metric) and is
bounded by a constant times ρ−b near each singular point, which is less singular
than the Green function on R4, for b < 2. It follows that u∞ can be lifted into a
smooth harmonic function û∞ on the whole R × T3. Moreover, rav∞ is bounded
so û∞ = λ∞r +O(r−a). Integration by part yields for large R:

0 =
∫
BR

∆û∞ = −
∫
∂BR

∂rû∞ = −2λ∞ +O(R−a).

So λ∞ = 0 and û∞ goes to zero at infinity, hence vanishes: v∞ = 0. It follows that
‖vi‖C0(K) goes to zero for every compact set K outside the exceptional divisors.
Using Lemma A.3, we then see that, for any smooth and compactly supported
function τ which is identically 1 near the exceptional divisors, the functions wi :=
(1− τ)vi satisfy

‖rawi‖L∞ = ‖raGR0∆0wi‖L∞ ≤ c ‖ra∆0wi‖L∞
i→∞−→ 0.

With the scaled Schauder estimate

‖vi‖C2,α
a (Bc2R0

) ≤ c
(
‖ravi‖L∞(BcR0

) + ‖∆0vi‖C0,α
a (BcR0

)

)
(where we dropped the irrelevant ε and b) and the convergence over compact sub-
sets, we therefore obtain that ‖vi‖C2,α

a (W ) goes to zero; and more generally, this
remains true when W is replaced by the complement of any compact neighbour-
hood of the exceptional divisors.

Next, we focus on what happens around the jth exceptional divisor. We consider
the function Vi := εbi(vi)εi , defined on N(εi). The bound on ‖vi‖C2,α

εi,b
(Nj) makes it
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possible to extract a subsequence Vi which converges to a function V∞ on every
compact subset of T ∗CP 1. Moreover, this function V∞ is harmonic and uniformly
bounded by a constant times (1 + |z|)−b. Since b is positive, we deduce that
V∞ = 0, as above. Now assume that ‖Vi‖C0

b
remains bounded from below (up to

subsequence). Then we can find a sequence of points pi such that Ri := |z(pi)|
goes to infinity and Rb

i |Vi(pi)| is bounded from below. Let us rescale the metric
into ξi := R−2

i ωεi and consider the functions Wi := Rb
iVi. Since ωεi is closer and

closer to the Eguchi-Hanson metric and blowing down the Eguchi-Hanson metric
results in the orbifold R4/±, we see that ξi converges to the flat metric on the
orbifold R4/±. Each Wi is defined on a ball of radius 1

8εiRi with respect to ξi
and we may assume that εiRi goes to zero, in view of the convergence of vi to
zero away from the exceptional divisors (proved in the first step). Since (Wi)
is uniformly bounded in C2,α

b (defined with respect to ξi), we can again make it
converge to a harmonic function W∞ on R4/± minus the origin. Let us denote
by |x| the distance to the origin in R4/±. By construction, W∞(x∞) > 0 for
some point x∞ with |x∞| = 1. But one can check that |x|bW∞(x) is uniformly
bounded, so that the harmonic function W∞ is bound to vanish, as above. This
is a contradiction, so ‖Vi‖C0

b
goes to zero. Scaled Schauder estimates imply that

‖Vi‖C2,α
b

and therefore ‖vi‖C2,α
εi,b

(Nj) go to zero. Playing the same game around each
component of the exceptional divisor, we obtain a contradiction. �

1.4. The deformation. We will use the following version of the implicit function
theorem, whose proof is an immediate application of Banach’s fixed point theorem.

Lemma 1.3. Let Φ : E −→ F be a smooth map between Banach spaces and
define Q := Φ− Φ(0)− d0Φ. We assume there are positive constants q, r0 and c
such that

(1) ‖Q(x)−Q(y)‖ ≤ q ‖x− y‖ (‖x‖+ ‖y‖) for every x and y in BE(0, r0) ;
(2) d0Φ is an isomorphism with inverse bounded by c.

Pick r < min(r0,
1

2qc) and assume ‖Φ(0)‖ ≤ r
2c . Then the equation Φ(x) = 0

admits a unique solution x in BE(0, r).

We apply this to the operator

Φε : ψ 7→ (ωε + ddcψ)2

ωε ∧ ωε
− efε ,

between the Banach spaces Ea,b
ε and F a,b

ε for some positive number a and a positive
number b, with b < 2. The linearization of Φε is −∆ε so condition (2) stems from
Lemmata 1.1 and 1.2, with a constant c independent of ε.

We need some smallness on Φε(0) = 1−efε . In view of the shape of fε, including
(5), we have

(7) ‖fε‖C0,α
ε,a+2,b+2

≤ cε3+ b
2 ,

which leads to
(8) ‖Φε(0)‖Fa,bε

≤ cε3+ b
2 .
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In view of condition (1), observe the non-linear term is the quadratic map given
by:

Qε(ψ) = ddcψ ∧ ddcψ
ωε ∧ ωε

For every ψ1 and ψ2 in C2,α
ε,a,b, we have the following estimate:

‖Qε(ψ1)−Qε(ψ2)‖C0,α
ε,a+2,b+2

≤ c ε−b−2 ‖ψ1 − ψ2‖C2,α
ε,a,b

(
‖ψ1‖C2,α

ε,a,b
+ ‖ψ2‖C2,α

ε,a,b

)
,

where c does not depend on ε. This uniform C0,α
ε,a+2,b+2 control is pretty clear onW ,

without any ε in the constant, indeed. Near the divisors, we need to compensate
the (small) weight, hence this unpleasant ε−b−2. It is straightforward to extend to
the case where ψ1 and ψ2 in Ea,b

ε :

‖Qε(ψ1)−Qε(ψ2)‖Fa,bε
≤ qε ‖ψ1 − ψ2‖Ea,bε

(
‖ψ1‖Ea,bε + ‖ψ2‖Ea,bε

)
,

with
(9) qε = c ε−b−2.

In order to use Lemma 1.3, we compare ‖Φε(0)‖Fa,bε
to 1

qε
: in view of (8) and (9),

we have
(10) ‖Φε(0)‖Fa,bε

≤ cε1−
b
2 q−1
ε .

Then, since b < 2, we see that for small ε, ‖Φε(0)‖Fa,bε
is much smaller than 1

qε
and we can use Lemma 1.3 to prove the following theorem. Recall that we denote
the exceptional divisors by E1, . . . , Ep and the Poincaré dual of Ej by PD[Ej].
Observe we can pick different deformation parameters εj = ajε around the divisors
Ej, in order to get a larger range of examples.

Theorem 1.4. Let a1, . . . , a8 denote some positive parameters. Then for every
small enough positive number ε, there is a Ricci-flat Kähler form ω on X̂ in the
cohomology class [ω0]−ε∑ ajPD[Ej]. These provide ALH gravitational instantons
asymptotic to R+ × T3: ω = ω0 +O(r−∞).

The notation O(r−∞) denotes a function decaying faster than any (negative)
power of r (cf. appendix, after Lemma A.2). By working with exponential weights,
we may prove that the decay rate to the flat metric is indeed exponential.
Proof. We can apply Lemma 1.3 to solve the Monge-Ampère equation (3) for
small enough ε, which provides a (1, 1)-form ω = ωε + ddcψ, with ψ ∈ Ea,b

ε . Since
ω is asymptotic to ωε, it is positive outside a compact set. From (3), we know
that ω is everywhere non-degenerate, so it must remain positive on X̂ : it is a
Kähler form. Moreover, its Ricci form is given by ρε − 1

2dd
cfε, which vanishes in

view of our choice of fε, so ω is Ricci-flat. Finally, a Ricci-flat Kähler structure
on a simply-connected four-dimensional manifold is the same as a hyperkähler
structure, so we only need to check that X̂ is simply connected. First, observe
that X = R × T3/± retracts onto T3/±, which is covered by two open sets U1
and U2 with connected intersection, such that U1 and U2 are homeomorphic to
[0, 1

2)×T2/ ∼ where, for any x ∈ T2, (0, x) ∼ (0,−x). Since [0, 1
2)×T2/ ∼ retracts
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onto T2/±, which is homeomorphic to the 2-sphere, we eventually see that X, and
therefore X̂, is simply-connected. �

2. Other similar constructions

2.1. New ALH Ricci-flat manifolds. In the previous example, it is natural to
try and replace T3 = R3/Z3 by another compact flat orientable three-manifold.
Let F2 and F2,2 denote the smooth flat three-manifolds obtained as F2 := T3/σ
and F2,2 := T3/〈σ, τ〉, where σ and τ are the two commuting involutions

σ(x, y, z) = (x+ 1
2 ,−y,−z + 1

2),

τ(x, y, z) = (−x,−y + 1
2 , z + 1

2).

Then R×F2 is naturally a complex flat Kähler manifold—a quotient of C2, indeed.
More specifically, if t is the coordinate along R, we take t+ix and y+iz as complex
coordinates.

We then consider the complex flat Kähler orbifold X2 := R×F2/±. The reader
may check that this involution is well defined and has four fixed points, yielding
rational double points. We blow them up to obtain the complex manifold X̂2.

Proposition 2.1. Let a1, . . . , a4 denote some positive parameters. Then for every
small enough positive number ε, there is a Ricci-flat Kähler form ω on X̂2 in the
cohomology class [ω0] − ε∑ ajPD[Ej]. These provide ALH manifolds asymptotic
to the flat metric on R+ × F2: ω = ω0 +O(r−∞).

In this statement, ω0 denotes again the pull-back of the flat Kähler form on X2
and r = |t|. Actually the proposition is a direct consequence of theorem 1.4, since
one can perform first the quotient by ± and then by σ. Indeed the involution σ
acts freely on R × T3/± and on its desingularization, say X̂1; if the Kähler class
in theorem 1.4 is invariant, then it is obvious that the whole construction can be
made σ invariant, so the resulting metric descends on X̂2.

It follows that the fundamental group of X̂2 is Z2. The metrics are not hyper-
kähler because the holomorphic symplectic form Ω on X̂1 satisfies σ∗Ω = −Ω, so
there is only a multivalued symplectic form on X̂2. (This is also apparent on the
flat model R× F2, whose holonomy is not in SU(2).)

Finally the involution τ is real with respect to the above choice of complex
structure, and acts freely on X2 and X̂2, on which it exchanges the four curves
Ej, say for example τE1 = −E2 and τE3 = −E4. This leads to:

Proposition 2.2. With the same notations as above, if a1 = a2 and a3 = a4 then
the metric of proposition 2.1 is τ invariant so descends to a Ricci flat, locally
Kähler metric on X̂2,2 := X̂2/τ . This is an ALH metric with an end asymptotic
to R+ × F2,2.

Again the whole construction can be made σ and τ invariant (in particular,
looking for a τ invariant potential), so the proposition is immediate.
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2.2. ALG gravitational instantons. In order to build ALG examples with the
same technique, we may start from R2 × T2 and consider ‘crystallographic’ quo-
tients. The basic example is X2 = R2 × T2/±, which is a complex flat Kähler
orbifold with four rational double points. When T2 is obtained from a square
lattice in R2, we may also consider X2 = R2×T2/Z4, where the action of Z4 is in-
duced by the rotation of angle π

2 on both factors. In this case, there are two C2/Z4
singularities and one C2/Z2 singularity. Similarly, starting from a hexagonal lat-
tice and using rotations of angle π

3 and π
6 , we may work with Xk = R2 × T2/Zk

for k = 3 or 6. The orbifold X3 has three C2/Z3 singularities, while X6 has
one C2/Z6 singularity, one C2/Z2 singularity and one C2/Z3 singularity. In any
case, we may blow up the singularities to get the smooth complex manifold X̂k,
k = 2, 3, 4, 6. Every C2/Zk singularity can be endowed with an asymptotically
locally Euclidean (ALE) Ricci-flat Kähler metric: the Gibbons-Hawking or multi-
Eguchi-Hanson metrics [10, 15]. We may use them in the gluing procedure. We
do not have an explicit Kähler potential φ but for instance Theorem 8.2.3 in [15]
gives a potential φ = |z|2

2 +O(|z|−2), which is what we need.
Theorem 2.3. Pick k = 2, 3, 4, 6 and let a1, . . . , ap denote some positive para-
meters (p is the number of singularities). Then for every small enough posit-
ive number ε, there is a Ricci-flat Kähler form ω on X̂ in the cohomology class
[ω0] − ε∑ ajPD[Ej]. These provide ALG gravitational instantons asymptotic to
R2 × T2/Zk: ω = ω0 +O(r−k−2+δ), for every positive δ.
Proof. The proof follows the same lines as that of theorem 1.4, so we just point
out the necessary adaptations. To begin with, we may check that X̂k is simply
connected: this follows from the fact that T2/Zk is homeomorphic to the two-
sphere (it is for instance a consequence of the Gauss-Bonnet formula for closed
surfaces with conical singularities). In view of weighted analysis, we can work
with 0 < a < k (because there is no harmonic function on R2/Zk that decays like
r−a) and in the definition of Ea,b

ε , the Rr̃ summand has to be replaced by R ˜log r
(a smooth function equal to log r outside a compact set). �

2.3. Hitchin’s ALF gravitational instanton. In [14], N. Hitchin built a hyper-
kähler structure on the desingularization X̂ of R3× S1/± through twistor theory.
Beware S1 is again seen as R/Z (so the involution is not an antipodal map). Our
direct analytical approach gives another construction of this hyperkähler manifold.
Theorem 2.4. Let a1, a2 denote some positive parameters. Then for every small
enough positive number ε, there is a Ricci-flat Kähler form ω on X̂ in the co-
homology class [ω0]− ε∑ ajPD[Ej]. These provide ALF gravitational instantons
asymptotic to R3 × S1/±: ω = ω0 +O(r−3+δ), for every positive δ.
Proof. Again, it is a simple adaptation of the proof of theorem 1.4. We work with
0 < a < 1, so that weighted analysis ensures the Laplacian is an isomorphism. In
the definition of Ea,b

ε , the Rr̃ must therefore be dropped. The analysis can then
be done similarly and we just need to check that X̂ is simply connected: this is
immediate, for R3 × S1/± turns out to be contractible. �
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2.4. ALF gravitational instantons of dihedral type. In this section, we start
from the Taub-NUT metric gTN on R4. It is given by the following explicit for-
mulas. We refer to [18] for details. To begin with, we identify R4 with C2, with
complex coordinates w1, w2. The Hopf fibration π = (x1, x2, x3) : C2 −→ R3 is
given by

x1 = 2 Re(w1w̄2), x2 = 2 Im(w1w̄2), x3 = |w1|2 − |w2|2 .

Let us fix a positive number m and define

(11) V = 1 + 2m
|x|

, θ = 4mIm(w̄dw)
|w|2

.

Then θ
4m is a connection one-form on the Hopf fibration, with curvature ∗R3dV

4m ,
and the Taub-NUT metric is given by

(12) gTN = V (dx2
1 + dx2

2 + dx2
3) + 1

V
θ2.

It turns out to be a complete Kähler metric, with respect to the complex structure
I mapping dx1 to dx2 and dx3 to θ

V
. The corresponding Kähler form is

ωTN = V dx1 ∧ dx2 + dx3 ∧ θ.

Moreover, it is endowed with a parallel symplectic (2, 0) form:

Ω = (V dx2 ∧ dx3 + dx1 ∧ θ) + i(V dx3 ∧ dx1 + dx2 ∧ θ).

This holomorphic symplectic structure is in fact isomorphic to the standard one
on C2 [18]. The Taub-NUT metric is therefore hyperkähler.

This hyperkähler structure is preserved by an action of the binary dihedral
group Dk (of order 4(k − 2)) for every k > 2. Explicitly, we see Dk as the group
generated by the following diffeomorphisms τ and ζk of C2:

τ(w1, w2) = (w̄2,−w̄1), ζk(w1, w2) = (e
iπ
k−2w1, e

iπ
k−2w2).

And the reader may check that this action preserves the whole hyperkähler struc-
ture.

We then letX be the orbifold obtained as the quotient of the Taub-Nut manifold
by this action of Dk. It has one complex singularity, isomorphic to the standard
C2/Dk (with Dk in SU(2)). Let us denote the minimal resolution of X by X̂.
Again, we need approximately Ricci-flat metrics on X̂. Near the exceptional
divisor, it is natural to glue one of the Dk ALE gravitational instantons introduced
by P. B. Kronheimer in [17]. This yields a potential φALE = |z|2

2 +O(|z|−2). If we
implemented the same gluing as above, we would be in trouble, basically because
gTN is not flat. Technically, we would end up with fε = O(ε) (instead of ε2 in
(5)); therefore, we would lose an ε in (7) and (8) and the exponent in (10) would
be − b

2 instead of 1− b
2 ; since b has to be positive, this exponent would be negative

and we would never find a ball where to perform the fixed point argument. So we
need to refine the gluing.



14 OLIVIER BIQUARD AND VINCENT MINERBE

Near the origin, we can find complex coordinates s = (s1, s2) in which ωTN is
the standard flat Kähler form ω0 = ddc |s|

2

2 up to O(|s|2) and, more precisely, we
can find a potential φTN for ωTN with the expansion

(13) φTN = |s|
2

2 + θ4(s) +O(|s|5),

where θ4(s) is a Dk-invariant quartic expression in s (and s̄). Moreover, since ωTN
is Ricci-flat, we have the Monge-Ampère equation

ddc log
(
ω2
TN

ω2
0

)
= 0,

which can be expanded into ddc∆ω0θ4 = O(|s|). Since ∆ω0θ4 is a quadratic form,
it is bound to vanish, so θ4 is harmonic. We then identify a neighbourhood of
0 in X̂ with a large domain in the Dk ALE gravitational instanton, in the same
manner as previously, with an ε-dilation s 7→ εz. Then θ4(s) = ε4θ4(z). Since
θ4 is harmonic with respect to the flat metric, we see that ∆ALEθ4 = O(|z|−2).
From weighted analysis, we may then find a ∆ALE-harmonic function h4 with h4 =
θ4(z) +O(|z|−2). Instead of gluing the Taub-NUT metric with the (scaled) ALE
metric, we will patch the Taub-NUT potential φTN together with ε2(φALE + ε2h4),
namely the approximately Ricci-flat metric ωε we use in this context is given by
the potential

φε := χε
[
ε2(φALE + ε2h4)

]
+ (1− χε)φTN ,

with a cutoff function χε like in (1). The (1, 1)-form ωloc,ε = ddc(φALE + ε2h4)
therefore plays the role of the Eguchi-Hanson metric ωEH in this context. Beware
it depends on ε and defines a Kähler metric (a priori) only on some ball

{
|z| ≤ c

ε

}
,

owing to the estimate
(14) |ωloc,ε − ωALE| = ε2

∣∣∣ddch4
∣∣∣ ≤ cε2 |z|2 .

We need a control on the function fε given by (4). Since Taub-NUT is Ricci flat, fε
vanishes for ρ ≥ 2

√
ε. On {ρ ≤

√
ε}, we may use the Ricci-flat ωALE and observe

e−fε =
ω2
loc,ε

ω2
ALE

= 1 + 2ε2∆ALEh4 + ε4
(ddch4)2

ω2
ALE

= 1 + 0 + ε4O(|z|4) = O(ρ4),

which results in
∣∣∣∇kfε

∣∣∣ ≤ c(k)ε2− k2 . Finally, on the transition area {
√
ε ≤ ρ ≤ 2

√
ε},

we use the expansions (13) and

φALE = |z|
2

2 +O(|z|−2) = ε−2 |s|
2

2 + ε2O(|s|−2)

to obtain
ωε − ωTN = ddc

(
ε4χεO(|s|−2) + χεO(|s|5)

)
.

Note that without the trick consisting in plugging this function h4 into the po-
tential, the last exponent would have been 4 instead of 5, resulting in the bad
estimate fε = O(ε). Instead, here, we find∣∣∣∇k(ωε − ωTN)

∣∣∣ ≤ c(k)ε
3−k

2
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and eventually ∣∣∣∇kfε
∣∣∣ ≤ c(k)ε 3−k

2 .

If we follow the proof detailed above, this leads to an exponent 1−b
2 in (10), which

is good enough since we can choose any b in (0, 1). The other arguments can be
adapted. In particular, the proof of Lemma 1.2 still works, because ωloc,ε gets
closer and closer to the ALE metric on larger and larger domains, cf. (14).

Theorem 2.5. For every small ε, there is a Ricci-flat Kähler form ω on X̂ in
the cohomology class [ωTN ] − ε2PD[E], where PD[E] denotes the Poincaré dual
of the exceptional divisor. These provide ALF gravitational instantons : ω =
ωTN +O(r−3+δ), for every positive δ.

These ALF gravitational instantons are of dihedral type in the sense of [23]. For
k = 3 (resp. k = 4), they have the same asymptotics as the Atiyah-Hitchin metric,
that is the D0 ALF gravitational instanton (resp. its double cover, the D1 ALF
gravitational instanton), with the difference that they have positive mass: their
metric is asymptotic to gTN with a positive parameter m, in contrast with the
Atiyah-Hitchin metric where the model at infinity is Taub-NUT with a negative
parameter m. As we shall see in the next section, these are the only two cases
where this can happen. Also note that the examples we build presumably coincide
with the Dk ALF metrics of Cherkis-Dancer-Hitchin-Kapustin [4, 5, 8].

Remark. The class of ALF gravitational instantons of cyclic type (whose bound-
ary is fibered over S2) is completely classified [23]: it is the class of multi-Taub-
NUT metrics, with boundaries at infinity S3 quotiented by the cyclic group Ak
(k ≥ 0, the k = 0 case is the Taub-Nut metric on R4 described above). One should
add one special case, the flat space R3× S1 which can be numbered A−1 (this fits
well with several formulas in § 4).

As mentioned to us by S. Cherkis, one can also construct Dk ALF gravitational
instantons starting from an A2k−5 ALF gravitational instanton (a multi-Taub-
NUT metric associated to a symmetric configuration of 2k−4 points), and taking
the quotient by an involution with two fixed points. The same technique applies
and provides a hyperkähler metric on the desingularization. The special case k = 2
leads to the construction of a D2 ALF gravitational instanton (conventionally the
Hitchin metric) from a A−1 one, that is from R3 × S1: this is the construction in
section 2.3.

3. Other ALH Ricci-flat Kähler examples

There are six oriented compact flat 3-manifolds [30]: the torus T3, four quotients
Fj = T3/Zj for j = 2, 3, 4, 6 and a quotient T3/Z2 × Z2. In § 2.1, we constructed
by quotient a Kähler Ricci-flat metric with one ALH end asymptotic to R × F2.
In this section we will exhibit similar examples with one end asymptotic to R×Fj
for j = 3, 4, 6. This amounts to construct suitable rational elliptic surfaces with
finite group action.

Choose ζj = exp(2πi/j) and a flat 2-torus T2 with an action of Zj. Then the
flat manifold Fj is obtained as the quotient of T3 = S1×T2 by the diagonal action
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of Zj obtained by multiplication by ζj on both factors. The flat metric

(15) dt2 + dx2 + dy2 + dz2

on R × T3 descends to a flat Kähler metric on R × Fj, but the holomorphic-
symplectic form Ω = (dt+ idx)∧ (dy+ idz), which has a simple pole at infinity in
the compactification P1 × T2, becomes j-multivalued in the quotient: the metric
is not hyperkähler since the monodromy at infinity is not a subgroup of SU(2).
(For the last flat 3-manifold the monodromy is not a subgroup of U(2) so one can
not hope to construct Kähler examples, but one can still hope to construct actions
leading to ALH Ricci flat examples.)

We start from a rational elliptic surface Xj with:
• if j = 3, three singular fibres of type IV ;
• if j = 4, four singular fibres of type III;
• if j = 6 six singular fibres of type II.

A glance at the table in [24, p. 206] shows that such surfaces exist. One can
construct them in a concrete way using the Weierstrass model: if L = OP1(1), and
g2 and g3 are holomorphic sections of L4 and L6, then the surface

(16) y2z = 4x3 − g2xz
2 − g3z

3 in P(L2 ⊕ L3 ⊕OP1)

is a rational elliptic surface. In case g3 = 0 and g2 has four simple zeros, one gets
X4; if g2 = 0 and g3 has six simple zeros, one gets X6; if g2 = 0 and g3 has three
double zeros one gets X3. Moreover we can choose g2 and g3 so that Xj has an
action of Zj over P1 which permutes the singular fibres. For example we take the
standard action of Zj on P1 by z 7→ ζjz and we use g2(u) = u4 − 1 for j = 4,
g3(u) = u6 − 1 for j = 6 and g3(u) = (u3 − 1)2 for j = 3.

Given any fibre, there is a holomorphic symplectic form on Xj with a simple
pole along this fibre, giving a section of K(F ). We choose Ω ∈ H0(Xj, K(F )) the
symplectic form with a simple pole over the fibre at infinity, so that near infinity
one has Ω ∼ dz

z
∧ dv, where v is a coordinate on the fibre at infinity.

The action of Zj on P1 has fixed points 0 and ∞. The action can be chosen so
that it is free on the fibre over the origin (translation), but has fixed points on
the fibre at infinity, giving Kleinian singularities of type C2/Zj on the quotient
Xj/Zj. The minimal desingularization X̂j is again an elliptic surface over P1, with
a multiple fibre of order j over the origin, a singular fibre of type IV ∗ (j = 3),
III∗ (j = 4) or II∗ (j = 6) over the point at infinity, and similarly a singular
fibre of type IV , III or II over u = 1. Moreover, the section Ωj descends as a
section Ω̂ ∈ H0(X̂j, K

j(F )) which does not vanish on X̂j and has a simple pole
over∞ (in other words, Ω̂

1
j is a multivalued holomorphic symplectic form outside

the fibre over ∞).
Given a Kähler form ω which is asymptotic to (15), an ALH Kähler Ricci flat

metric on X̂j is given by a solution of the Monge-Ampère equation

(17) (ω + i∂∂̄f)2 = Ω
1
j ∧ Ω

1
j ,
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where f has exponential decay on the end R × Fj. One can either solve directly
on X̂j or find a Zj-invariant solution on Xj: this amounts to solving the Monge-
Ampère equation for cylindrical ends, and we refer to [27, 15, 16]. More specifically
the case of Xj is done in [13].

Using the same construction, one can recover the ALH example X̂2 of § 2.1 for
j = 2, starting from a rational elliptic surface with two singular fibres of type
I∗0 with an action of Z2. In that case, our desingularization procedure of the flat
metric R × T3/Z2 × Z2 gives a good approximation of certain solutions of (17).
This flat model is no more available for j = 3, 4, 6.

Remark. It might seem disappointing that these non-hyperkähler examples occur
as finite quotients of hyperkähler manifolds. It turns out to be a general fact:
any Ricci-flat Kähler four-manifold with ALE, ALF, ALG or ALH asymptotics is
bound to have a hyperkähler finite cover. To see why, observe that such a manifold
M has a flat canonical bundle (because Ric = 0), determined by a representation ρ
of π1(M) in C. Building a hyperkähler finite cover amounts to finding a subgroup
G of π1(M) of finite index and on which ρ is trivial. Now, since Ric = 0, the
Weitzenböck formula ensures the L2 cohomology vanishes in degree 1. In terms
of standard De Rham cohomology, this implies [1] that the image of the natural
map H1

c (M) → H1(M) is trivial. Since the complement of a compact set in M
is diffeomorphic to R+ × S for some compact 3-manifold S, this means H1(M)
injects into the cohomology space H1(S) of the ‘boundary at infinity’ S or in other
words H1(S,R) surjects onto H1(M,R). In all ALE,F,G,H asymptotics, H1(S,R)
is generated by a finite number of loops γi for which some iterate γkii acts trivially
on the canonical bundle of M . So the subgroup G of π1(M) generated by the
derived subgroup [π1(M), π1(M)] and the γkii ’s has the required properties.

4. A formula for the Euler characteristic

Let X be an ALF gravitational instanton of dihedral type or cyclic type. Near
infinity, one has X ' (A,+∞)× S, where S has a circle fibration over Σ = RP 2

(dihedral case) or Σ = S2 (cyclic case). Moreover the metric g has the following
asymptotics:

g ' dr2 + r2γ + θ2,

where θ is a connection 1-form on the circle bundle (or its double covering in the
dihedral case), and γ is the horizontal metric lifted from the standard metric on
Σ. We have the following behavior for the second fundamental form I and the
curvature R:

(18) |I| = O(1
r
), |R| = O( 1

r3 ).

There are well known formulas giving the Euler characteristic and signature ofX in
terms of the integrals of characteristic classes on a large domainDρ = {r ≤ ρ} ⊂ X
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and boundary terms: for a gravitational instanton, there remains only

χ = 1
8π2

∫
Dρ
|W−|2 + 1

12π2

∫
∂Dρ

T(I ∧ (I ∧ I + 3R)),

τ = 1
12π2

∫
Dρ
−|W−|2 + 1

12π2

∫
∂Dρ

S(I(·, R(·, ·)n)) + η(∂Dρ).

Here n is the normal vector, T and S are linear operations which we do not need
to write down explicitly, since from the control (18) and the fact that the volume
of ∂Dρ is O(ρ2), we obtain that all boundary integrals go to zero when ρ goes to
infinity. Finally this implies the following form of the Hitchin-Thorpe inequality:
(19) 2χ+ 3τ = lim

ρ→∞
η(∂Dρ).

For the gravitational instanton X, if X 6= R3×S1 we have b1(X) = b3(X) = 0, and
the intersection form is negative definite (see [11], this follows immediately from
the fact that the relevant cohomology classes can be represented by L2 harmonic
forms), so it follows that τ = −(χ− 1). On the other hand, since the η-invariant
is conformally invariant, the limit in (19) is the adiabatic limit:

ηad(S) := lim
r→∞

η(γ + 1
r2 θ

2).

Therefore we obtain the following result:

Theorem 4.1. For an ALF gravitational instanton X 6= R3 × S1, with boundary
S, one has
(20) χ(X) = 3

(
1− ηad(S)

)
.

The calculation of the adiabatic limit of the η-invariant is well known, but
we can also deduce it from the theorem: in both cyclic and dihedral cases, we
have examples obtained by desingularizing the quotient of C2 with the Taub-
NUT metric by the cyclic group Ak (this gives the multi-Taub-NUT metrics), or
the dihedral group Dk (the metrics coming from theorem 2.5). This results in a
k-dimensional 2-cohomology and therefore χ = k + 1 and

(21) ηad = 2− k
3 .

In the dihedral case, the formula extends immediately to the D2 case, which is
Hitchin’s metric on the desingularization of R3 × S1/±. In this way the values of
(21) for k ≥ 2 give the adiabatic η invariant for all possible boundaries S of an
ALF gravitational instanton. Nevertheless observe that the sign of the η-invariant
is changed if the orientation of S is changed.

From the theorem 4.1, since one must have χ ≥ 1, one deduces the constraint

(22) ηad(S) ≤ 2
3 .

From the values obtained in (21), we see that the only three cases where the
boundary S of a dihedral ALF gravitational instanton, endowed with the opposite
orientation, can be filled by another gravitational instanton, are k = 2, 3 or 4.
Indeed, for k = 4, the D0 gravitational instanton (the Atiyah-Hitchin metric)
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has the same boundary as the D4 instanton, but with the opposite orientation;
observe that since it retracts on a RP 2 it has χ = 1 and ηad = 2

3 , so the formulas
(20) and (21) remain true. For k = 3, we have the same phenomenon with the D1
ALF gravitational instanton (the double cover of the D0 one) which has the same
boundary as the D3 one up to orientation. Finally for k = 2, one has ηad = 0
and the opposite orientation is obtained by the same space, since the flat space
R3 × S1/± admits an orientation reversing isometry.

We have proved:

Corollary 4.2. There is no dihedral ALF gravitational instantons with boundary
equal to S3/Dk with negative orientation for k > 4.

Let us observe from the ansatz (11) (12) for the Taub-NUT metric that the
orientation of the boundary S depends on the sign of the mass m. Specifying
the sign of the mass is therefore the same as specifying the orientation of the
boundary S. In the cyclic case, all ALF gravitational instantons but R3×S1 have
positive mass [22, 23]. In the dihedral case, the corollary implies that all ALF
gravitational instantons have positive mass, with the only exceptions of D0 or D1
asymptotics (negative mass), or D2 asymptotics (zero mass).

Finally, remind that, if in the cyclic case the ALF gravitational instantons are
completely classified [23], the classification is still an open problem in the dihedral
case: at least the corollary tells us that there is no possible new class with negative
mass in the Dk case for k > 4.

Appendix A. Analysis in weighted spaces

Our construction relies on a few facts about the behaviour of the Laplacian on
functions in complete non-compact Riemannian manifolds (M, g) with prescribed
asymptotics. Let us sum up the theory.

Basically, we assume here the existence of a compact domain K in M such that
M\K has finitely many connected components which, up to a finite covering, are
diffeomorphic to the complement of the unit ball in Rm×T4−m, for m = 1, 2, 3, 4.
We will further assume that the metric g coincides with the standard flat metric
g0 = gRm + gT4−m at infinity in each end. The notation gT4−m is for the flat metric
obtained as a quotient of R4−m by any lattice. The case m = 3 will include
slightly more sophisticated situations, like in [22]. Basically, the Hopf fibration
π : S3 → S2 can be extended radially into π : R4\ {0} → R3\ {0} and we may
assume that M\K is the total space of (a restriction of) this circle fibration.
Then we define the model metric at infinity to be g0 := π∗gR3 + η2, where η is any
constant multiple of the standard contact form on the three-sphere ([22]). Note
also that all we will say will remain true if g is only asymptotic to g0, thanks
to perturbation arguments (cf. [22] for instance). The analysis on such spaces
is somehow understood, so we will drop the proofs. The reader interested in the
details of this analytical material is referred to [21, 11] for the Mazzeo-Melrose
approach or to [20, 22] for softer arguments.

We will denote by r the Euclidean distance to the origin in Rm. In what follows,
we will always write AR for the “annulus” defined by R ≤ r ≤ 2R and AκR for
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2−κR ≤ r ≤ 2κ+1R (κ ≥ 0). Similarly, the “balls” K ∪ {r ≤ R} will be denoted
by BR.

A.1. The Sobolev theory. Given a real number δ and a subset Ω ofM , we first
define the weighted Lebesgue space L2

δ(Ω) as the set of functions u ∈ L2
loc(Ω) such

that the following norm is finite:

‖u‖L2
δ
(Ω) :=

(∫
Ω∩K

u2 +
∫

Ω\K
u2r−2δ

) 1
2

.

We will often write L2
δ for L2

δ(M). The following should be kept in mind:

ra ∈ L2
δ(M\K)⇔ δ >

m

2 + a.

Any function u onM\K can be written u = Π0u+Π⊥u where Π0u is obtained by
computing the mean value of u along T4−m. In other words, Π0u is the part in the
kernel of the Laplacian on T4−m while Π⊥u lies in the positive eigenspaces of this
operator. The point is these projector commute with the Laplacian and elliptic
estimates will be different for Π0u and Π⊥u. We therefore introduce the Hilbert
space L2

δ,ε(Ω) of functions u ∈ L2
loc(Ω) such that ‖Π0u‖L2

δ
(Ω\K) and ‖Π⊥u‖L2

ε (Ω\K)
are finite. The good Sobolev space for us is the Hilbert space H2

δ of functions
u ∈ H2

loc such that ∇kΠ0u ∈ L2
δ−k and ∇kΠ⊥u ∈ L2

δ−2 for k = 0, 1, 2.
To state the main a priori estimate, we need a definition. We will say that the

exponent δ is critical if rδ−m2 is the (pointwise) order of growth of an harmonic
function on Rm\ {0}. More precisely, the critical values correspond to δ − 2 ∈
Z\ {−1} when m = 4, δ − 3

2 ∈ Z when m = 3, δ − 1 ∈ Z when m = 2, δ − 1
2 = 0

or 1 when m = 1. When m = 2, the value δ = 1 is doubly critical, owing to
the constants and the harmonic function log r. When m = 1, there are only
two critical values because the Laplacian on R is also (minus) the Hessian, so
that harmonic functions are affine ; in this case, exponential weights are usually
used, but we will not really need them and we prefer to give a general framework
including faster than linear volume growths. Note also that when one of the
ends of M is a non-trivial finite quotient of the model, some critical values (as
defined above) may turn irrelevant: for instance, there is no harmonic function
with exactly linear growth on R2/±, which makes δ = 0 and δ = 2 non-critical.

We are interested in the unbounded operator

Pδ : D(Pδ) −→ L2
δ−2,δ−2

u 7→ ∆u

whose domain D(Pδ) is the dense subset of L2
δ,δ−2 whose elements u have their

Laplacian in L2
δ−2,δ−2. The usual L2 pairing identifies the topological dual space

of L2
δ,δ−2 (resp. L2

δ−2,δ−2) with L2
−δ,2−δ (resp. L2

2−δ,2−δ). For this identification, the
adjoint P ∗δ of Pδ is

P ∗δ : D(P ∗δ ) −→ L2
−δ,2−δ

u 7→ ∆u
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where the domain D(P ∗δ ) is the dense subset of L2
2−δ whose elements u have their

Laplacian in L2
−δ,2−δ. The following proposition can be proved for instance along

the lines of Proposition 1 in [22].

Proposition A.1. If δ is non-critical, then Pδ is Fredholm and its cokernel is the
kernel of P ∗δ .

The following property is classical in this context and makes it possible to
understand precisely the growth of solutions to our equations (cf. Lemma 5 in
[22]).

Proposition A.2. Suppose ∆u = f with u in L2
δ(Bc

R0) and f in L2
δ′−2(Bc

R0) for
non-critical exponents δ > δ′ and a large number R0. Then in each end of M ,
we may write u = h+ v, where h is a harmonic function on Rm\ {0} and v is in
L2
δ′,δ′−2.

For instance, if m = 1 and f is a smooth and compactly supported function,
we obtain that, in each end of M , v lies in L2

δ for every δ. Since ∆v = f , we can
use standard elliptic estimates such as Lemma 24 (below) to see that v = O(r−a)
for every a (together with its derivatives, indeed). We will abbreviate this by
v = O(r−∞). So a solution u of ∆u = f behaves in each end like an affine
function on R, up to O(r−∞).

This proposition also implies that Pδ is injective as soon as δ − m
2 < 0 and, by

duality, surjective as soon as δ − m
2 > 2−m (cf Corollary 2 in [22]).

As a consequence, when m ≥ 3 and 2−m < δ − m
2 < 0 , Pδ is an isomorphism

and, if f is in L2
δ−2, we can find a solution u to the equation ∆u = f with the

expected asymptotic behviour, i.e. u ∈ L2
δ .

When m = 1 or 2, there is no such value of δ. In practice, this can be easily
circumvented in the following way. Assume f is in L2

δ−2 with δ − m
2 ≤ 2 − m.

Define δm by δm − m
2 = 2 − m + 1

2 . Then there is a function u in D(Pδm) such
that Pδmu = f . Proposition A.2 then ensures that the solution can be written as
u = h̃+ v, where v is in L2

δ and h̃ is a smooth function which is harmonic outside
a compact set and belongs to L2

δm\L
2
δ . In fact, such a function h̃ can be chosen in

a finite dimensional space depending only on δ so we still get some control on the
asymptotics of the solution. We refer to Lemma 1.1 for a concrete example.

Finally, as a by-product of the theory (cf. Lemma 4 in [22]), we are given, for
every (large) number R0, and every non-critical δ < m

2 , a bounded operator

(23) GR0 : L2
δ−2(Bc

R0) −→ H2
0,δ(Bc

R0)

which is an inverse for the Laplacian. Its domain H2
0,δ is the space of functions

u ∈ H2
δ such that Π⊥u vanishes along ∂BR0 . On ker Π0, GR0 is defined by first

solving the equation on the domains BR\BR0 with Dirichlet boundary condition
and then letting R go to infinity. On ker Π⊥, it is given by an explicit formula.
For instance, when m = 1, we set for each f ∈ ker Π⊥:

GR0f :=
∫ r

R0
(ρ− r)f(ρ)dρ.
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A.2. From integral to pointwise bounds. In view of handling (weighted)
Hölder norms, more adapted to nonlinear analysis, the following Moser inequality
is useful:

(24) ‖u‖L∞(AR) ≤ c

(
1√
Rm
‖u‖L2(A1

R) +R2 ‖∆u‖L∞(A1
R)

)

A way to obtain this consists in lifting the problem to a square-like domain of
size R in R4 and applying the standard elliptic estimate on R4 ; the behaviour
of the constants with respect to R follows from scaling and counting fundamental
domains. As a consequence of this inequality, the inverse GR0 for the Laplacian
on exterior domains (cf. 23) obeys an L∞ estimate. The proof relies on an idea
that can be found in [20, 3].

Lemma A.3. Given positive numbers R0 and a, there is a constant c = c(R0, a)
such that for every continuous function f on BRc0

with f = O(r−a−2),

‖raGR0f‖L∞ ≤ c
∥∥∥ra+2f

∥∥∥
L∞

.

Proof. First, write f = Π0f+Π⊥f and observe that Π0f is obtained as an integral
along the T4−m factor, so that the sup norms of both terms can be estimated by
the sup norms of f . We may therefore tackle them separately. The case f = Π0f
consists in using the explicit formula used to define GR0 on ker Π⊥, so we assume
f = Π⊥f . Then GR0f vanishes along ∂BR0 . Let us put Ri := 2iR0. Using a
partition of unity, we may write f = ∑

i fi with supp fi ⊂ ARi and |fi| ≤ |f |.
Then 24 yields:

Ra
i ‖GR0fj‖L∞(Ai) ≤ c Ra+2

i ‖fj‖L∞(A1
Ri

) + c R−δai ‖GR0fj‖L2(A1
Ri

) ,

where δa = m
2 −a (note that A1

R0 should be understood as B4R0\BR0 and that the
corresponding Moser-type estimate near the boundary is standard). Picking any
δ close to δa, we get

R−δai ‖GR0fj‖L2(A1
Ri

) ≤ c Rδ−δa
i ‖GR0fj‖L2

δ
(A1
Ri

) ≤ c Rδ−δa
i ‖fj‖L2

δ−2

≤ c

(
Ri

Rj

)δ−δa ∥∥∥ra+2fj
∥∥∥
L∞

.

Now, given i and j, we choose δ so that δ− δa is ε times the sign of j− i for some
small positive number ε (and zero if i = j). Then we find

Ra
i ‖GR0fj‖L∞(ARi )

≤ c 2−ε|j−i|
∥∥∥ra+2f

∥∥∥
L∞

.

Summing over j leads to:

Ra
i ‖GR0f‖L∞(Ai) ≤ c

∥∥∥ra+2f
∥∥∥
L∞

and the result follows at once. �
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