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Abstract

In this paper, we prove a weighted Sobolev inequality and a Hardy inequality on manifolds with
nonnegative Ricci curvature satisfying a reverse volume doubling condition. It enables us to obtain
rigidity results for Ricci flat manifolds.

Introduction

A major question in Riemannian geometry is : what are the topological implications of assumptions
on geometric objects, such as the curvature or the volume of balls ? As an example, the classical
Bonnet-Myers theorem asserts that a complete Riemannian manifold with Ricci curvature bounded
from below by a positive number is compact with finite fundamental group. In the noncompact
setting, it is natural to look for geometric properties which ensure the manifold has finite topological
type, i.e. is homeomorphic to the interior of a compact manifold with boundary. For instance, a
complete flat manifold has finite topological type by Cheeger-Gromoll theorem [CG2] and, indeed,
it is sufficient to ask for flatness only outside a compact set [GW]. With this in mind, one can
wonder whether an asymptotic flatness is sufficient : has a complete manifold finite topological
type as soon as the curvature tends to zero at infinity ? It is far from being true since any manifold
carries a complete metric whose curvature tensor R decays quadratically that is, given a point o,
there is number C such that : |R| ≤ Cd(o, .)−2 ([Gro],[LS]). So a quadratic decay (alone) has
no topological meaning. A striking fact is the following theorem of Abresch [Abr] : a complete
manifold whose curvature decays faster than quadratically, that is |R| ≤ Cd(o, .)−2−δ with δ > 0,
has finite topological type. Thus, there is a critical rate of decay, O(d(o, .)−2), around which
the situation changes completely. Note it is the rate of decay which is invariant under constant
rescalings of the metric.

It is then interesting to understand what happens around the quadratic decay. J. Sha and Z.
Shen [SS] showed a complete manifold Mn with quadratic curvature decay has finite topological
type if it has nonnegative Ricci curvature and maximal volume growth, that is the volume of balls
satisfies volB(o, t) ≥ Aot

n, with Ao > 0. The word "maximal" is explained by Bishop theorem,
which asserts : volB(o, t) = O(tn).

If one assumes such a Euclidian volume growth of balls, requiring quadratic curvature decay is
close to requiring the curvature belongs to the Lebesgue space L

n
2 . Many mathematicians studied

manifolds with integral bounds on the curvature. In particular, [BKN] proved that Ricci flat n-
manifolds with maximal volume growth and curvature in L

n
2 have faster than quadratic curvature

decay and thus finite topological type (and this paper proved a lot more). Another interesting
consequence of their methods is the existence of a positive number ε for which such a manifold is
flat as soon as

∫
|R|n/2 is less than ε ; ε depends on n and on a lower bound on the volume growth.

Our aim here is to understand how one can generalize such theorems in case the volume growth
is not maximal. One result in this direction is the following theorem, by Jeff Cheeger and Gang
Tian [CT] : a four-dimensional complete Ricci flat manifold with curvature in L2 has quadratic
curvature decay. Their proof is based on the Gauss-Bonnet-Chern formula and Cheeger-Gromov
theory. Our approach is different : unlike J. Cheeger and G. Tian, we still make an assumption on
the volume growth and this enables us to generalize previously known rigidity results ; the point
is our assumption is much weaker than "maximal volume growth."

The results of [BKN] rely on a Sobolev inequality. Now such an inequality cannot be true
if the volume growth is not maximal. But what we will show in our setting is that a weighted
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Sobolev inequality happens. Given a point o, we will consider weights involving the function
ρo : t 7→ tn

vol B(o,t) . Note this function appears in Bishop-Gromov theorem : it is nondecreasing
when the Ricci curvature is nonnegative. Moreover, if ro denotes the geodesic distance to the point
o (ro = d(o, .)), the quadratic decay is critical for the integral

∫

M
|R|n

2 ρo(ro)dvol : it is finite if R
has faster than quadratic decay, but it may be infinite if R only has quadratic decay. Our work
leads to the following

Theorem 0.1 (Flatness criterion) Let Mn, n ≥ 4, be a connected complete Ricci-flat manifold.
Assume there exists o in M , ν > 1 and Co > 0 such that

∀ t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

.

Then there is a constant ε1 = ε1(n,Co, ν) such that M is flat as soon as

sup
M

(|R| r2o) < ε1.

If ν > 2, there is also a constant ε2 = ε2(n,Co, ν) such that M is flat as soon as

∫

M

|R|
n
2 ρo(ro)dvol < ε2.

As a result, in both cases, M is the normal bundle of a compact totally geodesic submanifold, which
is finitely covered by a flat torus.

Note the first part of the theorem provides a rigidity phenomenon in the setting of [SS], provided
Ric = 0 : if supM (|R| r2o) is finite, M has finite topological type ([SS]); if it is small enough, we
prove M is flat. We can also generalize [BKN] :

Theorem 0.2 (Curvature decay) Let Mn, n ≥ 4, be a connected complete Ricci-flat manifold.
Assume there exists o in M , ν > 4n−2

n−1 and Co > 0 such that

∀ t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

.

and ∫

M

|R|n
2 ρo(ro)dvol < +∞.

Then M has faster-than-quadratic curvature decay and thus has finite topological type.

Moreover, we are able to predict a rate of decay. For instance, if the volume of the large balls
B(o, t) grows like tn−1, the curvature tensor decays like r−(n−1)

o , which is optimal.

The assumption

∀ t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

(1)

implies the lower bound
∀ t ≥ 1, volB(o, t) ≥ Co volB(o, 1)tν (2)

and follows from the two-sided estimate

∃Ao, Bo > 0, ∀t ≥ 1, Aot
ν ≤ volB(o, t) ≤ Bot

ν . (3)

Note that Bishop theorem ensures ν ≤ n. This hypothesis yields the analytical tools we need.
Indeed, we prove that on a complete connected manifold Mn, n ≥ 3, with nonnegative Ricci
curvature and satisfying (1), the following weighted Sobolev inequality holds :

∀ f ∈ C∞
c (M),

(∫

M

|f | 2n
n−2 ρo(ro)

− 2
n−2 dvol

)n−2
n

≤ S

∫

M

|df |2 dvol. (4)
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In other terms, the completion H1
0 (M) of C∞

c (M) for the norm ‖d.‖L2(M,vol) can be continuously

injected into L
2n

n−2

(

M,ρo(ro)
− 2

n−2 vol
)

. Such a manifold also satisfies the Hardy inequality

∀ f ∈ C∞
c (M),

∫

M

|f | r−1
o dvol ≤ H

∫

M

|df | dvol. (5)

The constants S and H we find depend only on n, ν and Co. Now, the curvature of a Ricci flat
manifold obeys a nonlinear elliptic equation. When used appropriately, the inequalities (4) and (5)
yield estimates on the solutions of this equation, and our theorems follow. In this article, we will
give a few other applications of the weighted Sobolev inequality.

The paper is organized as follows.
In the first section, we develop a discretization technique aimed at patching local Sobolev

inequalities together. It is based upon ideas and methods of A. Grigor’yan and L. Saloff-Coste
[GSC]. Given a convenient covering of a manifold, if we assume some discrete inequality on a graph
which is naturally associated to the covering, we are able to deduce a global Sobolev inequality
from a local one (theorem 1.8).

In the second section, we explain how to apply this abstract technique in the setting of manifolds
with nonnegative Ricci curvature and satisfying (1), so as to obtain a weighted Sobolev inequality
and a Hardy inequality. Note we could replace the nonnegativity of the Ricci curvature by two of
its consequences : the volume doubling condition and the scaled Poincaré inequality on balls. In
[Gril], G. Grillo proves weighted inequalities in the context of homogeneous spaces and indeed, in
the case ν = n, the Hardy inequality follows from this work : nevertheless, it should be stressed
that our approach is basically different and, in particular, does not require a uniform estimate on
the volume of balls ; apart from the volume doubling condition and the scaled Poincaré inequality
(which are classical assumptions for such problems), the only measure theoretic assumption we
need is the estimate (1) which is some kind of reverse volume doubling condition around one point.
An important step in our proof could be singled out : the following result gives a sufficient condition
for a manifold to satisfies the so called RCA property (Relatively Connected Annuli) and should
be compared with proposition 4.5 of [HK] (which, in our context, would require the volume growth
to satisfy a uniform Euclidian estimate from below).

Proposition 0.3 (RCA) Let M be a connected complete Riemannian manifold, satisfying the
volume doubling property

∀x ∈M, ∀ t > 0, volB(x, 2t) ≤ CD volB(x, t),

the scaled Lp Poincaré inequality centered in some point o in M

∀ f ∈ C∞
c (M), ∀ t > 0,

∫

B(o,t)

∣
∣f − fB(o,t)

∣
∣
p
dvol ≤ CP t

p

∫

B(o,t)

|df |p dvol

and the reverse volume doubling condition centered in o

∀ t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

with ν > p. Here, CD ≥ 1, p ≥ 1, CP > 0, Co > 0. Then there exists κ0 > 0 such that for t > 0, if
x, y are two points in S(o, t), there is a path from x to y which remains inside B(o, t)\B(o, κ−1

0 t).
Moreover, it is possible to find an explicit constant, in terms of p, CD, CP , Co, ν.

Let us say a few words about this proposition. Cheeger-Gromoll theorem implies that in our setting,
M has only one end. A result from [LT] (with [And]) implies that, for large t, the intersection of
the only unbounded component of M\B(o, t) with any annulus A(t, t+s), t > 0, is connected. But
it says nothing about the behaviour of the bounded components of M\B(o, t). What we proved
is that, in a sense, these bounded components have at most linear growth. Moreover, we give an
explicit estimate of this growth, which is important for our purpose.

In the third section, we investigate the properties of Schrödinger operators ∆ + V that can be
deduced from our weighted Sobolev inequality. Here, ∆ is the Bochner laplacian on some Euclidian

3



vector bundle and V is a field of symmetric endomorphisms. In particular, we prove that integral
assumptions on the potential ensure the kernel is trivial (theorem 3.1). We obtain various technical
estimates and also introduce a good space of sections ψ such that the equation (∆ + V )σ = ψ has
a bounded solution σ (3.10). This section can be seen as a toolbox.

In the fourth and last section, we point out some applications. Let us denote by So(M) (resp.
Ho(M)) the best constant S (resp. H) in (4) (resp. in (5)). We define the "Sobolev-curvature"
invariant

SC(Mn) := inf
o∈M

[

So(M)

(∫

M

|R|n
2

rn
o

volB(o, ro)
dvol

) 2
n

]

and the "Hardy-curvature" invariant

HC(Mn) := inf
o∈M

[

Ho(M) sup
M

(|R| r2o)

]

,

with the convention 0.∞ = ∞. First, we generalize the work of G. Carron [Car1] about L2-
cohomology and obtain in particular the

Theorem 0.4 (L2-cohomology) Let Mn, n ≥ 3, be a connected complete Riemannian manifold
such that SC(M) is finite. Then the L2-cohomology of M is finite-dimensional. Moreover, for
any integer k, there exists a positive universal constant ε(n, k) such that if SC(M) < ε(n, k), then
Hk

L2(M) = {0}.

In case M has nonnegative Ricci curvature and satisfies (3), this means the L2-cohomology is finite-
dimensional as soon as

∫

M |R|n
2 rn−ν

o dvol < ∞ ; in [Car2], G. Carron required
∫

M |R| ν
2 dvol < ∞.

These are close assumptions, but ours is a bit weaker. Our work also provides explicit bounds on
the dimension of the L2-cohomology spaces. Then we study Ricci flat manifolds and prove the
following rigidity theorems, which imply the results announced above.

Theorem 0.5 (Flatness criterion) If Mn, n ≥ 4, is a connected complete Ricci-flat manifold,
there are universal positive constants ε1(n) and ε2(n) such that if SC(M) < ε1(n) or HC(M) <
ε2(n), then M is flat.

Theorem 0.6 (Curvature decay) Let Mn, n ≥ 4, be a connected complete Ricci-flat manifold.
If SC(M) is finite, then M has quadratic curvature decay. If moreover there exists ν > 4 n−2

n−1 and

Ao > 0 such that volB(o, t) ≥ Aot
ν for large t, then the curvature decays like r

− (ν−2)(n−1)
n−3

o and M
has finite topological type.

Finally, we give some examples where this rate of decay is the correct one.

Acknowledgements. I would like to thank Gilles Carron for his remarks, suggestions, ques-
tions, and for his patience.
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1 Discretization and Sobolev inequalities.

1.1 How to patch local Sobolev inequalities together.

The aim of this paragraph is to explain how to patch local Sobolev inequalities so as to obtain
a global one. In [GSC], A. Grigor’yan and L. Saloff-Coste introduce a discretization procedure
enabling them to handle Poincaré inequalities. We generalize their ideas in two ways : we use
integral inequalities for different measures and we consider general Sobolev-type inequalities.

Here, M is a smooth Riemannian manifold (Lipschitz would be sufficient), and we introduce
two Borel measures λ, µ on it. For us, it will be crucial to cope with both of them at the same
time. Let us introduce the necessary vocabulary.

Definition 1.1 Let A ⊂ A] be two subsets of M . A family U = (Ui, U
∗
i , U

]
i )i∈I consisting of

subsets of M having finite measure with respect to λ and µ is said to be a good covering of A in A]

if the following is true.

(i) There is a Borel subset E of A such that λ(E) = µ(E) = 0 and A\E ⊂ ⋃i Ui ⊂
⋃

i U
]
i ⊂ A] ;

(ii) ∀ i ∈ I, Ui ⊂ U∗
i ⊂ U ]

i ;

(iii) ∃Q1, ∀ i0 ∈ I, Card
{

i ∈ I/U ]
i0
∩ U ]

i 6= ∅
}

≤ Q1;

(iv) For every (i, j) ∈ I2 satisfying Ui ∩ Uj 6= ∅, there is an element k(i, j) such that Ui ∪ Uj is a
subset of U∗

k(i,j) ;

(v) There exists a constant Q2 such that for every (i, j) ∈ I2, if Ui ∩ Uj is not empty then

λ(U∗
k(i,j)) ≤ Q2 min (λ(Ui), λ(Uj)) and µ(U∗

k(i,j)) ≤ Q2 min (µ(Ui), µ(Uj)).

Given a Borel set U with finite and nonzero λ-measure and a λ-integrable function f , we will
denote by fU,λ the mean value of f on U with respect to the measure λ :

fU,λ =
1

λ(U)

∫

U

fdλ.

One can associate to every good covering U a weighted graph (G,mλ) : its set of vertices is
V = I and its set of edges is E =

{
{i, j} ⊂ V / i 6= j, Ui ∩ Uj 6= ∅

}
; V and E are given measures,

both of which will be denoted by mλ, and they are defined by

∀ i ∈ V , mλ(i) = λ(Ui) and ∀ {i, j} ∈ E , mλ(i, j) = max(mλ(i),mλ(j)).

Remark 1.2 In what we call a graph, there is at most one edge between two given vertices. So,
if there is an edge between two vertices i and j, we will call it {i, j}. For us, a weighted graph will
always consist of a σ-finite measure on the set of vertices V and of a σ-finite measure on the set
of edges E, which we give the same name m and which are related by m(i, j) = max(m(i),m(j)),
for {i, j} in E.

Now, we introduce three kinds of inequalities : the discrete estimates (the second and third)
will enable us to patch the continuous ones (the first) together.

Definition 1.3 Given k in ]1,∞] and p in [1, k[, we will say that a good covering U satisfies a
continuous Lp Sobolev inequality of order k with respect to the pair of measures (λ, µ) if there exists
a constant Sc such that for every i in I, one has

∀ f ∈ C∞(U∗
i ),

(∫

Ui

|f − fUi,λ|
pk

k−p dλ

) k−p
k

≤ Sc

∫

U∗
i

|df |p dµ

and

∀ f ∈ C∞(U ]
i ),

(
∫

U∗
i

∣
∣f − fU∗

i ,λ

∣
∣

pk
k−p dλ

) k−p
k

≤ Sc

∫

U]
i

|df |p dµ.
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Definition 1.4 Given k in ]1,∞] and p in [1, k[, we will say that the weighted graph (G,m) satisfies
a discrete Lp Sobolev-Dirichlet inequality of order k if there exists a constant Sd such that for every
f ∈ Lp(V ,m), one has

(
∑

i∈V

|f(i)|
pk

k−p m(i)

) k−p
k

≤ Sd

∑

{i,j}∈E

|f(i) − f(j)|pm(i, j).

Definition 1.5 Given k in ]1,∞] and p in [1, k[, we will say that a finite weighted graph (G,m)
satisfies a discrete Lp Sobolev-Neumann inequality of order k if there exists a constant Sd such that
for every f ∈ R

V , one has

(
∑

i∈V

|f(i) −m(f)|
pk

k−p m(i)

) k−p
k

≤ Sd

∑

{i,j}∈E

|f(i) − f(j)|pm(i, j).

Remark 1.6 In this terminology, a Lp Poincaré inequality is nothing but a Lp Sobolev inequality
of infinite order.

Remark 1.7 Of course, one can say that a good covering U satisfies a discrete Sobolev inequality,
by considering the associated weighted graph (G,mλ).

The following theorem is the crucial tool for us.

Theorem 1.8 Fix k in ]1,∞] and p in [1, k[. If a good covering U of A in A] satisfies the
continuous Lp Sobolev inequality of order k (1.3) and the discrete Lp Sobolev-Dirichlet of order ∞
(1.4), then the following Sobolev-Dirichlet inequality is true :

∀ f ∈ C∞
c (A),

∫

A

(

|f |
pk

k−p dλ
) k−p

k ≤ S

∫

A]

|df |p dµ.

Moreover, one can choose S = ScQ12
p−1+ p

k (1 + SdQ2(2
pQ2

1)
k

k−p )
k−p

k .

Remark 1.9 The case where λ = µ, k = ∞ and p = 2 was proved by A. Grigor’yan and L.
Saloff-Coste in [GSC].

Proof :
We set q := pk

k−p and consider f ∈ C∞
c (A). Thanks to a little convexity, we can write

∫

A

|f |q dλ ≤
∑

i∈V

∫

Ui

|f |q dλ

≤ 2q−1
∑

i∈V

∫

Ui

|f − fUi,λ|q dλ+ 2q−1
∑

i∈V

∫

Ui

|fUi,λ|q dλ

= 2q−1
∑

i∈V

∫

Ui

|f − fUi,λ|q dλ+ 2q−1
∑

i∈V

|fUi,λ|q λ(Ui).

The continuous Sobolev inequality gives an upper bound for the first term ; noticing that q ≥ p
and remembering the assumptions on the covering, we find

∑

i∈V

∫

Ui

|f − fUi,λ|q dλ ≤ Sq/p
c

∑

i∈V

(
∫

U∗
i

|df |p dµ
)q/p

≤ Sq/p
c

(
∑

i∈V

∫

U∗
i

|df |p dµ
)q/p

≤ Sq/p
c Q

q/p
1

(∫

A]

|df |p dµ
)q/p

.
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To estimate the second term, we use the discrete Sobolev inequality :
∑

i∈V

|fUi,λ|q λ(Ui) ≤ Sd

∑

{i,j}∈E

∣
∣fUi,λ − fUj ,λ

∣
∣
q
max(λ(Ui), λ(Uj)).

For {i, j} ∈ E , a Hölder inequality and the fact that we have a good covering lead to :

|fUi,λ − fUi,λ|q max(λ(Ui), λ(Uj)) =
max(λ(Ui), λ(Uj))

λ(Uj)qλ(Ui)q

∣
∣
∣
∣
∣

∫

Ui

∫

Uj

(f(x) − f(y))dλ(x)dλ(y)

∣
∣
∣
∣
∣

q

≤ max(λ(Ui), λ(Uj))

λ(Ui)λ(Uj)

∫

Ui

∫

Uj

|f(x) − f(y)|q dλ(x)dλ(y)

≤ Q2
1

λ(U∗
k(i,j))

∫

U∗
k(i,j)

∫

U∗
k(i,j)

|f(x) − f(y)|q dλ(x)dλ(y).

Now, if X is a Borel set with finite and nonzero λ-measure and if g is a function in Lq(X,λ),

1

λ(X)

∫

X

∫

X

|g(x) − g(y)|q dλ(x)dλ(y) ≤ 1

λ(X)

∫

X

∫

X

2q−1(|g(x)|q + |g(y)|q)dλ(x)dλ(y)

≤ 2q

∫

X

|g(x)|q dλ(x).

Let us apply this to f − fU∗
k(i,j),λ

, on U∗
k(i,j) :

∣
∣fUi,λ − fUj ,λ

∣
∣
q
max(λ(Ui), λ(Uj)) ≤ Q22

q

∫

U∗
k(i,j)

∣
∣
∣f − fU∗

k(i,j),λ

∣
∣
∣

q

dλ.

The continuous Sobolev inequality yields

∣
∣fUi,λ − fUj ,λ

∣
∣
q
max(λ(Ui), λ(Uj)) ≤ Q22

qSq/p
c

(
∫

U]
k(i,j)

|df |p dµ
) q

p

.

Therefore :
∑

i∈V

|fUi,λ|q λ(Ui) ≤ Sd

∑

{i,j}∈E

Q22
qSq/p

c

(
∫

U]
k(i,j)

|df |p dµ
) q

p

.

As q is greater or equal to p,

∑

i∈V

|fUi,λ|q λ(Ui) ≤ SdQ22
qSq/p

c




∑

{i,j}∈E

∫

U]
k(i,j)

|df |p dµ





q
p

.

By using twice the fact that we have a good covering, we see that :

∑

{i,j}∈E

∫

U]
k(i,j)

|df |p dµ ≤ Q2
1

∑

i∈V

∫

U]
i

|df |p dµ ≤ Q3
1

∫

A]

|df |p dµ.

Hence :
∑

i∈V

|fUi,λ|q λ(Ui) ≤ SdQ22
qSq/p

c Q
3q/p
1

(∫

A]

|df |p dµ
) q

p

.

Eventually, we get :

∫

A

|f |q dλ ≤ 2q−1(Sq/p
c Q

q/p
1 + SdQ22

qSq/p
c Q

3q/p
1 )

(∫

A]

|df |p dµ
) q

p

.

And this is what we wanted to prove. �

There is also a "Neumann" version of this result.
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Theorem 1.10 Fix k in ]1,∞] and p in [1, k[. If a finite good covering U of A in A] satisfies the
continuous Lp Sobolev inequality of order k (1.3) and the discrete Lp Sobolev-Neumann inequality
of order ∞ (1.5), the following Sobolev-Neumann inequality is true :

∀ f ∈ C∞(A),

∫

A

(

|f − fA,λ|
pk

k−p dλ
) k−p

k ≤ S

∫

A]

|df |p dµ.

And one can choose S = ScQ12
2p−1+ p

k (1 + SdQ2(2
pQ2

1)
k

k−p )
k−p

k .

Proof :
Again, set q := pk

k−p and fix f ∈ C∞
c (A). First, note the inequality

‖f − fA,λ‖Lq(A,λ) ≤ 2 inf
c∈R

‖f − c‖Lq(A,λ) .

Indeed, if c is a real number, we can write

‖f − fA,λ‖Lq(A,λ) ≤ ‖f − c‖Lq(A,λ) + ‖c− fA,λ‖Lq(A,λ)

= ‖f − c‖Lq(A,λ) + |fA,λ − c|λ(A)
1
q

= ‖f − c‖Lq(A,λ) +

∣
∣
∣
∣

∫

A

(f − c)dλ

∣
∣
∣
∣
λ(A)

1
q −1

and by Hölder inequality,

‖f − fA,λ‖Lq(A,λ) ≤ ‖f − c‖Lq(A,λ) +

(∫

A

|f − c|q dλ
) 1

q

λ(A)1−
1
q λ(A)

1
q −1

= 2 ‖f − c‖Lq(A,λ) .

As this is true for each c ∈ R, this proves the statement. In particular, for

c := mλ(fU.,λ) =

∑

i∈V fUi,λλ(Ui)
∑

i∈V λ(Ui)
,

we can write
∫

A

|f − fA,λ|q dλ ≤ 2q

∫

A

|f − c|q dλ

≤
∑

i∈V

∫

Ui

|f − c|q dλ

≤ 22q−1
∑

i∈V

∫

Ui

|f − fUi,λ|q dλ+ 22q−1
∑

i∈V

∫

Ui

|fUi,λ − c|q dλ

= 22q−1
∑

i∈V

∫

Ui

|f − fUi,λ|q dλ+ 22q−1
∑

i∈V

|fUi,λ − c|q λ(Ui).

We then estimate both terms as in the proof of theorem 1.8 : for the second, it is made possible
by our choice of c. �

Remark 1.11 In fact, our argument leads to more general theorems. We will not use them but
let us phrase the "Dirichlet" version. Suppose 1 ≤ p ≤ r ≤ q ≤ ∞ and set k = qp

q−p . If a good

covering U of A in A] satisfies the continuous Lp Sobolev-Neumann inequality of order k (with
constant Sc), the discrete Lr Sobolev-Dirichlet inequality of order rq

q−r (with constant Sd), and

the continuous Lp Sobolev-Neumann inequality of order pr
r−p (with constant S′

c), M satisfies the
following Lp Sobolev-Dirichlet inequality of order k :

∀ f ∈ C∞
c (A),

(∫

A

|f |q dλ
)p/q

≤ S

∫

A]

|df |p dµ,

with S = 2p−p/q
(

(Q1Sc)
q/p +

(
SdQ22

r(S′
c)

r/p
)q/r

Q
3q/p
1

)p/q

. For instance, this kind of result could

be used to patch local Sobolev and Poincaré inequalities together.
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1.2 Sobolev and isoperimetric inequalities on graphs.

Now, we know that discrete inequalities on appropriate graphs make it possible to patch local
Sobolev inequalities together. The problem is : how can we show such discrete inequalities ? Our
first purpose here is to clarify the link between Sobolev inequalities of the same order on weighted
graphs. We explain why, as in the continuous case, the L1 inequality of order k (1 < k ≤ ∞) imply
the Lp inequalities for 1 ≤ p < k.

Proposition 1.12 We consider an infinite weighted graph (V , E ,m) (see remark 1.2). We assume
that the degree of each vertex is bounded by some integer d and also that there exists a number
C ≥ 1 such that for {i, j} in E, C−1m(i) ≤ m(j) ≤ Cm(i). Then given k in ]1,∞], the L1 Sobolev
inequality of order k

∀ f ∈ L1(V ,m),

(
∑

i∈V

|f(i)|
k

k−1 m(i)

) k−1
k

≤ S
∑

{i,j}∈E

|f(i) − f(j)|m(i, j) (6)

implies the Lp Sobolev inequality of order k

∀ f ∈ Lp(V ,m),

(
∑

i∈V

|f(i)|
pk

k−p m(i)

) k−p
pk

≤ S′




∑

{i,j}∈E

|f(i) − f(j)|pm(i, j)





1
p

, (7)

provided p belongs to [1, k[. Moreover, one can choose S ′ = 2p k−1
k−pS(dC)1−

1
p .

Proof :
Let f be an element ok RV with finite support. We apply (6) to |f |γ where γ ≥ 1 is a parameter
that we will fix later :

(
∑

i∈V

|f(i)|
γk

k−1 m(i)

) k−1
k

≤ S
∑

{i,j}∈E

||f(i)|γ − |f(j)|γ |m(i, j).

If a, b are real numbers, the following is true :

||a|γ − |b|γ | ≤ γmax(|a| , |b|)γ−1 ||a| − |b|| ≤ γ |a− b| (|a|γ−1
+ |b|γ−1

).

Consequently,

(
∑

i∈V

|f(i)|
γk

k−1 m(i)

)k−1
k

≤ γS
∑

{i,j}∈E

|f(i) − f(j)| (|f(i)|γ−1 + |f(j)|γ−1)m(i, j).

Hölder inequality bounds the right hand side by

2γS




∑

{i,j}∈E

|f(i) − f(j)|pm(i, j)





1
p



∑

{i,j}∈E

|f(i)|(γ−1) p
p−1 m(i, j)





1− 1
p

and our assumptions on the graph bound this by

2γS(dC)1−
1
p




∑

{i,j}∈E

|f(i) − f(j)|pm(i, j)





1
p (
∑

i∈V

|f(i)|(γ−1) p
p−1 m(i)

)1− 1
p

.

Set γ := p k−1
k−p ≥ 1 to conclude the proof. �

Now, let us explain why inequalities like (6) stem from isoperimetric inequalities on the graph.

Definition 1.13 Let (V , E) be a graph. We define the boundary ∂Ω of a subset Ω of V as

∂Ω := {{i, j} ∈ E , {i, j} ∩ Ω 6= ∅ and {i, j} ∩ (V\Ω) 6= ∅} .

10



Proposition 1.14 Let (V , E ,m) be an infinite weighted graph and fix k in ]1,∞]. Then the isoperi-
metric inequality of order k

∀Ω ⊂ V with m(Ω) <∞,
m(Ω)

k−1
k

m(∂Ω)
≤ I (8)

is equivalent to the L1 Sobolev inequality of order k

∀ f ∈ L1(V ,m),

(
∑

i∈V

|f(i)| k
k−1 m(i)

)k−1
k

≤ I
∑

{i,j}∈E

|f(i) − f(j)|m(i, j).

Proof :
By considering characteristic functions of subsets of V , one easily sees that the Sobolev inequality
implies the isoperimetric inequality. To prove the converse, set q = k

k−1 and let f be a function on
V , with finite support. For every i in V , we write

f(i) =

∫ f(i)

0

dt =

∫ ∞

0

1t<f(i)dt.

Thus,

‖f‖Lq(V,m) ≤
∫ ∞

0

∥
∥1t<f(.)

∥
∥

Lq(V,m)
dt =

∫ ∞

0




∑

{i∈V, f(i)>t}

m(i)





1
q

dt.

If the isoperimetric inequality is true, we find

‖f‖Lq(V,m) ≤ I

∫ ∞

0

m(∂ {i ∈ V , f(i) > t})dt

= I

∫ ∞

0

∑

{{i,j}∈E, f(j)≤t<f(i)}

m(i, j)dt

= I
∑

{i,j}∈E

|f(i) − f(j)|m(i, j).

�

This paragraph shows that if the graph obtained by discretization (as explained above) satisfies
an isoperimetric inequality, it will satisfies a convenient Sobolev inequality, so that we will be
able to implement our patching process. It is time to turn to geometry so as to obtain concrete
inequalities.

2 Inequalities on manifolds with nonnegative Ricci curvature.

Sobolev inequalities are a major tool of global analysis. Unfortunately, they are not always avail-
able. It is known that on manifolds with nonnegative Ricci curvature and maximal volume growth,
they actually occur ([Cro]), providing a lot of analytical, geometrical and topological information
(see [BKN], for instance). As soon as the volume growth is not maximal, the Sobolev inequality
cannot be true. Our aim here is to show that, even if the volume growth is not maximal, a weighted
Sobolev inequality still occurs.

2.1 Geometric preliminaries.

We would like to emphasize here some features of complete manifolds with nonnegative Ricci
curvature. These are the typical manifolds where the discretization scheme applies.

Let us fix some notations. Recall we denote by B(x, t) the geodesic ball centered in x and of
radius t. In the same way, S(x, t) will be the corresponding geodesic sphere ∂B(x, t). V (x, t) will
be the volume of B(x, t). We will constantly distinguish a point o in the manifold : when the
center of the ball considered is this point o, we will often omit it and write B(t) or V (t). Finally,
we will work with annuli A(s, t) := B(t)\B(s).

First, the Bishop-Gromov comparison theorem says that, in manifolds with nonegative Ricci
curvature, the volume growth of balls is "subEuclidian" in a very strong way.
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Theorem 2.1 (Bishop-Gromov) Let M be a complete Riemannian manifold with nonnegative
Ricci curvature. Then for every x in M , the function ρx defined for t ≥ 0 by

ρx(t) =
tn

volB(x, t)

is a nondecreasing function. It implies that for 0 < s < t,

∀x ∈ M,
volB(x, t)

volB(x, s)
≤
(
t

s

)n

. (9)

And a useful corollary is that for x, y ∈M and 0 < s < t+ d(x, y) :

volB(y, t)

volB(x, s)
≤ volB(x, t+ d(x, y))

volB(x, s)
≤
(
t+ d(x, y)

s

)n

. (10)

For a proof, see [Cha]. Note the following simple consequence. The argument of the proof will
constantly be used in the sequel.

Corollary 2.2 Let Mn be a connected complete noncompact Riemannian manifold with nonneg-
ative Ricci curvature. Then for every κ > 1, there exists a positive constant C(n, κ) such that for
any x ∈ M and t > 0,

C(n, κ)−1 ≤ vol (B(x, κt)\B(x, t))

vol (B(x, t)\B(x, κ−1t))
≤ C(n, κ).

Proof :
To prove the lower bound, choose a point y on the sphere S(x, (κ+1)t/2) centered in x and of radius
(κ + 1)t/2 (such a point exists since M is assumed to be complete, noncompact and connected).
Then the ball B := B(y, (κ− 1)t/2) is contained in B(x, κt)\B(x, t). Therefore

vol(B(x, t)\B(x, κ−1t))

vol(B(x, κt)\B(x, t))
≤ volB(x, t)

volB(y, (κ− 1)t/2)
,

and (10) yields

vol(B(x, t)\B(x, κ−1t))

vol(B(x, κt)\B(x, t))
≤
(

t+ (κ+1)t
2

(κ−1)t
2

)n

=

(
κ+ 3

κ− 1

)n

.

The upper bound is proved likewise. �

Moreover, starting from the comparison theorem, P. Buser [Bus] showed the following

Theorem 2.3 (Buser) In a complete noncompact Riemannian manifold with nonnegative Ricci
curvature, for any p in [1,∞[, every ball B(x, t) satisfies the Lp Poincaré inequality

∀ f ∈ C∞(B(x, t)),

∫

B(x,t)

∣
∣f − fB(x,t)

∣
∣
p
dvol ≤ C(n, p) tp

∫

B(x,t)

|df |p dvol, (11)

where fB(x,t) denotes the mean value of f on the ball B(x, t), with respect to the Riemannian
measure vol.

This result yields the fundamental inequalities we need. Besides, it will prove useful in the
study of the geometry at infinity of manifolds with nonnegative Ricci curvature.

Let us mention the Cheeger-Gromoll theorem ([CG1],[Bes]), which enlightens the structure of
manifolds with nonnegative Ricci curvature :

Theorem 2.4 (Cheeger-Gromoll) A connected complete Riemannian manifold with nonnega-
tive Ricci curvature is always the Riemannian product of the Euclidian space Rd and a connected
complete Riemannian manifold with nonnegative Ricci curvature which possesses no line.
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Corollary 2.5 A connected complete noncompact Riemannian manifold with nonnegative Ricci
curvature possesses exactly one end, unless it is a Riemannian product of R and a compact manifold.

Remark 2.6 In our setting, the volume growth of balls will forbid the particular case, which is
therefore irrelevant here.

In what follows, we will be working on annuli, so that we are interested in understanding their
topology/geometry ; connectedness is particularly important for us since it is an obvious necessary
condition for a Sobolev or Poincaré inequality on them. In [And], M. Anderson proved that the
first Betti number of a connected complete Riemannian manifold with nonnegative Ricci curvature
is bounded by its dimension. Now, [LT] points out a consequence of the finiteness of the first Betti
number :

Proposition 2.7 Let M be a connected complete Riemannian manifold with nonnegative Ricci
curvature, finite first Betti number and exactly k ends. Let us fix a point o ∈ M and consider
balls and annuli centered in o. Then for large R and any r > 0, denoting by MR the union of
all unbounded connected components M\B(R), it is true that A(R,R + r) ∩ MR has exactly k
connected components. In particular, if M has exactly one end, for large R and any r > 0, the
annulus A(R,R+ r) possesses one and only one component that can be connected to infinity inside
M\B(R).

Let us give an interpretation in terms of discretization. Consider a manifoldM with nonnegative
Ricci curvature, possessing one end, and fix a point in M . Let us choose R > 0 and κ > 0. We
discretize M in the following manner. We associate a vertex to B(R) and to every connected
component of the annuli A(κiR, κi+1R), i ∈ N. Let us decide that there is an edge between two
given vertices if and only if the closures of the corresponding subsets of M intersect. Then the
proposition above says that for large R this graph is a tree and its root is the vertex corresponding
to B(R). From another point of view, it says, that even if R is small, outside a finite subset, the
graph is a tree.

Now, there is no reason why this tree should not have branches, and for technical reasons (see
the proof of lemma 2.15 below), we would like to make them as small as possible. What we need
is some kind of control on the size of bounded connected components of the complements of balls
in the manifold. This is given by the following proposition, which we state with rather general
assumptions.

Proposition 2.8 (RCA) Let M be a connected complete Riemannian manifold, satisfying the
volume doubling property

∀x ∈M, ∀ t > 0, volB(x, 2t) ≤ CD volB(x, t),

the scaled Lp Poincaré inequality centered in some point o in M

∀ f ∈ C∞
c (M), ∀ t > 0,

∫

B(o,t)

∣
∣f − fB(o,t)

∣
∣
p
dvol ≤ CP t

p

∫

B(o,t)

|df |p dvol

and the reverse volume doubling condition centered in o

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

with ν > p. Here, CD ≥ 1, p ≥ 1, CP > 0, Co > 0. Then there exists κ0 > 0 such that for R > 0,
if x, y are two points in the geodesic sphere S(o,R), there is a path from x to y which remains
inside B(o,R)\B(o, κ−1

0 R). Moreover, it is possible to find an explicit constant κ0, in terms of
p, CD, CP , Co, ν.

In terms of the discretization we have introduced, this means that for large κ, for every two
vertices on the same level of the tree (i.e. corresponding to the same annulus), there exists a vertex
of the previous level which is connected to both of them.
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Figure 1: A manifold and its discretization.

Proof :
Consider the graph obtained as above by working with Ai := A(2i−1R, 2iR), i ∈ N∗, R > 0, plus
B(R) =: A0. Set Bi = B(2iR). We define C as the bijective map which associates to every vertex
of the graph the corresponding component of annulus. Let us write Ai for C−1(Ai) and Bi for
C−1(Bi). Now, fix l ∈ N∗, consider the nonempty set

Il = {i ∈ [0, l], Al is contained in a connected component of Bl\Bi−1}
and set il = max Il. Call Ml the connected component of Bl\Bil−1 which contains Al. We assume
l− il is greater than 3 and think of it as a large number. By definition, Ml\Ail

is not connected.
We choose one of its connected component X ′

l and name Y ′
l the union of the other connected

components. We finally define X ′
l := C−1(X ′

l ), Y
′
l := C−1(Y ′

l ), Xl := X ′
l\Ail+1, Yl := Y ′

l \Ail+1,
ZX

l := X ′
l ∩ Ail+1, ZY

l := Y ′
l ∩ Ail+1 and Zl := ZX

l ∪ ZY
l (see figure 2.1).

Given real numbers a and b, we can define a Lipschitz function fl on Bl in the following way :

fl =







a on Xl,
b on Yl,

a ro−2ilR
2ilR

on ZX
l ,

b ro−2il R
2il R

on ZY
l ,

0 everywhere else.

The Poincaré inequality says
∫

Bl

|fl − (fl)Bl
|p dvol ≤ CP 2lpRp

∫

Bl

|dfl|p dvol. (12)

We choose a and b so that the mean value of fl on Xl∪Yl is 0 : a volXl + b volYl = 0. With a := 1,
this means b = −vol Xl

vol Yl
.

On the one hand,
∫

Bl

|fl − (fl)Bl
|p dvol ≥ 2−p

∫

Bl

∫

Bl
|fl(x) − fl(y)|p dxdy

volBl

≥ 2−p volXl volYl |b− a|p
volBl

= 2−p
volXl volYl

(

1 + vol Xl

vol Yl

)p

volBl
.
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On the other hand,

∫

Bl

|dfl|p dvol ≤
(

volZX
l

( a

2ilR

)p

+ volZY
l

(
b

2ilR

)p)

=
volZX

l + volZY
l

(
vol Xl

vol Yl

)p

2ilpRp
.

So

2−p
volXl volYl

(

1 + vol Xl

vol Yl

)p

volBl
≤ CP 2p(l−il)

(

volZX
l + volZY

l

(
volXl

volYl

)p)

≤ CP 2p(l−il) volZl

(

1 +

(
volXl

volYl

)p)

,

hence

1 ≤ 2pCP 2p(l−il)
volZl volBl

volXl volYl
. (13)

By definition, the volume of Zl is bounded by V (o, 2il+1R). A lower bound on volXl can
be obtained as in the proof of (2.2). Choose a point xl in S(o, (2l−2 + 2l−1)R/2) ∩ Xl et note
that B(xl, 2

l−3R) is contained in Xl : it lies in A(2l−2R, 2l−1R) and it is connected, so it lies in
the connected component of its center xl in A(2l−2R, 2l−1R), hence in Xl. The volume doubling
property implies

∀x ∈M, ∀ t ≥ s > 0, V (x, t) ≤ CD(t/s)log2 CDV (x, s),

so that
V (o, 2lR)

V (xl, 2l−3R)
≤ CD

(
2l + (2l−2 + 2l−1)/2

2l−3

)log2 CD

= CD11log2 CD

and
volXl ≥ V (xl, 2

l−3R) ≥ C−1
D 11− log2 CDV (o, 2lR).

As we have the same lower bound for volYl, (13) yields :

1 ≤ 2pCPC
2
D121log2 CD2p(l−il)

V (o, 2il+1R)

V (o, 2lR)
.

(1) enables us to write :
1 ≤ 2pCPC

2
D121log2 CD2νCo2

(l−il)(p−ν).

Since ν > p, this inequality says that l − il is bounded by some constant independent of l : the
branches of the tree have a bounded length. (2.9) stems from it easily. �

Corollary 2.9 Let M be a connected complete Riemannian manifold with nonnegative Ricci cur-
vature and assume there are o in M , Co > 0 and ν > 1 such that

∀t > s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

Then there exists κ0 = κ0(n, ν, Co) > 0 such that for R > 0, if x, y are two points in S(o,R), there
is a path from x to y which remains inside B(o,R)\B(o, κ−1

0 R).

2.2 Inequalities on connected components of annuli.

We show here that Poincaré or Sobolev inequalities on balls imply analogous inequalities on con-
nected subsets of annuli.
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Lemma 2.10 Let Mn be a noncompact connected complete Riemannian manifold with nonnegative
Ricci curvature. Fix p ≥ 1, R > 0, κ > 1 and consider a connected Borel subset A of the annulus
B(o, κR)\B(o,R), o ∈ M . Then if we let Aδ be the δR-neighbourhood of A, with 0 < δ < 1, the
following Poincaré inequality is true :

∀ f ∈ C∞(Aδ),

∫

A

|f − fA|p dvol ≤ C(n, κ, δ, p)Rp

∫

Aδ

|df |p dvol.

Proof :
Set s = δR and consider a s-lattice (xi)i∈I of A, i.e. a maximal subset of A such that the distance
between any two of its elements is at least s. We set Vi = B(xi, s), V ∗

i = V ]
i = B(xi, 3s). It

is easy to see that (Vi, V
∗
i , V

]
i )i∈I is a good covering of A in Aδ (cf. (1.1)), with respect to the

Riemannian measure. Indeed, for (iii), we can note that the V ∗
i under consideration are contained

in B(xi0 , 9s) and use (10) to get vol(B(xi0 , 9s)) ≤ 30n vol(B(xi,
s
2 )) ; since the balls B(xi,

s
2 ) do

not intersect, we see that Q1 = 30n is convenient. In (iv), we can choose k(i, j) = i. As to (v), (9)
yields vol(V ∗

i ) ≤ 3n vol(Vi) and (10) gives vol(V ∗
i ) ≤ 5n vol(Vj), so that we can set Q2 = 5n.

We intend to apply the theorem 1.10 with k = ∞. Buser Theorem (11) yields the continuous
inequality, with constant C(n, p)s2. What about the discrete inequality ?

Noticing the balls B(xi,
s
2 ) do not intersect and are contained in the ball B(o, κR+ s

2 ), we find
that

Card(I) min
i∈I

vol(B(xi, s/2)) ≤ vol(B(o, κR+ s/2)),

and with (10), this implies an upper bound on the number of balls in the covering

Card(I) ≤
(
κR+ s/2 + κR

s/2

)n

= (1 + 4κ/δ)n =: N = N(n, κ, δ).

The point is it is independent of R.
Now, every finite connected graph endowed with the counting measure satisfies a Poincaré

inequality : this stems from the fact that any two norms on a vector space of finite dimension are
equivalent (the connectivity is necessary here to ensure that we indeed compare two norms). As
there is only a finite number of such graphs which have at most N vertices, we conclude that every
such graph satisfies a Poincaré inequality for some constant P = P (N, p) (see below for an explicit
constant). Since (10) implies

∀ i, j ∈ V , vol(Vi)

vol(Vj)
≤ (1 + 2κ/δ)n,

there is a number K = K(n, κ, δ) ≥ 1 such that K−1m0 ≤ m(i) ≤ Km0, where m0 is proportionnal
to the counting measure on our graph G = (V , E). Then for every f ∈ RV ,

(
∑

i∈V

|f(i) −m(f)|pm(i)

)1/p

≤ 2 inf
c∈R

(
∑

i∈V

|f(i) − c|pm(i)

)1/p

≤ 2

(
∑

i∈V

|f(i) −m0(f)|p m(i)

)1/p

≤ 2K

(
∑

i∈V

|f(i) −m0(f)|pm0(i)

)1/p

≤ 2PK1/p




∑

{i,j}∈E

|f(i) − f(j)|p m0(i, j)





1/p

≤ 2PK2/p




∑

{i,j}∈E

|f(i) − f(j)|p m(i, j)





1/p

.

This yields a discrete Poincaré inequality with a constant depending only on n, κ, δ, p and
finishes the proof, thanks to (1.10). �
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The same pattern gives an analogous Sobolev inequality. We first recall a theorem of P. Maheux
and L. Saloff-Coste ([MSC]) : in a complete Riemannian manifold with nonnegative Ricci curvature,
every smooth function f on a ball B(x, t) satisfies the Sobolev inequality

(
∫

B(x,t)

∣
∣f − fB(x,t)

∣
∣

2n
n−2 dvol

)n−2
n

≤ C(n)
t2

volB(x, t)
2
n

∫

B(x,t)

|df |2 dvol, (14)

This Sobolev inequality on balls is an automatic consequence of the volume doubling property (9)
and Poincaré inequality (11). We deduce the

Lemma 2.11 Let Mn be a noncompact connected complete Riemannian manifold with nonnegative
Ricci curvature and n ≥ 3. Fix R > 0, κ > 1 and consider a connected Borel subset A of the annulus
B(o, κR)\B(o,R), o ∈ M . Then if we let Aδ be the δR-neighbourhood of A, with 0 < δ < 1, the
following Sobolev inequality is true.

∀ f ∈ C∞(Aδ),

(∫

A

|f − fA|
2n

n−2 dvol

)n−2
n

≤ C(n, κ, δ)
R2

volB(o,R)
2
n

∫

Aδ

|df |2 dvol.

Proof :
We just explain how to adapt the previous argument, using the same notation. We want to apply
(1.10) for p = 2 and k = n, with the same good covering. Set q = 2n

n−2 . The discrete Lq Poincaré
inequality we need is given by the previous proof. Now (10) gives for every i in I :

V (o,R)

V (xi, δR)
≤
(

1 + κ

δ

)n

,

hence V (xi, 3s) ≥ V (xi, s) ≥ C(n, κ, δ)V (o,R), so that Saloff-Coste theorem (14) yields a continu-
ous Sobolev-Neumann inequality for the pair of measures (vol, vol) :

∀ f ∈ C∞(V ∗
i ),

(∫

Vi

|f − fVi |q dvol
) 2

q

≤ C(n, κ, δ)R2V (o,R)−2/n

∫

V ∗
i

|df |2 dvol, (15)

and

∀ f ∈ C∞(V ]
i ),

(
∫

V ∗
i

∣
∣f − fV ∗

i

∣
∣
q
dvol

) 2
q

≤ C(n, κ, δ)R2V (o,R)−2/n

∫

V ]
i

|df |2 dvol. (16)

(1.10) ends the proof. �

Let us make a little remark. In the arguments above, we obtained discrete inequalities thanks to
a finiteness argument. Indeed, we can make the constants (P in the proof of lemma 2.10) explicit,
using the following proposition.

Proposition 2.12 Consider a finite connected graph G = (V , E) with Nv vertices, endowed with
the counting measure. Fix p ≥ 1. Then for every real function f on V,

sup
i∈V

|f(i) −m(f)| ≤ N1−1/p
e




∑

{i,j}∈E

|f(i) − f(j)|p




1/p

and in particular,

∑

i∈V

|f(i) −m(f)|p ≤ Nv(Nv − 1)p−1
∑

{i,j}∈E

|f(i) − f(j)|p .

Proof :
First, we can assume the graph is a tree : cutting off edges does not change the left-hand sides and
makes the right-hand sides of the inequalities grow. Then, the graph has exactly Nv − 1 edges.
Now, to each edge e we associate a copy Ie of the segment [0, 1] ; the ends of Ie (corresponding to
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0 and 1) can be viewed as two vertices in the graph G. We then build a space X by gluing all Ie, in
the natural way, that is, we decide that the ends of segments corresponding to the same vertex in
G give rise to one point in X . X is endowed with a natural topology and a natural Borel measure,
steming from those of [0, 1]. Note that the complement X̃ of the points where two segments are
glued together even possesses a natural differential structure, and a Riemannian metric. Given a
function g which is continuous on X , C1 on X̃ and vanishes somewhere, we claim the following
inequality is true :

‖g‖L∞(X) ≤ (Nv − 1)1−1/p ‖g′‖Lp(X) . (17)

Let us prove it. We choose x0 such that g(x0) = 0. Then, given a point x in the arcwise connected
space X , we can find a unit speed path γ from x0 to x which runs along each segment at most
once. We can write g(x) =

∫

γ g
′ and use Hölder inequality :

|g(x)| ≤ length(γ)1−1/p

(∫

γ

|g′|p
)1/p

≤ (Nv − 1)1−1/p ‖g′‖Lp(X) .

Given f in R
V , we can define a continuous function g on X in the following manner : g is linear on

each segment Ie and its values at the ends of segments are simply those of f . Let e be an edge of
the graph, between the vertices i and j, that we identify (respectively) with 0 and 1 in [0, 1]. The
restriction of g on Ie can be identified with a function ge defined on [0, 1] by the formula

ge(t) = f(i) + t(f(j) − f(i)).

Such a function g has a derivative g′ which is defined outside the vertices and constant on the
(image in X of the) interior of each Ie : g′e = f(j) - f(i). If f has zero mean value, we can apply
(17) to the corresponding function, since g takes every value in the convex hull of the values of f
and thus vanishes somewhere. Observing

‖g‖L∞(X) = ‖f‖L∞(V)

and

‖g′‖Lp(X) =




∑

{i,j}∈E

|f(i) − f(j)|p




1/p

,

(17) yields the result. �

Remark 2.13 It is possible to give a discrete proof of this result. For instance, observing that for
any real number c

(
∑

i∈V

|f(i) −m(f)|p
)1/p

≤ 2

(
∑

i∈V

|f(i) − c|p
)1/p

we can choose c so that f − c vanishes at some vertex. It is then easy to adapt the argument above,
keeping it completely discrete. But the constant we find that way is twice the one in the proposition.

2.3 The weighted Sobolev inequality.

In this paragraph, M is a connected complete Riemannian manifold, with dimension n ≥ 3, non-
negative Ricci curvature and satisfying (1) for some point o. We want to prove a weighted Sobolev
inequality on M , by applying the theorem (1.8) for p = 2 and k = n with a good covering that we
design now.

2.3.1 A good covering

We fix some large κ, so as to be sure that, for any R > 0, any two connected components of
A(R, κR) are contained in one connected component of A(κ−1R, κR) : this is made possible by
(2.9). Recall κ can be chosen so that it depends only on n, Co and ν. We also choose a ray starting
from o and call it γ. We will sometimes use the notation Ri := κi, i ∈ Z.
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For every integer i, we denote by U ′
i,a, 0 ≤ a ≤ h′i the connected components of A(Ri−1, Ri),

U ′
i,0 being the one which intersects γ. As in the proofs of 2.10 and 2.11, (10) provides a bound

h = h(n, κ) <∞ on the various h′i, i ∈ Z.
A priori, this will not yield a good covering because some of the U ′

i,a may be small compared to
their neighbours, contradicting (v) in 1.1. This is the reason why we need to modify the covering
slightly : we will glue every small component on the level i to a large one on the level i− 1. Let
us explain what we mean precisely.

We proceed in two steps.

• First, we set Ui,a = U ′
i,a for every i in Z and 1 ≤ a ≤ h′i such that U ′

i,a intersects A(Ri, Ri+1)
; every such Ui,a contains a point x on the sphere S((Ri−1 +Ri)/2) and thus a ball centered
in x and with radius Ri−2, whose volume is comparable to V (Ri) (with (10)).

• Then we consider every (i, a) such that U ′
i,a ∩ A(Ri, Ri+1) is empty. There is b in [0, h′i−1]

such that U ′
i,a ∪ U ′

i−1,b is connected : we enlarge Ui−1,b by adding U ′
i,a to it.

After deleting the indices which are not used any more, this yields a covering (Ui,a) of M\ {o},
indexed by i ∈ Z and a ∈ [0, hi], hi ≤ h′i, with Ui,a ⊂ A(Ri−1, Ri+1) and volUi,a ≈ V (Ri).

Figure 2.3.1 gives an example : on the left, different connected components of annuli A(Ri−1, Ri)
; in the center, the modified covering ; on the right, the associated graph.

PSfrag replacements

U ′
1,0

U ′
2,0

U ′
3,0

U ′
4,0

U ′
3,1 U ′

3,2

U ′
4,1

U1,0

U2,0

U3,0

U4,0

U3,1

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(3, 1)

For i in Z and 0 ≤ a ≤ hi, we furthermore let U∗
i,a be the union of all the Uj,b, j ∈ Z, 0 ≤ b ≤ hj ,

whose closure intersects Ui,a. And likewise, let U ]
i,a be the union of all the U∗

j,b, j ∈ Z, 0 ≤ b ≤ hj ,

whose closure intersects U∗
i,a.

We introduce the measure dµρ = ρ(r)−
2

n−2 dvol, where r = ro = d(o, .) and ρ(t) = ρo(t) is
defined for t ≥ 0 by ρ(t) = tn

V (t) . Bishop-Gromov theorem says it is a nondecreasing function and
indeed, for 0 < s ≤ t, the following inequality is true :

1 ≤ ρ(t)

ρ(s)
≤
(
t

s

)n

. (18)

Besides, ρ(0) = ω−1
n , where ωn denotes the volume of the unit sphere in Rn.

It is easy to see that U = (Ui, U
∗
i , U

]
i ) is a good covering of M in M with respect to (µρ, vol) :

(v) is again a consequence of (10).
Let us prove the continuous and discrete Sobolev inequalities we need.

2.3.2 The continuous Sobolev inequality.

Lemma 2.14 For every i in Z and 0 ≤ a ≤ hi, each smooth function f on U ]
i,a satisfies

(
∫

Ui,a

∣
∣f − fUi,a

∣
∣

2n
n−2 dµρ

)n−2
n

≤ Sc

∫

U∗
i,a

|df |2 dvol

and
(
∫

U∗
i,a

∣
∣
∣f − fU∗

i,a

∣
∣
∣

2n
n−2

dµρ

)n−2
n

≤ Sc

∫

U]
i,a

|df |2 dvol,

with Sc = Sc(n, κ).
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Proof :
Set q = 2n

n−2 . For f in C∞(U ]
i,a) and i in Z, we can write

∫

Ui,a

∣
∣f − fUi,a,µρ

∣
∣
q
dµρ ≤ 2q inf

c∈R

∫

Ui,a

|f − c|q dµρ

≤ 2q

∫

Ui,a

∣
∣f − fUi,a,vol

∣
∣
q
dµρ,

so that (2.11) (with some small δ : 0 < δ < 1 − κ−1) and (18) imply

(
∫

Ui,a

∣
∣f − fUi,a

∣
∣
q
dµρ

)2/q

≤ ρ(Ri−1)
−2/nC(n, κ)ρ(Ri+1)

2/n

∫

U∗
i,a

|df |2 dvol

≤ C(n, κ)κ2n

∫

U∗
i,a

|df |2 dvol

≤ C(n, κ)

∫

U∗
i,a

|df |2 dvol.

And such estimates with the pairs (U∗
i,a, U

]
i,a) also hold for the same reason. �

2.3.3 The discrete Sobolev inequality.

We consider the weighted graph (V , E ,mρ) associated to the good covering U of M in M , with
respect to (µρ, vol) (to simplify the notation, we write mρ instead of mµρ). What about the
structure of the graph ? Proposition 2.7, plus the fact that the geometry near o is quasi-Euclidian,
implies the associated graph, outside a finite subset, consists of two trunks, corresponding to
neighbourhoods of o and of infinity ; moreover, thanks to the bound h(n, κ) on the hi, the degrees
of the vertices admit an upper bound in terms of n and κ.

The measure mρ is defined as follows : for each i in Z and a in [0, hi],

mρ(i, a) =

∫

Ui,a

ρ(r)−
2

n−2 dvol,

so that we can estimate :

vol(Ui,a)ρ(Ri+1)
− 2

n−2 ≤ mρ(i, a) ≤ vol(Ui,a)ρ(Ri−1)
− 2

n−2 ;

using (10) and (18), this yields

C(n, κ)−1V (Ri)ρ(Ri)
− 2

n−2 ≤ mρ(i, a) ≤ C(n, κ)V (Ri)ρ(Ri)
− 2

n−2 . (19)

In particular, again with (10) and (18), this allows us to apply proposition 1.12 : we are left to
show that an isoperimetric inequality (8) actually occurs.

Let Ω be a finite subset of V . Set l := max {i ∈ Z, ∃ a ∈ [0, hi], (i, a) ∈ Ω}. First, we choose a
convenient edge in ∂Ω.

• If (l, 0) belongs to Ω, the edge e := ((l, 0), (l + 1, 0)) is in ∂Ω.

• Otherwise, we choose (l, b) in Ω. Our choice of κ ensures there is a sequence of edges staying
on the levels l and l− 1 and which connects (l, b) to (l, 0). Among these, there is necessarily
an edge which connects a vertex in Ω to a vertex outside Ω and we call it e : it belongs to
∂Ω.

Then we can write

mρ(Ω)

mρ(∂Ω)
≤
∑l

i=−∞

∑hi

a=0mρ(i, a)

mρ(e)
≤ C(n, κ)

l∑

i=−∞

∑hi

a=0mρ(i, a)

mρ(l, 0)
.
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With (18), we find

mρ(Ω)

mρ(∂Ω)
≤ C(n, κ)

l∑

i=−∞

V (Ri)ρ(Ri)
− 2

n−2

V (Rl)ρ(Rl)
− 2

n−2

= C(n, κ)

l∑

i=−∞

[

V (Ri)

V (Rl)

(
Ri

Rl

)−2
] n

n−2

so that (1) gives

mρ(Ω)

mρ(∂Ω)
≤ C(n, κ)C

− n
n−2

o

l∑

i=−∞

(
Ri

Rl

)n(ν−2)
n−2

= C(n, κ)C
− n

n−2
o

∞∑

j=0

κ−j n(ν−2)
n−2

=
C(n, κ)C

− n
n−2

o

1 − κ−
n(ν−2)

n−2

,

since ν > 2. Then (1.12) and (1.14), with k = ∞, lead to the

Lemma 2.15 For any 1 ≤ p < ∞, there exists a constant Sd, depending on p, κ, n, Co, ν, such
that for every real function f with finite support in V :

(
∑

v∈V

|f(v)|pmρ(v)

) 1
p

≤ Sd




∑

(v,w)∈E

|f(v) − f(w)|pmρ(v, w)





1
p

.

2.3.4 Conclusion.

Theorem 2.16 (Weighted Sobolev inequality) Let Mn, n ≥ 3, be a connected complete Rie-
mannian manifold with nonnegative Ricci curvature. Assume that there exists o in M , ν > 2 and
Co > 0 such that

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

.

Then M satisfies the weighted Sobolev inequality

∀ f ∈ C∞
c (M),

(∫

M

|f | 2n
n−2 ρo(ro)

− 2
n−2 dvol

)1− 2
n

≤ S

∫

M

|df |2 dvol.

Here, S can be chosen to depend only on n, Co, ν.

Proof :
We just use 1.8, 2.14 and 2.15. �

Remark 2.17 Note 2.16 implies there is a constant S̃ such that

∀ f ∈ C∞
c (M),

(∫

M

|f | 2n
n−2 ro

− 2(n−ν)
n−2 dvol

)1− 2
n

≤ S̃

∫

M

|df |2 dvol,

where ro is the function which is equal to 1 inside B(o, 1) and to ro outside this ball (just use (3)).
Observe we cannot write ro instead of ro, unless ν = n. The obstruction to do this for the Sobolev
inequality is that locally the weight would not fit : the corresponding inequality is false on Rn, hence
on any Riemannian manifold (use the family of functions max(1− ro/ε, 0), ε > 0). Note also that
S̃ depends on n, Co, ν and V (o, 1).

Let us introduce some notation for the best constant in our inequality.
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Definition 2.18 Let Mn be a connected complete Riemannian manifold, n ≥ 3. For every o in
M , we define the Riemannian invariant

So(M) := sup
f∈C∞

c (M)\{0}

(∫

M
|f | 2n

n−2 ρo(ro)
− 2

n−2 dvol
)1− 2

n

∫

M |df |2 dvol
.

The same method gives the

Theorem 2.19 Let Mn, n ≥ 3, be a connected noncompact complete Riemannian manifold with
nonnegative Ricci curvature. Assume that there exists o ∈M , ν > 1 and Co > 0 such that

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

.

Then, if β > − ν−2
n−ν , M satisfies the weighted Sobolev inequality

∀ f ∈ C∞
c (M),

(∫

M

|f | 2n
n−2 ρo(ro)

nβ−2
n−2 dvol

)n−2
n

≤ Sβ

∫

M

|df |2 ρo(ro)
βdvol,

with Sβ = Sβ(n,Co, ν, β).

Proof :
We wish to apply (1.8) to the measures ρo(ro)

nβ−2
n−2 dvol and ρo(ro)

βdvol and the same good covering.
Our choice of weights ensures the continuous Sobolev inequality, as in (2.14) : for i in Z, a in [0, hi]
and f in C∞(U∗

i ), (2.11) yields

(
∫

Ui,a

∣
∣f − fUi,a

∣
∣

2n
n−2 ρo(ro)

nβ−2
n−2 dvol

)1−2/n

≤ C(n, κ)ρo(Ri)
nβ−2
n−2 ρo(Ri)

2
n

∫

U∗
i,a

|df |2 dvol

and the right hand side can be bounded by

C(n, κ)ρo(Ri)
nβ−2

n ρo(Ri)
2
n ρo(Ri)

−β

∫

U∗
i,a

|df |2 ρo(ro)
βdvol = C(n, κ)

∫

U∗
i,a

|df |2 ρo(ro)
βdvol.

As for the discrete inequality, we proceed as in the proof of 2.15. Essentially, using the same
notations as in this proof, we obtain

m(Ω)

m(∂Ω)
≤ C(n, κ)

l∑

i=−∞

V (Ri)ρ(Ri)
nβ−2
n−2

V (Rl)ρ(Rl)
nβ−2
n−2

= C(n, κ)

l∑

i=−∞

[(
V (Ri)

V (Rl)

)1−β (
Ri

Rl

)nβ−2
] n

n−2

so that (1) gives
m(Ω)

m(∂Ω)
≤ C(n, κ)C

−
n(1−β)

n−2
o

∞∑

j=0

κ−j n(ν−2+β(n−ν))
n−2

which is finite thanks to our assumption on β. �

Remark 2.20 If β = 1, the inequality reads

∀ f ∈ C∞
c (M),

(∫

M

|f | 2n
n−2

rn
o

volB(o, r)
dvol

)n−2
n

≤ S

∫

M

|df |2 rn
o

volB(o, r)
dvol

The picture is the following : the volume growth of balls is in general not Euclidian (i.e. it does
not behave like rn) and therefore we cannot hope to find a nonweighted Sobolev inequality (cf. next
paragraph) ; nevertheless, by radially modifying the Riemannian measure so that it has Euclidian
growth, we manage to obtain a Sobolev inequality.
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2.3.5 Weighted Sobolev inequality and volume growth.

The aim of this short paragraph is to explain what the weighted inequality (in the form given by
remark 2.17) implies on the volume growth of balls. The following proposition generalizes a well
known feature of the standard Sobolev inequality (without weight).

Proposition 2.21 Let Mn, n ≥ 3, be a connected noncompact complete Riemannian manifold
with nonnegative Ricci curvature. Assume that there exists o in M , α ≥ 0 and S > 0 such that

∀ f ∈ C∞
c (M),

(∫

M

|f | 2n
n−2 ro

−αdvol

)n−2
n

≤ S

∫

M

|df |2 dvol.

Then there is a constant Ao > 0 such that for t ≥ 1, volB(o, t) ≥ Aot
ν , where ν is the real number

defined by α = 2n−ν
n−2 .

Remark 2.22 In case there is no weight (α = 0), we recover the fact that the usual Sobolev
inequality requires a volume growth of balls which is at least Euclidian.

Proof :
As usual, we set q = 2n/(n − 2) > 2. Then we fix R ≥ 2 and 0 < t ≤ R/2 and consider the
Lipschitz function f := max(t− d(., S(o,R)), 0) : f = t on the sphere S(o,R), f = 0 outside some
t-neighbourhood of this sphere and, on this t-neighborhood, it decreases radially at unit speed.
Thus ∫

M

|f |q r−αdvol ≥ (t/2)q(R+ t)−α vol(A(R− t/2, R+ t/2)

and ∫

M

|df |2 dvol ≤ vol(A(R − t, R+ t).

The Sobolev inequality yields :

(t/2)2(R + t)−2α/q vol(A(R − t/2, R+ t/2)2/q ≤ S vol(A(R − t, R+ t).

For i ∈ N∗, we apply this to t = 2−iR. With Vi := vol(A(R(1 − 2−i), R(1 + 2−i)),

R24−i−1((1 + 2−i)R)−2α/qV
2/q
i+1 ≤ SVi.

By induction, there is a constant C which does not depend on R such that for every i ≥ 1

vol(B(2R)) ≥ V1 ≥
(

CR2−2α/q
)Pi−1

j=0(2/q)j





i−1∏

j=0

(4−j)(2/q)j



Vi.

As a Riemannian manifold is locally quasi-Euclidian,

lim inf
i−→∞

V
(2/q)i

i ≥ lim inf
i−→∞

(
ωn(2−iR)n

)(2/q)i

= 1.

Eventually,

vol(B(2R)) ≥ C
1

1−2/qR
2−2α/q
1−2/q

∞∏

j=0

(4−j)(2/q)j

.

And indeed, ν = 2−2α/q
1−2/q is the same as α = 2n−ν

n−2 . �

2.4 The Hardy inequality.

With 1.8, we can also patch local Poincaré inequalities together. Working under the same assump-
tions as above, the global inequality we find is a Hardy inequality.
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Theorem 2.23 (Hardy inequality) Let Mn, n ≥ 3, be a connected noncompact complete Rie-
mannian manifold with nonnegative Ricci curvature. Fix some p ≥ 1. Assume that there exists o
in M , ν > p and Co > 0 such that

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

.

Then M satisfies the Hardy inequality

∀ f ∈ C∞
c (M),

∫

M

|f |p r−p
o dvol ≤ H

∫

M

|df |p dvol,

with a constant H depending only on n, Co, ν, p.

Proof :
The proof consists in applying 1.8 with k = ∞. We will use the same "good" covering U as in
paragraph 2.3.1, noticing it is also "good" for the pair of measures (r−pdvol, dvol). We need a
continuous Poincaré inequality. Indeed, as for 2.14, if we choose i in Z and a in [0, hi], each smooth
function f on U ]

i,a satisfies

∫

Ui,a

∣
∣f − fUi,a,µα

∣
∣
p
r−pdvol ≤ 2p inf

c∈R

∫

Ui,a

|f − c|p r−pdvol

≤ 2p

∫

Ui,a

∣
∣f − fUi,a

∣
∣
p
r−pdvol

so that, with 2.10,
∫

Ui,a

∣
∣f − fUi,a,µα

∣
∣
p
r−pdvol ≤ 2pC(n, κ)R−p

i−1R
p
i+1

∫

U∗
i,a

|df |p dvol

≤ C(n, κ, p)

∫

U∗
i,a

|df |p dvol.

And the same argument works with the pairs (U ∗
i,a, U

]
i,a).

The discrete inequality required in 1.8 follows from the argument of 2.15 ; here, we estimate
the discrete isoperimetric quotient by

C(n, κ)
l∑

i=−∞

V (Ri)

V (Rl)

(
Ri

Rl

)−p

which is bounded by

C(n, κ)Co

∞∑

j=0

κ−j(ν−p) <∞

thanks to our assumption on the volume growth of balls. �

For convenience, we give a name to the best constant in the L1 Hardy inequality.

Definition 2.24 Let M be a connected complete Riemannian manifold. Given o in M and ro :=
d(o, .), we define the Riemannian invariant

Ho(M) := sup
f∈C∞

c (M)\{0}

∫

M
|f | r−1

o dvol
∫

M |df | dvol .

3 Weighted Sobolev inequalities and Schrödinger operators.

In this section, we explain a few analytical consequences of the weighted Sobolev inequality. They
will find geometric applications in the last section. We assume here that Mn is a connected
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complete noncompact manifold with nonnegative Ricci curvature and such that for some point o
in M and S > 0, the following weighted Sobolev inequality is true :

∀ f ∈ C∞
c (M),

(∫

M

|f | 2n
n−2 ρo(ro)

− 2
n−2 dvol

)1− 2
n

≤ S

∫

M

|df |2 dvol.

As previously, we will often write ρ(r) for ρo(ro) =
rn

o

V (ro) , but also dµρ = ρ(r)−
2

n−2 dvol and

q = 2n
n−2 . We only need the assumption Ric ≥ 0 in 3.4 and 3.6 (to ensure the volume doubling

property).
We consider a smooth Euclidian vector bundle E −→M , endowed with a compatible connection

∇. We will always denote by (.) the pointwise scalar product on a Euclidian vector bundle, by |.|
the pointwise norm, by ∆ = ∇∗∇ the Bochner laplacian (or "rough laplacian"). Our interest lies in
Schrödinger operators ∆+V , where V is a continuous field of symmetric endomorphisms of E. We
decompose V as V = V+ − V−, where V+ and V− are fields of positive symmetric endomorphisms
of E. We describe here some consequences of the weighted Sobolev inequality on these operators.

3.1 A vanishing theorem.

The following theorem is a generalization of [Car1]. It says there are no nontrivial sections which
are small at infinity and subharmonic for Schrödinger operators with nearly nonnegative potential.

Theorem 3.1 (Vanishing theorem) Fix m > 1 and assume the potential V satisfies

S

(∫

M

|V−|
n
2 ρ(r)dvol

) 2
n

<
2

m

(

2 − 2

m

)

Then every locally Lipschitz section σ of E such that (∆σ + V σ, σ) ≤ 0 and

∫

A(R/2,R)

|σ|m dvol = o(R2)

is identically zero.

Remark 3.2 In this statement, the distribution (∆σ, σ) is defined by :

∀φ ∈ C∞
c (M), < (∆σ, σ), φ >=

∫

M

(∇σ,∇(φσ))dvol.

Proof :
Let R be a positive number and let χ be a smooth function which is equal to 1 on B(R), to 0
on M\B(2R), takes its values in [0, 1] and satisfies |dχ| ≤ 2/R. We apply the weighted Sobolev

inequality to the locally lipschitz function χu
m/2
ε , where uε =

√

|σ|2 + ε, ε > 0 (we omit the
riemannian measure in the next formulas so as to make them easier to read) :

1

S

(∫

M

χqu
mq
2

ε ρ(r)−
2

n−2

) 2
q

≤
∫

M

∣
∣
∣d(χum/2

ε )
∣
∣
∣

2

=

∫

M

|dχ|2 um
ε +

∫

M

χ2
∣
∣
∣d(um/2

ε )
∣
∣
∣

2

+ 2

∫

M

(um/2
ε dχ, χd(um/2

ε ))

≤ (1 + 1/b)

∫

M

|dχ|2 um
ε + (1 + b)

∫

M

χ2
∣
∣
∣d(um/2

ε )
∣
∣
∣

2

25



for any b > 0. Integration by parts yields
∫

M

χ2
∣
∣
∣d(um/2

ε )
∣
∣
∣

2

=

∫

M

(χ2d(um/2
ε ), d(um/2

ε ))

=

∫

M

2χ(um/2
ε dχ, d(um/2

ε )) +

∫

M

χ2um/2
ε ∆(um/2

ε )

= 2

∫

M

(um/2
ε dχ, χd(um/2

ε )) +
m

2

∫

M

χ2um−1
ε ∆uε

+

(
2

m
− 1

)∫

M

χ2
∣
∣
∣d(um/2

ε )
∣
∣
∣

2

.

So, if a > 0, we find
∫

M

χ2
∣
∣
∣d(um/2

ε )
∣
∣
∣

2

≤ (
2

m
− 1 + a)

∫

M

χ2
∣
∣
∣d(um/2

ε )
∣
∣
∣

2

+
m

2

∫

M

χ2um−1
ε ∆uε +

1

a

∫

M

|dχ|2 um
ε .

If moreover a < 2 − 2/m, we obtain
∫

M

χ2
∣
∣
∣d(um/2

ε )
∣
∣
∣

2

≤ (2 − 2

m
− a)−1

(
m

2

∫

M

χ2um−1
ε ∆uε +

1

a

∫

M

|dχ|2 um
ε

)

.

Hence :

1

S

(∫

M

χqu
mq
2

ε ρ(r)−
2

n−2

) 2
q

≤ C(m, a, b)

∫

M

|dχ|2 um
ε +D(m, a, b)

∫

M

χ2um−1
ε ∆uε

where

C(m, a, b) = 1 + 1/b+
1 + b

a(2 − 2/m− a)

and

D(m, a, b) =
(1 + b)m

2(2 − 2/m− a)
.

We compute

uε∆uε = (σ,∆σ) − ε |∇σ|2
u2

ε

− |σ|2 |∇σ|2 − (σ,∇σ)2

u2
ε

,

to ensure
uε∆uε ≤ (σ,∆σ) ≤ (V−σ, σ) ≤ |V−|u2

ε .

Therefore, we can write

1

S

(∫

M

χqu
mq
2

ε ρ(r)−
2

n−2

) 2
q

≤ C(m, a, b)

∫

M

|dχ|2 um
ε +D(m, a, b)

∫

M

χ2 |V−|um
ε

so that, when ε goes to zero, we find

1

S

(∫

M

χq |σ|
mq
2 ρ(r)−

2
n−2

) 2
q

≤ C(m, a, b)

∫

M

|dχ|2 |σ|m +D(m, a, b)

∫

M

χ2 |V−| |σ|m .

Hölder inequality implies
∫

M

χ2 |V−| |σ|m ≤
∫

M

χ2 |σ|m ρ(r)−
2
n |V−| ρ(r)

2
n

≤
(∫

M

χq |σ|
mq
2 ρ(r)−

2
n−2

) 2
q
(∫

M

|V−|
n
2 ρ(r)

) 2
n

︸ ︷︷ ︸

NV

.

All in all, we find

(1 − SNVD(m, a, b))

(∫

M

χq |σ|
mq
2 ρ(r)−

2
n−2

) 2
q

≤ 4SC(m, a, b)

R2

∫

A(R,2R)

|σ|2
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and the assumption on the potential allows us to write

(
∫

B(R)

|σ|mq/2
ρ(r)−

2
n−2

) 2
q

≤ 1

1 − SNVD(m, a, b)

4SC(m, a, b)

R2

∫

A(R,2R)

|σ|m ,

providing

NV <
1

SD(m, a, b)
=

2

mS

1

1 + b
(2 − 2/m− a),

which, under our assumption on V , can always be achieved by choosing sufficiently small a and b.
Letting R go to infinity, we obtain σ = 0. �

3.2 Some general decay estimates.

Now what can we say if we only have
∫

M
|V−|

n
2 ρ(r)dvol < ∞ ? Adapting a technique developped

in [BKN], we can prove some decay estimates on the sections σ such that ∆σ+ V σ ≤ 0. We prove
three general lemmas and we will see later (cf. 4.2) how to apply them in a geometric setting, where
the potential and the section σ are related. The idea is to implement a Moser iteration : this is
the third lemma. But this lemma only works under a technical assumption on the potential, which
can be ensured by the first lemma. Finally, the second lemma is a key to a "self-improvement" of
the decay estimate we will find.

Lemma 3.3 (Initiation) We assume V− belongs to Ln/2(E, ρ(r)dvol) and we consider a locally
Lipschitz section σ of E such that (σ,∆σ + V σ) ≤ 0 and for some m > 1 :

∫

A(R,2R)

|σ|m dvol = o(R2).

Then for large R :
(
∫

M\B(2R)

|σ|
mq
2 dµρ

) 2
q

≤ C

R2

∫

A(R,2R)

|σ|m dvol.

Proof :
Proceeding as in the proof of the vanishing theorem, we find for u := |σ|m/2 and χ in C∞

c (M) :

(∫

M

χquqρ(r)−
2

n−2

) 2
q

≤ C

(∫

M

χ2u2 |V−| +
∫

M

|dχ|2 u2

)

.

Using Hölder inequality, this yields :

(∫

M

χquqρ(r)−
2

n−2

) 2
q

≤ C

(∫

suppχ

|V−|
n
2 ρ(r)

) 2
n
(∫

M

χquqρ(r)−
2

n−2

) 2
q

+ C

∫

M

|dχ|2 u2.

Now we set R >> 1, R′ > 2R and we choose χ with values in [0, 1] and support in A(R, 2R′),
with value 1 on [2R,R′], satisfying |dχ| ≤ 2

R on A(R, 2R) and |dχ| ≤ 2
R′ on A(R′, 2R′). Thus :

(∫

M

χquqρ(r)−
2

n−2

) 2
q

≤ C

(
∫

A(R,2R′)

|V−|
n
2 ρ(r)

) 2
n (∫

M

χquqρ(r)−
2

n−2

) 2
q

+
C

R2

∫

A(R,2R)

u2 +
C

R′2

∫

A(R′,2R′)

u2.

By assumption, the integral
∫

M |V−|n/2
ρ(r) is finite : we can make

∫

B(R)c |V−|n/2
ρ(r) as small

as we like by choosing a large R, so that we obtain the estimate :

(
∫

A(2R,R′)

uqρ(r)−
2

n−2

) 2
q

≤ C

R2

∫

A(R,2R)

u2 +
C

R′2

∫

A(R′,2R′)

u2.
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Letting R′ go to infinity, we find :

(
∫

M\B(2R)

uqρ(r)−
2

n−2

) 2
q

≤ C

R2

∫

A(R,2R)

u2.

�

Lemma 3.4 (Key to the self-improvement) We assume V− belongs to Ln/2(E, ρ(r)dvol) and
we consider a locally Lipschitz section σ of E which belongs to Lm(E, dµρ) for some m > q/2 and
satisfies (σ,∆σ + V σ) ≤ 0. Then for large R :

∫

M\B(2R)

|σ|m dµρ ≤ C

∫

A(R,2R)

|σ|m dµρ.

As a consequence, there exists a positive number a such that

∫

M\B(R)

|σ|m dµρ = O(R−a).

Remark 3.5 The proof will show that a can be chosen so that it depends continuously on m.

Proof :
Set m′ = 2m/q. The preceding proof says that for large R, with the same truncature function χ

and u := |σ|m
′/2 :

(∫

M

χquqρ(r)−
2

n−2

) 2
q

≤ C

∫

M

|dχ|2 u2.

We use Hölder inequality to obtain :

(
∫

A(2R,R′)

uqρ(r)−
2

n−2

) 2
q

≤ C

(∫

M

|dχ|n ρ(r)
) 2

n
(∫

supp dχ

uqρ(r)−
2

n−2

) 2
q

.

From the definition of ρ and the volume doubling property, we see that
∫

A(R,2R)

|dχ|n ρ(r) ≤ CR−nρ(2R) volA(R, 2R) ≤ C

and ∫

A(R′,2R′)

|dχ|n ρ(r) ≤ C,

so that we obtain

(
∫

A(2R,R′)

|σ|m ρ(r)−
2

n−2

) 2
q

≤ C

(
∫

A(R,2R)∪A(R′,2R′)

|σ|m ρ(r)−
2

n−2

) 2
q

.

Letting R′ go to infinity, we find the first part of the claim :
∫

M\B(2R)

|σ|m ρ(r)−
2

n−2 ≤ C

∫

A(R,2R)

|σ|m ρ(r)−
2

n−2 .

Now, if we consider the function I : R −→
∫

M\B(R) |σ|
m
ρ(r)−

2
n−2 , we see that it satisfies the

inequality I(2R) ≤ C(I(R) − I(2R)), i.e.

I(2R) ≤ C

C + 1
I(R). (20)
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Fix a large R1 and denote by kR the integer such that log2R/R1 ≤ kR < log2 2R/R1. Iterating
the inequality (20), we find

I(R) ≤
(

C

C + 1

)kR

I(R/2kR) ≤
(

C

C + 1

)kR

‖σ‖m
Lm(E,µρ) ,

hence :

I(R) ≤ C

(
C

C + 1

)log2 R

= CRlog2( C
C+1 ).

Since C
C+1 < 1, the second statement follows. �

Lemma 3.6 (Moser iteration) We assume the potential V satisfies for some x > n/2 :

(
∫

A(R,2R)

|V−|x ρ(r)
x−1

n/2−1 dvol

) 1
x−n/2

= O
(

ρ(R)
2

n−2R−2
)

Consider a locally Lipschitz section σ which belongs to Lm(M,µρ) for some m > 1 and satisfy
(σ,∆σ + V σ) ≤ 0. Then the following estimate holds for large R :

sup
A(R,2R)

|σ| ≤ C
(

ρ(R)
2

n−2R−2
) n

2m

(
∫

A(R/2,5R/2)

|σ|m dµρ

)1/m

.

Proof :
Fix β ≥ m. In this proof, C will denote a constant which does not depend on β. Again with the
same technique, one sees that if χ belongs to C∞

c (M), the following estimate holds :

(∫

M

χq |σ|
qβ
2 ρ(r)−

2
n−2

) 2
q

≤ Cβ

∫

M

χ2 |σ|β |V−| + C

∫

M

|dχ|2 |σ|β . (21)

If the numbers t and s are defined by

1

x
+

1

s
+

1

t
= 1 and

q

2s
+

1

t
= 1, (22)

Hölder inequality gives :

β

∫

M

χ2 |σ|β |V−|

≤ β

(∫

suppχ

|V−|x ρ(r)
x−1

n/2−1

) 1
x
(∫

M

χq |σ|
qβ
2 ρ(r)−

2
n−2

) 1
s
(∫

M

χ2 |σ|β ρ(r)− 2
n−2

) 1
t

.

Note t = x
x−n/2 . Given ε > 0, Young inequality and (22) yield a constant Cε such that

β

∫

M

χ2 |σ|β |V−|

≤ ε

(∫

M

χq |σ|
qβ
2 ρ(r)−

2
n−2

) 2
q

+ Cεβ
t

(∫

suppχ

|V−|x ρ(r)
x−1

n/2−1

) t
x
(∫

M

χ2 |σ|β ρ(r)− 2
n−2

)

.

Consequently, for small ε (regardless of β), we obtain in (21) :

(∫

M

χq |σ|
qβ
2 ρ(r)−

2
n−2

) 2
q

≤ Cβt

(∫

suppχ

|V−|x ρ(r)
x−1

n/2−1

) t
x
(∫

M

χ2 |σ|β ρ(r)− 2
n−2

)

+ C

∫

M

|dχ|2 |σ|β .
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Now, given large R1 < R2 < 5R1 and 0 < δ ≤ R1/2, we consider a truncature function χ with
the following properties : it takes its values in [0, 1], it is equal to 1 on A(R1, R2), it is equal to 0
outside A(R1 − δ, R2 + δ) and its differential is bounded by 2/δ. Our assumption, thanks to (18),
implies

(
∫

A(R1−δ,R2+δ)

|V−|x ρ(r)
x−1

n/2−1

) t
x

≤ Cρ(R1 − δ)
2

n−2 (R1 − δ)−2

With this in mind, our estimate gives

(
∫

A(R1,R2)

|σ|
qβ
2 ρ(r)−

2
n−2

) 2
q

≤ Cβtρ(R1 − δ)
2

n−2 (R1 − δ)−2

∫

A(R1−δ,R2+δ)

|σ|β ρ(r)− 2
n−2

+ Cρ(R2 + δ)
2

n−2 δ−2

∫

A(R1−δ,R2+δ)

|σ|β ρ(r)− 2
n−2

≤ Cβtρ(R2)
2

n−2 δ−2

∫

A(R1−δ,R2+δ)

|σ|β ρ(r)− 2
n−2 ,

so that, with respect to the measure µρ,

‖σ‖Lβq/2(A(R1,R2))
≤
(

Cβtρ(R2)
2

n−2 δ−2
)1/β

‖σ‖Lβ(A(R1−δ,R2+δ)) . (23)

Given some large R > 0, we set for every non negative integer k :

βk := m
(q

2

)k

, δk := 2−k−1R, R1,k := R−
k∑

i=1

δi, R2,k := 2R+

k∑

i=1

δi.

Iterating (23), we find ‖σ‖Lβk (A(R,2R)) ≤ Ck ‖σ‖Lβ0 (A(R1,k,R2,k)) where the constant Ck is estimated
by

Ck ≤
k−1∏

i=0

(

Cβt
iρ(R)

2
n−2R−24i

)1/βi

≤
(

Cρ(R)
2

n−2R−2
)Pk−1

i=0 1/βi (
4(q/2)t

)Pk−1
i=0 i/βi

.

Since
∑∞

i=0
1
βi

= n
2m et

∑∞
i=0

i
βi

< ∞, this implies lim supk−→∞ Ck ≤ C
(

ρ(R)
2

n−2R−2
) n

2m

, so

that

sup
A(R,2R)

|σ| = lim
k−→∞

‖σ‖Lβk (A(R,2R)) ≤ C
(

ρ(R)
2

n−2R−2
) n

2m ‖σ‖Lm(A(R/2,5R/2)) .

�

Let us carry on our study of general Schrödinger operators. We wish to point out a Gagliardo-
Nirenberg type inequality, which will prove useful later.

3.3 The inversion of Schrödinger operators.

Our purpose is to solve (∆ +V )σ = τ with a convenient τ and to obtain bounded solutions. First,
the weighted Sobolev inequality easily yields the

Lemma 3.7 For s ≥ 2n
n+2 , there exists a constant C(n, s) such that for every section σ in C∞

c (E),

‖σ‖
L

ns
n−2s (E,µρ)

≤ C(n, s)S
∥
∥∆σ

∥
∥

Ls(E,ρ(r)
s−1

n/2−1 dvol)
.

Proof :
Set k = s

n−2s
n−2

2 ≥ 1 and fix σ in C∞
c (E). The weighted Sobolev inequality gives

1

S
‖σ‖2k

L
ns

n−2s (E,µρ)
≤
∫

M

∣
∣
∣d(|σ|k)

∣
∣
∣

2

=

∫

M

|σ|k ∆(|σ|k) ≤ k

∫

M

|σ|2k−1
∆ |σ| .

30



Kato inequality then implies

1

S
‖σ‖2k

L
ns

n−2s (E,µρ)
≤ k

∫

M

|σ|2k−1 ∣∣∆σ
∣
∣ = k

∫

M

|σ|
n(s−1)
n−2s

∣
∣∆σ

∣
∣

and Hölder inequality yields

1

S
‖σ‖2k

L
ns

n−2s (E,µρ)
≤ k

(∫

M

∣
∣∆σ

∣
∣
s
ρ(r)

s−1
n/2−1 dvol

)1/s(∫

M

|σ| ns
n−2s dµρ

)1−1/s

so that eventually
1

S
‖σ‖

L
ns

n−2s (E,µρ)
≤ k

(∫

M

∣
∣∆σ

∣
∣
s
ρ(r)

s−1
n/2−1 dvol

)1/s

,

which is indeed the claim. �

We now use a Moser iteration to obtain a L∞ estimate.

Lemma 3.8 For every t > n/2 and x ≥ 1, there exists a constant C(n, x, t) such that for every
section σ in C∞

c (E),

‖σ‖L∞(E) ≤ C(n, x, t)

(

S
tn

2t−n

∥
∥∆σ

∥
∥

tn
2t−n

Lt(E,ρ(r)
t−1

n/2−1 dvol)

‖σ‖x
Lx(E,µρ)

) 1
tn

2t−n
+x

.

Proof :
As above, for every σ in C∞

c (E) and every k ≥ 1 :

(∫

M

|σ|kq
dµρ

)2/q

≤ kS

∫

M

|σ|2k−1 ∣∣∆σ
∣
∣ dvol.

Using Hölder inequality, we deduce:

(∫

M

|σ|kq
dµρ

)2/q

≤ kS

(∫

M

∣
∣∆σ

∣
∣
t
ρ(r)

t−1
n/2−1 dvol

)1/t(∫

M

|σ|
(2k−1)t

t−1 dµρ

)1−1/t

.

Define the sequence (βi) by β0 = x and βi+1 = q
2

(
t−1

t βi + 1
)
. For every nonnegative integer i, the

following holds :

‖σ‖βi+1

Lβi+1 (E,µρ)
≤
(
q−1βi+1Nt

) q
2

(

‖σ‖βi

Lβi (E,µρ)

)ζ

,

where

Nt = S

(∫

M

∣
∣∆σ

∣
∣
t
ρ(r)

t−1
n/2−1 dvol

)1/t

and ζ =
q(t− 1)

2t
> 1.

Iterating this, we see that for every nonnegative integer i,

‖σ‖βi

Lβi (E,µρ)
≤
(
q−1Nt

) q
2

Pi−1
j=0 ζj





i∏

j=1

βζi−j

j





q/2
(

‖σ‖β0

Lβ0 (E,µρ)

)ζi

.

Thus

‖σ‖Lβi (E,µρ) ≤
(
q−1Nt

) q
2βi

ζi−1
ζ−1





i∏

j=1

βζ−j

j





qζi

2βi (

‖σ‖β0

Lβ0 (E,µρ)

) ζi

βi
.

Using βi = ζi
(

β0 + q
2(ζ−1)

)

− q
2(ζ−1) , we see that ζi

βi
tends to 1

β0+
q

2(ζ−1)
, as i tends to infinity.

Writing

log





i∏

j=1

βζ−j

j



 =

i∑

j=1

jζ−j log ζ +

i∑

j=1

ζ−j log
βj

ζj
,
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we see that this expression has a limit when i goes to infinity. Eventually :

‖σ‖L∞(E,µρ) ≤
(
q−1Nt

)

q
2(ζ−1)

β0+
q

2(ζ−1)





∞∏

j=1

βζ−j

j





q
2

β0+
q

2(ζ−1)

‖σ‖
β0

β0+
q

2(ζ−1)

Lβ0 (E,µρ)
.

As q
2(ζ−1) = tn

2t−n and β0 = x, this is what we claimed. �

These facts lead to the

Theorem 3.9 (Inversion of the Bochner laplacian) Fix an element s in [ 2n
n+2 ,

n
2 [ and a num-

ber t > n
2 . Let Ω be an open set with smooth boundary. Then we can define a continuous operator

∆
−1

: Ls
(

EΩ, ρ(r)
s−1

n/2−1 dvol
)

∩ Lt
(

EΩ, ρ(r)
t−1

n/2−1 dvol
)

−→ L∞(EΩ)

which is an inverse for the Bochner laplacian over Ω, with Dirichlet boundary condition. Moreover,
every section σ in C∞

c (EΩ) obeys the estimate

‖σ‖L∞(EΩ) ≤ C(n, s, t)S

(
∥
∥∆σ

∥
∥

s
n−2s

Ls(EΩ,ρ(r)
s−1

n/2−1 dvol)

∥
∥∆σ

∥
∥

t
2t−n

Lt(EΩ,ρ(r)
t−1

n/2−1 dvol)

) 1
s

n−2s
+ t

2t−n
.

Proof :
The estimate is simply obtained by combining (3.7) and (3.8). Given ψ in C∞

c (EΩ), the classical
L2 theory yields a smooth solution σR to the equation ∆σR = ψ on Ω ∩ B(R), with Dirichlet
boundary condition. We extend it into a continuous function on Ω by deciding it is zero outside
B(R). The L∞-estimate (which is easily seen to hold for σR, by looking at the proofs above) gives

‖σR‖L∞(EΩ) ≤ C(n, s, t)S

(

‖ψ‖
s

n−2s

Ls(EΩ,ρ(r)
s−1

n/2−1 dvol)

‖ψ‖
t

2t−n

Lt(EΩ,ρ(r)
t−1

n/2−1 dvol)

) 1
s

n−2s
+ t

2t−n
.

For every compact setK, there is anRK such that the family (σR|K , R ≥ RK) is uniformly bounded
in C∞(EK) (by elliptic regularity), so that Ascoli yields a sequence converging in C∞(EK). By
diagonal extraction, we find a sequence (σRi) which converges to σ in C0

c (EΩ). σ is easily seen
to be a weak solution of ∆σ = ψ, it is therefore smooth and thus a strong solution. For every
compact set K, we can write ‖σ‖L∞(EK) = limi−→∞ ‖σRi‖L∞(EK), hence

‖σ‖L∞(EK) ≤ C(n, s, t)S

(

‖ψ‖
s

n−2s

Ls(EΩ,ρ(r)
s−1

n/2−1 dvol)

‖ψ‖
t

2t−n

Lt(EΩ,ρ(r)
t−1

n/2−1 dvol)

) 1
s

n−2s
+ t

2t−n
,

so that, by taking the supremum over K, we obtain a L∞-estimate on Ω. We can thus define
an operator ∆

−1
on C∞

c (EΩ) which is continuous for the expected norms. We then extend it by
continuity. �

By a perturbation technique, we deduce an analogous result for Schrödinger operators.

Theorem 3.10 (Inversion of Schrödinger operators) Set 2n
n+2 ≤ s < n

2 and t > n
2 . Then

there exists a positive number η(n, s, t, S) such that, given an open set with smooth boundary Ω and
a potential V satisfying

max

(

‖V−‖
Ls(Ω,ρ(r)

s−1
n/2−1 dvol)

, ‖V−‖
Lt(Ω,ρ(r)

t−1
n/2−1 dvol)

)

<
η(n, s, t)

S
,

there is a continuous operator

(∆ + V )−1 : Ls(EΩ, ρ(r)
s−1

n/2−1 dvol) ∩ Lt(EΩ, ρ(r)
t−1

n/2−1 dvol) −→ L∞(EΩ).
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Proof :
First, the previous analysis works for H := ∆ + V+ as well as for ∆. Then define η(n, s, t) to be S
divided by the norm of

H−1 : Ls(EΩ, ρ(r)
s−1

n/2−1 dvol) ∩ Lt(EΩ, ρ(r)
t−1

n/2−1 dvol) −→ L∞(EΩ),

so that, under our assumption,

V− : L∞(EΩ) −→ Ls(EΩ, ρ(r)
s−1

n/2−1 dvol) ∩ Lt(EΩ, ρ(r)
t−1

n/2−1 dvol),

is a continuous operator whose norm is strictly inferior to η(n, s, t)/S and H−1V− is a continuous
endomorphism of L∞(EΩ), with norm strictly inferior to 1. The operator Id +H−1V− is then
an automorphism of L∞(EΩ). So we can define the continuous operator (Id +H−1V−)−1H−1 =

(∆ + V )−1, from Ls(EΩ, ρ(r)
s−1

n/2−1 dvol) ∩ Lt(EΩ, ρ(r)
t−1

n/2−1 dvol) to L∞(EΩ). �

4 Applications.

4.1 L
2-cohomology.

Our study of Schrödinger operators gives geometric information as soon as the potential depends
only on the curvature tensor. For instance, if the weighted Sobolev inequality is true, the van-
ishing theorem (3.1) forces the kernel of such "geometric operators" to be trivial, under integral
assumptions on the curvature. We discuss here the case of the Hodge laplacian ∆ = dd∗ + d∗d. It
is well known that this operator, when acting on k-forms, admits the Weitzenböck decomposition
∆k = ∆ +Rk, where Rk is a field of symmetric endomorphisms of the vector bundle of k-exterior
forms, depending only on the curvature. In particular, R1 = Ric. Our results apply and we can
obtain information on the (reduced) L2-cohomology HL2(M). We refer to [Car1] for the defini-
tions. The point is that Hk

L2(M) can be identified with the kernel of ∆k, seen as an unbounded
operator on L2 k-forms. We can indeed generalize G. Carron’s results in [Car1]. Before stating our
theorem, we need to introduce the following decreasing function, derived from the Euler Γ function
(q = 2n/(n− 2)):

ιq : x 7→ 2

x

(

Γ
(

x+q
2

)

Γ
(

x
2

)

)2/q

.

Theorem 4.1 (L2-cohomology) Let Mn, n ≥ 3, be a connected complete Riemannian manifold
such that for some point o in M , So(M) is finite. Then for every k in N, the following holds :

• if
∥
∥Rk

−

∥
∥

L
n
2 (ρo(ro)dvol)

<∞ then dimHk
L2(M) <∞ ;

• if
∥
∥Rk

−

∥
∥

L
n
2 (ρo(ro)dvol)

< So(M)−1 then Hk
L2(M) = {0} ;

• if
∥
∥Rk

−

∥
∥

L
n
2 (ρo(ro)dvol)

≤ So(M)−1 ιq(k)
ιq(N0)

for some integer N0 ≥
(
n
k

)
then dimHk

L2(M) ≤ N0 ;

• given 2n
n+2 ≤ s < n/2 < t, there exists a constant C = C(n, s, t) such that the dimension of

Hk
L2(M) is bounded by
(
n

k

)

max

(

1, C
∥
∥So(M)Rk

−

∥
∥

t

Lt(E,ρo(ro)
t−1

n/2−1 dvol)

∥
∥So(M)Rk

−

∥
∥

s(2x−n)
n−2s

Ls(E,ρo(ro)
s−1

n/2−1 dvol)

)

.

Corollary 4.2 Let Mn, n ≥ 3, be a connected complete Riemannian manifold with nonnegative
Ricci curvature. Assume there exists o in M , ν > 2 and Co > 0 such that

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

and the Riemann curvature tensor satisfies
∫

M
|R|n

2 ρo(ro)dvol < ∞. Then the L2-cohomology of
M is finite dimensional.

We omit the proof, which consists in using the weighted Sobolev inequality (2.16), in order to
make the techniques of [Car1] work. The vanishing results stem from 3.1, of course.
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4.2 Ricci flat manifolds.

4.2.1 Flatness criterions.

We want to explain here why the weighted Sobolev inequality and the Hardy inequality help
understanding Ricci flat manifolds. We are interested in rigidity properties of these manifolds,
under volume growth assumptions. In this paragraph, we will show that if their curvature is small,
in some sense, then they are actually flat. The key tool is a property of the Weyl tensor W of a
Ricci-flat manifold with dimension n ≥ 4 (note this tensor is nothing but the Riemann curvature
tensor R, since Ric = 0) : it obeys the nonlinear equation

∆W = W ∗W,

where the right-hand side is a quadratic expression in the Weyl curvature [Bes]. In particular, W is
either identically zero, or vanishes only on a set of zero measure. So, outside a set of zero measure,
|W | is smooth and satisfies the estimate

|∆ |W || ≤ c(n) |W |2 ,

where c(n) is a universal constant, depending only on the dimension n. Now, for every k ≥ 1, we
can write

∆ |W |k = k |W |k−1
∆ |W | − k(k − 1) |W |k−2 |d |W ||2 ≤ kc(n) |W |k+1

.

It turns out that this inequality is still true for some k < 1. This is made possible by the refined
Kato inequality ([BKN], [CGH]), which says that the Weyl tensor W of a Ricci-flat n-manifold
satisfies almost everywhere

|d |W ||2 ≤ n− 1

n+ 1
|∇W |2 .

From this, one can deduce that almost everywhere,

∆ |W |γ ≤ c(n)γ |W |γ+1
,

with γ := n−3
n−1 . Indeed, note n−1

n+1 = 1
2−γ and write

∆ |W |γ = γ |W |γ−1
∆ |W | + γ(1 − γ) |W |γ−2 |d |W ||2

= γ |W |γ−2

(
1

2
∆ |W |2 + |d |W ||2

)

+ γ(1 − γ) |W |γ−2 |d |W ||2

= γ |W |γ−2
(

(W,∆W ) − |∇W |2
)

+ γ(2 − γ) |W |γ−2 |d |W ||2

≤ c(n)γ |W |γ+1 − γ |W |γ−2 |∇W |2 + γ |W |γ−2 |∇W |2

= c(n)γ |W |γ+1
.

Now, given k ≥ γ, we can write k = γl, l ≥ 1, and then

∆ |W |k = ∆(|W |γ)l

= l(|W |γ)l−1∆(|W |γ) − l(l − 1)(|W |γ)l−2 |d(|W |γ)|2

≤ l(|W |γ)l−1c(n)γ |W |γ+1

= kc(n) |W |k+1 .

Therefore, for any k ≥ γ = n−3
n−1 , the following is true :

∆ |W |k ≤ c(n)k |W |k+1
. (24)

With this differential inequality in hand, we can prove flatness and curvature decay results. To
express them, we need the
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Definition 4.3 The "Sobolev-curvature" invariant of a connected complete manifold Mn is defined
by

SC(M) := inf
o∈M

[

So(M)

(∫

M

|R|n
2 ρo(ro)dvol

) 2
n

]

,

where R is the Riemann curvature tensor. We also define a "Hardy-curvature" invariant :

HC(M) := inf
o∈M

[

Ho(M)2 sup
M

(|R| r2o)

]

,

We use the convention 0.∞ = ∞.

Now, let us phrase our first rigidity result.

Theorem 4.4 (Flatness criterion (1)) We consider a connected complete Ricci-flat manifold
Mn, with n ≥ 4. There exists ε(n) > 0 such that if SC(M) < ε(n), then M is flat.

Proof :
Set ε(n) = 4

nc(n)

(
2 − 4

n

)
. The theorem is a consequence of the vanishing theorem 3.1, applied to

the operator ∆− c(n) |W | and the section |W |, thanks to our weighted Sobolev inequality. Setting
m = n

2 in (3.1), we obtain W = 0, and as Ric = 0, M is flat. �

Corollary 4.5 Let Mn, n ≥ 4, be a connected complete Ricci-flat manifold. Assume there exists
o in M , ν > 2 and Co > 0 such that

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

.

Then there is a constant ε(n,Co, ν) such that M is flat as soon as

∫

M

|W |
n
2 ρo(ro)dvol < ε(n,Co, ν).

There is also a flatness criterion based on the Hardy inequality (2.23). An easy adaptation of
the previous argument would work if we used the L2 Hardy inequality. But we want to use the
L1 version of this inequality : indeed, it will allow quite small volume growth in corollary 4.7 (by
doing this, we pass from ν > 2 to ν > 1 in the assumptions of this corollary). It will just need a
little more work.

Theorem 4.6 (Flatness criterion (2)) We consider a connected complete Ricci-flat manifold
Mn, with n ≥ 4. There exists ε(n) > 0 such that if HC(M) < ε(n), then M is flat.

Proof :
We set ε(n) = c(n)−1(n + 2)−3 and choose o in M such that Ho(M)2 supM (|W | r2o) < ε(n). Set
H = Ho(M), K = supM (|W | r2o) and k = n+2

4 (our choices will become clear at the end of the
proof). We consider, for large R, a smooth function χ which is equal to 1 on B(R), equal to 0 on
M\B(2R), has values in [0, 1] and satisfies |dχ| ≤ 2

R . The Hardy inequality says that

∫

M

χ2 |W |2k
r−1 ≤ H

∫

M

∣
∣
∣d(χ2 |W |2k

)
∣
∣
∣ .

The right hand side can be bounded via triangle and Cauchy-Schwarz inequalities :

∫

M

∣
∣
∣d(χ2 |W |2k

)
∣
∣
∣ ≤ 2

∫

M

χ |dχ| |W |2k
+ 2

(∫

M

χ2 |W |2k
r−1

)1/2(∫

M

χ2
∣
∣
∣d(|W |k)

∣
∣
∣

2

r

)1/2

.

Set k′ := k − 1/4. So as to perform integration by parts, we kill the r in the lattest integral :
∫

M

χ2
∣
∣
∣d(|W |k)

∣
∣
∣

2

r = (k/k′)2
∫

M

χ2
∣
∣
∣d(|W |k

′

)
∣
∣
∣

2

|W |1/2
r ≤ k2K1/2

∫

M

χ2
∣
∣
∣d(|W |k

′

)
∣
∣
∣

2

.

35



We can write
∫

M

χ2
∣
∣
∣d(|W |k

′

)
∣
∣
∣

2

=

∫

M

∣
∣
∣d(χ |W |k

′

) − |W |k
′

dχ
∣
∣
∣

2

≤ 2

∫

M

∣
∣
∣d(χ |W |k

′

)
∣
∣
∣

2

+ 2

∫

M

|W |2k′

|dχ|2 .

Integration by parts and (24) yield :
∫

M

χ2
∣
∣
∣d(|W |k

′

)
∣
∣
∣

2

≤ 2

∫

M

χ2 |W |k
′

∆ |W |k
′

+ 4

∫

M

|W |2k′

|dχ|2

≤ 2k′c(n)

∫

M

χ2 |W |2k′+1
+ 4

∫

M

|W |2k′

|dχ|2

≤ 2kc(n)
√
K

∫

M

χ2 |W |2k
r−1 + 4

∫

M

|W |2k−1/2 |dχ|2 .

Hence the estimate :
∫

M

χ2 |W |2k r−1 ≤ 2H

∫

M

χ |dχ| |W |2k

+
√

8H2Kc(n)k3

∫

M

χ2 |W |2k r−1

+ 4HK1/4k

(∫

M

χ2 |W |2k
r−1

)1/2(∫

M

|W |2k−1/2 |dχ|2
)1/2

.

Our choice of ε(n) and k ensures
√

8H2Kc(n)k3 is strictly less than 1, so that we obtain
(

1 −
√

8H2Kc(n)k3
)∫

B(R)

|W |2k r−1 ≤ 4H

R

∫

M

|W |2k

+
8HK1/4k

R

(∫

M

|W |2k
r−1

)1/2(∫

M

|W |2k−1/2

)1/2

.

Recall W has quadratic decay and the volume growth is at most Euclidian : our choice of k ensures
the integrals on the right-hand side are finite. Letting R go to infinity, we find W = 0, and since
the Ricci tensor vanishes, M is flat. �

Corollary 4.7 Let Mn, n ≥ 4, be a connected complete Ricci-flat manifold. Assume there exists
o in M , ν > 1 and Co > 0 such that

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

.

Then there is a constant ε(n,Co, ν) such that M is flat as soon as

sup
M

(|W | r2o) < ε(n,Co, ν).

4.2.2 Curvature decay.

In the preceding paragraph, we have seen that when SC(M) is small, the curvature vanishes. Now
using the decay lemmas of 3.2, we can show that if SC(M) is only finite, then the curvature decays
at infinity. We will first show quadratic curvature decay, and then we will try to improve the rate
of decay.

Proposition 4.8 Consider a connected complete Ricci-flat manifold Mn, n ≥ 4, such that SC(M)
is finite. Then for any point o in M , sup

S(o,t)

|W | = o(t−2).

Corollary 4.9 Consider a connected complete Ricci-flat manifold Mn with n ≥ 4. Assume there
exists o in M , ν > 2 and Co > 0 such that

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

and the curvature tensor belongs to L
n
2 (M,ρo(ro)dvol). Then sup

S(o,t)

|W | = o(t−2).
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Remark 4.10 This should be compared with the result of [CT] : sup
S(o,t)

|W | = O(t−2) as soon as

n = 4, Ric = 0 and W belongs to L2(M,dvol).

Remark 4.11 If we assume W behaves like r−σ
o , the assumption

∫

M
|W |n

2 ρo(ro)dvol < +∞ is
equivalent to σ > 2 : the above result therefore turns an integral estimate into the pointwise estimate
we can hope. The next theorem will point out an automatic improvement of the decay : it is another
rigidity phenomenon.

Proof :
As (∆− c(n) |W |) |W | ≤ 0, we want to apply the lemma 3.6 with the operator ∆− c(n) |W |. To do
this, we need an estimate on the potential. Set x = n2

2(n−2) , so that in particular x − n/2 = n
n−2 .

For large R, Lemma 3.3 (with m = n/2) implies :

(
∫

M\B(R)

|W |x dµρ

) 1
x−n/2

≤ C

R2

∫

A(R/2,R)

|W |n
2 dvol.

Since ρ(R)
∫

A(R/2,R)
|W |n

2 dvol is uniformly bounded, we obtain the following estimate :

(
∫

A(R,2R)

|W |x ρ(r)
x−1

n/2−1 dvol

) 1
x−n/2

≤ CR−2ρ(R)−1+

x−1
n/2−1

+ 2
n−2

x−n/2

= CR−2ρ(R)
2

n−2 .

It allows us to use lemma 3.6 with m = n/2 :

sup
S(R)

|W | ≤ Cρ(R)
2

n−2R−2

(
∫

A(R/2,5R/2)

|W |n/2
dµρ

) 2
n

≤ CR−2

(
∫

A(R/2,5R/2)

|W |n/2
ρ(r)dvol

) 2
n

.

As the lattest integral tends to zero when R goes to infinity, the result follows. �

In general, such a quadratic curvature decay is not so meaningful : actually, any smooth
connected noncompact manifold admits a metric with quadratic curvature decay ([Gro],[LS]). Note
however that a Riemannian manifold with nonnegative Ricci curvature, maximal volume growth
(ν = n) and quadratic curvature decay has finite topological type [SS]. In case the volume growth
is not maximal, such a strong topological consequence is not known.

We would like to point out a consequence of the quadratic curvature decay. Applying one of
the results of [LS], it yields the

Corollary 4.12 Let Mn, n ≥ 4, be a connected complete Ricci-flat manifold. Suppose there exists
o in M , 2 < ν < n and Bo ≥ Ao > 0 such that

∀t ≥ 1, Aot
ν ≤ volB(o, t) ≤ Bot

ν ,

and the curvature tensor belongs to L
n
2 (M,ρo(ro)dvol). Then the integral of the Chern-Gauss-

Bonnet form is an integer.

Remark 4.13 On a four-manifold, this means
1

8π2

∫

M

|W |2 dvol is an integer. In particular, if
∫

M

|W |2 dvol < 8π2, M has to be flat. We recover a flatness criterion (in dimension 4).

Now, it is well known that manifolds with faster than quadratic curvature decay enjoy nice
properties [Abr]. This motivates our quest for a better estimate on the curvature. The key is the
refined Kato inequality.
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Theorem 4.14 (Curvature decay (1)) We consider a connected complete Ricci-flat manifold
Mn, n ≥ 4, such that SC(M) is finite. Fix a point o in M and assume there exists ν > 2 and
Ao > 0 such that ∀t ≥ 1, volB(o, t) ≥ Aot

ν . Then

sup
S(o,t)

|W | = O(t−b) for b = 2 and every b <
ν − 2

γ
=

(ν − 2)(n− 1)

n− 3
.

Proof :
Set w = |W |γ and b0 = sup

{

b > 0 /w = O
([
r2/V (r)

]b
)}

. We know, from the previous propo-

sition, that w = O(r−2γ) ; since V (r) ≤ ωnr
n (Bishop), this implies w = O(V (r)−2γ/n) =

O([r2/V (r)]2γ/n), so that b0 is a positive number. Suppose b0 < 1. We can choose b1 > 0,
m > 0 such that

m >
n

b1(n− 2)
>

n

b0(n− 2)
>

n

n− 2
.

Since b1 < b0, w = O
([
r2/V (r)

]b1
)

, so that for any R > 0,

∫

A(R,2R)

|w|m dµρ ≤ C
[
R2/V (R)

]mb1
ρ(R)−

2
n−2V (R)

= C
[
R2/V (R)

]mb1−
n

n−2

≤ CR−(ν−2)(mb1−
n

n−2 ).

This implies
∫

M
|w|m dµρ < +∞. Now, recall that almost everywhere (∆ − γc(n) |W |)w ≤ 0. We

intend to apply lemma 3.4 to the function w, which is unfortunately not locally Lipschitz. To

overcome this, once again, we consider uε :=

√

|W |2 + ε, ε > 0. Direct computation yields almost
everywhere

uγ
ε ∆uγ

ε = γu2γ−2
ε

(

|W |∆ |W | − εu−2
ε |d |W ||2

)

+ γ(1 − γ)u2γ−4
ε |W |2 |d |W ||2

≤ γu2γ−2
ε

(

|W |∆ |W | + (1 − γ) |d |W ||2
)

and, using the refined Kato inequality as in the proof of (24), we find (everywhere)

uγ
ε ∆uγ

ε ≤ γu2γ
ε (W,∆W ).

As in the proof of (3.1), by making ε go to zero, we are able to obtain the first inequality in the
proof of lemma 3.4 (m > n

n−2 ). Eventually, we find :

∫

M\B(R)

|w|m dµρ = O(R−a),

for some a > 0 which is independent of the choice of m in a neighbourhood of n
b0(n−2) . Now,

applying the lemma 3.6 (again, one must adapt the proof because w is not locally Lipschitz) with
this m, we find for large R :

sup
S(R)

w ≤ C
(

ρ(R)
2

n−2R−2
) n

2m

R−a/m

= C
[
R2/V (R)

] n
m(n−2) R−a/m

≤ C
[
R2/V (R)

] n
m(n−2)

+ a
nm ,

where we again used the Euclidian upper bound on the volume growth of balls. When m goes to
n

b0(n−2) , the exponent tends to bo + bo(n−2)a
n2 : if we choose m sufficiently close to n

b0(n−2) , we obtain
a contradiction to the definition of bo. So bo ≥ 1 and, with the lower bound on the volume growth,
we are done. �
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Corollary 4.15 We consider a connected complete Ricci-flat manifold Mn with n ≥ 4. Assume
there exists o in M , ν > 2 and Co > 0 such that

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

and the curvature tensor belongs to L
n
2 (M,ρo(ro)dvol). Then

sup
S(o,R)

|W | = O(R−b) for b = 2 and every b <
ν − 2

γ
=

(ν − 2)(n− 1)

n− 3
.

Let us point out the topological consequence we were expecting.

Corollary 4.16 (Finite topology) Let Mn be a connected complete Ricci-flat manifold, n ≥ 4,
for which there exists a point o, ν > 4n−2

n−1 , Co > 0 such that

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

and whose curvature tensor belongs to L
n
2 (M,ρo(ro)dvol). Then M is homeomorphic to the interior

of a compact manifold with boundary.

Proof :
The previous theorem implies M has faster than quadratic curvature decay so that the statement
follows from [Abr]. �

One can wonder whether the limiting decay exponent in 4.14 is indeed attained. Actually, this
is true.

Theorem 4.17 (Curvature decay (2)) We consider a connected complete Ricci-flat manifold
Mn, n ≥ 4, such that SC(M) is finite. Fix a point o in M and assume there exists ν > 4 n−2

n−1 and
Ao > 0 such that ∀t ≥ 1, volB(o, t) ≥ Aot

ν . Then

sup
S(o,R)

|W | = O
(

r−
(ν−2)(n−1)

n−3

)

.

Proof :
In [Gur], Gursky introduced the following operator :

Lg := ∆g +
n− 2

4(n− 1)
Scalg −γc(n) |W |g .

It turns out that this operator is conformally invariant in the following sense : if φ is a smooth
positive function,

L
φ

4
n−2 g

= φ−
n+2
n−2Lg(φ.). (25)

We intend to use this property to find in the conformal class of g a new metric g̃ such that outside
a compact set

Lg̃ = ∆g̃ ,

i.e.
n− 2

4(n− 1)
Scalg̃ −γc(n) |W |g̃ = 0.

We seek g̃ in the form of g̃ = (1 + u)
4

n−2 g, where g is our Ricci-flat metric and u is a smooth
function to determine. Applying (25) to the constant function 1, we find

Lg̃(1) = L
(1+u)

4
n−2 g

(1) = (1 + u)−
n+2
n−2Lg(1 + u),
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so that, since Scalg = 0,

n− 2

4(n− 1)
Scalg̃ −γc(n) |W |g̃ = (1 + u)−

n+2
n−2 (∆gu− γc(n) |W |g)(1 + u).

We thus have to solve
∆gu− γc(n) |W |g u = γc(n) |W |g . (26)

Let us solve it on M\Bg(o,R), with large R (let us assume Sg(o,R) is smooth, this not a problem).
We would like to use the inversion theorem 3.10 with ∆g − γc(n) |W |g . The assumption ν > 4n−2

n−1

ensures ν−2
γ > 2 : theorem 4.14 says that |W | = O(r−b) for some b > 2. In particular, using

Bishop’s upper bound on the volume growth, one sees that for small δ > 0,
∫

M

|W |n/2±δ
ρ(r)

n/2±δ−1
n/2−1 dvol <∞.

Choosing R sufficiently large, we ensure

So(M)

(
∫

M\Bg(o,R)

|W |n/2±δ
ρ(r)

n/2±δ−1
n/2−1 dvol

) 1
n/2±δ

< η(n/2, n/2− δ, n/2 + δ).

So 3.10 yields a bounded solution u of (26) on M\Bg(o,R), and by enlarging R if necessary, we
can even assume ‖u‖L∞ < 1. Extending u to the whole M in a convenient way, we obtain a metric
g̃ which is conformally quasi-isometric to g and such that its Gursky operator and its laplacian
coincide outside some ball. Note that the Hölder elliptic regularity implies u is C2 (since the
coefficients of the equation are Lipschitz) and this is what we need.

Next, we observe that, as soon as |Wg |g is positive, |Wg |γg is smooth and

Lg |Wg |γg = ∆g |Wg |γg − γc(n) |W |g |Wg |γg ≤ 0,

so that, with (25),
Lg̃((1 + u)−1 |Wg |γg ) ≤ 0,

which means
∆g̃((1 + u)−1 |Wg |γg ) ≤ 0,

outside a compact set.
Now, since (M, g̃) is quasi-isometric to (M, g), it satisfies the volume doubling property as

well as the scaled Poincaré inequality. These properties are equivalent to the following two-sided
gaussian estimate on the heat kernel p.(., .) : for every x, y in M , for every t > 0,

c

V (x,
√
t)

exp

(

−Cd(x, y)
2

t

)

≤ pt(x, y) ≤
C

V (x,
√
t)

exp

(

−cd(x, y)
2

t

)

(see [SC], [Grig]). As for large R, Vg̃(o,R) ≥ ÃoR
ν , ν > 2, this in turn implies the existence of

a positive Green function G(., .), which is simply
∫∞

0
pt(., .)dt) [LY]. Using this formula and the

upper bound on the heat kernel, we see that :

G(o, x) = O(ro(x)
2−ν)

when ro(x) goes to infinity. The maximum principle implies that for every point x in M\Bg(o,R),

(1 + u)−1 |Wg |γg (x) ≤
maxS(o,R)(1 + u)−1 |Wg |γg

minS(o,R)G(o, .)
G(o, x).

We deduce
sup

S(o,R)

|W | = O(R
2−ν

γ ).

�

40



Corollary 4.18 We consider a connected complete Ricci-flat manifold Mn, with n ≥ 4. Assume
there exists o in M , ν > 4n−2

n−1 and Co > 0 such that

∀t ≥ s > 0,
volB(o, t)

volB(o, s)
≥ Co

(
t

s

)ν

and the curvature tensor belongs to L
n
2 (M,ρo(ro)dvol). Then

sup
S(o,R)

|W | = O(r−
(ν−2)(n−1)

n−3 ).

Remark 4.19 When ν = n = 4, we obtain the same decay as [BKN].

Example 4.20 The Taub-NUT metric is a Riemannian metric on R4 introduced by Stephen Hawk-
ing in [Haw] (see [Leb] for a mathematical point of view). This is a Hyperkähler hence Ricci-flat
metric with curvature decaying like r−3 and volume growth like r3. In this example, our theorem
predicts the exact decay of the curvature.

Example 4.21 Let us give another example, inspired from the famous Schwarzschild metric. We
consider R2 × Sn−2, n ≥ 4, endowed with the metric

g = dr2 + F (r)2dt2 +G(r)2dσ2.

r, t are polar coordinates on the R2 factor, dσ2 is the standard metric on Sn−2, F and G are smooth
functions. Using the symmetries of this metric (see [Bes], [Pet]), it is easy to obtain formulas for
the curvature. And one sees that g has vanishing Ricci tensor if and only if for some positive
parameter γ, G satisfies 





G′(r) =

√

1 −
(

γ
G

)n−3

G(0) = γ
G′(0) = 0

and

F (r) =
2γ

n− 3

√

1 −
( γ

G

)n−3

.

G increases from γ to ∞ and G ∼ r at infinity ; F increases from 0 to 2γ
n−3 and F ∼ r near 0.

In particular, g is C0-close to the flat metric on Rn−1 × S1 at infinity (the radius of the circles at
infinity are proportionnal to γ) and the distance to a fixed point in this manifold behaves like the
coordinate r at infinity. Eventually, this provides on R2 × Sn−2, n ≥ 4, a complete Riemannian
metric which is Ricci flat, has volume growing like rn−1 and curvature decreasing like r−(n−1).
This is what our theorem predicted.
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