Rattrapage d'analyse complexe (3M266) Juin 2017.

Les documents et outils électroniques ne sont pas autorisés. Durée : 2 heures.

Exercice 1.

- (a) Décrire les trois types de singularités isolées.
- (b) Pour $z \in \mathbb{C}^*$, on pose $f(z) = \frac{\sin z}{z}$. Quelle est la nature de la singularité de f en 0?
- (c) Pour $z \in \mathbb{C}^*$, on pose $g(z) = \exp(1/z)$. Quelle est la nature de la singularité de g en 0?
- (d) Soit h une fonction holomorphe définie sur \mathbb{C}^* . On suppose que h est bornée. Montrer que h est constante.

Exercice 2.

- (a) Soit φ une fonction holomorphe sur un ouvert U de $\mathbb{C} = \mathbb{R}^2$. On identifie la variable complexe z = x + iy au couple de variables réelles (x, y), de sorte que φ peut être vue comme une application de $U \subset \mathbb{R}^2$ vers \mathbb{R}^2 .
 - (i) Expliquer pour quoi la différentielle de φ en un point est la composée d'une rotation et d'une homothétie.
 - (ii) En déduire que le déterminant jacobien de l'application φ au point z vaut $|\varphi'(z)|^2$.
- (b) Vérifier que la formule

$$\varphi(z) = \frac{2z - i}{iz + 2}$$

définit un automorphisme du disque D(0,1).

(c) En déduire la valeur de l'intégrale double

$$I = \int \int_{D(0,1)} \frac{dxdy}{(x^2 + (y-2)^2)^2}.$$

Indication : on calculera l'aire du disque de deux façons, via un changement de variables adéquat.

Exercice 3. On s'intéresse à l'intégrale

$$F(z) = \int_0^\infty \frac{(\ln t)^2}{t^2 + z} dt,$$

où z est un paramètre complexe pris dans $\Omega = \mathbb{C}\backslash\mathbb{R}_-$.

- (a) Montrer que F est holomorphe sur l'ouvert Ω . Indication : étant donnés des réels R > 0 et $\epsilon > 0$, on pourra successivement montrer que F est holomorphe sur les ouverts $U = \{z \in \mathbb{C}/\text{Re}(z) > \epsilon\}$ et $V = \{z \in \mathbb{C}/|\text{Im}(z)| > \epsilon, |\text{Re}(z)| < R\}$.
- (b) Prouver que $\int_0^\infty \frac{\ln t}{t^2 + 1} dt = 0.$
- (c) Soit un réel p > 0. En utilisant le changement de variable $t = s\sqrt{p}$, exprimer F(p) en fonction de F(1) et p.
- (d) Soit $\Omega' = \mathbb{C} \setminus \mathbb{R}_+$. On note log la détermination continue du logarithme sur Ω' dont la partie imaginaire est donnée par l'argument pris dans $]0, 2\pi[$. Et on considère

$$\phi(z) = \frac{(\log z)^3}{z^2 + 1}.$$

Montrer que ϕ est méromorphe sur Ω' ; déterminer ses pôles et les résidus correspondants.

- (e) Etant donné r > 0, on considère le chemin $\sigma_r :]0, 2\pi[\to \mathbb{C}$ paramétré par $\sigma_r(t) = re^{it}$. Calculer la limite de $\int_{\sigma_r} \phi(z) dz$ quand r tend vers 0, puis quand r tend vers $+\infty$.
- (f) Etant donnés $\epsilon > 0$ et T > 0, on considère les chemins $\gamma_{\pm} : [0, T] \to \mathbb{C}$ définis par $\gamma_{\pm}(t) = t \pm i\epsilon$. Si on fixe $t \in]0, T]$, quelle est la limite de $\phi \circ \gamma_{\pm}(t)$ quand $\epsilon \to 0$?
- (g) Evaluer, en fonction de F(1), la limite, quand $\epsilon \to 0$ et $T \to +\infty$, de

$$\int_{\gamma_{+}} \phi(z)dz - \int_{\gamma_{-}} \phi(z)dz.$$

- (h) En déduire F(1), puis F(p) pour p > 0.
- (i) Calculer l'intégrale $\int_0^\infty \frac{(\ln t)^2}{(t^2+1)^2} dt$.
- (j) Calculer F(z) pour tout $z \in \Omega$. Combien vaut F(i)?