TD5. Suites de fonctions holomorphes, intégrales à paramètre.

Exercice 1.

(a) Soit Log la détermination principale du logarithme. Montrer qu'il existe une fonction g holomorphe sur le disque D(0,1) telle que

$$\forall z \in D(0,1), \quad \text{Log}(1+z) = z + z^2 g(z).$$

(b) En déduire que la suite de fonctions f_n définie par

$$f_n(z) = \left(1 + \frac{z}{n}\right)^n$$

converge uniformément sur tout compact de $\mathbb C$ vers l'exponentielle.

Exercice 2. Soit f une fonction holomorphe sur le disque unité D(0,1) telle que f(0)=0.

- (a) Montrer que la série $\sum_{n\geq 1} f(z^n)$ converge uniformément sur tout compact de D(0,1) vers une fonction holomorphe g.
- (b) Calculer le développement en série entière de g, en 0, en fonction de celui de f.

Exercice 3. Soit f une fonction continue à support compact sur \mathbb{R} . On s'intéresse à sa transformée de Fourier \hat{f} , définie pour $z \in \mathbb{C}$, par

$$\hat{f}(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{ixz} dx.$$

Montrer que \hat{f} est une fonction entière.

Exercice 4. Soit Ω un ouvert de \mathbb{C} . On s'intéresse à l'espace de Hardy

$$\mathcal{H}(\Omega) = \left\{ f \in \mathcal{O}(\Omega) / \int_{\Omega} |f|^2 < +\infty \right\},$$

muni de la norme $L^2 : ||f||_{L^2(\Omega)} = \left(\int_{\Omega} |f|^2\right)^{\frac{1}{2}}$.

(a) Soit K un compact dans Ω . Montrer qu'il existe une constante c_K telle que

$$\forall f \in \mathcal{H}(\Omega), \quad \sup_{K} |f| \le c_K \|f\|_{L^2(\Omega)}.$$

(b) Montrer que $(\mathcal{H}(\Omega), ||.||_{L^2(\Omega)})$ est complet.

Exercice 5. On s'intéresse à la fonction zeta de Riemann :

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}.$$

- (a) Montrer que ζ est bien définie et holomorphe sur $\{z \in \mathbb{C}/\text{Re}(z) > 1\}$.
- (b) Notons E(t) la partie entière d'un réel t. Montrer que l'intégrale à paramètre

$$G(z) = \int_{1}^{+\infty} \frac{t - E(t)}{t^{z+1}} dt$$

définit une fonction holomorphe sur $\{z\in \mathbb{C}/\mathrm{R}e(z)>0\}.$

(c) Pour $n \in \mathbb{N}^*$ et $\operatorname{Re}(z) > 0$, on pose $I_n(z) = \int_n^{n+1} \frac{dt}{t^z}$. Montrer que

$$\int_{n}^{n+1} \frac{t - E(t)}{t^{z+1}} dt = I_n(z) - nI_n(z+1).$$

(d) Montrer que si Re(z) > 1, on a

$$\zeta(z) = \frac{1}{z-1} + 1 - zG(z).$$

(e) En déduire que ζ se prolonge en une fonction holomorphe sur $\{z \in \mathbb{C} \setminus \{1\} / \operatorname{R}e(z) > 0\}$.

Exercice 6. On s'intéresse à la fonction Gamma d'Euler :

$$\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt.$$

- (a) Montrer que Γ est bien définie et holomorphe sur $\{z \in \mathbb{C}/\text{Re}(z) > 0\}$.
- (b) Montrer que si $\operatorname{Re}(z) > 0$, $\Gamma(z+1) = z\Gamma(z)$. En déduire que Γ se prolonge en une fonction holomorphe sur $\{z \in \mathbb{C}/\operatorname{Re}(z) > -1 \text{ et } z \neq 0\}$.
- (c) En déduire par récurrence que Γ se prolonge en une fonction holomorphe sur l'ouvert $\mathbb{C}\setminus (-\mathbb{N})$.

Exercice 7. Soient Ω un ouvert connexe de \mathbb{C} et f une fonction holomorphe sur Ω telle que $\overline{f(\Omega)}$ est un compact inclus dans Ω . On veut montrer que la suite des itérées de f converge vers une fonction constante.

- (a) Vérifier que, pour tout $n \in \mathbb{N}^*$, $f_n := \underbrace{f \circ \cdots \circ f}_{n \text{ fois}}$ est bien définie et holomorphe sur Ω .
- (b) Montrer que $L := \bigcap_{n \in \mathbb{N}^*} \overline{f_n(\Omega)}$ est compact.
- (c) Montrer qu'il existe une sous-suite (f_{n_k}) de (f_n) qui converge uniformément sur tout compact de Ω vers une fonction $g \in \mathcal{O}(\Omega)$.
- (d) Montrer qu'alors $g(\Omega) = L$.
- (e) En déduire que $L = \{a\}$ pour un certain $a \in \mathbb{C}$.
- (f) En déduire que la suite (f_n) converge uniformément sur tout compact vers la fonction constante à a.