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Abstract. We consider two-person zero-sum games where the players control, at discrete
times {tn} induced by a partition Π of �+, a continuous time Markov process. We prove
that the limit of the values vΠ exist as the mesh of Π goes to 0. The analysis covers the
cases of (1) stochastic games (where both players know the state), and (2) games with
unknown state and symmetric signals.

The proof is by reduction to deterministic differential games.
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1. Introduction
Repeated interactions in a stationary environment have been traditionally represented by dynamic games played
in stages. An alternative approach is to consider a continuous time process that the players control at discrete
times. In the first case, the expected number of interactions increases as the weight θn of each stage n goes
to zero. In the second case, the number of interactions increases when the duration δn of each time interval n
vanishes.
In a repeated game framework, one can normalize the model using the evaluation θ � {θn} of the stages

(θn ≥ 0, ∑θn � 1), so that stage n is associated to time tn �
∑n−1

j�1 θj , and then consider the game played on [0, 1]
(hence time t corresponds to the stage where the fraction t of the total weight has been reached). Each evalu-
ation θ (in the original repeated game) thus induces a partition Πθ of [0, 1], and vanishing mesh corresponds
to vanishing stage weight. In the two-person zero-sum framework, tools adapted from continuous time models
can be used to obtain convergence results, given an ordered set of evaluations, for the corresponding family
of values vθ, see, e.g., for different classes of games, Sorin [32, 33, 34], Vieille [40], Laraki [23], Cardaliaguet
et al. [8].

In the alternative approach analyzed here, there is a given evaluation k on �+. Then, one considers a sequence
of partitions Π(m) of �+ with vanishing mesh corresponding to vanishing stage duration and the associated
sequence of values v(m).
In both cases, for each given partition, the value function exists at the times defined by the partition and

the stationarity of the model allows to write a recursive formula (RF). Then, one extends the value function to
[0, 1] (resp. �+) by linearity, and one considers the family of values as the mesh of the partition goes to 0. The
next two steps in the proof of convergence of the family of values consist in defining, using (RF), a PDE (main
equation: ME), and proving

(1) that any accumulation point of the family is a viscosity solution of (ME)
(2) that (ME) has a unique viscosity solution.
Altogether the tools are quite similar to those used in differential games, however, in the current framework,

the state is basically a random variable and the players use mixed actions.
Section 2 describes the model. Section 3 presents the main results concerning differential games that are

used in the paper. In particular, we define two notions of “mixed extension” for the time discretization of a
differential game and prove that the asymptotic behavior of their values is similar. Section 4 is devoted to the
framework where both players observe the state variable. Section 5 deals with the situation where the state is
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unknown but the actions are observed. In both cases, the analysis is done by reduction to an ad hoc differential
game.

2. Smooth Continuous Time Games and Discretization
2.1. Discretization of a Continuous Time Process and Associated Game
Consider a continuous time process Zt , defined on �+

� [0,+∞), with values in a state space Ω and an evaluation
given by a probability density k(t) on �+.
Let T � inf{L ∈ [0,+∞];

∫ L

0 k(t)dt � 1}. A partition Π� {tn} is an increasing sequence of �+ with t1 � 0 and tn→T
as n→∞. It induces a discrete time game as follows. The time interval Ln � [tn , tn+1[ corresponds to stage n and
has duration δn � tn+1 − tn . The law of Zt on Ln is determined by its value at time tn , Ẑn � Ztn

, and the actions
(in , jn) ∈ I × J chosen by the players at time tn , that last for stage n. The payoff at time t in stage n (t ∈ Ln) is
defined through a map g from Ω× I × J to �:

gΠ(t)� g(Zt , in , jn).

(An alternative choice leading to the same asymptotic results would be gΠ(t)� g(Ẑn , in , jn)).
The outcome along a play is

γΠ, k �

∫ T

0
gΠ(t)k(t) dt ,

and the corresponding value function, defined on Ω, is vΠ, k .
One will study the asymptotics of the family {vΠ, k} as the mesh δ � sup δn of the partition Π vanishes.

2.2. Markov Process
From now on, we consider the case where Zt , t ∈ �+ follows a continuous time Markov process controlled by
the players: it is specified by a finite state space Ω and a transition rate q that belongs to the set M of real
bounded maps on I × J ×Ω×Ω satisfying

q(i , j)[ω, ω′] ≥ 0 if ω′ , ω, and
∑
ω′∈Ω

q(i , j)[ω, ω′]� 0, ∀ i ∈ I , j ∈ J, ω, ω′ ∈Ω.

Let Ph(i , j), h ∈ �+ denote the continuous time Markov chain on Ω generated by the kernel q(i , j). It satisfies

ÛPh(i , j)� Ph(i , j)q(i , j)� q(i , j)Ph(i , j),

and for t ≥ 0,
Pt+h(i , j)� Pt(i , j)ehq(i , j).

In particular, one has for all z , z′ ∈Ω:

Ph(i , j)[z , z′]�Prob(Zt+h � z′ | Zt � z), ∀ t ≥ 0,
�1{z}(z′)+ hq(i , j)[z , z′]+ o(h).

2.3. Hypotheses
One assumes from now on the following:
— the evaluation k is continuous on �+.
— the action sets I, J are compact metric spaces,
— the payoff g and the transition q are continuous on I × J.

2.4. Notations
If F is a bounded measurable function defined on I× J with values in a convex set, F(x , y) denotes its multilinear
extension to X ×Y with X �∆(I) (resp. Y �∆(J)), set of regular Borel probabilities on I (resp. J). (This applies,
in particular, to g and q).

For ζ ∈ ∆(Ω) and µ ∈ �Ω2 , we define

ζ ∗ µ(z)� ζ( · ) ∗ µ[·, z]�
∑
ω∈Ω

ζ(ω)µ[ω, z], ∀ z ∈Ω.

(When g is a map from Ω to itself and µ its graph: µ[ω, z] � 1{g(ω)�z}, ζ ∗ µ is the usual image measure of ζ
by g).
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In particular, if ζt ∈ ∆(Ω) is the law of Zt , one has, if (i , j) is played on [t , t + h],

ζt+h � ζt ∗Ph(i , j),

and
Ûζt � ζt ∗q(i , j).

Similarly, we use the following notation for a transition probability or a transition rate µ operating on a real
function f on Ω:

µ[z , ·] ◦ f ( · )�
∑
z′∈Ω

µ[z , z′] f (z′)� µ ◦ f [z].

3. Discretization and Mixed Extension of Differential Games
We study here a continuous time game by introducing a time discretization Π and analyzing the limit behavior
of the associated family of values vΠ as the mesh of the partition vanishes. This approach was initiated in
Fleming [14, 15, 16] and developed in Friedman [17, 18], Eliott and Kalton [12], and see also Scarf [30].
A differential game γ is defined through the following components: Z ⊂ �n is the state space, I and J are the

action sets of player 1 (maximizer) and 2, f from Z× I × J to �n is the dynamics kernel, g from Z× I × J to � is
the payoff-flow function, and k from �+ to �+ determines the evaluation.
Formally, the dynamics is defined on [0,+∞)×Z by

Ûzt � f (zt , it , jt), (1)

and the total payoff is ∫ T

0
g(zs , is , js)k(s) ds .

We assume in this section:
— I and J metric compact sets,
— f and g bounded, continuous, and uniformly Lipschitz in z,
— k continuous with

∫
+∞

0 k(s) ds � 1.
— Φh(z; i , j) denotes the value at time t + h of the solution of (1) starting at time t from z and with play
{is � i , js � j} on [t , t + h].
To define the strategies, we have to specify the information: we assume that the players know the initial

state z0, and at time t, the previous play {is , js ; 0 ≤ s < t}, hence the trajectory of the state {zs ; 0 ≤ s ≤ t}.
The analysis below will show that Markov strategies (i.e., depending only, at time t, on t and zt) will suffice.

3.1. Deterministic Analysis
Given a partition Π, we consider the associated discrete time game γΠ, where on each interval [tn , tn+1) players
use constant moves (in , jn) in I × J. This defines the dynamics on the state. At time tn+1, (in , jn) is announced,
hence the corresponding value of the state, ztn+1

�Φδn (ztn
; in , jn) is known.

The associated maxmin w−
Π
satisfies, at each point of the partition, the RF

w−Π(tn , ztn
)� sup

I
inf

J

[∫ tn+1

tn

g(zs , i , j)k(s) ds + w−Π(tn+1 , ztn+1
)
]
. (2)

The function w−
Π
(·, z) is extended by linearity to [0,T) (and 0 on [T,+∞)), and note that there exists L: ]0,+∞[→

�+ such that
∀ ε > 0, t ≥ L(ε) �⇒ |w−Π(t , ·)| ≤ ε. (3)

Denote by F the set of bounded functions satisfying (3). All “value” functions that we will consider here will
belong to F.

The next four results follow from the analysis in Evans and Souganidis [13], see also Barron et al. [3], Sougani-
dis [38], and the presentation in Bardi and Capuzzo-Dolcetta [2], Chapter VII, Section 3.2.

Proposition 3.1. The family {w−
Π
(t , z)} is uniformly equicontinuous in both variables.

Hence the set U of accumulation points of the family {w−
Π
} (for the uniform convergence on compact subsets

of �+ ×Z), as the mesh δ of Π goes to zero, is nonempty.
We first recall the notion of viscosity solution, see Crandall and Lions [10].



Sorin: Limit Value of Dynamic Games
4 Mathematics of Operations Research, Articles in Advance, pp. 1–13, ©2017 INFORMS

Definition 3.1. Given a Hamiltonian H from �+ × Z × �n to �, a continuous real function u on �+ × Z is a
viscosity solution of

0 �
d
dt

u(t , z)+H(t , z ,∇u(t , z)) (4)

if for any real function ψ, C1 on �+ ×Z with u −ψ having a strict local maximum at (t̄ , z̄) ∈ [0,T[ ×Z

0 ≤ d
dt
ψ(t̄ , z̄)+H(t , z ,∇ψ(t , z)),

and the dual condition holds: for any real function ψ, C1 on �+ ×Z with u − ψ having a strict local minimum
at (t̄ , z̄) ∈ [0,T[ ×Z

0 ≥ d
dt
ψ(t̄ , z̄)+H(t , z ,∇ψ(t , z)).

We can now introduce the Hamilton-Jacobi-Isaacs (HJI) equation that follows from (2), corresponding to the
Hamiltonian:

h−(t , z , p)� sup
I

inf
J
[g(z , i , j)k(t)+ 〈 f (z , i , j), p〉]. (5)

Proposition 3.2. Any function u ∈U belongs to F and is a viscosity solution of

0 �
d
dt

u(t , z)+ sup
I

inf
J
[g(z , i , j)k(t)+ 〈 f (z , i , j),∇u(t , z)〉]. (6)

Note that in the discounted case, k(t)� ρe−ρt , with the change of variable u(t , z)� e−ρtφ(z), one obtains

ρφ(z)� sup
I

inf
J
[ρg(z , i , j)+ 〈 f (z , i , j),∇φ(z)〉]. (7)

The main property is in the following:

Proposition 3.3. There exists a unique function in F, which is a viscosity solution of (6).

Recall that this notion and this kind of results are due, in a general framework, to Crandall and Lions [10],
for more properties, see Crandall et al. [11].

The uniqueness of accumulation point implies:

Corollary 3.1. The family {w−
Π
} converges to some w−.

An alternative approach is to consider the game γ defined in normal form on �+. Let w−∞ be the maxmin
(lower value) of the continuous time differential game played using nonanticipative strategies with delay. Then,
from Evans and Souganidis [13], extended in Cardaliaguet [6], Chapter 3, one obtains:

Proposition 3.4. (1) w−∞ belongs to F and is a viscosity solution of (6).
(2) Hence

w−∞ � w−.

Obviously, similar properties hold for the minmax w+

Π
and w+

∞.

Finally, define Isaacs’s condition on I × J by

sup
I

inf
J
[g(z , i , j)k(t)+ 〈 f (z , i , j), p〉]� inf

J
sup

I
[g(z , i , j)k(t)+ 〈 f (z , i , j), p〉], ∀ t ∈ �+ , ∀ z ∈ Z, ∀ p ∈ �n , (8)

which, with the notation (5), corresponds to

h−(t , z , p)� h+(t , z , p).

Proposition 3.5. Assume condition (8).
Then, the limit value exists, in the sense that

w− � w+(� w−∞ � w+

∞).

Note that the same analysis holds if the players use strategies that, at time tn , depend only on tn and ztn
.
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3.2. Mixed Extension
We define two mixed extensions of the game γ as follows: for each partition Π, we introduce two discrete time
games associated to γΠ and played on X �∆(I) and Y �∆(Y) (set of probabilities on I and J, respectively). We
will then prove that the asymptotic properties of their values coincide.

3.2.1. Deterministic Actions. The first game ΓI is defined as in Subsection 3.1 where X and Y are now the sets
of actions (this corresponds to “relaxed controls”) replacing I and J.

The main point is that the dynamics f (hence the flow) and the payoff g are extended to X ×Y by taking the
expectation w.r.t. x and y

f (z , x , y)�
∫

I×J
f (z , i , j) x(di)y(dj), Ûzt � f (zt , xt , yt), g(z , x , y)�

∫
I×J

g(z , i , j) x(di)y(dj). (9)

ΓI
Π
is the associated discrete time game where on each interval [tn , tn+1) players use constant actions (xn , yn)

in X × Y. This defines the dynamics: Φ̄h(z; x , y) denotes the value at time t + h of the solution of (9) starting
at time t from z and with play {xs � x , ys � y} on [t , t + h]. Note that Φ̄h(z; x , y) is not the bilinear extension
of Φh(z; i , j). At time tn+1, (xn , yn) is announced, hence the current value of the state, ztn+1

� Φ̄δn (ztn
; xn , yn) is

known.
The maxmin W−

Π
satisfies the RF

W−
Π(tn , ztn

)� sup
X

inf
Y

[∫ tn+1

tn

g(zs , x , y)k(s) ds +W−
Π(tn+1 , ztn+1

)
]
.

The analysis of the previous paragraph applies, leading to:

Proposition 3.6. The family {W−
Π
(t , z)} is uniformly equicontinuous in both variables.

The HJI equation corresponds here to the Hamiltonian:

H−(t , z , p)� sup
X

inf
Y
[g(z , x , y)k(t)+ 〈 f (z , x , y), p〉]. (10)

Proposition 3.7. (1) Any accumulation point of the family {W−
Π
}, as the mesh δ of Π goes to zero, belongs to F and is

a viscosity solution of

0 �
d
dt

W−(t , z)+ sup
X

inf
Y
[g(z , x , y)k(t)+ 〈 f (z , x , y),∇W−(t , z)〉]. (11)

(2) The family {W−
Π
} converges to W−, unique viscosity solution of (11) in F.

Finally, let W−
∞ be the maxmin of the differential game ΓI played (on X ×Y) using nonanticipative strategies

with delay. Then,

Proposition 3.8. (1) W−
∞ is a viscosity solution of (11). (2) W−

∞ � W−.

As above, similar properties hold for W+

Π
and W+

∞.

Due to the bilinear extension, Isaacs’s condition on X ×Y, which is, with the notation (10):

H−(t , z , p)� H+(t , z , p) ∀ t ∈ �+ , ∀ z ∈ Z, ∀ p ∈ �n , (12)

holds here. Thus one obtains:

Proposition 3.9. The limit value W exists:
W � W−

� W+ ,

and is also the value of the differential game played on X ×Y.
It is the unique viscosity solution in F of

0 �
d
dt

W(t , z)+ valX×Y[g(z , x , y)k(t)+ 〈 f (z , x , y),∇W(t , z)〉]. (13)
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3.2.2. Random Actions. We define now another game ΓII
Π
, where the actions (in , jn) ∈ I × J are chosen at time tn ,

according to xn ∈ X and yn ∈ Y, then constant on [tn , tn+1) and announced at time tn+1. The new state is thus, if
(in , jn)� (i , j), z i j

tn+1
�Φδn (ztn

; i , j).
It is clear, see, e.g., Mertens et al. [24], Chapter 4, that the next dynamic programming property holds.

Proposition 3.10. The game ΓII
Π
has a value WΠ, which satisfies the RF

WΠ(tn , ztn
)� valX×YEx , y

[∫ tn+1

tn

g(zs , i , j)k(s) ds +WΠ(tn+1 , z
i j
tn+1
)
]
, (14)

and given the hypothesis, one obtains as above:

Proposition 3.11. The family {WΠ(t , z)} is equicontinuous in both variables.

Note that we are not dealing with the discretization of a deterministic differential game, nevertheless, one
has:

Proposition 3.12. (1) Any accumulation point U of the family {WΠ}, as the mesh δ of Π goes to zero, belongs to F and
is a viscosity solution of the previous Equation (13).
(2) The family {WΠ} converges to W, unique solution in F of (13).

Proof. (1) Let ψ(t , z) be a C1 test function such that U − ψ has a strict local maximum at (t̄ , z̄). Consider a
sequence Wm �WΠ(m) converging uniformy locally to U as m→∞, and let (t∗(m), z(m)) be a maximizing sequence
for (Wm −ψ)(t , z), t ∈Π(m). In particular, (t∗(m), z(m)) converges to (t̄ , z̄) as m→∞. Given x∗(m) optimal in (14),
one has with t∗(m)� tn ∈Π(m)

Wm(tn , z(m)) ≤ Ex∗(m), y

[∫ tn+1

tn

g(zs , i , j)k(s) ds +Wm(tn+1 , z
i j
tn+1
)
]
, ∀ y ∈ Y.

The choice of (t∗(m), z(m)) implies

ψ(tn , z(m)) −Wm(tn , z(m)) ≤ ψ(tn+1 , z
i j
tn+1) −Wm(tn+1 , z

i j
tn+1
).

Hence using the continuity of k and ψ being C1, one obtains

ψ(tn , z(m)) ≤Ez , x∗(m), y

[∫ tn+1

tn

g(zs , i , j)k(s) ds +ψ(tn+1 , z
i j
tn+1)

]
≤δn k(tn)g(z(m), x∗(m), y)+ψ(tn+1 , z(m))
+ δnEx∗(m)y 〈 f (z(m), i , j),∇ψ(tn+1 , z(m))〉 + o(δn).

This gives

0 ≤ δn
d
dt
ψ(tn , z(m))+ δn k(tn)g(z(m), x∗(m), y)+ δnEx∗(m)y 〈 f (z(m), i , j),∇ψ(tn , z(m))〉 + o(δn),

hence dividing by δn and taking the limit as m→∞, one obtains, for some accumulation point x∗ ∈ ∆(I) (we
use again the continuity of k and ψ being C1)

0 ≤ d
dt
ψ(t̄ , z̄)+ k(t̄)g(z̄ , x∗ , y)+Ex∗ y 〈 f (z̄ , i , j),∇ψ(t̄ , z̄)〉, ∀y ∈ Y. (15)

Thus U is a viscosity solution of

0 �
d
dt

u(t , z)+ valX×Y

∫
I×J
[g(z , i , j)k(t)+ 〈 f (z , i , j),∇u(t , z)〉] x(di)y(dj),

which by linearity, reduces to (13).
(2) The proof of uniqueness follows from Proposition 3.9. �

Note again that the same analysis holds if the players use strategies that depend only, at time tn , on tn and ztn
.
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3.2.3. Comments. Games (ΓI and ΓII) lead to the same limit PDE (13) but with different sequences of approxi-
mations:
In the first case (ΓI), the evolution is deterministic and the state (or (x , y)) is announced. Moreover, the value

may not exist along the sequence.
In the second case (ΓII), the evolution is random and the state (or the actions) is announced (the knowledge

of (x , y) would not be enough).
The fact that both games have the same limit value is a justification for playing distribution or mixed actions

as pure actions in continuous time and for assuming that the distributions are observed, see Neyman [25].
Remark also that the same analysis holds if f and g depend in addition continuously on t.
A related study of differential games with mixed actions, but concerned with the analysis through strategies

can be found in Buckdahn et al. [4, 5], Jimenez et al. [22].
The advantage of working with discretization is to have a well defined and simple set of strategies, hence

the RF is immediate to check for the associated maxmin or minmax W±
Π
. On the other hand the main equation

(HJI) is satisfied by accumulation points.
The use of mixed actions in extensions of type II allows to have existence of a value in the associated discrete-
time game.

4. State Controlled and Publicly Observed
This section is devoted to the case were the process Zt is controlled by both players and observed by both (there
are no assumptions on the signals on the actions). At stage n (time tn), both players know Ztn

. This corresponds
to a stochastic game G in continuous time analyzed through a time discretization along Π, GΠ.
Previous related papers to stochastic games in continuous time include Zachrisson [42], Tanaka and Wakuta [39],
Guo and Hernandez-Lerma [19, 20], Neyman [25].
The approach via time discretization is related to similar procedures in differential games, see the previous
Section 3 and Neyman [26].

4.1. General Case
Consider a general evaluation k. Since k is fixed during the analysis, we will write vΠ for vΠ, k , defined on
�+ ×Ω.
4.1.1. Recursive Formula. The hypothesis on the data implies that vΠ exists, see, e.g., Mertens et al. [24]; Chap-
ters IV, VII; Neyman and Sorin [27]; and in the current framework, the RF takes the following form:

Proposition 4.1. The game GΠ has a value vΠ satisfying the recursive equation

vΠ(tn ,Ztn
)�valX×YEz , x , y

[∫ tn+1

tn

g(Zs , i , j)k(s) ds + vΠ(tn+1 ,Ztn+1
)
]

�valX×Y

{
Ez , x , y

[∫ tn+1

tn

g(Zs , i , j)k(s) ds
]
+Pδn (x , y)[Ztn

, ·] ◦ vΠ(tn+1 , ·)
}
. (16)

Proof. This is the basic RF for the stochastic game with state-space Ω, action sets I and J, and transition kernel
Pδn (i , j), going back to Shapley [31]. �

The value vΠ(·, z), defined at times tn ∈Π, is extended by linearity to [0,T[ and 0 on [T,+∞[.
4.1.2. Main Equation. The first property is standard in this framework.

Proposition 4.2. The family of values {vΠ} is uniformly equicontinuous w.r.t. t ∈ �+.

Denote thus by V the (nonempty) set of accumulation points of the family {vΠ} (for the uniform convergence
on compact subsets of �+ ×Ω) as the mesh δ vanishes.

Definition 4.1. A continuous real function u on �+ ×Ω is a viscosity solution of

0 �
d
dt

u(t , z)+ valX×Y{g(z , x , y)k(t)+q(x , y)[z , ·] ◦ u(t , ·)}, (17)

if for any real function ψ, C1 on �+ ×Ω with u −ψ having a strict maximum at (t̄ , z̄) ∈ [0,T[ ×Ω:

0 ≤ d
dt
ψ(t̄ , z̄)+ valX×Y{g(z̄ , x , y)k(t̄)+q(x , y)[z̄ , ·] ◦ψ(t̄ , ·)},
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and the dual condition:
if for any real function ψ, C1 on �+ ×Ω with u −ψ having a strict minimum at (t̄ , z̄) ∈ [0,T[ ×Ω:

0 ≥ d
dt
ψ(t̄ , z̄)+ valX×Y{g(z̄ , x , y)k(t̄)+q(x , y)[z̄ , ·] ◦ψ(t̄ , ·)}.

Proposition 4.3. Any u ∈V is a viscosity solution of (17).

Proof. Let ψ(t , z) be a C1 function such that u−ψ has a strict maximum at (t̄ , z̄). Consider a sequence Vm � vΠ(m)
converging uniformy locally to u as m→∞ and let (t∗(m), z(m)) be a maxmizing sequence for {(Vm − ψ)(t , z),
t ∈Π(m)}. In particular, (t∗(m), z(m)) converges to (t̄ , z̄) as m→∞. Given x∗m optimal for Vm(t∗(m), z(m)) in (16),
one obtains, with t∗(m)� tn ∈Πm

Vm(tn , z(m)) ≤ Ez(m), x∗m , y

[∫ tn+1

tn

g(Zs , i , j)k(s) ds
]
+Pδn (x∗m , y)[z(m), ·] ◦Vm(tn+1 , ·), ∀ y ∈ Y,

so that by the choice of (t∗(m), z(m)):

ψ(tn , z(m)) ≤ Ez(m), x∗m , y

[∫ tn+1

tn

g(Zs , i , j)k(s) ds
]
+Pδn (x∗m , y)[z(m), ·] ◦ψ(tn+1 , ·)

≤ δn k(tn)g(z(m), x∗m , y)+ψ(tn+1 , z(m))+ δnq(x∗m , y)[z(m), ·] ◦ψ(tn+1 , ·)+ o(δn).

This implies

0 ≤ δn k(tn)g(z(m), x∗m , y)+ δn
d
dt
ψ(tn , z(m))+ δnq(x∗m , y)[z(m), ·] ◦ψ(tn+1 , ·)+ o(δn).

hence dividing by δn and taking the limit as m→∞, one obtains, for some accumulation point x∗ in the compact
set ∆(I),

0 ≤ k(t̄)g(z̄ , x∗ , y)+ d
dt
ψ(t̄ , z̄)+q(x∗ , y)[z̄ , ·] ◦ψ(t̄ , ·), ∀ y ∈ Y, (18)

so that
0 ≤ d

dt
ψ(t̄ , z̄)+ valX×Y{g(z̄ , x , y)k(t̄)+q(x , y)[z̄ , ·] ◦ψ(t̄ , ·)}. �

4.1.3. Convergence. A first proof of the convergence of the family {vΠ}Π would follow from the property (P):
Equation (17) has a unique viscosity solution in F.

An alternative approach is to relate the game to a differential game on an extended state-space ∆(Ω). Define
VΠ on �+ ×∆(Ω) as the expectation of vΠ, namely,

VΠ(t , ζ)�
∑
ω∈Ω

ζ(ω)vΠ(t , ω),

and denote X� XΩ and Y� YΩ.

Proposition 4.4. VΠ satisfies

VΠ(tn , ζtn
)� valX×Y

[∑
ω

ζtn
(ω)Eω, x(ω),y(ω)

{∫ tn+1

tn

g(Zs , i , j)k(s) ds
}
+VΠ(tn+1 , ζtn+1

)
]
, (19)

where ζtn+1
(z)�∑

ω ζtn
(ω)Pδn (x(ω),y(ω))(ω, z).

Proof. Equation (19) follows from (16), the definition of VΠ and the formula expressing ζtn+1
. By indepen-

dence, the optimization in X at each ω can be replaced by optimization in X and one uses the linearity in
the transition. �

Equation (16) corresponds to the usual approach following the trajectory of the process on the original state
space. Equation (19) expresses the dynamics of the law ζ of the process, where the players act differently at
different states ω. (This corresponds to the RF written on the space of entrance laws, see Mertens et al. [24] IV.3).
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4.1.4. Related Differential Game. We will prove that the recursive equation (19) is satisfied by the value of the
time discretization along Π of the mixed extension of a deterministic differential game G (see Section 3) on �+,
defined as follows:
(1) the state space is ∆(Ω),
(2) the action sets are I� IΩ and J� JΩ,
(3) the dynamics on ∆(Ω) ×�+ is

Ûζt � f (ζt , i, j)
with

f (ζ, i, j)(z)�
∑
ω∈Ω

ζt(ω)q(i(ω), j(ω))[ω, z].

(4) the flow payoff function is given by

〈ζ, g(·, i( · ), j( · ))〉 �
∑
ω∈Ω

ζ(ω)g(ω, i(ω), j(ω)).

(5) the global outcome is ∫ T

0
gt k(t) dt ,

where gt is the payoff at time t.
In GΠ, the state is deterministic, and at each time tn , the players know ζtn

and choose in (resp. jn).
Consider now the mixed extension GII

Π (Section 3) and let VΠ(t , ζ) be the associated value.

Proposition 4.5. The value VΠ(t , ζ) satisfies the recursive equation (19).

Proof. The mixed action set for player 1 is X̃ �∆(I) �∆(IΩ), but due to the separability property in ω, one can
work with X�∆(I)Ω. Then it is easy to see that Equation (14) corresponds to (19). �

The analysis in Section 3 thus implies that
—any accumulation point U of the sequence VΠ belongs to F and is a viscosity solution of

0 �
d
dt

U(t , ζ)+ valX×Y[〈ζ, g(·, x( · ),y( · ))〉k(t)+ 〈 f (ζ, x,y),∇U(t , ζ)〉]. (20)

—Equation (20) has a unique viscosity solution in F.
This leads to the convergence property as follows.

Corollary 4.1. Both families VΠ and vΠ converge to some V and v with

V(t , ζ)�
∑
ω

ζ(ω)v(t , ω).

— V is the viscosity solution of (20).
— v is a viscosity solution of (17).

Proof. One has ∇V(t , ζ)� {v(t , ·)}, hence

0 �

〈
ζ( · ), d

dt
v(t , ·)

〉
+ valX×Y

[
〈ζ( · ), g(·, x( · ),y( · ))〉k(t)+

∑
z

[∑
ω

ζ(ω)q(x(ω),y(ω))[ω, z]v(t , z)
] ]

�

〈
ζ( · ), d

dt
v(t , ·)

〉
+ valX×Y

[
〈ζ( · ), g(·, x( · ),y( · ))〉k(t)+

∑
ω

ζ(ω)
[∑

z
q(x(ω),y(ω))[ω, z]v(t , z)

] ]
.

This gives

0 �

〈
ζ( · ), d

dt
v(t , ·)+ valX×Y[g(·, x , y)k(t)+q(x , y)[·, Ô] ◦ v(t , Ô)]

〉
(where Ô is the variable for the operator ◦), which is equivalent to

0 �
d
dt

v(t , z)+ valX×Y[g(z , x , y)k(t)+q(x , y)[z , ·] ◦ v(t , ·)],

and this is (17). �



Sorin: Limit Value of Dynamic Games
10 Mathematics of Operations Research, Articles in Advance, pp. 1–13, ©2017 INFORMS

4.2. Stationary Case
We consider the case k(t)� ρe−ρt and again the game along the partition Π.
4.2.1. Recursive Formula. The general RF (16) now takes the following form.
Proposition 4.6.

vΠ, ρ(tn ,Ztn
)�valX×YEz , x , y

[∫ tn+1

tn

g(Zs , i , j)ρe−ρ ds + vΠ, ρ(tn+1 ,Ztn+1
)
]

�valX×Y

[
Ez , x , y

(∫ tn+1

tn

g(Zs , i , j)ρe−ρ ds
)
+Pδn (x , y)[Ztn

, ·] ◦ vΠ,ρ(tn+1 , ·)
]
, (21)

and if Π is uniform with mesh δ, vΠ, ρ(t , z)� e−ρtνδ, ρ(z) with

νδ, ρ(Z0)� valX×Y

[
Ez , x , y

(∫ δ

0
g(Zs , x , y)ρe−ρ ds

)
+ e−ρδ Pδ(x , y)[Z0 , ·] ◦ νδ,ρ( · )

]
. (22)

4.2.2. Main Equation. The next result is standard, see, e.g., Neyman [26]; Prieto-Rumeau and Hernandez-
Lerma [28], p. 235. We provide a short proof for convenience.
Proposition 4.7. (1) For any R ∈M and any ρ ∈ (0, 1], the equation with variable ϕ from Ω to �

ρϕ(z)� valX×Y[ρg(z , x , y)+R(x , y)[z , ·] ◦ϕ( · )] (23)

has a unique solution, denoted Wρ.
(2) For any δ ∈ (0, 1] such that ‖δR/(1− δρ)‖ ≤ 1, the solution of (23) is the value of the repeated stochastic

game with payoff g, transition P � I + δR/(1− δρ), and discounted factor δρ.
Proof. Recall from Shapley [31], that the value Wρδ of a repeated stochastic game with payoff g and discounted
factor δρ satisfies

Wρδ(z)� valX×Y[δρg(z , x , y)+ (1− δρ)Ez , x , y{Wρδ( · )}]. (24)
Assume the transition to be of the form P � I + δq with q ∈M. One obtains

Wρδ(z)� valX×Y[δρg(z , x , y)+ (1− δρ){Wρδ(z)+ δq(x , y)[z , ·] ◦Wρδ( · )}], (25)

which gives
δρWρδ(z)� valX×Y[δρg(z , x , y)+ δ(1− δρ)q(x , y)[z , ·] ◦Wρδ( · )], (26)

so that
ρWρδ(z)� valX×Y[ρg(z , x , y)+ (1− δρ)q(x y)[z , ·] ◦Wρδ( · )]. (27)

Hence with q � R/(1− δρ), one obtains

ρWρδ(z)� valX×Y[ρg(z , x , y)+R(x , y)[z , ·] ◦Wρδ( · )]. � (28)

4.2.3. Convergence. Again, the following result can be found in Neyman [26], Theorem 1; see also Guo and
Hernandez-Lerma [19, 20].
Proposition 4.8. As the mesh δ of the partition Π goes to 0, vΠ, ρ converges to the solution Wρ of (23) with R � q

ρWρ(z)� valX×Y[ρg(z , x , y)+q(x , y)[z , ·] ◦Wρ( · )]. (29)

Proof. Consider the strategy σ of player 1 in GΠ defined as follows: at state z, use an optimal strategy x ∈ X �

∆(I), for Wρ(z) given by (29). Let us evaluate, given τ, strategy of player 2, the following amount:

A1 � Eσ, τ

[∫ t2

t1

gΠ(s)ρe−ρs ds + e−ρt2 Wρ(Zt2
)
]
.

Let x1 the mixed move of player 1 at stage one given Z0 � Ẑ1. Then, if y1 is induced by τ, there exists a constant
L such that

A1 ≥ δ1ρg(Ẑ1 , x1 , y1)+ (1− δ1ρ)[Wρ(Ẑ1)+ δ1q(x1 , y1)[Ẑ1 , ·] ◦Wρ( · )] − δ1Lδ

≥δ1ρg(Ẑ1 , x1 , y1) − δ1ρWρ(Ẑ1)+ δ1q(x1 , y1)[Ẑ1 , ·] ◦Wρ( · )+Wρ(Ẑ1) − 2δ1Lδ

≥Wρ(Ẑ1) − 2δ1Lδ.



Sorin: Limit Value of Dynamic Games
Mathematics of Operations Research, Articles in Advance, pp. 1–13, ©2017 INFORMS 11

Similarly, let

An � Eσ, τ

[∫ tn+1

tn

gΠ(s)ρe−ρs dsds + e−ρtn+1 Wρ(Ẑn+1) | hn

]
,

where hn � (Ẑ1 , i1 , j1 , . . . , in−1 , jn−1 , Ẑn).
Then, with obvious notations

An ≥ e−ρtn [δnρg(Ẑn , xn , yn)+ (1− δnρ)[Wρ(Ẑn)+ δnq(xn , yn)[Ẑn , ·] ◦Wρ( · )] − δnLδ]
≥ e−ρtn [δnρg(Ẑn , xn , yn) − δnρWρ(Ẑn)+ δnq(xn , yn)[Ẑn , ·] ◦Wρ( · )+Wρ(Ẑn) − 2δnLδ]
≥ e−ρtn [Wρ(Ẑn) − 2δnLδ].

Taking the sum and the expectation, one obtains that the payoff induced by (σ, τ) in GΠ satisfies

Eσ, τ

[∫
+∞

0
gΠ(s)k(s) ds

]
≥Wρ(Ẑ1) − 2

(∑
n
δn e−ρtn

)
Lδ,

and (∑n δn e−ρtn )Lδ→ 0 as δ→ 0. �

Comments: The proof in Neyman [26] is done, in the finite case, for a uniform partition, but shows the robust-
ness with respect to the parameters (converging family of games).
This procedure of proof is reminiscent of the “direct approach” for differential games, introduced by

Isaacs [21]. To show convergence of the family of values vΠ: (i) one identifies a tentative limit value v and a RF
RF(v) and (ii) one shows that to play in the discretized game GΠ, an optimal strategy in RF(v) gives an amount
close to v for δ small enough.
For an alternative approach and proof, based on properties of the Shapley operator, see Sorin and Vigeral [37].
Remark that if k(t)� ρe−ρt , v(t , z)� e−ρtν(z) satisfies (17), iff ν(z) satisfies (29).

5. State Controlled and Not Observed
This section studies the game G, where the process Zt is controlled by both players but not observed. However,
the past actions are known: this defines a symmetric framework where the new state variable is the law of Zt ,
ζt ∈ ∆(Ω). Even in the stationary case, there is no explicit smooth solution to the ME, hence a direct approach
for proving convergence, as in the previous Section 4.2, is not feasible.
Here, also the analysis will be done through the connection to a differential game Ḡ on ∆(Ω) but different

from the previous one G, introduced in Section 4.
Given a partition Π denoted by GΠ, the associated game and again, since k is fixed during the analysis, we

will write VΠ for its value VΠ, k defined on �+ ×∆(Ω).
Recall that given the initial law ζtn

and the actions (itn
, jtn
)� (i , j), one has

ζ
i j
tn+1

� ζtn
∗Pδn (i , j), (30)

and that this parameter is known by both players.
Extend g(·, x , y) from Ω to ∆(Ω) by linearity: g(ζ, x , y)�∑

ζ(z)g(z , x , y).

5.1. Recursive Formula
In this framework, the recursive structure leads to:

Proposition 5.1. The value VΠ satisfies the following RF:

VΠ(tn , ζtn
)� valX×YEζ, x , y

[∫ tn+1

tn

g(ζs , i , j)k(s) ds +VΠ(tn+1 , ζ
i j
tn+1
)
]
. (31)

Proof. Standard, since GΠ is basically a stochastic game with parameter ζ. �
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5.2. Main Equation
Consider the differential game G on ∆(Ω) with actions sets I and J, dynamics on ∆(Ω) ×�+ given by

Ûζt � ζt ∗q(i , j),

current payoff g(ζ, i , j) and evaluation k.
As in Section 3, define the discretized mixed extension Ḡ

II
Π to X ×Y and let V̄Π be its value.

Proposition 5.2. V̄Π satisfies (31).

Proof. V̄Π satisfies (14) which is, using (30), equivalent to (31). �

The analysis in Section 3, Proposition 3.12 thus implies:

Proposition 5.3. The family of values VΠ converges to V unique viscosity solution in F of

0 �
d
dt

u(t , ζ)+ valX×Y[g(ζ, x , y)k(t)+ 〈ζ ∗q(x , y),∇u(t , ζ)]. (32)

5.3. Stationary Case
Assume k(t)� ρe−ρt . In this case, one has V(ζ, t)� e−ρtv(ζ), hence (32) becomes

ρv(ζ)� valX×Y[ρg(ζ, x , y)+ 〈ζ ∗q(x , y),∇v(ζ)〉]. (33)

5.4. Comments
A differential game similar to Ḡ, where the state space is the set of probabilities on some set Ω has been studied
in full generality by Cardaliaguet and Quincampoix [7], see also As Soulaimani [1]. Equation (33) is satisfied by
the value of the nonrevealing game in the framework analyzed by Cardaliaguet et al. [9], see Section 6.

6. Concluding Comments and Extensions
This research is part of the analysis of asymptotic properties of dynamic games through their recursive structure:
operator approach (Shapley [31], Rosenberg and Sorin [29]).
Recall that the asymptotic study for repeated games may lead to nonconvergence, in the framework of Sec-

tion 4 with compact action spaces, see Vigeral [41], or in the framework of Section 5 even with finite action
spaces, see Ziliotto [43] (for an overview of similar phenomena, see Sorin and Vigeral [36]).

The approach in terms of vanishing duration of a continuous-time process allows, via the extension of the
state space from Ω to ∆(Ω), to obtain smooth transition and nice limit behavior as the mesh of the partition
goes to 0.
A similar procedure has been analyzed by Neyman [26], in the finite action case, for more general classes of

approximating games and developed in Sorin and Vigeral [37].
The case of private information on the state variable has been treated by Cardaliaguet et al. [9] in the stationary

finite framework: the viscosity solution corresponding to (ME) involves a geometric aspect due to the revelation
of information that makes the analysis much more difficult. The (ME) obtained here in Section 4 corresponds
to the nonrevealing value that players can obtain without revealing their private information.

Let us finally mention three directions of research:
—the study of the general symmetric case, i.e., a framework between Sections 4 and 5 where the players

receive partially revealing symmetric signals on the state, Sorin [35],
—the asymptotic properties when both the evaluation tends to +∞ and the mesh goes to 0: in the stationary

case, this means ρ and δ vanishes. In the framework of Section 4, with finite actions spaces, this was done by
Neyman [26] using the algebraic property of Equation (29), see also related results in Sorin and Vigeral [37],
—the construction of optimal strategies based at time t on the current state zt and the instantaneous discount

rate k(t)/
∫

+∞
t

k(s) ds.
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