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Abstract The exponential weight algorithm has been introduced in the framework
of discrete time on-line problems. Given an observed process {Xm}m=1,2,... the input
at stage m + 1 is an exponential function of the sum Sm = ∑m

!=1 X!. We define
the analog algorithm for a continuous time process Xt and prove similar properties
in terms of external or internal consistency. We then deduce results for discrete time
from their counterpart in continuous time. Finally we compare this approach to another
continuous time approximation of a discrete time exponential algorithm based on the
average sum Sm/m.
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1 Presentation

We consider the exponential weight algorithm and its consistency properties in the ba-
sic prediction problem for individual sequences. The purpose of the paper is to define
a continuous time version of this algorithm and to prove that it satisfies analogous con-
sistency properties. In fact this proofs are rather short and one of the main advantages
of this approach is to deduce independently discrete time results from their continuous
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time counterpart. This interface between discrete time and continuous time processes
has been very effective for a long period, see e.g. [6]. However the approach is quite
different from the usual (asymptotic) approximation through differential equations (or
inclusions), see e.g. [3,4] for related examples. This is due to the choice of the state
variable of the process and is discussed in the last Sect. 6.

The model is as follows: {Xn} denotes a sequence of vectors in [0, 1]K . At each
stage n, a predictor having observed the past realizations X1, . . . , Xn−1, chooses a
component kn in K . The corresponding outcome is xn = Xkn

n . Denote the past history
(X1, k1, . . . , Xn−1, kn−1) by hn−1, and the induced σ -algebra by Hn−1. An algorithm
or a strategy σ in the prediction problem is specified by the choice of pn(hn−1) ∈ ∆(K )

(the simplex of IRK ), which is the law of kn given the past history hn−1. Note that the
law of Xn may also depend on hn−1.
Given a sequence {um}, let ūn = 1

n

∑n
m=1 um denote the average of the n first terms.

The average external regret evaluation at stage n is the vector rn = {rk
n }k∈K defined

by:

rk
n = X̄ k

n − x̄n .

It compares the actual (average) payoff to each payoff corresponding to a constant
component choice, see [8,9,11].

Definition A strategy σ satisfies external consistency if, for every process {Xm}:

max
k∈K

rk
n

+ −→ 0 a.s., as n −→ ∞.

Remarks (1) In the framework of a repeated finite I -person game defined by action
sets J i , i ∈ I , let M : J = ∏

i J i → IR be the payoff function of player 1, the
predictor. Here, K = J 1 and Xn is the vector M(., j−1

n ) ∈ IRK corresponding to
the payoff induced by the profile of actions j i

n by each player i, i %= 1 at stage n.
Usually M is known, and j−1

n announced to player 1 who then knows the vector
Xn . In the current situation one does not assume M known by player 1 (not even
J i , i %= 1), but only his own action set K , and the fact that all payoffs belong to
[0, 1]: he is just told the vector Xn .

(2) To obtain robust results no assumption is made on the sequence {Xn}: the pre-
dictor is not “Bayesian”.

The content of the paper is the following. Section2 recalls the main results concern-
ing the discrete time exponential weight algorithm. Section3 introduces the continuous
counterpart and its properties. Section 4 deduces, from the continuous time results, the
discrete time analogs: this gives an alternative simple proof of properties of the expo-
nentional weight algorithm. In Sect. 5 two extensions are described: restriction on the
information and internal consistency. Finally Sect. 6 discusses the relation between
discrete and continuous time, for algorithms based on the average sum Sn/n.
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Exponential weight algorithm in continuous time

2 The exponential weight algorithm: discrete time

Notation Given a vector x %=0 in IRK
+ , ![x] denotes its normalization in the simplex

∆(K ):

![x]k = xk

∑K
j=1x j

.

Definition The discrete exponential weight (EW ) algorithm (see e.g. [1,10,17]) with
positive parameter A, EW (A), is defined by pn+1(hn) = pn+1 = ![{pk

neAXk
n }k] or

equivalently

pk
n+1 = exp(A

∑n
m=1 Xk

m)
∑

j exp(A
∑n

m=1 X j
m)

.

Recall that pn+1 describes the law of the random choice kn+1.
An alternative definition is EW ∗(α),where α is a positive parameter, and pn+1 =
![{(1 + α)Sk

n }k] with Sn = ∑n
m=1 Xm .

For sake of completeness and to compare with the continuous time argument, we
reproduce the basic property, following [1].

Proposition 2.1 σ (n) = EW ∗(1/
√

n) satisfies conditional expected external consis-
tency in the following sense: there exists a constant M such that, for any component
k and any process {Xm}:

X̄ k
n − 1

n

n∑

m=1

Eσ (n)(xm |Hm−1) ≤ M/
√

n. (1)

Proof Let Wn = ∑
k(1 + α)Sk

n , hence (recall that 0 ≤ Xk
m ≤ 1)

Wn+1

Wn
=

∑
k

(1 + α)Sk
n (1 + α)Xk

n+1

Wn

=
∑

k
pk

n+1(1 + α)Xk
n+1

≤
∑

k
pk

n+1(1 + αXk
n+1)

= 1 + α〈pn+1, Xn+1〉.

It follows that

log
(

Wn

W0

)
≤ α

n∑

m=1

〈pm, Xm〉
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and
n∑

m=1

〈pm, Xm〉 ≥ 1
α

(Sk
n log(1 + α) − log K )

since Wn ≥ (1 + α)Sk
n , for all k in K .

Thus for α small enough one has

1
n

n∑

m=1

〈pm, Xm〉 ≥ X̄ k
n(1 − α/2) − log K/αn.

The choice of α = 1/
√

n leads to

max
k

X̄ k
n − 1

n

n∑

m=1

〈pm, Xm〉 ≤ M/
√

n

for some constant M .
Note that 〈pm, Xm〉 = Eσ (n)(xm |Hm−1) so that the above inequality gives the required
result. ,-

Obviously this implies:

Corollary 2.1 σ (n) satisfies expected consistency:

Eσ (n)

(
rk

n
+)

→ 0 as n → ∞.

One way to obtain almost sure convergence to 0 is to use the next basic martingale
property (see e.g. [13]).

Proposition 2.2 Let Um be a sequence of uniformly bounded (even in L2) random
variables on a probability space (Ω,F , P), adapted to a filtration Fm. Assume
E(Um |Fm−1) = 0, then

1
n

n∑

m=1

Um → 0 as n → ∞.

Let now σ be defined as follows: given a sequence nm going to ∞, use σ (n1) for
K1 ≥ n2/

√
n1 blocks of size n1 (where the entry on block m for running σ (n1) is

Xmn1+!, ! = 0, ..., n1 − 1) then inductively σ (nm) for Km ≥ nm+1/
√

nm blocks of
size nm . Propositions 2.1 and 2.2 thus imply the following result:

Theorem 2.1 σ satisfies external consistency.

Remarks (1) The optimal choice of the parameter, A or α, in Proposition 2.1, is a
function of the length n of the process (see the discussion in Sect. 6).

(2) To implement the algorithm the actual past play of the predictor (namely the
sequence {km}) is not used. (This property also holds true for other algorithms
like Fictitious Play or Smooth Fictitious Play [11]).
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Exponential weight algorithm in continuous time

(3) Invariance by translation: one can use the vector of total payoffs
{

Sk
n
}

k or the
vector of total regrets

{∑n
m=1 rk

m = Sk
n − ∑n

m=1 xm
}

k to define pn , since

pn+1 = !
[{

pk
neA(Xk

n+Yn)
}

k

]
for any Yn ∈ IR. This property is specific to the

exponential weight and is not shared by regret procedures based on Blackwell’s
approachability [5,14]).

(4) It is enough to satisfy a property like: for all n, there exists σ (n) such that

n∑

m=1

(
Xk

m − 〈pm, Xm〉
)

≤ o(n)

(uniformly in {Xm}) to obtain Theorem 2.1 by defining σ through concatenation
as above and then using Proposition2.2.

3 The multiplicative weight algorithm: continuous time

Given a measurable process Xt , t ≥ 0, with values in [0, 1]K , let St =
∫ t

0 Xsds = t X̄t .

Definition A measurable process pt ∈ ∆(K ) is a continuous time exponential weigth
algorithm (CT EW ) if it satisfies

pt = !
[{

exp
(
Sk

t
)}

k

]
.

Let Wt = ∑
k exp

(
Sk

t
)

so that pk
t Wt = exp

(
Sk

t
)
.

Theorem 3.1 Conditional expected external consistency holds for CTEW in the sense
that, for any T > 0 and any k:

1
T




T∫

0

Xk
s ds −

T∫

0

〈ps, Xs〉ds



 ≤ log K
T

.

Proof One has

Ẇt =
∑

k

exp
(

Sk
t

)
Xk

t =
∑

k

Wt pk
t Xk

t = 〈pt , Xt 〉Wt .

Hence

Wt = W0 exp




t∫

0

〈ps, Xs〉ds



 .

Thus, Wt ≥ exp
(
Sk

t
)

for every k, implies:

t∫

0

〈ps, Xs〉ds ≥
t∫

0

Xk
s ds − log W0.

,-
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Remark The interpretation is that the conditional law of the choice kt at time t , given
the past, is pt . Let xt = Xkt

t be the outcome at time t , then the average regret vector
at time t is

rk
t = X̄ k

t − x̄t

and the expectation of x̄t is given by

E(x̄t ) = E



1
t

t∫

0

〈ps, Xs〉ds



 .

The previous proof holds as well while replacing the integral St of the process by
the integral of the (conditional expected) regret Rt defined by

Rk
t =

t∫

0

(
Xk

s − 〈ps, Xs〉
)

ds.

Note that pt satisfies also

pt = !
[{

exp
(

Rk
t

)}

k

]
.

Let Vt = ∑
k exp

(
Rk

t
)
. Then:

V̇t =
∑

k

exp
(

Rk
t

) (
Xk

t − 〈pt , Xt 〉
)

=
∑

k

Vt pk
t

(
Xk

t − 〈pt , Xt 〉
)

= 0.

Hence Vt is constant and Vt ≥ exp Rk
t , for every k, implies

t∫

0

〈ps, Xs〉ds ≥
t∫

0

Xk
s ds − log V0.

The same computation as above extends to the following framework:

Proposition 3.1 Let P be a C1 function from IRK to IR with ∇ P ≥ 0 and %= 0, such
that xk → +∞, for some component k, implies P(x) → +∞. If pt satisfies

pk
t =

∇k P
({∫ t

0

(
X j

s − 〈ps, Xs〉
)

ds
}

j

)

∑
i ∇ i P

({∫ t
0

(
X j

s − 〈ps, Xs〉
)

ds
}

j

)

then conditional expected external consistency holds.
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Proof Let Rt be defined, as above, by

Rk
t =

t∫

0

(
Xk

s − 〈ps, Xs〉
)

ds.

One obtains, with Mt = ∑
i ∇ i P(Rt )

d
dt

P(Rt ) =
∑

k

∇k P(Rt )
(

Xk
t − 〈pt , Xt 〉

)

= Mt
∑

k

pk
t

(
Xk

t − 〈pt , Xt 〉
)

= 0

Hence P(R(t)) = P(0) so that each Rk
t is bounded from above and conditional

expected external consistency follows. ,-

The previous case corresponds to P(x) = ∑
k exp xk ; for similar “potential" ap-

proaches see [7,15].

4 Convergence

Given a discrete process {Xm} and a corresponding EW algorithm {pm} the aim is to
get a bound on

1
n

n∑

m=1

(
Xk

m − 〈pm, Xm〉
)

from an evaluation of

1
T

T∫

0

(
Y k

s − 〈qs, Ys〉
)

ds

where Yt is a continuous process constructed from Xm and qt is a CT EW algorithm
associated to Yt .

Proposition 4.1 Given a discrete time process {Xm} ∈[ 0, 1]K , m = 1, . . . , n, and
T > 0, there exists a measurable continuous time process {Yt } ∈[ 0, 1]K , t ∈ [0, T ],
such that

1
n

n∑

m=1

Xk
m = 1

T

T∫

0

Y k
t dt
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and

1
n

n∑

m=1

〈pm, Xm〉e−T/n ≤ 1
T

T∫

0

〈qt , Yt 〉dt ≤ 1
n

∑

m

〈pm, Xm〉eT/n

where {pm} is an EW (T/n) associated to {Xm} and qt is a CTEW associated to {Yt }.

Proof Let T > 0. Divide the interval [0, T ] into n subintervals with equal lenght δ =
T/n and define, from the discrete time sequence {Xm}, m = 1, . . . , n, the continuous
time process {Yt } on [0, T ] by the step function Yt = Xm for t ∈ [(m−1)T/n, mT/n).
Obviously

1
n

m∑

!=1

Xk
! = 1

T

mT/n∫

0

Y k
t dt.

Let { p̂t } be the continuous time process defined from a discrete one {pm} as above :
p̂t = pm for t ∈ [(m − 1)T/n, mT/n). Clearly also

1
n

n∑

m=1

〈pm, Xm〉 = 1
T

T∫

0

〈 p̂t , Yt 〉dt.

It remains to handle the difference between { p̂t } and {qt } which is a CT EW associated
to {Yt }. For this choose {pm} as the EW (T/n) associated to {Xm}. Then, for t ∈
[(m − 1)T/n, mT/n) one has on the one hand

p̂k
t = pk

m = Ŵ k
t

Ŵt

with Ŵ k
t = exp

[
(T/n)

∑m−1
u=1 Xk

u
]

= exp
( ∫ (m−1)T/n

0 Y k
s ds

)
and Ŵs = ∑

k Ŵ k
s and

on the other

qk
t = W k

t

Wt

with W k
t = exp

( ∫ t
0 Y k

s ds
)

and Wt = ∑
k W k

t .
Thus, since 0 ≤ Y k

s ≤ 1, one deduces

Ŵ k
s ≤ W k

s ≤ Ŵ k
s eδ

hence also

Ŵs ≤ Ws ≤ Ŵseδ
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so that

p̂k
s e−δ ≤ qk

s ≤ p̂k
s eδ

and



 1
T

T∫

0

〈 p̂s, Ys〉ds



 e−δ ≤ 1
T

T∫

0

〈ps, Ys〉ds ≤



 1
T

T∫

0

〈q̂s, Ys〉ds



 eδ

as well. ,-

We thus obtain an alternative proof of Proposition 2.1 that we recall:

Lemma 4.1 There exists a EW algorithm satisfing

1
n

n∑

m=1

(
Xk

m − 〈pm, Xm〉
)

≤ Mn−1/2.

Proof Given n, choose T = √
n so that:

- the bound in the continuous version is of the order 1/T = 1/
√

n

1
T

T∫

0

(
Y k

t − 〈qt , Yt 〉
)

dt ≤ log K√
n

- and the error term with the discrete approximation of the order of eδ − 1 ∼ δ =
T/n = 1/

√
n

1
n

n∑

m=1

〈pm, Xm〉 ≥ 1
T




T∫

0

〈qt , Yt 〉dt



 − L/
√

n

so that the result follows from Theorem 3.1 and Proposition 4.1.

,-

Remark The choice of T = √
n amounts to taking EW (1/

√
n), hence as in Sect. 3

the procedure is not uniform.

5 Extensions

The same analysis applies to similar setups. We consider briefly two of them: the case
of partial information where only the outcome xn is known and the internal consistency
criteria.
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5.1 Partial information

Consider the framework of Sect. 1 but where the vector Xn is not revealed ex-post,
only the actual chosen component xn is announced. The aim is to define an algorithm
having similar properties as in Sect. 2 but depending only on the available information.
We follow [1,2].
In discrete time, define inductively the vector X̂n by

X̂ k
n =

{
Xk

n
pk

n
if k = kn

0 otherwise.

Let γ ∈ (0, 1) be a parameter to be tuned later on and define first Ŝn = ∑n
m=1 γ X̂m/K ,

then

p̂k
n+1 =

exp
(

Ŝk
n

)

∑
j exp

(
Ŝ j

n

) .

Finally the strategy at stage n + 1 is

pk
n = (1 − γ ) p̂k

n + γ

K
.

Note that

E
(

X̂ k
n|X1, . . . , Xn

)
= Xk

n

and

xn = 〈pn, X̂n〉

hence it is enough, using Proposition2.2 to bound

1
n

n∑

m=1

(
X̂ k

m − 〈pm, X̂m〉
)

.

The analysis in continuous time is as follows.
Given {Xs}, let {X̂s} and {ps} satisfy

t∫

0

xsds =
t∫

0

pks
s X̂ ks

s ds =
t∫

0

〈ps, X̂s〉ds

pk
s = (1 − γ ) p̂k

s + γ /K

123



Exponential weight algorithm in continuous time

and p̂s be adapted to X̂s as in the usual CT EW . In particular one obtains

t∫

0

xsds ≥ (1 − γ )

t∫

0

〈 p̂s, X̂s〉ds

But, as in Sect. 3 one has for all k

t∫

0

〈 p̂s, X̂s〉ds ≥
t∫

0

X̂ k
s ds − C

hence finally one deduces:

Proposition 5.1

t∫

0

xsds ≥ (1 − γ )

t∫

0

X̂ k
s ds − C.

The corresponding discrete inequality is now

1
n

n∑

m=1

xm ≥ 1
n

[

(1 − γ )e−δK/γ
n∑

m=1

X̂ k
m

]

− C/T

with δ = T/n. The choice of T = 1/γ = n1/3 leads to:

Proposition 5.2 There exists M such that

1
n

n∑

m=1

(
X̂ k

m − 〈pm, X̂m〉
)

≤ Mn−1/3.

5.2 Internal consistency

Given a history hn , the average internal regret evaluation at stage n is defined by the
K × K matrix rn , with entries

rk!
n = 1

n

∑

m,km=k

(
X!

m − Xk
m

)

which corresponds to a comparison of the average payoff obtained on the dates where
k was chosen, to the payoff for some other fixed component, !, on these dates.
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Definition A strategy σ satisfies internal consistency if, for every process {Xm}:

max
k,!

rk!
n

+ −→ 0 a.s., as n −→ ∞.

Using an analog of Proposition 2.2 it is enough to show, for example, that the quantities

Qn(k, !) =
n∑

m=1

νk
m

(
X!

m − Xk
m

)

are of the order o(n), where νk
m stands for the conditional probability of playing k at

stage m given the past history.

We first prove a lemma on invariant measures.

Lemma 5.1 Given a matrix A ∈ IRK×K , let ψ(A) ∈ ∆(K ) be the unique solution of

ψ(A)k
∑

!

exp A(k, !) =
∑

!

ψ(A)! exp A(!, k).

Then ψ is Lipschitz continuous.

Proof Let ||.|| denote the maximal norm and let ||A − B|| = ρ. Then

exp B(k, !)e−ρ ≤ exp A(k, !) ≤ exp B(k, !)eρ ∀k, !.

Similarly with m(A) = ∑
k,! exp A(k, !), one has m(B)e−ρ ≤ m(A) ≤ m(B)eρ for

all k, ! hence

exp B(k, !)

m(B)
e−2ρ ≤ exp A(k, !)

m(A)
≤ exp B(k, !)

m(B)
e2ρ ∀k, !.

Since ψ(A) is the unique invariant measure of the transition matrix with coefficients
M(k, !) = exp A(k,!)

m(A) for k %= !, one deduces, by Theorem 7.2 (Corollary) in [18]

ψ(B)e−4Kρ ≤ ψ(A) ≤ e4Kρψ(B).

Hence for ρ small enough ||ψ(A) − ψ(B)|| ≤ 5Kρ. The constant being independent
of A, B the result obtains: there exists L with

||ψ(A) − ψ(B)|| ≤ L||A − B||.

,-
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The continuous time approach is as follows. Given Xt , let

St (k, !) =
t∫

0

µk
s

(
X!

s − Xk
s

)
ds

where µs = ψ(Ss) is the invariant measure associated to exp Ss and µk
s is the condi-

tional probability of playing k at time s.

Proposition 5.3 Under the above procedure, there exists a constant C such that

St (k, !) ≤ C ∀k, ! ∈ K , ∀t ≥ 0.

Proof Define

At =
∑

k,!

exp St (k, !)

so that

Ȧt =
∑

k,!

exp St (k, !)µk
t

(
X!

t − Xk
t

)
= 0

since the coefficient of Xk
t is precisely

∑

!

exp St (k, !)µk
t −

∑

!

exp St (!, k)µ!
t = 0

because µt = ψ(St ). Hence At = A0 = K 2 and each St (k, !) is uniformy bounded
from above. ,-

This property corresponds to conditional expected internal consistency.
The discrete procedure EW (A) is defined inductively through

νm+1 = ψ(AQm).

Proposition 5.4 For 4LT = log n, the discrete procedure EW (T/n) satisfies:

Qn/n ≤ M/ log n

hence internal consistency follows.

Proof Given a discrete process {Xm}, m = 1, . . . , n, let {Yt } be the associated step
process on [0, T ], as in Sect. 4. Hence one has, inductively

St (k, !) =
t∫

0

ψk(Ss)
(

Y !
s − Y k

s

)
ds.
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Define also Lm = (T/n)Qm which corresponds to EW (T/n) for {Xm}, hence induc-
tively

Qm(k, !) = Qm−1(k, !) + ψk((T/n)Qm−1)
(

X!
m − Xk

m

)

and let Lt be the continuous linear interpolation: for t ∈ [mT/n, (m + 1)T/n)

Lt (k, !) = (T/n)
[

Qm(k, !) + (t − mT/n)ψk((T/n)Qm)
(

X!
m+1 − Xk

m+1

)]
.

Thus Lt satisfies

Lt (k, !) − LmT/n(k, !) =
t∫

mT/n

ψk(LmT/n)
(

Y !
s − Y k

s

)
ds.

Hence one has

St (k, !) − SmT/n(k, !) −
[
Lt (k, !) − LmT/n(k, !)

]

=
t∫

mT/n

[
ψk(Ss) − ψk(LmT/n)

] (
Y !

s − Y k
s

)
ds.

Let ρ = 4LT/n ≥ 2 max{||ψ(Lt ) − ψ(LmT/n)||; mT/n ≤ t ≤ (m + 1)T/n}. Then,
using Lemma 5.1.

||St − Lt || ≤
t∫

0

2L||Ss − Ls ||ds + ρT

from which one deduces, by Gronwall’s lemma, that for t ∈ [0, T ]:

||St − Lt || ≤ ρT exp(2LT ).

Recall that St is bounded above by C hence

LT (k, !)/T ≤ C/T + (4LT/n) exp(2LT ).

It then follows, choosing 4LT = log n that

Qn/n ≤ M/ log n.

,-
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6 Comments

Let us compare several discrete procedures leading to consistency and their continuous
counterparts.

First consider procedures related to exponential evaluation.
The current one (EW ) builds on a state parameter zm = Sm for which the updating rule
is time independent: if zm is the state at stage m and ξm+1 the current observation at
stage m + 1, the new state is zm+1 = h(zm, ξm+1), (for example Sm+1 = Sm + ξm+1).
This applies to a family of procedures, see e.g. [8,9], however the precision of the
procedure depends on a parameter that is a function of the lenght of the process: it
is not uniform. In our case the optimal value of the parameter to handle the n-stage
problem is 1/

√
n. Hence to obtain consistency the parameter has to be time dependent.

Concerning the continuous time embedding, it has to be performed on a compact
interval. Note that in fact in our analysis, the approximation is through a sequence
of longer and longer intervals, of size T = √

n, with finer and finer discretization of
mesh T/n = 1/

√
n.

Another exponential evalution, but where the state variable is the average sum S̄m =
Sm/m is used in smooth fictitious play, see [11,12]. Explicitly pm is given by
!
[{

exp((1/ε)S̄k
m)

}
k

]
and the corresponding procedure satisfies (approximate) con-

sistency. Note that the udpdating rule requires the knowledge of the current stage;
namely zm+1 = 1

m+1 (mzm + ξm+1) = hm(zm, ξm+1). However this equation is a
special case of discrete dynamics of the form

zm+1 − zm = am+1 F(zn, ξm+1)

with
∑

an = +∞,
∑

a2
n < +∞ and F with bounded range. Hence, see [3,4] the

asymptotics of this dynamics can be studied using the asymptotics of the continuous
time process

ż(t) = (∈)G(z(t))

where G satisfies E(F(zm, ξm+1)|Hm) = (∈)G(zm). Thus there is no need to adapt
the coefficient to the lenght of the process.

The same study through continuous time processes applies to regret dynamics
[15,16] based on approachability [5] which satisfy consistency as well, but do depend
on the past behavior of the predictor, see [4].

It is interesting to notice that Blackwell’s original procedure, based on L2 norm,
when applied to the current framework (where one approaches an orthant) satisfies
positive homogeneity of degree zero. Hence p(hm) can be defined as a function of the
average regret rm or of the total regret mrm .

For extension to potential based algorithms, where the same machinery will work,
see [7,15].
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