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Abstract. We introduce the concept of e-consistent equilibrium where each
player plays a e-best response after every history reached with positive prob-
ability. In particular, an e-consistent equilibrium induces an e-equilibrium in
any subgame reached along the play path. The existence of e-consistent equi-
librium is examined in various repeated games. The main result is the ex-
istence in stochastic games with absorbing states.

1. Introduction

In this paper we elaborate on the notion of e-Nash equilibrium and introduce
a re®nement, e-consistent equilibrium. In an e-Nash equilibrium, instead of
playing a best response to the other players' strategies, each player is playing a
strategy that might be sub-optimal. However, any improvement results in an
extra gain of at most e.

There are three main justi®cations to e-equilibrium. In Radner (1986)
players have bounded computational capacity and therefore they cannot be
fully rational. For computational reasons players can ®nd only e-optimizing
strategies, rather than exact best responses. Under such constraints the best
one can hope for is an e-equilibrium. Radner shows that e-equilibrium allows
for cooperation in a ®nitely repeated prisoners' dilemma.

The other two justi®cations involve in®nitely repeated games. In®nite games
can be conceived as an approximation of unspeci®ed large ®nite games. Thus,
an equilibrium of the in®nite game is a pro®le which induces an e-equilibrium
in any su½ciently long truncation. Therefore, the longer the game lasts the
more precise the equilibrium gets. This is the idea behind the uniform property
described in Sorin (1990).

Finally, the game theoretical learning literature refers to processes that

Int J Game Theory (1998) 27:231±244



converge to an equilibrium. Far enough in each one of these learning pro-
cesses only e-equilibrium is achieved and not an exact equilibrium. In Kalai
and Lehrer (1993), for instance, players gradually learn other players' strat-
egies, but never get to fully know them. Thus, players optimize against strat-
egies that merely approximate the real ones. Therefore, the strategies played
generate an e-equilibrium.

Radner (1986) also mentioned an elaborate de®nition of e-equilibrium in
the ®nite repetition of the prisoners' dilemma game, where players, at each
stage of the game, are e-rational. That is, players are consistent: they take into
consideration the future normalized payo¨s they face and use e-optimizing
strategies at every period. This de®nition di¨ers from the traditional de®nition
in that in the latter there may exist events where players are not rational. Such
an event occurs with a small probability and therefore the overall e¨ect on
optimality is minor (i.e., at most e). In other words, the traditional de®nition
of e-equilibrium requires e-optimality only at the beginning of the game and
not during the play. Obviously, when referred to an exact optimality, both
requirements are equivalent. The additional consistency property requires that
the players will remain e-rational all the way through. The meaning of it is
that, whatever the history reached, as long as it is possible (i.e., having posi-
tive probability), each player is playing a best response up to an error of at
most e. The magnitude of the error depends on the payo¨ function de®ning
the continuation game. In a discounted game, for instance, if at any stage the
payo¨ function of the continuation game is not normalized and it is just the
remaining payo¨ from this stage on, then the e-consistency requirement is
vacuous in the long run. This is so because without normalization all con-
tinuation payo¨s will be asymptotically less than e. Therefore, any strategy
in the continuation game will be e-consistent. In order for the e-consistency
requirement to bear some content, the payo¨ function should be de®ned at
each stage of a discounted game, as if the game starts at this stage.

We introduce an e-consistency requirement which may be reasonably
applied to discounted games as well as to others. We examine the issue of
existence in repeated games with and without complete information. There is
one instance where the e-consistency requirement might create problems of
nonexistence. This is the case of stochastic games.

The problem of existence of an equilibrium in general two-player stochas-
tic games is still open. However, there is a class of stochastic games where the
existence of an equilibrium is proven. Vrieze and Thuijsman (1989) showed
that in games with absorbing states there is an equilibrium payo¨, in the sense
that there is a payo¨ sustained by an e-equilibrium for every e. But the e-
equilibria they de®ned are not e-consistent. This is so because the strategies
used involve punishments, which are not necessarily rational and that may
have to be executed with a positive probability. The last section of this paper
considers stochastic games with absorbing states and shows that e-consistent
equilibrium does exist for every e.

2. e-Equilibrium

There are two main distinct purposes for studying e-equilibria and we will ®rst
present them.
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2.1 Normal form games

We recall the traditional de®nition of e-equilibrium in an n-person strategic
form game G. Let player i 's set of actions be S i. Set set S � xi S

i and denote
player i's payo¨ function by gi; gi : Sÿ!R for i � 1; . . . ; n.

De®nition 1. A pro®le s A S is an e-equilibrium if for every player i and for
every ti A Si

gi�sÿi; ti�U gi�s� � e:

g�s� is then an e-equilibrium payo¨. We denote by Ee the set of all e-equilibrium
payo¨s.

The following example shows that there may be a payo¨ that is not an
0-equilibrium payo¨ and at the same time is the limit of e-equilibrium payo¨s.

Example 1. Consider the following two-player symmetric game, where S i �
�0; 1�, i � 1; 2. The payo¨ functions are de®ned as follows:

g1�s1; s2� �
2s2 ÿ s1 if s1 > s2

ÿ1 if s1 � s2,

s1 if s1 < s2

8<: and g1�s1; s2� � g2�s2; s1�:

In this example no payo¨ near (1,1), that can only be induced by a choice of
moves near (1,1), is a 0-equilibrium payo¨ (i.e., it is not a Nash equilibrium
payo¨). However, (1,1) can be approximately by an e-equilibrium payo¨s for
any positive e.

In such games the following de®nition makes sense.

De®nition 2. x is an extended equilibrium payo¨ if for every e > 0 there exists
an e-equilibrium which induces a payo¨ within an e from x. Formally, the set of
all extended equilibrium payo¨s is E0 �7

e>0 
Ee.

According to De®nition 2, (1,1) is thus an extended equilibrium payo¨ in
Example 1.

This notion can be justi®ed in terms of robustness: either by considering
small departure from rationality or by allowing for small perturbations of the
payo¨s and uncertainty.

It is also a natural extension of the notion of value in two person zero-sum
games: the value exists as soon as both players have e optimal strategies, for
any e > 0, even if there exists no exact equilibrium, see Tijs (1981).

2.2 Undiscounted repeated games

We consider here an in®nitely repeated game where gi
n denotes the average of

player i's payo¨ in the n ®rst periods of the repeated game. If the overall
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payo¨ is de®ned on plays (e.g., in ®nitely repeated games, in discounted games
and in undiscounted games with payo¨s de®ned by the limsup) the de®nition
of the previous subsection applies. We deal here with the case where the pay-
o¨ is not de®ned on play paths. Nevertheless, one can de®ne an e-equilibrium
as follows.

De®nition 3. A pro®le s is a uniform e-equilibrium (with payo¨ gi�s�i �
1; . . . ; n) if the gain from deviation is uniformly bounded by e from some stage
on. That is:

bN such that Em VN; Et A S; Ei; gi
m�sÿi; ti� ÿ eU gi�s�U gi

m�s� � e:

We then call g�s� an e-equilibrium payo¨ and write Ee for the corresponding
set.

We now use this de®nition to introduce the notion of equilibrium payo¨
and uniform equilibrium in repeated games (see also Mertens, Sorin and
Zamir (1994)).

De®nition 4. x is a uniform equilibrium payo¨ if for every e > 0 there exists
uniform e-equilibria s�e� with payo¨ g�s�e�� within an e from x. The corre-
sponding set is E0 �7

e>0 
Ee.

s is a uniform equilibrium sustaining the payo¨ x if s is a uniform e-
equilibrium with payo¨ g�s� � x, for every e > 0.

In other words, the same pro®le of strategies, s, is adapted to any e > 0.
Notice that in order to exhibit the e-optimality property it may require taking
the average payo¨ over a larger number of stages when e becomes smaller.

3. Consistency

3.1 Motivation

De®nition 1 of e-equilibrium allows for small probability events where players
do not act in a rational manner.

In multistage games it means that there might be decision nodes, reached
with positive probability, where players do not necessarily optimize. For in-
stance, with some positive probability players may by mistake punish another
player and thereby hurt themselves. Such a problem does not arise when
dealing with exact equilibrium: optimality at the root implies optimality at all
the nodes reached with a positive probability. The concept of e-consistency
captures the idea that the players remain e-optimal along any play path. In
other words, in an e-consistent equilibrium players play e-best response to
their opponents' strategies after every history having a positive probability.

Consider an n-player multi-stage game G. A history h in G is a sequence
of moves (of the players and of nature) up to some stage. Denote by H the set
of all histories in G. To de®ne consistency we have to evaluate the situation
after any history. We divide the discussion into two cases depending on
whether after every history a subgame is reached or not.
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3.2 Subgame

Assume that at each h corresponds a subgame G�h�, namely the strategies in G
induce strategies in G�h� (h is public knowledge) and there is a corresponding
payo¨ g�h�. In this framework one has the following:

De®nition 5. A pro®le s is an e-consistent equilibrium if there exists a set P of
plays having probability 1 under s satisfying:

(C) For every h compatible with P (i.e., such that there exists a play in P
having h as pre®x), s�h�, the strategy pro®le induced by s in G�h�, is an e
equilibrium in G�h�.

Note that if one asks for s�h� to be an e-equilibrium in any subgame G�h�
one has the de®nition of e-(subgame) perfect equilibrium.

The continuation payo¨s have a major role in the matter of the best re-
sponse. In order to exemplify this role, let G be a repeated game, h be a public
history compatible with P and let h0 be a play in the subgame G�h�. Denote by
hh0 the concatenation of h and h0. Thus, hh0 is a play in G. In case the game is
of an undiscounted nature, like when the payo¨ is de®ned as the limsup of the
stage payo¨ or of the average payo¨, the continuation payo¨ is simply de®ned
as gi�hh0�. However, in case the game is discounted, the continuation payo¨
cannot be de®ned in a similar fashion. The reason is that if gi�h��h0� is de®ned
as gi�hh0�, then all payo¨ variations are smaller than e for long enough his-
tories. Thus, any e-equilibrium would satisfy the e-consistency requirement for
long enough histories h.

Let li be player i's discount factor. The payo¨ gi in G is given byP�1ÿ li��li�mgi
m, where g

i
m is player i's payo¨ at stage m. The natural way to

de®ne the payo¨ function in the continuation game G�h� is gi�h��h0� �
�li�ÿjhjgi�hh0�, where jhj is the length of history h.

The following example exhibits an equilibrium payo¨ which is not an e-
consistent payo¨ for e small enough.

Example 2. This is a one person decision problem. The action am at each

stage m is either 0 or 1 and the corresponding payo¨ is 
Py

m�1�1ÿ l�lm

amI Py

m�1 am<yf g. It is clear that for e small enough, e-consistency would

require to play am � 1 at each stage. Hence there is no e-consistent strategy.

In the framework of an in®nitely undiscounted repeated game G , s is a
uniform e-consistent equilibrium if s�h� is a uniform e-equilibrium in G�h�, for
all h compatible with s, where we de®ne gi�h��h0� as gi�hh0�. Similarly, s is a
uniform consistent equilibrium if it is a uniform e-consistent equilibrium for
all positive e.

A typical example of uniform e-consistent equilibrium in a repeated game
of complete information (supergame) is the stationary strategy which consists
of playing repeatedly some e equilibrium of the stage game.

3.3 Extensions

The previous section covers the case of repeated games with complete in-
formation (supergames) and with standard signaling, as well as stochastic
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games (where the moves and states are announced). In both cases subgames
exit. However, there are natural situations where no subgame exists.

A ®rst class of games without subgames are games with private signals.
After each move every player obtains a private signal which contains his own
move, but not others'. Given player i's private history, hi (i.e., a sequence of
signals player i received), he can compute a best reply against the behavior
induced by sÿi, given h

i. Notice that sÿi typically does not induce after h
i a

pro®le of opponents' strategies. Rather it induces a distribution on the prod-
uct set of the opponents' strategies. Nevertheless, the best response is com-
putable.

A second important class of games, where the best response is computable
and there are no subgames, consists of games where the sequence of moves is
publicly known but the state which determines the payo¨s is not. Games with
incomplete information are prominent examples. The types of the players and
the corresponding signals are chosen once and for all by an initial lottery.
When the outcome of the lottery is not publicly known, there are no sub-
games. However, given the strategies and a public history h that has a positive
probability, all players can compute the conditional probability on the state
space ± the new state variable ± and the strategies for the future given h.
Hence the subgame G�h� does not exist. Yet, the best response to the expected
behavior induced by sÿi is computable by player i.

Finally one can consider more general repeated games where all types of
private information exist. A play is then a sequence of states, moves, and pri-
vate signals. The pro®le of strategies s and an initial probability, p, over the
individuals' types induce a probability distribution on the set of plays. For any
private history of player i an e-best reply, given the conditional behavior on
plays induced by sÿi and p, is computable.

De®nition 6. A pro®le of strategies s is an e-consistent equilibrium if there exists
a sep P of plays having probability 1 under s satisfying:

(C 0) For every i and every player i's private history hi, compatible with P
(i.e., such that there exists a play in P having hi as its pre®x), si�hi�, player i's
strategy induced by si after hi, is an e-best response to the distribution induced
by sÿi in the continuation of the game.

Let h be a history of moves. Note that De®nition 6 does not require the
existence of subgames. The requirement that s�h� is an e-equilibrium in any
subgame G�h� reached with a positive probability is less demanding than what
e-consistency requires. On the other hand, in games with complete informa-
tion (i.e., when all subgames are well de®ned), the statement s�h� is an e-
equilibrium in any subgame G�h� reached with a positive probability is
equivalent to e-consistency.

4. Existence in various repeated games

We will now examine the existence of an e-equilibrium is some classes of
repeated games. Notice that in ®nitely repeated games and in games with dis-
count factors, the strategy spaces are compact and the payo¨ functions are
continuous (with respect to the product topology). Thus, Nash Theorem
applies: 0-equilibrium exists.
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4.1 Undiscounted supergames

In undiscounted in®nitely repeated games with complete information (super-
games) the folk theorem can be stated as follows (see e.g., Sorin (1990)): for
any feasible and individually rational payo¨, x, there exists a uniform equi-
librium s sustaining x. Moreover, s is pure on the path it induces and s�h� is a
uniform equilibrium sustaining x for any history having positive probability.
In other words, s induces in any subgame compatible with itself a uniform
equilibrium sustaining x. Hence it is a uniform consistent equilibrium. In fact,
one could even obtain similar properties for perfect equilibrium.

4.2 Incomplete information on one side

In undiscounted in®nitely zero-sum repeated games with incomplete informa-
tion on one side and signals, the proof of the theorem of Aumann and
Maschler (1995, p. 191) implies the existence of a uniform consistent equilib-
rium. The informed player plays i.i.d. after some initial splitting and the
uninformed player plays optimally in a sequence of games of ®nite length (see
also Mertens, Sorin and Zamir, 1984, p. 227±228).

In undiscounted in®nitely non zero-sum repeated games with incomplete
information on one side and standard signaling, we use Hart's (1985) charac-
terization of the set of extended equilibrium payo¨s. For any equilibrium
payo¨ x, there exists a uniform equilibrium sustaining it. Furthermore, after
any history h, having positive probability, s�h� is a uniform equilibrium in the
game starting at h with new probability p�h�. The strategy s�h� sustains x�h�,
which may di¨er from x (x is a weighted averages of x�h�'s across histories of
the same length). Hence again, there exist uniform consistent equilibria.

Finally, recall that, with lack of information on both sides, the value may
not exist, even in the standard signaling case. In particular, e-consistent equi-
librium may not exist.

4.3 Stochastic games

In contrast to the previous two models of repeated games, in undiscounted
stochastic games, even in the zero-sum case, a uniform equilibrium sustaining
the value generally fails to exist. However, by de®nition, the existence of a value
(Mertens and Neyman, 1981) implies the existence of a uniform e-equilibria
with a payo¨ near the value, for every e. Moreover, the structure of the strat-
egies implies that they are also e consistent, and even more, e perfect (see
Mertens, Sorin and Zamir, 1994, 3.b.1, p. 397).

In the non zero-sum case, the existence of an equilibrium payo¨ is known
for two-player games with absorbing states (Vrieze and Thuijsman, 1989).
However, the strategies they constructed in order to prove this fact involve
randomization and punishment on a set of histories with a positive proba-
bility. Thus, there are histories with positive probability along which the
strategies de®ned are not optimal. In other words, the strategies Vrieze and
Thuijsman introduced are not e-consistent. The next section is devoted to the
proof of existence of e-consistent equilibria in this framework.
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5. e-Consistency in games with absorbing states

5.1 Games with absorbing states: The main result

Let us ®rst recall brie¯y the model. Two players, I and II, play the following
game. There is an I � J matrix, where each entry �ij� is either non absorbing
or absorbing. At each stage player I chooses some i A I and player II chooses
some j A J. If the entry �ij� is non absorbing, the stage-payo¨ is aij A R2, the
state is not changed and the game is repeated. If, however, an absorbing
entry is reached, then with some positive probability yij, the payo¨ is bij A R2

forever, and otherwise (with probability 1ÿ yij) the game is repeated. It turns
out that the stage payo¨ in this last event is irrelevant for the asymptotic re-
sults, like the ones we deal with. Note that the state can change at most once
in this game.

We assume that after each stage the moves are announced and we consider
the undiscounted in®nitely repeated game (see e.g., Blackwell and Ferguson
(1968), Kohlberg (1974), Mertens and Neyman (1981) and Vrieze and
Thuijsman (1989)).

Our main result is stated in the following theorem.

Theorem. In any stochastic game with absorbing states there exists an e-
consistent equilibrium for every e.

5.2 Absorbing states: Review of existing results

We denote by X and Y the sets of mixed actions of players I and II, re-
spectively, and by A the set of absorbing entries. A pair of mixed moves (or
stationary strategies) �x; y� A X � Y is absorbing if its support contains an
absorbing entry and is non-absorbing otherwise. In case �x; y� is absorbing
the payo¨, g�x; y� � �gI �x; y�; gII �x; y��, associated to �x; y� is de®ned asP

�ij� AA xiyjyijbij=
P

�ij� AA xiyjyij, which is the expected payo¨ given absorp-

tion. Otherwise, the payo¨ is de®ned as 
P

ij xiyjaij.
Vrieze and Thuijsman (1989) proved the existence of a uniform equilib-

rium payo¨ (see also Mertens, Sorin and Zamir (1994), pp. 406±408). The key
idea is to have the players play stationary strategies and punish (forever) if
after some stage the empirical frequency of moves is too far from the distri-
bution of the strategy.

More precisely, there are two cases:
(i) Players I and II play repeatedly �x; y� that has the following property:

Any absorbing deviation is self punishing. That is, if �x0; y� is absorbing, then
gI �x0; y�U gI �x; y� (and a similar inequality for II). To take care of other kind
of deviations, denote by xn the empirical frequency of moves of player I up to
stage n. If at some stage n VN, kxn ÿ xk1 V e, player II reduces player I's
payo¨ to his max min, denoted by wI , and similarly for yn and w

II . (This
punishment is what makes the strategy not e-consistent.) The equilibrium
payo¨ is �cI ; cII � � g�x; y�.

(ii) Player I plays x i.i.d. and player II plays an i.i.d. mixture �1ÿ e; e� of y
and z, both in Y, with �x; y� non absorbing and �x; z� absorbing. Any ab-
sorbing deviation of player II (versus x) is self-punishing, as well as any ab-
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sorbing deviation of player I versus y. As above, player II punishes player I as
soon as at some stage n, larger than some N1, the frequency xn is far from x by
more than e, while player I punishes player II from some stage N2 on (since
the game is likely to be over before that stage if �x; z� were used.) The equi-
librium payo¨ is �cI ; cII � � g�x; z�.

5.3 Properties of optimal strategies

Assume that all payo¨s are bounded in absolute value by one.
Let 1 > e > 0, and let s be an e2-optimal strategy of player I (the max-

imizer) in a two person zero-sum absorbing game, with value v. Hence, by
de®nition, there exists an N such that for every strategy t of player II, n VN
implies

gn�s; t�V v ÿ e2 �1�

We will later use the following property �P1�:
``an e2-optimal strategy s may depend only on the moves of player II'', see

Kohlberg (1974) or Mertens, Sorin and Zamir (1994, p. 397).
Given an history h (which is a sequence of moves) s�h� denotes the induced

strategy after h. One can also choose s so that the following property �P2�
holds:

``s�h� is e2 optimal in the subgame after h'', see again Mertens, Sorin and
Zamir (1994, p. 397).

We claim that (1) implies that, as soon as the probability of reaching an
absorbing payo¨ is high enough, the corresponding expected absorbing payo¨
is near v. To be more precise, let y be the stopping time corresponding to the
entrance in an absorbing state (i.e., y is the absorption time), and by gn the
payo¨ at stage n.

Lemma 1. Let s be an e2-optimal strategy of player I. Then, for any stage n and
any strategy t of player II,

Ps;t�yU n��Es;t�gyjyU n� ÿ v�Vÿe2 �2�
Proof. Otherwise, if the quantity on the left of (2) is less than ÿe2 ÿ 2d, for
some d > 0, and if after stage n player II uses a d optimal strategy, the
expected average payo¨ for m large enough will satisfy gm�s; t�U
Ps;t�yU n�Es;t�gyjyU n� � Ps;t�y > n��v � d� � n=m U v ÿ e2 ÿ 2d�d � n=m.
This contradicts (1). 9

In particular Lemma 1 implies that for any stage n and any t:

Ps;t�yU n� > e) Es;t�gyjyU n�V v ÿ e �3�

We now de®ne the strategy ~s, that will be useful in the proof of the Theo-
rem, as follows: Play s and, as soon as Ps;t�yU n� > e, start over, namely play
as if the game is at the beginning.

Lemma 2. The strategy ~s is 3e-optimal strategy as soon as s is e2-optimal.
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Proof. Let N1 be such that �1ÿ e�N1 U e, then for n VN �N1=e one has
gn�~s; t�V v ÿ 3e, for all t.

Call block a sequence of stages where s is played from the beginning. Re-
call that if the length of the block is greater than N the ``block payo¨ '',
namely the average payo¨ on this block, conditional to non absorption at the
beginning of this block, is at least v ÿ e (see (1).)

Let m1 denote the beginning of block N1 � 1 and m2 � min�m1; n�. Recall
that this number depends only on the moves of player II �P1�. Thus, after
stage m1, player I started over playing s more than N1 times hence the prob-
ability of absorption is at least �1ÿ e�. Moreover, the absorbing payo¨ is at
least v ÿ e (by (3)). So that the stage payo¨ after m2 is at least v ÿ 2e.

Now there are less than N1 blocks before m2, the relative size of the blocks
where the block payo¨ is less than v ÿ e is by (1) at most N �N1=n, which is
less than e. As for the absorbing part of the stage payo¨, as above, if its
probability is larger than e, its amount exceeds v ÿ e. 9

Recall that one can assume �P2� : ~s�h� is also 3e-optimal; hence one has,
using the analogous of (2):

Lemma 3. If after some history h the probability that for some j, �~s�h�; j� is
absorbing is greater than e1=4, then the corresponding absorbing payo¨, at this
stage is at least v ÿ e1=4.

When the probability that �~s�h�; j� is absorbing, is greater than e1=4 for all j
we call it case �Q�. In case �Q� playing i.i.d. the mixed action s# � ~s�h� will
guarantee v ÿ e1=4 to player I.

5.4 The proof of the Theorem

5.4.1 The idea of the construction

Call deviation situation, a history on which the empirical frequency of moves
di¨ers signi®cantly from the theoretical one, given the equilibrium strategies.
Punish after such a situation will violate consistency since it can occurs with
positive probability on the equilibrium path. In equilibrium the occurrence
of in®nitely many such situations has probability zero. On the other hand, a
deviation is pro®table only if it induces in®nitely many such deviation situa-
tions. The idea is thus to punish with a small positive probability after any
such deviation situation in order to avoid absorbing punishment having high
probability. This is done by playing the punishing strategy for a ®nitely many
periods and returning to the equilibrium path. However, if the absorbing
probability is very small, the punishment may turn ine¨ective. To cope with
this problem, we use the following procedure: at any time the punishment
strategy is used after a deviation situation, it remembers all previous histories
of past punishment rounds. That is, at any new punishment round the pun-
ishing strategy is not started from the beginning. Rather, the continuation of
the strategy is played, taking all previous punishment rounds as the relevant
history. In so doing, the punishing player can control the absorbing part of the
payo¨ of his opponent.
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5.4.2 The construction

Let us ®rst consider case (i), mentioned in 5.2. If the couple �x; j� is absorbing
for any j in the support J�y� of y, then the strategy for I is simply to play
x i.i.d. as long as the moves of player II are in J�y� and to punish forever
otherwise.

Lemma 4. Assume that there exists j0 A J with �x; j0� non absorbing. For any
d > 0, there exists a strategy s0 of player I which satis®es the following.
(1) bN0 such that for all n VN0 the expected average payo¨ of player II up to
stage n is less than cII � d. Moreover, the absorbing payo¨ at stage n is also less
than cII � d, if the total probability of absorption up to stage n is more than d.
(2) Given any history h, there exists a move jh of player II such that the con-
ditional probability of absorption (i.e., the probability of absorption at this stage
conditional on non-absorption until that stage) against s0h (the mixed move in-
duced by s0 after the history h) is less than d.

Proof. Consider the strategy ~s of player I in the game where he minimizes
player II's payo¨, as constructed in 5.3, for e small enough.

In case �Q�s0 de®ned as playing i.i.d. the mixture e~s� �1ÿ e�x will still
prevent a payo¨ greater than gII �x; y� � cII (up to some error term), since the
absorbing payo¨ against x is less than cII . Moreover, (2) is satis®ed with j0
when e is su½ciently small.

If case �Q� does not hold, s0 is simply de®ned as ~s with e1=4 < d. 9

Choose M1 > 1=d so that the probability that by playing y i.i.d. the event
A � fkyn ÿ ykV dg occurs for some n VM1 is less than d.

De®ne the strategy s� of player I as follows. Play x i.i.d. for M1 stages.
Then keep playing x i.i.d. until the event A occurs. If A happens for the ®rst
time at stage m1, player I uses s

0 from stage m1 � 1 until some stage m1 � p1
where p1 is de®ned as follows. First let M1 � max�N0;M1=d�, then denote by
m1 the ®rst stage where the conditional probability of absorption since stage
m1 exceeds d, and ®nally let p1 � min�M2; m1�. Player II uses at each stage
between m1 and m1 � p1 given the history h the move jh, de®ned in Lemma
5(2). Denote by h1 the sequence of moves in the ®rst punishment block (i.e.,
between m1 � 1 and m1 � p1).

We refer to the period before m1 as the ®rst regular block and call it short if
m1 � M1 and long otherwise. Similarly, the period between m1 and m1 � p1
where s0 is used (it is the ®rst punishment block) is called absorbing if p1 < M2

and transient otherwise.
Then, player I starts again playing x i.i.d. and computing the frequency of

moves of player II from stage m1 � p1 on.
If for the second time at some stage m1 � p1 �m2 Vm1 � p1 �M1 the

event A occurs (i.e., the frequencies of the moves of player II between stages
m1 � p1 and m1 � p1 �m2 di¨er from y by more than d) player I uses again s0,
taking h1 as the initial history. Again this lasts for M2 stages unless the con-
ditional absorption probability since stage m1 � p1 �m2 reaches d. Call the
sequence of moves in the second punishment block h2. Then player I switches
once again to x i.i.d., and so on.

The strategy s� is de®ned inductively. After a deviation situation s0 is used
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in a punishment block while taking as past history the concatenation of all
past histories along all previous punishment blocks (i.e., h1; h2; . . .).

Similarly the event B and the strategy t� for player II are de®ned. In case A
or B occur simultaneously during a regular block (i.e., a deviation situation
occured for both players), then only player I will punish.

Lemma 5. The pair �s�; t�� is an h-consistent equilibrium, for h � 5d.

Proof. We consider now player II's payo¨ from some stage n on, given a cer-
tain history h, conditional on y > n.

Since the strategy of player I does not depend on his own moves �P1�, we
can assume the same for player II and compute the payo¨ for a pure strategy
of player II (i.e., a sequence of moves).

Note that on a long regular block, the block payo¨ is at most cII �
d� 1=M1, because until the last stage A did not occur. Now, if a regular block
is short and the following punishing block transient, the average payo¨ on
both blocks is at most cII � d� d, since the size of the ®rst block relative to the
second is d.

Finally, if a punishment block is absorbing, then absorption occurs with
probability of at least d. De®ne K such that dV �1ÿ d�K and N �
�K � 1��M1 �M2�=d. Let us compute gII

m �h� for m > N.
Provided that the players use �s�; t��, the probability of absorption during

a speci®c block is at most 2d (by the construction of the strategies ± the play
during the punishment blocks, and due to part (2) of Lemma 5). Moreover,
the probability that A or B will occur in some subsequent regular block is at
most 2d. If neither A nor B occur, then the payo¨ is within d of cII . Thus
gII

m �h� exceeds cII ÿ 5d.
Now, for any strategy t of player II, with probability at least �1ÿ d�, the

non absorbing contribution of the short regular/transient punishing blocks is
less than d, by the choice of N. Indeed if there are more than K such blocks
absorption occurs with probability greater than 1ÿ d and otherwise the num-
ber and the size of these blocks are bounded. The result follows from the
choice of N. For the other pairs of blocks, as seen above, the average payo¨ is
less than cII � 2d.

It remains to recall that, since the punishing strategy has memory, the
absorbing payo¨ is at most cII � d, as soon as the corresponding probability
exceeds d. Thus gII

m �h� is less than cII � 5d.
The strategies are, therefore, 5d-consistent.
Finally, concerning case (ii) of 5.2, the analysis is very similar. Explicitly,

the behavior of player II will be the same as above, while player I will consider
regular blocks of ®xed size M3, where M3 is such that under x and �y; z� the
probability of absorption exceeds �1ÿ d�, and then use s for M2 stages and
starts the new block as above. 9

6 Concluding remarks

6.1 On the existence of e-equilibrium

There is only one class of non-zero stochastic game where the existence of an
equilibrium is established. This is the class of games with absorbing states. In
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this class we proved the existence of e-consistent equilibrium. We could not
®nd an example of a stochastic game where e-equilibrium exists and no e-
consistent equilibrium exists.

However the problem is di¨erent when considering e-consistency for sub-
classes. For example the di¨erence between the existence of an e-optimal sta-
tionary strategy given some initial state or for any initial state reduces, within
the class of stationary strategies, to the di¨erence between e equilibrium and
e-consistent equilibrium. One case where the results di¨er is the positive or
recursive game with countably many states studied in Nowak and Raghavan
(1991).

6.2 Consistency and subgame perfection

The concepts of e-consistency and subgame perfection have the same spirit.
Both require some degree of rationality not only at the beginning of the game
but also during the game: subgame perfection requires perfect rationality in
any subgame and consistency requires e-rationality after every history having
positive probability. Since consistency is restricted to positive probability his-
tories we could de®ne it for every such history regardless whether a subgame
exists there or not. This cannot be done with zero-probability histories, because
the expected opponents' strategy is not well de®ned. In case of zero-probability
histories one has to arti®cially introduce distributions over zero-probability
event, like in Bayesian perfect equilibrium or in sequential equilibrium.

6.3 Ex-ante vs. ex-post rationality

Monderer and Samet (1996) compared two information structures on the
same space in a one-shot game with incomplete information. Two structures
are said to be close to each other if any equilibrium in one can be approxi-
mated by an e-equilibrium in the other. However, the notion of e-equilibrium
can be understood in two ways. The ®rst is that each participant plays his
e-best response when expected payo¨ is computed across all possible signals
that the player may receive. In other words, players e-optimize with respect
to the information structure before getting any additional data about the
realized state. This is the ex-ante approach. The second way to understand e-
equilibrium is that each participant always takes his e-best response, knowing
the realized state. This is the ex-post interpretation. Monderer and Samet
adopted the latter. The ex-post type of e-equilibrium coincides with the e-
consistent equilibrium in case there are at most countably many states.

In case of an uncountable set of states, our de®nition requires that on a set
of states having probability 1 each player will take his e-best response. This
de®nition allows for a small set where players are not e-rational. Thus, in
ex-ante e-equilibrium each player is on average e-rational. In contrast, e-
consistent requires that each player is almost surely e-rational.
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