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Strategic market games describe mechanisms of formation of prices and of
redistribution of goods. We introduce here a model without commodity money but
where the use of fiat money does not imply the possibility of debt, hence the
necessity for penalty. This is done through a collection of exchange rates that allows
for a coherent price system and a redistribution that clears the market for any
initial bids of the agents. Journal of Economic Literature Classification Numbers:
C72, D51, E31. � 1996 Academic Press, Inc.

1. Presentation

We are dealing with the basic problem of redistribution of goods in the
framework of an exchange economy. Following the literature on strategic
market games (initiated by Shapley [12], Shubik [14], and Shapley and
Shubik [13]), we model this procedure by describing explicitly the
behavior of the agents and the corresponding process of formation of prices
and exchange of goods.

There is first a mechanism (game form), where the agents are the players
and their strategies are signals (in term of money and�or commodities
to buy or sell on each trading post), which specifies as outcome a new
allocation of the quantities announced. Price appear at this stage as an
interim technical device.

Once endowments and utilities are added to the model, one can describe
the set of feasible strategies for each player and evaluate the outcome in
terms of utilities: one faces a strategic game.
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One could very schematically classify the existing models of strategic
market games according to the following three categories:

(i) Models with commodity money (Shapley [12], Shapley and
Shubik [13], Dubey and Shubik [5], Dubey and Shapley [4]). Assume
that there are m+1 commodities; one good (say good m+1) is
exchangeable for any of the others, it may have utility of its own and it is
the sole medium of exchange. Hence there are m trading posts, correspond-
ing to all exchange markets between good i, i=1, ..., m, and good m+1,
where each agent can bid a quantity of good i for sale or of commodity
money m+1 for buying.

All bids are real (cash in advance) so that there is no possibility
for default and no need for penalty rules. Moreover all markets operate
independently in term of prices and final utilities.

(ii) Models with fiat money (Shubik and Wilson [15], Postlewaite
and Schmeidler [10], Mas Colell [6], Peck and Shell [7, 8], Peck et al.
[9], Dubey and Shapley [4]). One ``paper good'' (bank money) is
exchangeable for any of the m goods, it has no utility of its own and it is
the sole medium of exchange. Bids are real or paper (goods or fiat money),
so there is a possibility for default, hence a need for penalty rules. Here also
all the m trading posts for goods operate independently to determine the
prices but the final utility of each agent depends upon a budget constraint
that links the operations on the different markets. In case of bankruptcy
there might be a disutility (Dubey and Shapley [4]), a confiscation of the
purchase (Postlewaite and Schmeidler [10]) or of all goods (Peck and
Shell [8], Peck et al. [9]), or a global status quo (Peck and Shell [7]).

(iii) Models where all goods can be used for trade (Shapley windows,
see Sahi and Yao [11]). Again all bids are real and there are no defaults
hence no penalty rule. Each player bids a part of his initial endowment
in exchange for good i, for all i. However, here, a coordination device
is needed to obtain consistent prices and the markets do not operate
independently even at this level. (If one wants to preserve the independence
of the markets in this model one obtains exchanges without consistent
prices, see Amir et al. [1].)

Note that a generalisation of both (i) and (iii) is possible, in terms of a
graph describing the markets open for trade between goods i and j, see
Dubey and Sahi [3].

Our approach here will be a combination of the above: the number of
markets is equal to the number of goods. Signals in quantities are real (no
promises to deliver, hence no ``real'' defaults��compare with Peck and Shell
[7] where the fact that short sales are permitted allows asymptotic
optimality) and signals in ``money'' are unconstrained. Then for each
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profile of signals, prices are determined and markets clear. Transactions
occur through a paper money that has no intrinsic value. However to avoid
default, this money is private, namely, the quantity depends only upon the
agent that creates it, and its relative value, hence the exchange rate between
these monies, will be determined endogeneously, at the same time as the
prices, to clear the market and to respect budget constraints.

2. The Model

We will mainly follow the notations of Sahi and Yao [11] and most of
the proofs are simple adaptations of theirs.

There is a set A of n agents and a set I of m goods.
There are m trading posts, one for each good i # I, where each agent

: # A puts up a (real) quantity q:
i of good i and an amount b:

i of money
for its purchase of good i.

In a model with ``universal'' money, each market (for good) i operates
independently, defining a price pi through the balancing equation

pi \:
:

q:
i +=:

:

b:
i .

Then each agent : obtains back from this trading post i, q:
i pi units of

money and b:
i �pi units of good i.

Obviously this is a redistribution of the initial offers in goods, hence all
markets clear, but the budget constraint (�i q:

i pi��i b:
i ) may be violated.

Hence in a game theoretical framework penalities are necessary (like in
Dubey and Shapley [4]) or one has to work with discontinuous violation
rules or constrained strategies��in the spirit of a generalized game��like in
the general equilibrium approach; see Postlewaite and Schmeidler [10],
Peck and Shell [7], and Peck et al. [9].

To avoid this phenomenon, we will assume that each agent creates his
own money (with no constraints) and we will show how an endogeneous
value of each private money emerges in order to equilibrate each budget.
We thus define for each :, an exchange rate t: (which is a nonnegative
number) to be understood as the value, in some unit of account, of one
unit of the money used by agent :.

The equations defining the prices (in terms of unit of account) are thus

pi \:
:

q:
i +=:

:

t:b:
i (1)
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and the budget rule gives

t: \:
i

b:
i +=:

i

q:
i pi . (2)

Each agent : will get back from trading post i the quantities

q:
i pi units of account (3)

and

t:b:
i �pi units of good i. (4)

Intuitively, if agent : spends too much, the value of his money, and
hence of his bids, will decrease. Since his sales (in quantity) do not change
but his purchases (in quantity) decrease, his deficit will decrease too. (Note
that this ``intuition'' avoids taking into consideration the impact of the new
value of :'s money on prices).

It may appear strange that each agent receives back some ``universal
money'' (3), since it is a useless good, and there is no debt to refund, like
in the model with fiat money where one can consider that there is a credit
system. In fact, as we will see later, the different monies are basically in this
model part of a unit of account and the only use of Eqs. (1) and (2) is to
define (4) or the following amount, which is the net trade in good i for
agent :, namely,

z:
i = &q:

i +t:b:
i �pi . (5)

Remarks
(1) The mechanism is global (like in case (iii), described in Section 1

above): the prices and transactions cannot be defined independently on
each trading post.

Note that prices on one hand and exchange rates on the other, are
determined by a very similar procedure, namely, Eqs. (1) and (2). They do
no emerge, like in Walrasian setting, from an outside announcement,
meaningful only at equilibrium. For each profile of bids of the agents, only
an accountant (or a computer) is needed to solve (1) and (2)��which
translates the fact that the markets are not only centralized but also
connected. Comparing with case (ii), Eq. (1) is the price formation, market
by market (once the exchange rates are determined) and Eq. (2) is the
budget constraint, linking the markets (once the prices are known). Here
both operations are done at once to avoid defaults.

(2) Obviously the above system (1), (2) is homogeneous of degree
zero: if ( p, t) is a solution, the same is true for (*p, *t), for all positive *.
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(3) The exchange rates are consistent: t:�t#=(t:�t;)_(t;�t#).

(4) Even if all exchange rates are the same, given some profile of bids
the model differs from the one with bank money, since the consequences of
a change in the bids are not the same.

Example. Consider an economy with two agents and two goods.
Assume that agent : sells good 1 and buys good 2, and assume a dual
situation for agent ;.

Without an exchange rate the deficit of agent : is b:
2&b;

1 . If there are no
debts then : exchanges q:

1 for q;
2 .

Adding an exchange rate allows one to obtain this result for any positive
bid in private money.

3. Basic Properties

Let us first introduce the following notations: qi=�: q:
i is the total

amount of good i for sale and b:=�i b:
i is the total amount of money

created by agent :. If qi is 0, good i is eliminated, and similarly, if b: is 0,
agent : disappears from the economy.

A. Determination of the Prices

From (1) and (2), the exchange rates will be such that

t:=:
;

t; \:
i

(q:
i �qi)(b;

i �b:)+ (6)

and the prices will satisfy

pi qi=:
; \:

j

q;
j pj+ b;

i �b;. (7)

The above equation expresses the fact that the value of the quantity of
good i on the trading post i is equal to the sum over all agents of their
revenue multiplied by the fraction of their total bid that they offer for good
i. An equivalent relation is

pi=:
j

pj \:
;

(q;
j �qi)(b;

i �b;)+ . (8)

Defining Mji=�; q;
j (b;

i �b;) we will write (7) under the form

pi qi=:
j

pjMji . (9)
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Since we have �i Mji=qj , we will normalize these quantities and introduce
M� defined by M� ji=Mji�qj . So that if a vector p� satisfies

p� =p� M� , (10)

then p defined by pi=p� i �qi will be a solution of (9).
Since M� is a stochastic matrix there always exists a nonzero solution of

(10) with p� �0: p� corresponds to an invariant measure of the Markov
chain defined by M� on I. Moreover, there is unicity (modulo multiplication
by a positive constant) on each irreducible component of M� . (Recall that
a subset I$ of I is irreducible if for each couple i, j in I$, i leads to j in the
sense that there is a chain i1 , ..., in in I$, starting at i and ending at j with
M� i k ik+1

>0, for all adjacent states. In the current framework it means that
any good is directly or indirectly used to buy any other good).

Since M and M� have the same set of zeros we have the same ergodic
decomposition for both.

For a finite state Markov chain, any invariant distribution has full
support (or is 0) on each irreducible component. Hence to avoid zero
prices we have only to check that there are no transient states, i.e., a
collection of goods that need the complementary goods to be exchangeable
while the opposite is not true. (For example, if the demand for good i is
zero, b:

i =0, \:).
Otherwise two solutions of (10) will induce the same net trade. In fact

let I$ be an irreducible component of I. Then if b:
i or q:

i is positive for
some i # I$, one has b:

j =0 and q:
j =0 for all j � I$. It follows that the two

exchange rates for : will be proportional to the prices, hence by (5) the
assertion holds. So we have shown:

Lemma 1. If M� defines a recurrent chain, the market mechanism
determines the net trade.

In particular if M itself is irreducible, (relative) prices are uniquely
determined.

B. Bids on Both Sides

We consider here what occurs if an agent bids on both sides of the
market. Starting from a configuration of bids of the form (q, b) inducing
prices p and exchange rates t we assume that agent : modifies his sale on
good i to q:

i +% (%�0) and simultaneously increased his bid on trading
post i up to b:

i +%pi�t:. Then it is easy to see (using (6) and (7)) that:
(a) the previous (p, t) are still solutions and (b) the new net trade is identical
to the initial one.
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As a consequence, as soon as all prices are defined, any feasible final
allocation can also be achieved through a bid where all agents are
requested to put up for sale all their initial endowments.

C. Restrictions and Normalizations

(a) Let us consider the restricted game where the players are forced
to put their entire initial allocations on the market, hence q:

i =|:
i for all :

and all i. Following the previous discussion, if the trading posts are active
at some equilibrium of this restricted game, this one induces an equilibrium
in the original game. We will in fact construct equilibria sharing this
property when dealing with the restricted game. It will be pleasant to
normalize the bids in private money, using b:

i �b: as a parameter, so that
a strategy of agent : is described by a point x: in the simplex on I,
2(I )=[x # Rn

+; �i xi=1].

(b) Other normalizations are possible, since if given (b&:, q&:),
(b:, q:) induces ((t:, t&:), p), then (*b:, q:) gives rise to ((*t:, t&:), p), for
all positive *, hence the same net trade occurs. One could then induce it
with all exchange rates equal to 1 (but recall the previous Remark 4).

D. Manipulability

We show in this section that an agent : cannot benefit by pretending
being two different agents, say types :$ and :".

Fix the (n&1) profile of bids, (q� , b� ), of the other n&1 agents. Consider
the economy with n+1 agents where the two types of agent : are present
and denote by (q$, b$) and (q", b") their bids. The induced price is p and t�
is the profile of exchange rates of the regular agents. t$ and t" are the
exchange rates for the two types; z$ and z" are their corresponding vectors
of net trade.

Then there exists, in the economy with n agents, a bid (q, b) of agent :
inducing the same total net trade z=z$+z" for him, when facing the
profile (q� , b� ). In fact let q=q$+q" and b=t$b$+t"b". It follows that the
same price p and the n exchange rate profile (1, t� ) will satisfy Eq. (1) and
(2), hence the result by (5).

(Note that this property is an axiom in Dubey and Sahi [3].)

E. Discussion

If one agent : wants to transfer some fixed quantity (in units of account)
of his bids from one trading post to another, several phenomena occur:

�� first the relative prices will vary,

�� then his own exchange rate will change,

�� and finally the exchange rate of the other agents also will change.
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If only the first two aspects were present, one would get the same
equilibria as in the fiat money model (Peck et al. [9]), since the rule of
price formation is identical. More precisely, starting from a profile of bids
(b, q) satisfying the budget constraints (with exchange rate one for all
agents), call an alternative bid (b� :, q� :) of agent : nice if it equalizes :'s
budget constraint in the PSS game. If the other agents had fixed exchange
rates, the use of a flexible exchange rate for an agent will simply prevent
him from default, thus transforming any bid to a nice one as follows. An
alternative bid (b� :, q� :) gives rise to new prices p� and a new exchange rate
t� : for agent : according to the equations

p� i \ :
;{:

q;
i +q� :

i += :
;{:

b;
i +t� :b� :, \i

t� : :
i

b� :
i =:

i

q� :
i p� i

so that (t� :b� :, q� :) would be a nice alternative bid in the PSS game.
However the change in prices usually affects the budget constraints, for

agent : as well as for the others, and this is reflected in all exchange rates
and hence, again, in prices.

4. Existence of Equilibria

We consider now an economy with n agents, where each agent : has a
nonnegative initial endowment |:=(|:

i ) and a utility function u: defined
on Rm

+.
We assume that all goods are present in the economy and we normalize

the quantities, hence |i=�: |:
i =1.

We will at some point use the following assumptions:

A.1. All u: are continuous, concave and increasing.

A.2. There is a set A* containing at least two agents, having positive
initial endowments of any good and continuously differentiable utilities
satisfying u:(w)�u:(|:) implies wi>0, \i. (This amounts to ask for some
(weak) complementarity in goods and will prevent one agent from
manipulating a trading post by himself.)

The game 1 induced by the previous mechanism has for strategy the bids
(q, b) satisfying q:

i �|:
i , for all i, : and for payoff the utility of the realloca-

tion |+z.
Obviously 1 has equilibria like q:=0, \:. However, we will also exhibit

active ones, i.e., all trading posts are active (pi and qi are positive, for all i).
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This will follow from the usual procedure using an =-perturbation of the
game (see Shapley [12]). Then a unique price will be defined for any bids
and we will deduce from A.1 the existence of an active equilibrium of the
perturbed game. Assuming A.2 implies that all corresponding (relative)
prices p= will remain bounded uniformly (in =). Then a limit of equilibrium
strategies of the perturbed games will be an equilibrium in the initial one.

The natural way of perturbing the game is to add a small amount of
goods for sale, on each market, and to do similarly for the bids. Then all
trading posts are active and one can use the normalization defined in
Section 3.C.a. The corresponding strategies are called saturated.

To define, for any positive =, the perturbed game 1= , it remains to specify
the payoff associated with a profile (x:, : # A) of strategies.

Add a fictitious agent (called 0) with an initial endowment |0
i ==, \i and

a uniform monetary bid x0
i =1�n, \i. Let also A0=A _ [0]. Note that the

exchange matrix of the economy with n+1 agents, corresponding to any
of these bids ((|;, x;), ; # A0), has all positive coefficients, and hence is
irreducible. Hence any saturated equilibrium, i.e., where the players are
restricted to saturated strategies, is an equilibrium in the original game.
The corresponding net trade (given (5)) is z(=) and agent :'s payoff is
u:(|:+z:(=)).

Recall that the prices are given by (9), hence in our new notations by

pi (1+=)=:
j

pj \ :
; # A 0

|;
j x;

i + . (11)

Similarly (1) and (2) are now

pi (1+=)= :
: # A0

t:x:
i (12)

and

t:=:
i

|:
i pi , \: # A0. (13)

Hence by (5)

z:
i (=)=&q:

i +(1+=)& :
;{:, ; # A0 \:

j

( pj�pi) |;
j + x;

i (14)

and the final holding in good i is

f :
i =1+=& :

;{:, ; # A0 \:
j

( pj �pi) |;
j + x;

i . (15)
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So that, as remarked by Shapley [12] and by Sahi and Yao [11], the
outcome for agent : depends upon his bid only through its effect on the
prices.

Let us now study properties of the best reply correspondence; we fix the
strategies x; for ;{:, ; # A0.

We are first led to consider the set of feasible prices that agent : can
generate as his own strategy x: varies in 2(I ), and the analysis will be very
similar to the one used by Sahi and Yao (1989).

Define two matrices C and D by Cji=�;{: |;
j x;

i and Dji=|:
j x:

i . Then
(11) is now

p(1+=)=pC+pD (16)

Lemma 2. p is feasible iff all its components are positive and it satisfies

p(1+=)�pC.

Proof. The condition is clearly necessary by (16).
On the other hand, assume p normalized (�i pi=1) and recall that

|:=(1+=) u&Cu, where u has all its components equal to 1. Define
a=p(1+=)&pC. If | is not the null vector, the scalar product ( p } |) is a
positive number r (and equal to (a } u)). Then x:

i =ai �r will induce a matrix
D such that (16) holds. K

This characterization allows us to deduce the following:

Corollary 3. Given two strategies x:[1] and x:[1] of agent : inducing
prices p[1] and p[2] and final holdings f :[1] and f :[2], there exists a
strategy x� : inducing a price p� with p� i=- pi[1] pi[2] and a final holding
f� :�( f :[1]+f :[2])�2, with strict inequality if p[1]{p[2].

Proof. By the previous Lemma 2, p� is feasible, using Cauchy Schwartz
inequality. Using (15) and the comparison of arithmetic and geometric
means gives the second assertion. K

From now on we assume A.1 and then we can state an existence
theorem.

Theorem 4. For each positive =, the perturbed game 1= has a saturated
equilibrium.

Proof. The strategy sets are convex and compact for each agent. By
Corollary 4 above and assumption A.1, there is only one price associated
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to a best reply in term of final allocation. Finally by (11) the set of bids x:

compatible with a specific price is closed and convex. It is easy to see
that the payoff function is jointly continuous, hence the best reply
correspondence satisfies the hypotheses of Kakutani's fixed point
theorem. K

It remains to show the existence of equilibria in 1.
From now on we assume A.2.
We consider a sequence of equilibria in perturbed games 1= as = goes to

zero. We will obtain a uniform property for the prices that will thus hold
at the limit and will imply that for at least two agents (namely in A*) the
limit of equilibrium bids are in the interior of the simplex. This will in turn
imply that the limits of equilibrium strategies do form equilibrium
strategies. Again the proof is deeply related to the one in Sahi and Yao
[11].

Lemma 5. There exist two positive constants ' and $ such that, for all
=�0, all saturated equilibria of 1= have bids satisfying x:

i �$, \i, \: # A*
and induce a normalized price with pi�', \i.

Proof. The proof follows that of Lemma 9 in Sahi and Yao [11] and
we will sketch the main lines.

Consider a saturated equilibria with a profile of bids x and prices p. We
can suppose that p1�p2� } } } �pm . By feasibility, f : remains in a compact
set K: and by assumption A.2, f :

i �f� :i >0, \i, \: # A*. Using (15) and
Lemma 2, this strict inequality implies that any of these rich agents : can
generate any price in a small neighborhood of p, in particular
q=( p1 , ..., pk , (1+*) pk+1 , ..., (1+*) pm), for * positive and small enough.
We use again (15) (and the notations in (16)) to compute the impact on
the new reallocation:

2f :
i ={&� j�k+1 *Cjipj �pi

: j�k (*�(1+*)) Cjipj �pi

for i�k
for i�k+1.

Hence we obtain for the utility

2u:=(*�(1+*)) :
i�k+1, j�k

Cij ( pj�pi) �i u:( f :)

&* :
i�k, j�k+1

Cij ( pj�pi) �iu:( f :)+o(*). (17)

Let us introduce m1=max[�iu:( y); i # I, y # K:, : # A*] and similarly m2

for the min. From (17) we obtain
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2u:�(*�(1+*)) m2 �pk+1 :
i�k+1, j�k

Cijpj

&*m1 �pk :
i�k, j�k+1

Cijpj+o(*). (18)

Recall that M=D+C (the decomposition depending on :) and that (9)
says

pi :
i

Mij=:
j

pj Mji .

Hence,

:
i�k+1, j�k

Mijpj= :
i�k, j�k+1

Mijpj (=v).

In particular, for one agent : one has �i�k+1, j�k Cijpj�v�2 and since
�i�k, j�k+1 Cijpj��i�k, j�k+1 Mijpj , one obtains from (18)

2u:�*v \ m2

pk+1+\
1

2(1+*)
&\m1

m2+\
pk+1

pk +++o(*)

The equilibrium condition thus implies

pk

pk+1

�2(1+*) \m1

m2+
so that

pm \2(1+*) \m1

m2++
m&1

�p1 ,

and we can choose '=(1�m)(3(m1�m2))1&m.
The bound on this bids follows since the prices are bounded and the rich

agents will end with at least f� :. K

Theorem 6. 1 has a saturated active equilibrium.

Proof. Consider a sequence x= of saturated equilibria and corresponding
prices p= in 1= converging as = goes to 0, to some (x, p) that will satisfy the
conditions of Lemma 5. It is clear that p is a price induced by the bids
(|, x) in 1.

It remains to be shown that these bids form an equilibrium in 1. Assume
not: then one agent : obtains a payoff, greater by some positive amount \,
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by using an alternative strategy (q:, y:). Since there exists at least one other
rich agent ;{: with positive bids, the exchange matrix is irreducible and
we can assume that q:=|:. It follows then by continuity that the same
saturated deviation would be \�2 profitable against the profile x;

= , ;{:, in
1= for = positive and small enough. A contradiction. K

5. Convergence to Walrasian Equilibrium

Denote by k1 the k-fold replication of the game 1 where each agent :
is replaced by k copies of himself, i.e., with the same endowment and utility.
We define a symmetric equilibrium of k1 as a kn equilibrium profile x
where each of the k :-like agents has the same strategy x:. x~ will be the
reduced profile of size n with components x:.

We first have:

Lemma 7. For any k, k1 has a saturated active symmetric equilibria.
Moreover any of these satisfies the properties of Lemma 5.

Proof. To get the existence of a symmetric equilibrium, one considers
the restriction of the best reply correspondence to symmetric strategies. It
has nonempty values since all :-like agents are facing the same situation.
Then the Kakutani theorem applies as above.

Concerning the properties of saturated active equilibria, the proof relies
only on assumptions A.1 and A.2 and the bounds depend only on endow-
ments and utilities��and not on the number of agents. K

Given an economy composed of agents with endowments |: and utility
u: we define as usual a price ? and an allocation y: as a competitive
equilibrium if �: y:=�: w:, and for each :, y: maximizes u:( } ) under the
constraint �i y:

i ?i=�i |:
i ?i .

We consider now a sequence of replica k1 as k goes to infinity and a
corresponding sequence of saturated active symmetric equilibria with prices
p(k), (reduced) profile of strategies x~ (k), and (reduced) final holding f� (k)
converging to some ( p*, x*, f *). Then we have the following convergence
result:

Theorem 8. ( f *, p*) is a competitive equilibrium of the economy
associated with 1.

Proof. Once more the proof follows Sahi and Yao [11] and we will
sketch it.
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Note first that f * is a reallocation and budget balancing given p*, by
continuity, using (5) or equivalently

fi*
:=xi*

: \:
j

|:
j pj*+<pi*. (19)

Now if f * is not a competitive allocation, let : and . be an agent and an
allocation with (. } p*)=(|: } p*) and u:(.)>u:( f *:). Assuming first the
prices independent of the bids there exists a strategy / that induces by (19)
the allocation ..

If one agent of type : uses this strategy rather than x:(k) in the game k1,
the price will be some p$(k) and the new allocation of this agent .(k). Now
it is clear that, as k goes to infinity, due to the uniform bound on prices
the influence of one agent on the prices goes to 0, hence the difference
p$(k)&p(k) converges to 0, so that by (19) .(k) converges to .. This
implies that for k large enough the strategy / would induce a profitable
deviation in k1. K

6. Comments

(1) The convergence result is slightly stronger than that in Sahi and
Yao [11] since all saturated equilibria converge (we do not need to ask for
$ positiveness since with our strategy sets this is implied by A.2 and the
bound on prices). As remarked in Sahi and Yao [11] the hypotheses
needed for the convergence to competitive equilibrium are weaker than in
related models with commodity money (Dubey and Shubik [5]), where in
addition to desirability hypotheses, conditions on the amount and the
distribution of commodity money are necessary.

(2) In the game 1 there might exist active equilibria with q:
i {|:

i .
Moreover they might not be equivalent, in terms of final trade, to sell-all
equilibria, since the best reply correspondence will differ.

(3) Similarly k1 may have nonsymmetric equilibria but then one
should compare the limit to an atomless economy with types.

The present model has some features in common with both model (ii)
and model (iii) introduced in Section 1. However, there are conceptual
differences:

(4) Comparison concerning the use of money: If the means of
payment is bank money or fiat money, there is a need for penalty.
Moreover, with bank money the amount available is bounded and one has
to introduce quotas or allocation rules. In the case of private money, there
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is no penalty but a social evaluation through exchange rates which avoids
a domino effect.

(5) Comparison with Shapley windows: The clearing system (iii)
allows for more exchange than the first one since one can at the same time
buy with the money coming from the sales (while in (i) one has to wait for
the next round to spend the new income) without taking the risk of spending
too much (which is the case in (ii)).

Recall that in this framework one sets on trading post i an amount of
goods that one wants to exchange for good i (offers for buying). Then all
these goods corresponding to all trading posts are registered and classified
according to their nature. This defines the quantity for sale on each trading
post.

In the present model, each agent puts on each trading post i the quantity
of good i he wants to sell, then he bids for each good using his private
money. We already remarked that an equivalent formulation is that the
agent bids a fraction of his (unknown) income.

In fact, in the Shapley windows framework, if all the bids are propor-
tional to some fixed vector z, say z(i) is the bid on trading post i with
z(i)=xi z, x # 2(I ), then they correspond to the strategies (z, x) in the
present model. Hence the present game can be viewed as a restriction in
terms of strategies of the previous one. Obviously this does imply in general
a relation in terms of equilibrium sets.
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