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Abstract. The dynamical systems approach to stochastic approximation is generalized to the
case where the mean differential equation is replaced by a differential inclusion. The limit set theorem
of Benäım and Hirsch is extended to this situation. Internally chain transitive sets and attractors
are studied in detail for set-valued dynamical systems. Applications to game theory are given, in
particular to Blackwell’s approachability theorem and the convergence of fictitious play.
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1. Introduction.

1.1. Presentation. A powerful method for analyzing stochastic approximations
or recursive stochastic algorithms is the so-called ODE (ordinary differential equation)
method, which allows us to describe the limit behavior of the algorithm in terms of
the asymptotics of a certain ODE,

dx

dt
= F (x),

obtained by suitable averaging.
This method was introduced by Ljung [24] and extensively studied thereafter (see,

e.g., the books by Kushner and Yin [23] or Duflo [14] for a comprehensive introduc-
tion and further references). However, until recently most works in this direction
have assumed the simplest dynamics for F , for example, that F is linear or given by
the gradient of a cost function. While this type of assumption makes perfect sense in
engineering applications (where algorithms are often designed to minimize a cost func-
tion), there are several situations, including models of learning or adaptive behavior
in games, for which F may have more complicated dynamics.

In a series of papers Benäım [2, 3] and Benäım and Hirsch [5] have demonstrated
that the asymptotic behavior of stochastic approximation processes can be described
with a great deal of generality beyond gradients and other simple dynamics. One
of their key results is that the limit sets of the process are almost surely compact
connected attractor free (or internally chain transitive in the sense of Conley [13]) for
the deterministic flow induced by F .
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The purpose of this paper is to show that such a dynamical system approach easily
extends to the situation where the mean ODE is replaced by a differential inclusion.
This is strongly motivated by certain problems arising in economics and game theory.
In particular, the results here allow us to give a simple and unified presentation of
Blackwell’s approachability theorem, Smale’s results on the prisoner’s dilemma, and
convergence of fictitious play in potential games. Many other applications1 will be
considered in a forthcoming paper, by Benäım, Hofbauer, and Sorin [7], the present
one being mainly devoted to theoretical issues.

The organization of the paper is as follows. Part 1 introduces the different no-
tions of solutions, perturbed solutions, and stochastic approximations associated with
a differential inclusion. Part 2 is devoted to the presentation of two classes of ex-
amples. Part 3 is a general study of the dynamical system defined by a differential
inclusion. The main result (Theorem 3.6) on the limit set of a perturbed solution
being internally chain transitive is stated. Then related notions—invariant and at-
tracting sets, attractors, and Lyapunov functions—are analyzed. Part 4 contains the
proof of the limit set theorem. Finally, Part 5 applies the previous results to two
adaptive processes in game theory: approachability and fictitious play.

1.2. The differential inclusion. Let F denote a set-valued function mapping
each point x ∈ Rm to a set F (x) ⊂ Rm. We suppose throughout that the following
holds.

Hypothesis 1.1 (standing assumptions on F ).
(i) F is a closed set-valued map. That is,

Graph(F ) = {(x, y) : y ∈ F (x)}

is a closed subset of Rm × Rm.
(ii) F (x) is a nonempty compact convex subset of Rm for all x ∈ Rm.
(iii) There exists c > 0 such that for all x ∈ Rm

sup
z∈F (x)

‖z‖ ≤ c(1 + ‖x‖),

where ‖ ·‖ denotes any norm on Rm.
Definition I. A solution for the differential inclusion

dx

dt
∈ F (x)(I)

with initial point x ∈ Rm is an absolutely continuous mapping x : R → Rm such that
x(0) = x and

dx(t)

dt
∈ F (x(t))

for almost every t ∈ R.
Under the above assumptions, it is well known (see Aubin and Cellina [1, Chap-

ter 2.1] or Clarke et al. [12, Chapter 4.1]) that (I) admits (typically nonunique) solu-
tions through every initial point.

1As pointed out to us by an anonymous referee, applications to resource sharing may be consid-
ered as in Buche and Kushner [11], where the dynamics are given by a differential inclusion. Possible
applications to engineering include dry friction; see, e.g., Kunze [22].
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Remark 1.2. Suppose that a differential inclusion is given on a compact convex
set C ⊂ Rm, of the form F (x) = Φ(x) − x, such that Φ(x) ⊂ C for all x ∈ C and Φ
satisfies Hypothesis 1.1(i) and (ii), with Rm replaced by C. Then we can extend it
to a differential inclusion defined on the whole space Rm: For x ∈ Rm let P (x) ∈ C
denote the unique point in C closest to x, and define F (x) = Φ(P (x)) − x. Then F
satisfies Hypothesis 1.1.

1.3. Perturbed solutions. The main object of this paper is paths which are
obtained as certain (deterministic or random) perturbations of solutions of (I).

Definition II. A continuous function y : R+ = [0,∞) → Rm will be called a
perturbed solution to (I) (we also say a perturbed solution to F ) if it satisfies the
following set of conditions (II):

(i) y is absolutely continuous.
(ii) There exists a locally integrable function t )→ U(t) such that

(a)

lim
t→∞

sup
0≤v≤T

∥∥∥∥
∫ t+v

t
U(s) ds

∥∥∥∥ = 0

for all T > 0; and
(b) dy(t)

dt − U(t) ∈ F δ(t)(y(t)) for almost every t > 0, for some function
δ : [0,∞) → R with δ(t) → 0 as t → ∞. Here F δ(x) := {y ∈ Rm : ∃z :
‖z − x‖ < δ, d(y, F (z)) < δ} and d(y, C) = infc∈C ‖y − c‖.

The purpose of this paper is to investigate the long-term behavior of y and to
describe its limit set

L(y) =
⋂

t≥0

{y(s) : s ≥ t}

in terms of the dynamics induced by F .

1.4. Stochastic approximations. As will be shown here, a natural class of
perturbed solutions to F arises from certain stochastic approximation processes.

Definition III. A discrete time process {xn}n∈N living in Rm is a solution for
(III) if it verifies a recursion of the form

xn+1 − xn − γn+1Un+1 ∈ γn+1F (xn),(III)

where the characteristics γ and U satisfy
• {γn}n≥1 is a sequence of nonnegative numbers such that

∑

n

γn = ∞, lim
n→∞

γn = 0;

• Un ∈ Rm are (deterministic or random) perturbations.
To such a process is naturally associated a continuous time process as follows.

Definition IV. Set

τ0 = 0 and τn =
n∑

i=1

γi for n ≥ 1,

and define the continuous time affine interpolated process w : R+ → Rm by

w(τn + s) = xn + s
xn+1 − xn

τn+1 − τn
, s ∈ [0, γn+1).(IV)
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1.5. From interpolated process to perturbed solutions. The next result
gives sufficient conditions on the characteristics of the discrete process (III) for its
interpolation (IV) to be a perturbed solution (II). If (Ui) are random variables, as-
sumptions (i) and (ii) below have to be understood with probability one.

Proposition 1.3. Assume that the following hold:
(i) For all T > 0

lim
n→∞

sup

{∥∥∥∥∥

k−1∑

i=n

γi+1Ui+1

∥∥∥∥∥ : k = n + 1, . . . ,m(τn + T )

}
= 0,

where

m(t) = sup{k ≥ 0 : t ≥ τk};(1.1)

(ii) supn ‖xn‖ = M < ∞.
Then the interpolated process w is a perturbed solution of F .

Proof. Let U, γ : R+ → Rm denote the continuous time processes defined by

U(τn + s) = Un+1, γ(τn + s) = γn+1

for all n ∈ N, 0 ≤ s < γn+1.
Then, for any t,

w(t) ∈ xm(t) + (t− τm(t))[U(t) + F (xm(t))];

hence

ẇ(t) ∈ U(t) + F (xm(t)).

Let us set δ(t) = ‖w(t) − xm(t)‖. Then obviously

F (xm(t)) ⊂ F δ(t)(w(t)).

In addition,

δ(t) ≤ γm(t)+1[‖Um(t)+1‖ + c(1 + M)]

hence goes to 0, using hypothesis (i) of the statement of the proposition. It remains
to check condition (ii)(a) of (II), but one has

∥∥∥∥
∫ t+v

t
U(s)ds

∥∥∥∥ ≤ γm(t)+1‖Um(t)+1‖ +

∥∥∥∥∥∥

m(t+v)−1∑

"=m(t)+1

γ"+1U"+1

∥∥∥∥∥∥

+ γm(t+v)+1‖Um(t+v)+1‖,

and the result follows from condition (i).

Sufficient conditions. Let (Ω,F , P ) be a probability space and {Fn}n≥0 a
filtration of F (i.e., a nondecreasing sequence of sub-σ-algebras of F). We say that
a stochastic process {xn} given by (III) satisfies the Robbins–Monro condition with
martingale difference noise (Kushner and Yin [23]) if its characteristics satisfy the
following:
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(i) {γn} is a deterministic sequence.
(ii) {Un} is adapted to {Fn}. That is, Un is measurable with respect to Fn for

each n ≥ 0.
(iii) E(Un+1 | Fn) = 0.
The next proposition is a classical estimate for stochastic approximation pro-

cesses. Note that F does not appear. We refer the reader to (Benäım [3, Propositions
4.2 and 4.4]) for a proof and further references.

Proposition 1.4. Let {xn} given by (III) be a Robbins–Monro equation with
martingale difference noise process. Suppose that one of the following condition holds:

(i) For some q ≥ 2

sup
n

E(‖Un‖q) < ∞

and
∑

n

γ1+q/2
n < ∞.

(ii) There exists a positive number Γ such that for all θ ∈ Rm

E(exp(〈θ, Un+1〉) | Fn) ≤ exp

(
Γ

2
‖θ‖2

)

and
∑

n

e−c/γn < ∞

for each c > 0.
Then assumption (i) of Proposition 1.3 holds with probability 1.

Remark 1.5. Typical applications are
(i) Un uniformly bounded in L2 and γn = 1

n ,
(ii) Un uniformly bounded and γn = o( 1

log n ).

2. Examples.

2.1. A multistage decision making model. Let A and B be measurable
spaces, respectively called the action space and the states of nature; E ⊂ Rm a convex
compact set called the outcomes space; and H : A × B → E a measurable function,
called the outcome function.

At discrete times n = 1, 2 . . . a decision maker (DM) chooses an action an from
A and observes an outcome H(an, bn). We suppose the following.

(A) The sequence {an, bn}n≥0 is a random process defined on some probability
space (Ω,F , P ) and adapted to some filtration {Fn}. Here Fn has to be understood
as the history of the process until time n.

(B) Given the history Fn, DM and nature act independently:

P((an+1, bn+1) ∈ da× db | Fn) = P(an+1 ∈ da | Fn)P(bn+1 ∈ db | Fn)

for any measurable sets da ⊂ A and db ⊂ B.
(C) DM keeps track of only the cumulative average of the past outcomes,

xn =
1

n

n∑

i=1

H(ai, bi),(2.1)
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and his decisions are based on this average. That is,

P(an+1 ∈ da | Fn) = Qxn(da),

where Qx(·) is a probability measure over A for each x ∈ E, and x ∈ E )→ Qx(da) ∈
[0, 1] is measurable for each measurable set da ⊂ A. The family Q = {Qx}x∈E is
called a strategy for DM.

Assumption (C) can be justified by considerations of limited memory and bounded
rationality. It is partially motivated by Smale’s approach to the prisoner’s dilemma
[27] (see also Benäım and Hirsch [4, 5]), Blackwell’s approachability theory ([8]; see
also Sorin [28]), as well as fictitious play (Brown [10], Robinson [26]) and stochastic
fictitious play (Benäım and Hirsch [6], Fudenberg and Levine [15], Hofbauer and
Sandholm [20]) in game theory (see the examples below).

For each x ∈ E let

C(x) =

{∫

A×B
H(a, b)Qx(da)ν(db) : ν ∈ P(B)

}
,

where P(B) denotes the set of probability measures over B. Then clearly

E(H(an+1, bn+1) | Fn) ∈ C(xn) ⊂ C(xn),

where C denote the smallest closed set-valued extension of C with convex values.
More precisely, the graph of C is the intersection of all closed subsets G ⊂ E ×E for
which the fiber Gx = {y ∈ E : (x, y) ∈ G} is convex and contains C(x).

For x ∈ Rm let P (x) denote the unique point in E closest to x. Extend C as in
Remark 1.2 to a set-valued map on Rm by setting

Ĉ(x) = C(P (x)).

Then the map

F (x) = −x + C(P (x)) = −x + Ĉ(x)(2.2)

clearly satisfies Hypothesis 1.1, and {xn} verifies the recursion

xn+1 − xn =
1

n + 1
(−xn + H(an+1, bn+1)),

which can be rewritten as (see (III))

xn+1 − xn ∈ γn+1[F (xn) + Un+1]

with γn = 1
n and Un+1 = H(an+1, bn+1) −

∫
A H(a, bn+1)Qxn(da). Hence, the condi-

tions of Proposition 1.4 are satisfied and one deduces the following claim.
Proposition 2.1. The affine continuous time interpolated process (IV) of the

process {xn} given by (2.1) is almost surely a perturbed solution of F defined by (2.2).
Example 2.2 (Blackwell’s approachability theory). A set Λ ⊂ E is said to be

approachable if there exists a strategy Q such that xn → Λ almost surely. Blackwell [8]
gives conditions ensuring approachability. We will show in section 5.1 how Blackwell’s
results can be partially derived from our main results and generalized (Corollary 5.2)
in certain directions.
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2.2. Learning in games. The preceding formalism is well suited to analyzing
certain models of learning in games.

Consider the situation where m players are playing a game over and over. Let
Ai (for i ∈ I = {1, . . . ,m}) be a finite set representing the actions (pure strategies)
available to player i, and let Xi be the finite dimensional simplex of probabilities over
Ai (the set of mixed strategies for player i). For i ∈ I we let A−i and X−i respectively
denote the actions and mixed strategies available to the opponents of i. The payoff
function to player i is given by a function U i : Ai × A−i → R. As usual, we extend
U i to a function (still denoted U i) on Xi ×X−i, by multilinearity.

Example 2.3 (fictitious and stochastic fictitious play). Consider the game from
the viewpoint of player i so that the DM is player i, and “nature” is given by the
other players. In fictitious or stochastic fictitious play the outcome space is the space
Xi × X−i of mixed strategies, and the outcome function is the “identity” function
H : Ai × A−i → Xi × X−i mapping every profile of actions a to the corresponding
profile of mixed strategy δa.

Let

BRi(x−i) = Argmax
ai∈Ai

U i(ai, x−i) ⊂ Ai

be the set of best actions that i can play in response to x−i.
Both classical fictitious play (Brown [10], Robinson [26]) and stochastic fictitious

play (Benäım and Hirsch [6], Fudenberg and Levine [15], Hofbauer and Sandholm [20])
assume that the strategy of player i, Qi = {Qi

x}, can be written as

Qi
x(ai) = qi(ai, x−i),

where qi : Ai ×X−i → [0, 1] is such that one of the following assumptions holds:
fictitious play assumption:

∑

ai∈BRi(x−i)

qi(ai, x−i) = 1,

or stochastic fictitious play assumption, qi is smooth in x−i and

∑

ai∈BRi(x−i)

qi(ai, x−i) ≥ 1 − δ

for some 0 < δ . 1.
In this framework, if a" denotes the profile of actions at stage ', one has

xn =
1

n

n∑

"=1

a"

and

xn+1 − xn =
1

n + 1
(an+1 − xn).

Thus for each i

E(xi
n+1 − xi

n | Fn) ∈ 1

n + 1
(BR

i
(x−i

n ) − xi
n),
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where BR
i
(x−i) ⊂ Xi is the convex hull of BRi(x−i) for the standard fictitious play,

and BR
i
(x−i) =

∑
ai∈Ai qi(ai, x−i)δai for the stochastic fictitious play.

Thus the set-valued map F defined in (2.2) is given as

F i(x) = −x + BR
i
(x−i) ×X−i.

Observe that if a subset J ⊂ I of players plays a fictitious (or stochastic fictitious)
play strategy, then F i has to be replaced by

F J(x) =
⋂

i∈J

F i(x).

In particular, if all players play a fictitious play strategy, the differential inclusion
induced by F is the best-response differential inclusion (Gilboa and Matsui [16], Hof-
bauer [19], Hofbauer and Sorin [21]), while if all play a stochastic fictitious play, F is a
smooth best-response vector field (Benäım and Hirsch [6], Fudenberg and Levine [15],
Hofbauer and Sandholm [20]).

Example 2.4 (Smale approach to the prisoner’s dilemma). We still consider the
game from the viewpoint of player i, so that the DM is player i and nature the other
players, but we take for H the payoff vector function

H : Ai × A−i → E,

a → U(a) = (U1(a), . . . , Um(a)),

where E ⊂ Rm is the convex hull of the payoff vectors {U(a)}.
This setting fits exactly with Smale’s approach to the prisoner’s dilemma [27]

later revisited by Benäım and Hirsch [4]. Details will be given in section 5.2, where
Smale’s approach will be reinterpreted in the framework of approachability.

3. Set-valued dynamical systems.

3.1. Properties of the trajectories of (I). Let C0(R,Rm) denote the space
of continuous paths {z : R → Rm} equipped with the topology of uniform convergence
on compact intervals. This is a complete metric space for the distance D defined by

D(x, z) =
∞∑

k=1

1

2k
min(‖x − z‖[−k,k], 1),

where ‖ ·‖ [−k,k] stands for the supremum norm on C0([−k, k],Rm).
Given a set M ⊂ Rm, we let SM ⊂ C0(R,Rm) denote the set of all solutions

to (I) with initial conditions x ∈ M (SM =
⋃

x∈MSx), and SM,M ⊂ SM the subset
consisting of solutions x that remain in M (i.e., x(R) ⊂ M).

Lemma 3.1. Assume M compact. Then SM is a nonempty compact set and
SM,M is a compact (possibly empty) set.

Proof. The first assertion follows from Aubin and Cellina [1, section 2.2, Theo-
rem 1, p. 104]. The second easily follows from the first.

3.2. Set-valued dynamical system induced by (I). The differential inclu-
sion (I) induces a set-valued dynamical system {Φt}t∈R defined by

Φt(x) = {x(t) : x is a solution to (I) with x(0) = x}.

The family Φ = {Φt}t∈R enjoys the following properties:
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(a) Φ0(x) = {x};
(b) Φt(Φs(x)) = Φt+s(x) for all t, s ≥ 0;
(c) y ∈ Φt(x) ⇒ x ∈ Φ−t(y) for all x, y ∈ Rm, t ∈ R;
(d) (x, t) )→ Φt(x) is a closed set-valued map with compact values (i.e., Φt(x) is

a compact set for each t and x).
Properties (a), (b), (c) are immediate to verify, and property (d) easily follows from
Lemma 3.1.

For subsets T ⊂ R and A ⊂ Rm we will define

ΦT (A) =
⋃

t∈T

⋃

x∈A

Φt(x).

Invariant sets.
Definition V. A set A ⊂ Rm is said to be

(i) strongly invariant (for Φ) if A = Φt(A) for all t ∈ R;
(ii) quasi-invariant if A ⊂ Φt(A) for all t ∈ R;
(iii) semi-invariant if Φt(A) ⊂ A for all t ∈ R;
(iv) invariant (for F ) if for all x ∈ A there exists a solution x to (I) with x(0) = x

and such that x(R) ⊂ A.
We call a set A strongly positive invariant if Φt(A) ⊂ A for all t > 0.
At first glance (at least for those used to ordinary differential equations) the

good notion might seem to be the one defined by strong invariance. However, this
notion is too strong for differential inclusions, as shown by the simple example below
(Example 3.2), and the main notions that will really be needed here are invariance
and strong positive invariance. We have included the definition of quasi invariance
mainly because some of our later results may be related to a paper by Bronstein
and Kopanskii [9] making use of this notion.2 Observe, however, that by Lemma 3.3
below, quasi invariance coincides with invariance for compact sets.

Example 3.2. (a) Let F be the set-valued map defined on R by F (x) = − sgn(x)
if x 0= 0 and F (0) = [−1, 1]. Then Φt(0) = {0} for t ≥ 0, and Φt(0) = [t,−t] for t < 0.
Hence {0} is invariant and strongly positively invariant but is not strongly invariant.

(b) Let now F (x) = x for x < 0, F (x) = 1 for x > 0, and F (0) = [0, 1]. Then
Φt(0) = {0} for t ≤ 0, and Φt(0) = [0, t] for t ≥ 0. Hence {0} is invariant but not
strongly positively invariant.

Lemma 3.3. Every invariant set is quasi-invariant. Every compact quasi-invariant
set is invariant.

Proof. Suppose that A is invariant. Let x ∈ A and x be a solution to (I) with
x(0) = x and x(R) ⊂ A. For all t ∈ R we have x ∈ Φt(x(−t)). Hence A is quasi-
invariant.

Conversely suppose that A is quasi-invariant and compact. Choose x ∈ A and
fix N ∈ N. Then for every p ∈ N there exists, by quasi invariance and by gluing
pieces of solutions together, a solution xp,N to (I) such that xp,N (0) = x and for
all q ∈ {−2p, . . . , 2p}, xp,N ( qN2p ) ∈ A. By Lemma 3.1, the sequence {xp,N}p∈N is
relatively compact in C0([−N,N ],Rm). Let xN be a limit point of this sequence.
Then for each dyadic point t = qN

2p , where q ∈ {−2p, . . . , 2p}, xN (t) ∈ A. Continuity

of xN implies xN ([−N,N ]) ⊂ A. Now let x be a limit point of the sequence {xN}N∈N
in C0(R,Rm). Then x(R) ⊂ A and x is a solution to (I).

2Invariant sets in Bronstein and Kopanskii [9] coincide with what we define here as strongly
invariant sets.
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Remark 3.4. A invariant together with strong positive invariance implies Φt(A) =
A for t > 0.

3.3. Chain-recurrence and the limit set theorem. Given a set A ⊂ Rm

and x, y ∈ A, we write x ↪→A y if for every ε > 0 and T > 0 there exists an integer
n ∈ N, solutions x1, . . . ,xn to (I), and real numbers t1, t2, . . . , tn greater than T such
that

(a) xi(s) ∈ A for all 0 ≤ s ≤ ti and for all i = 1, . . . , n,
(b) ‖xi(ti) − xi+1(0)‖ ≤ ε for all i = 1, . . . , n− 1,
(c) ‖x1(0) − x‖ ≤ ε and ‖xn(tn) − y‖ ≤ ε.

The sequence (x1, . . . ,xn) is called an (ε, T ) chain (in A from x to y) for F .
Definition VI. A set A ⊂ Rm is said to be internally chain transitive, provided

that A is compact and x ↪→A y for all x, y ∈ A.
Lemma 3.5. An internally chain transitive set is invariant.
Proof. Let A be such a set and x ∈ A. Let (x1, . . . ,xn) be an (ε, T ) chain

from x to x. Set yε,T (t) = x1(t) for 0 ≤ t ≤ T and zε,T (t) = xn(tn + t) for
−T ≤ t ≤ 0. By Lemma 3.1 we can extract from (y1/p,T )p∈N and (z1/p,T )p∈N some
subsequences converging, respectively, to yT and zT , where yT and zT are solutions to
(I), yT (0) = x = zT (0), yT ([0, T ]) ⊂ A, and zT ([−T, 0]) ⊂ A. The map wT (t) = yT (t)
for t ≥ 0 and wT (t) = zT (t) for t ≤ 0 is then a solution to (I) with initial condition
x and such that wT ([−T, T ]) ⊂ A. By Lemma 3.1, again we extract from (wT )T≥0

a subsequence converging to a solution w whose range lies in A and with initial
condition x.

This notion of recurrence due to Conley [13] for classical dynamical systems is
well suited to the description of the asymptotic behavior of a perturbed solution to
(I), as shown by the following theorem.

Theorem 3.6. Let y be a bounded perturbed solution to (I). Then, the limit set
of y,

L(y) =
⋂

t≥0

{y(s) : s ≥ t},

is internally chain transitive.
This theorem is the set-valued version of the limit set theorem proved by Benäım [2]

for stochastic approximation and Benäım and Hirsch [5] for asymptotic pseudotrajec-
tories of a flow. We will deduce it from the more general results of section 4.

3.4. Limit sets. The set

ωΦ(x) :=
⋂

t≥0

Φ[t,∞)(x)

is the ω-limit set of a point x ∈ Rm. Note that ωΦ(x) contains the limit sets L(x) of
all solutions x with x(0) = x but is in general larger than the union of these.

In contrast to the limit set of a solution, the ω-limit set of a point need not be
internally chain transitive.

Example 3.7. Let F be the set-valued map defined on R by F (x) = 1 − x for
x > 0 and F (0) = [0, 1] and F (x) = −x for x < 0. Then for every solution x, one has
limt→∞ x(t) = 0 or 1. But ωΦ(0) = [0, 1] is not internally chain transitive.

More generally one defines

ωΦ(Y ) :=
⋂

t≥0

Φ[t,∞)(Y ).
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Definition VII. A set Y is forward precompact if Φ[t,∞)(Y ) is compact for some
t > 0.

Lemma 3.8. (i) ωΦ(Y ) is the set of points p ∈ Rm such that

p = lim
n→∞

yn(tn)

for some sequence {yn} of solutions to (I) with initial conditions yn(0) ∈ Y and some
sequence {tn} ∈ R with tn → ∞.

(ii) ωΦ(Y ) is a closed invariant (possibly empty) set. If Y is forward precompact,
then ωΦ(Y ) is nonempty and compact.

Proof. Point (i) is easily seen from the definition.
(ii) Let p = limn→∞ yn(tn) ∈ ωΦ(Y ). Set zn(s) = yn(tn + s) for all s ∈ R. By

Lemma 3.1 we may extract from (zn)n≥0 a subsequence converging to some solution
z with z(0) = p and z(s) = limnk→∞ ynk(tnk + s) ∈ ωΦ(Y ). This proves invariance.
The rest is clear.

Note that the limit set ωΦ(Y ) is in general not strongly positively invariant (e.g.,
in Example 3.7 for x < 0, ωΦ(x) = {0}).

3.5. Attracting sets and attractors. For applications it is useful to charac-
terize L(y) in terms of certain compact invariant sets for Φ, namely, the attractors,
as defined below.

Given a closed invariant set L, the induced set-valued dynamical system ΦL is
the family of (set-valued) mappings ΦL = {ΦL

t }t∈R defined on L by

ΦL
t (x) = {x(t) : x is a solution to (I) with x(0) = x and x(R) ⊂ L}.

Note that L is strongly invariant for ΦL.
Definition VIII. A compact set A ⊂ L is called an attracting set for ΦL, pro-

vided that there is a neighborhood U of A in L (i.e., for the induced topology) with the
property that for every ε > 0 there exists tε > 0 such that

ΦL
t (U) ⊂ Nε(A)

for all t ≥ tε. Or, equivalently, ΦL
[tε,∞)(U) ⊂ Nε(A). Here Nε(A) stands for the

ε-neighborhood of A.
If, additionally, A is invariant, then A is called an attractor for ΦL.
The set U is called a fundamental neighborhood of A for ΦL. If A 0= L and

A 0= ∅, then A is called a proper attracting set (or proper attractor) for ΦL.
Furthermore, an attracting set (respectively, attractor) for Φ is an attracting set

(respectively, attractor) for ΦL with L = Rm.
Example 3.9. Let F be the set-valued map from Example 3.2(a), i.e., defined on

R by F (x) = − sgn(x) if x 0= 0 and F (0) = [−1, 1]. Then {0} is an attractor and
every compact set A ⊂ R with 0 ∈ A is an attracting set.

Proposition 3.10. Let A be a nonempty compact subset of L, and U a neigh-
borhood of A in L. Then the following hold:

(i) A is an attracting set for ΦL with fundamental neighborhood U if and only
if U is forward precompact and ωΦL(U) ⊂ A. In this case ωΦL(U) is an attractor.

(ii) A is an attractor for ΦL with fundamental neighborhood U if and only if U
is forward precompact and ωΦL(U) = A.

Proof. (i) If A is an attracting set for ΦL with fundamental neighborhood U , then

ωΦL(U) ⊂
⋂

ε>0N
ε(A) ⊂ A. Conversely, for t large enough Vt = ΦL

[t,∞)(U) defines a
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decreasing family of compact sets converging to ωΦL(U) ⊂ A. Hence for any ε > 0
there exists tε with Vtε ⊂ Nε(A) and A is an attracting set. In particular, ωΦL(U)
itself is an attracting set, invariant by Lemma 3.8(ii).

(ii) If A = ωΦL(U), then A is an attractor by (i). Conversely, if A is an attractor
with fundamental neighborhood U , then ωΦ(U) ⊂ A by (i). Let x ∈ A. Since A
is invariant, there exists a solution y to (I) with y(0) = x and y(R) ⊂ A. Set
yn(t) = y(t−n). Then yn(n) = x, proving that x ∈ ωΦL(U) (by Lemma 3.8(i)).

Proposition 3.11. Every attractor is strongly positively invariant. (Example
3.2(a) provides an attractor that is not strongly invariant.)

Proof. By invariance, A ⊂ ΦL
T (A) for all T > 0. Hence, given t > 0,

ΦL
t (A) ⊂ ΦL

t+T (A) ⊂ ΦL
t+T (U) ⊂ ΦL

[t+T,∞)(U)

for all T > 0. Thus ΦL
t (A) ⊂ Nε(A) for all ε > 0, and hence ΦL

t (A) ⊂ A for all
t > 0.

Remark 3.12. In the family of attracting sets A with a given fundamental neigh-
borhood U , there exists a minimal one, which is in addition invariant, strongly posi-
tively invariant, and independent of the set U used to define the family. It is also the
largest positively quasi-invariant set included in U .

Any attractor A ⊂ L can be written as A = ωΦL(U) for some U . Hence any
fundamental neighborhood uniquely determines the attractor A. This implies, as in
Conley [13], that ΦL can have at most countably many attractors.

3.6. Attractors and stability.
Definition IX. A set A ⊂ L is asymptotically stable for ΦL if it satisfies the

following three conditions:
(i) A is invariant.
(ii) A is Lyapunov stable; i.e., for every neighborhood U of A there exists a

neighborhood V of A such that Φ[0,∞)(V ) ⊂ U .
(iii) A is attractive; i.e., there is a neighborhood U of A such that for every

x ∈ U : ωΦ(x) ⊂ A.
Alternatively, instead of (iii) one could ask for the following weaker requirement:

(iii′) There is a neighborhood U of A such that for every solution x with x(0) ∈ U
one has L(x) ⊂ A.
We show now that for compact sets the concepts of attractor and asymptotic stability
are equivalent. The proof of Corollary 3.18 below shows that it makes no difference
whether one uses (iii) or (iii′) in the definition of asymptotic stability.

We start with an upper bound for entry times.
Lemma 3.13. Let V be an open set and K compact such that for all solutions x

with x(0) ∈ K there is t > 0 with x(t) ∈ V . Then there exists T > 0 such that for
every solution x with x(0) ∈ K there is t ∈ [0, T ] with x(t) ∈ V .

Proof. Suppose that there is no such upper bound T for the entry times into V .
Then for each n ∈ N there is xn(0) = xn ∈ K and a solution xn such that xn(t) /∈ V
for 0 ≤ t ≤ n. Since K is compact, we can assume that xn → x ∈ K. And by
Lemma 3.1 a subsequence of xn converges to a solution x with x(0) = x and x(t) /∈ V
for all t > 0.

Lemma 3.14. If a closed set A is Lyapunov stable, then it is strongly positively
invariant.

Proof. A is the intersection of a family of strongly positively invariant neighbor-
hoods.
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Lemma 3.15. If a compact set A satisfies (ii) and (iii′), it is attracting.
Proof. Let B be a compact neighborhood of A, included in the fundamental

neighborhood U , and let W be a neighborhood of A. A being Lyapunov stable, there
exists an open neighborhood V of A with ΦL

[0,∞)(V ) ⊂ W . For any x ∈ B and any

solution x with x(0) = x, there exists t > 0 with x(t) ∈ V . Applying Lemma 3.13
implies ΦL

T (B) ⊂ ΦL
[0,T ](V ); hence ΦL

[T,∞)(B) ⊂ W and A is attracting.
Lemma 3.16. If the set A is attracting and strongly positively invariant, then it

is Lyapunov stable.
Proof. Let A be attracting with fundamental neighborhood U , and V be any other

(open) neighborhood of A. Then by definition there is T > 0 such that ΦL
[T,∞)(U) ⊂ V .

A being strongly positively invariant, ΦL
[0,T ](A) ⊂ A. Upper semicontinuity gives an

ε > 0 such that ΦL
[0,T ](N

ε(A)) ⊂ V and Nε(A) ⊂ U . Hence ΦL
[0,∞)(N

ε(A)) ⊂ V ,
which shows Lyapunov stability.

Corollary 3.17. For a compact set A, properties (ii) and (iii′) of Definition IX,
together, are equivalent to attracting and strong positive invariance.

Corollary 3.18. A compact set A is an attractor if and only if it is asymptot-
ically stable.

We conclude with a simple useful condition ensuring that an open set contains
an attractor.

Proposition 3.19. Let U be an open set with compact closure. Suppose that
ΦT (U) ⊂ U for some T > 0. Then U is a fundamental neighborhood of some attractor
A.

Proof. Since Φ has a closed graph, ΦT (U) is compact. Therefore ΦT (U) ⊂
V ⊂ V ⊂ U for some open set V . By upper semicontinuity of ΦT (which follows
from property (d) of a set-valued dynamical system) there exists ε > 0 such that
Φt(U) ⊂ V for T −ε ≤ t ≤ T +ε. Let t0 = T (T +1)/ε. For all t ≥ t0 write t = kT + r
with k ∈ N and r < T . Hence t = k(T + r/k) with 0 ≤ r/k < ε. Thus

Φt(U) = ΦT+r/k ◦ · · · ◦ ΦT+r/k(U) ⊂ V.

Hence ωΦ(U) =
⋂

t≥t0
Φ[t,∞)(U) ⊂ V ⊂ U is an attractor with fundamental neigh-

borhood U .

3.7. Chain transitivity and attractors.
Proposition 3.20. Let L be internally chain transitive. Then L has no proper

attracting set for ΦL.
Proof. Let A ⊂ L be an attracting set. By definition, there exists a neighborhood

U of A, and for all ε > 0 a number tε such that ΦL
t (U) ⊂ Nε(A) for all t > tε.

Assume A 0= L and choose ε small enough so that N2ε(A) ⊂ U and there exists
y ∈ L \ N2ε(A). Then, for T ≥ tε and x ∈ A, there is no (ε, T ) chain from x to y.
In fact, x1(0) ∈ N2ε(A), and hence x1(t1) ∈ Nε(A); by induction, xi(ti) ∈ Nε(A) so
that xi+1(0) ∈ N2ε(A) as well. Thus we arrive at a contradiction.

Remark 3.21. This last proposition can also be deduced from Bronstein and
Kopanskii [9, Theorem 1] combined with Lemma 3.1. Also the converse is true.

Recall that an attracting set (respectively, attractor) for Φ is an attracting set
(respectively, attractor) for ΦL with L = Rm.

Lemma 3.22. Let A be an attracting set for Φ and L a closed invariant set.
Assume A ∩ L 0= ∅. Then A ∩ L is an attracting set for ΦL.

Proof. The proof follows from the definitions.
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If A is a set, then

B(A) = {x ∈ Rm : ωΦ(x) ⊂ A}

denotes its basin of attraction.
Theorem 3.23. Let A be an attracting set for Φ and L an internally chain

transitive set. Assume L ∩B(A) 0= ∅. Then L ⊂ A.
Proof. Suppose L ∩B(A) 0= ∅. Then there exists a solution x to (I) with x(0) =

x ∈ B(A) and x(R) ⊂ L. Hence d(x(t), A) → 0 when t → ∞, proving that L meets
A. Proposition 3.20 and Lemma 3.22 imply that L ⊂ A.

A global attractor for Φ is an attractor whose basin of attraction consists of all
Rm. If a global attractor exists, then it is unique and coincides with the maximal
compact invariant set of Φ. The following corollary is an immediate consequence of
Theorem 3.23 or even more easily of Lemma 3.5.

Corollary 3.24. Suppose Φ has a global attractor A. Then every internally
chain transitive set lies in A.

3.8. Lyapunov functions.
Proposition 3.25. Let Λ be a compact set, U ⊂ Rm be a bounded open neigh-

borhood of Λ, and V : U → [0,∞[. Let the following hold:
(i) For all t ≥ 0, Φt(U) ⊂ U (i.e., U is strongly positively invariant);
(ii) V −1(0) = Λ;
(iii) V is continuous and for all x ∈ U \ Λ, y ∈ Φt(x) and t > 0, V (y) < V (x);
(iv) V is upper semicontinuous, and for all x ∈ U \ Λ, y ∈ Φt(x), and t > 0,

V (y) < V (x).
(A) Under (i), (ii), and (iii), Λ is a Lyapunov stable attracting set, and there

exists an attractor contained in Λ whose basin contains U , and with V −1([0, r)) as
fundamental neighborhoods for small r > 0.

(B) Under (i), (ii), and (iv), there exists an attractor contained in Λ whose basin
contains U .

Proof. For the proof of (A), let r > 0 and Ur = {x ∈ U : V (x) < r}. Then
{Ur}r>0 is a nested family of compact neighborhoods of Λ with

⋂
r>0Ur = Λ. Thus

for r > 0 small enough, Ur ⊂ U . Moreover, Φt(Ur) ⊂ Ur for t > 0 by our hypotheses
on U and V . Proposition 3.19 then implies the result.

For (B), let A = ωΦ(U), which is closed and invariant (by Lemma 3.8) and hence
compact, since it is included in U . Let α = maxy∈A V (y) be reached at x, since
V is upper semicontinuous. By invariance there exists a solution x and t > 0 with
z = x(0) ∈ A and x(t) = x. This contradicts (iv) unless α = 0 and A ⊂ Λ. Thus U is
a neighborhood of A, which is an attractor included in Λ.

Remark 3.26. Given any attractor A, there exists a function V such that Propo-
sition 3.25(iv) holds for Λ = A. Take V (x) = max{d(y,A)g(t), y ∈ Φt(x), t ≥ 0},
where d > g(t) > c > 0 is any continuous strictly increasing function.

Let Λ be any subset of Rm. A continuous function V : Rm → R is called a
Lyapunov function for Λ if V (y) < V (x) for all x ∈ Rm \ Λ, y ∈ Φt(x), t > 0, and
V (y) ≤ V (x) for all x ∈ Λ, y ∈ Φt(x), and t ≥ 0. Note that for each solution x, V is
constant along its limit set L(x).

The following result is similar to Benäım [3, Proposition 6.4].
Proposition 3.27. Suppose that V is a Lyapunov function for Λ. Assume that

V (Λ) has empty interior. Then every internally chain transitive set L is contained in
Λ and V | L is constant.
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Proof. Let

v = inf{V (y) : y ∈ L}.

Since L is compact and V is continuous, v = V (x) for some point x ∈ L. Since L is
invariant, there exists a solution x with x(t) ∈ L and x(0) = x. Then v = V (x) >
V (x(t)), and thus is impossible for t > 0. Since x(t) ∈ Φt(x), we conclude x ∈ Λ.

Thus v belongs to the range V (Λ). Since V (Λ) contains no interval, there is a
sequence vn /∈ V (Λ) decreasing to v. The sets Ln = {x ∈ L : V (x) < vn} satisfy
Φt(Ln) ⊂ Ln for t > 0. In fact, either x ∈ Λ ∩ Ln and V (y) ≤ V (x) < vn or
V (y) < V (x) ≤ vn, for any y ∈ Φt(x), t > 0.

Thus, using Propositions 3.19 and 3.20, one obtains L =
⋂

n Ln = {x ∈ L :
V (x) = v}. Hence V is constant on L. L being invariant, this implies, as above,
L ⊂ Λ.

Corollary 3.28. Let V and Λ be as in Proposition 3.27. Suppose furthermore
that V is Cm and Λ is contained in the critical points set of V . Then every internally
chain transitive set lies in Λ and V | L is constant.

Proof. By Sard’s theorem (Hirsch [18, p. 69]), V (Λ) has empty interior and
Proposition 3.27 applies.

4. The limit set theorem.

4.1. Asymptotic pseudotrajectories for set-valued dynamics. The trans-
lation flow Θ : C0(R,Rm) × R → C0(R,Rm) is the flow defined by

Θt(x)(s) = x(s + t).

A continuous function z : R+→Rm is an asymptotic pseudotrajectory (APT) for Φ if

lim
t→∞

D(Θt(z), Sz(t)) = 0(4.1)

(or limt→∞ D(Θt(z), S) = 0, where S =
⋃

x∈RmSx denotes the set of all solutions of
(I)).

Alternatively, for all T

lim
t→∞

inf
x∈Sz(t)

sup
0≤s≤T

‖z(t + s) − x(s)‖ = 0.

In other words, for each fixed T , the curve

[0, T ] → Rm : s → z(t + s)

shadows some Φ trajectory of the point z(t) over the interval [0, T ] with arbitrary
accuracy for sufficiently large t. Hence z has a forward trajectory under Θ attracted
by S. As usual, one extends z to R by letting z(t) = z(0) for t < 0.

The next result is a natural extension of Benäım and Hirsch [4], [5, Theorem 7.2].
Theorem 4.1 (characterization of APT). Assume z is bounded. Then there is

equivalence between the following statements:
(i) z is an APT for Φ.
(ii) z is uniformly continuous, and any limit point of {Θt(z)} is in S.

In both cases the set {Θt(z); t ≥ 0} is relatively compact.
Proof. By hypothesis, K = {z(t); t ≥ 0} is compact.
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For any ε > 0, there exists η > 0 such that ‖z − x‖ < ε/2, for any x ∈ K, any
z ∈ Φs(x), and any |s| < η, using property (d) of the dynamical system.

z being an APT, there exists T such that t > T implies

d(z(t + s),Φs(z(t))) <
ε

2
∀|s| < η;

hence

‖z(t + s) − z(t)‖ ≤ ε

and z is uniformly continuous. Clearly any limit point belongs to S by the condition
(4.1) above.

Conversely, if z is uniformly continuous, then the family of functions {Θt(z); t ≥
T} is equicontinuous and hence (K being compact) relatively compact by Ascoli’s
theorem. Since any limit point belongs to S, property (4.1) follows.

4.2. Perturbed solutions are APTs.
Theorem 4.2. Any bounded solution y of (II) is an APT of (I).
Proof. Let us prove that y satisfies Theorem 4.1(ii). Set v(t) = ẏ(t) − U(t) ∈

F δ(t)(y(t)). Then,

y(t + s) − y(t) =

∫ s

0
v(t + τ)dτ +

∫ t+s

t
U(τ)dτ.(4.2)

By assumption (iii) of (II), the second integral goes to 0 as t → ∞. The boundedness
of y, y(R) ⊂ M , M compact (combined with the fact that F has linear growth)
implies boundedness of v and shows that y is uniformly continuous. Thus the family
Θt(y) is equicontinuous, and hence relatively compact. Let z = limtn→∞ Θtn(y) be
a limit point. Set t = tn in (4.2) and define vn(s) = v(tn + s). Then, using the
assumption (iii) on U , the second term in the right-hand side of this equality goes to
zero uniformly on compact intervals when n → ∞. Hence

z(s) − z(0) = lim
n→∞

∫ s

0
vn(τ)dτ.

Since (vn) is uniformly bounded, it is bounded in L2[0, s], and by the Banach–
Alaoglu theorem, a subsequence of vn will converge weakly in L2[0, s] (or weak* in
L∞[0, s]) to some function v with v(t) ∈ F (z(t)), for almost every t, since vn(t) ∈
F δ(t+tn)(y(t + tn)) for every t. Here we use (ii) and that F is upper semicontinuous
with convex values. In fact, by Mazur’s theorem, a convex combination of {vm,m ≥ n}
converges almost surely to v and limm→∞ Co(

⋃
n≥m F δ(t+tn)(y(t + tn))) ⊂ F (z(t)).

Hence z(s) − z(0) =
∫ s
0 v(τ)dτ , proving that z is a solution of (I) and hence z ∈

SM,M .

4.3. APTs are internally chain transitive.
Theorem 4.3. Let z be a bounded APT of (I). Then L(z) is internally chain

transitive.
Proof. The set {Θt(z) : t ≥ 0} is relatively compact, and hence the ω-limit set of

z for the flow Θ,

ωΘ(z) =
⋂

t≥0

{Θs(z) : s ≥ t},

is internally chain transitive. (By standard properties of ω-limit sets of bounded
semiorbits, ωΘ(z) is a nonempty, compact, internally chain transitive set invariant
under Θ; see Conley [13]; a short proof is also in Benäım [3, Corollary 5.6].) By
property (4.1), ωΘ(z) ⊂ S, the set of all solutions of (I).
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Let Π : (C0(R,Rm),D) → (Rm, ‖ ·‖ ) be the projection map defined by Π(z) =
z(0). One has Π(ωΘ(z)) = L(z). In fact if p = limn→∞ z(tn), let w be a limit point
of Θtn(z). Then w ∈ ωΘ(z) and Π(w) = p.

It then easily follows that L(z) is nonempty compact and invariant under Φ since
ωΘ(z) ⊂ S. Since Π has Lipschitz constant 1, Π maps every (ε, T ) chain for Θ to an
(ε, T ) chain for Φ. This proves that L(z) is internally chain transitive for Φ.

5. Applications.

5.1. Approachability. An application of Proposition 3.25 is the following re-
sult, which can be seen as a continuous asymptotic deterministic version of Blackwell’s
approachability theorem [8]. Note that one has no property on uniform speed of con-
vergence.

Given a compact set Λ ∈ Rm and x ∈ Rm, we let ΠΛ(x) = {y ∈ Λ : d2(x,Λ) =
‖x− y‖2 = 〈x− y, x− y〉}.

Corollary 5.1. Let Λ ⊂ Rm be a compact set, r > 0, and U = {x ∈ Rm :
d(x,Λ) < r}. Suppose that for all x ∈ U \ Λ there exists y ∈ ΠΛ(x) such that the
affine hyperplane orthogonal to [x, y] at y separates x from x + F (x). That is,

〈x− y, x− y + v〉 ≤ 0(5.1)

for all v ∈ F (x). Then Λ contains an attractor for (I) with fundamental neighborhood
U .

Proof. Set V (x) = d(x,Λ). To apply Proposition 3.25 it suffices to verify condition
(iii) of Proposition 3.25. Condition (i) will follow, and condition (ii) is clearly true.

Let x be a solution to (I) with initial condition x ∈ U \ Λ. Set τ = inf{t > 0 :
x(t) ∈ Λ} ≤∞ , g(t) = V (x(t)), and let I ⊂ [0, τ [ be the set of 0 ≤ t < τ such that
g′(t) and ẋ(t) exist and ẋ(t) ∈ F (x(t)). For all t ∈ I and y ∈ ΠΛ(x(t))

g(t + h) − g(t) ≤ ‖x(t + h) − y‖ − ‖x(t) − y‖
= ‖x(t) + ẋ(t)h− y‖ − ‖x(t) − y‖ + |h|ε(h),

where limh→0 ε(h) = 0. Hence

g′(t) ≤ 1

‖x(t) − y‖〈x(t) − y, ẋ(t)〉

= −g(t) +
1

‖x(t) − y‖〈x(t) − y,x(t) − y + ẋ(t)〉.

Thus, ẋ ∈ F (x) and (5.1) imply g′(t) ≤ −g(t) for all t ∈ I. Since g and x are absolutely
continuous, I has full measure in [0, τ [. Hence g(t) ≤ e−tg(0) for all t < τ . Therefore
V (x(t)) < V (x) for all 0 < t < τ , which shows (iii). Finally, V (x(t)) ≤ e−tV (x)
shows that the sets V −1[0, r′) (with 0 < r′ ≤ r) are fundamental neighborhoods of
the attractor in Λ.

In particular, if any point of E has a unique projection on Λ (for example, Λ
convex), then C = C, and one recovers exactly Blackwell’s sufficient condition for
approachability.

Corollary 5.2 (Blackwell’s approachability theorem). Consider the decision
making process described in section 2.1, Example 2.2. Let Λ ⊂ E be a compact set.
Assume that there exists a strategy Q such that for all x ∈ E\Λ there exists y ∈ ΠΛ(x)
such that the hyperplane orthogonal to [x, y] through y separates x from C(x). Then
Λ is approachable.
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Proof. Let L(xn) denote the limit set of {xn}. By Corollary 5.1, Λ is an attractor
with fundamental neighborhood E, hence a global attractor. Thus Theorem 3.6 with
Proposition 2.1 and Corollary 3.24 imply that L(xn) is almost surely contained in
Λ.

5.2. Smale’s approach to the prisoner’s dilemma. We develop here Ex-
ample 2.4. Consider a 2 × 2 prisoner’s dilemma game. Each player has two possible
actions: cooperate (play C) or defect (play D). If both cooperate, each receives α; if
both defect, each receives λ; if one cooperates and the other defects, the cooperator
receives β and the defector γ. We suppose that γ > α > λ > β, as is usual with a
prisoner’s dilemma game. We furthermore assume that

γ − α <α − β,

so that the outcome space E is the convex quadrilateral whose vertices are the payoff
vectors

CD = (β, γ), CC = (α, α), DC = (γ, β), DD = (λ, λ);

see the figure below.

 DD

 DC

 CC

 CD

Λ

The outcome space E

Let δ be a nonnegative parameter. Adapting Smale [27] and Benäım and Hirsch [4, 5],
a δ-good strategy for player 1 is a strategy Q1 = {Q1

x} (as defined in section 2.1)
enjoying the following features:

Q1
x(play C) = 1 if x1 > x2

and

Q1
x(play C) = 0 if x1 < x2 − δ.

The following result reinterprets the results of Smale [27] and Benäım and Hirsch
[4, 5] in the framework of approachability. It also provides some generalization (see
Remark 5.4 below).
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Theorem 5.3. (i) Suppose that player 1 plays a δ-good strategy. Then the set

Λ = {x ∈ E : x2 − δ ≤ x1 ≤ x2}

is approachable.
(ii) Suppose that both players play a δ-good strategy and that at least one of them is

continuous (meaning that the corresponding function x → Qi
x(play C) is continuous).

Then

lim
n→∞

xn = CC

almost surely.
Proof. (i) Let x ∈ E \ Λ. If x1 > x2, then

C(x) = C(x) = [CC,CD],

and the line {u ∈ R2 : u1 = u2} separates x from C(x). Similarly if x1 < x2 − δ, then

C(x) = C(x) = [DD,DC],

which is separated from x by the line {u ∈ R2 : u1 = u2 − δ}. Assertion (i) then
follows from Corollary 5.2.

(ii) If both play a δ-good strategy, then (i) and its analogue for player 2 imply
that the diagonal

∆ = {x ∈ E : x1 = x2}

is approachable. Thus L(xn) ⊂ ∆. Also (by Proposition 2.1, Theorem 3.6, and
Lemma 3.5) L(xn) is invariant under the differential inclusion induced by

F (x) = −x + C(x),

where C(x) = C1(x) ∩ C2(x) and Ci(x) is the convex set associated with Qi (the
strategy of player i). Suppose that one player, say 1, plays a continuous strategy.
Then C(x) ⊂ C1(x) = C1(x) and for all x ∈ ∆, C1(x) = [CD,CC]. Now, there is
only one subset of ∆ which is invariant under ẋ ∈ −x + [CD,CC]; this is the point
CC. This proves that L(xn) = CC.

Remark 5.4. (i) In contrast to Smale [27] and Benäım and Hirsch [4, 5], observe
that assertion (i) makes no hypothesis on player 2’s behavior. In particular, it is
unnecessary to assume that player 2 has a strategy of the form defined by section 2.1.

(ii) The regularity assumptions (on strategies) are much weaker than in Benäım
and Hirsch [4, 5].

(iii) A 0-good strategy makes the diagonal ∆ approachable. However, if both
players play a 0-good strategy, then C(x) = E for all x ∈ ∆, and we are unable to
predict the long-term behavior of {xn} on ∆.

5.3. Fictitious play in potential games. Here we generalize the result of
Monderer and Shapley [25]. They prove convergence of the classical discrete fictitious
play process, as defined in Example 2.3, for n-linear payoff functions. Harris [17]
studies the best-response dynamics in this case but does not derive convergence of
fictitious play from it. Our limit set theorem provides the right tool for doing this,
even in the following, more general setting.
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Let Xi, i = 1, . . . , n, be compact convex subsets of Euclidean spaces and U :
X1 × · · · ×Xn → R be a C1 function which is concave in each variable. U is inter-
preted as the common payoff function for the n players. We write x = (xi, x−i) and
define BRi(x−i) := Argmaxxi∈Xi U(x) the set of maximizers. Then x )→ BR(x) =
(BR1(x−1), . . . , BRn(x−n)) is upper semicontinuous (by Berge’s maximum theorem,
since U is continuous) with nonempty compact convex values. Consider the best
response dynamics

ẋ ∈ BR(x) − x.(5.2)

Its constant solutions x(t) ≡ x̂ are precisely the Nash equilibria x̂ ∈ BR(x̂); i.e.,
U(x̂) ≥ U(xi, x̂−i) for all i and xi ∈ Xi. Along a solution x(t) of (5.2), let u(t) =
U(x(t)). Then for almost all t > 0,

u̇(t) =
n∑

i=1

∂U

∂xi
(x(t))ẋi(t)(5.3)

≥
n∑

i=1

[U(xi(t) + ẋi(t),x−i(t)) − U(x(t))](5.4)

=
n∑

i=1

[
max
yi∈Xi

U(yi,x−i(t)) − U(x(t))

]
≥ 0,(5.5)

where from (5.3) to (5.4) we use the concavity of U in xi, and (5.5) follows from
(5.2) and the definition of BRi. Since the function t )→ u(t) is locally Lipschitz, this
shows that it is weakly increasing. It is constant in a time interval T , if and only if
xi(t) ∈ BRi(x−i(t)) for all t ∈ T and i = 1, . . . , n, i.e., if and only if x(t) is a Nash
equilibrium for t ∈ T (but x(t) may move in a component of the set of Nash equilibria
(NE) with constant U).

Theorem 5.5. The limit set of every solution of (5.2) is a connected subset of
NE, along which U is constant. If, furthermore, the set U(NE) contains no interval
in R, then the limit set of every fictitious play path is a connected subset of NE along
which U is constant.

Proof. The first statement follows from the above. The second statement follows
from Theorem 3.6 together with Proposition 3.27 with V = −U and Λ = NE.

Remark 5.6. The assumption that the set U(NE) contains no interval in R
follows via Corollary 3.28 if U is smooth enough (e.g., in the n-linear case) and if each
Xi has at most countably many faces, by applying Sard’s lemma to the interior of
each face.

Example 5.7 (2 × 2 coordination game). The global attractor of (5.2) consists
of three equilibria and two line segments connecting them. The internally chain
transitive sets are the three equilibria. Hence every fictitious play process converges
to one of these equilibria.

The case of (continuous concave-convex) two-person zero-sum games was treated
in Hofbauer and Sorin [21], where it is shown that the global attractor of (5.2) equals
the set of equilibria. In this case the full strength of Theorem 3.6 and the notion of
chain transitivity are not needed; the invariance of the limit set of a fictitious play
path implies that it is contained in the global attractor; compare Corollary 3.24.
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Institute, and the organizers and participants of the 2004 Kyoto workshop on “game
dynamics.”

REFERENCES

[1] J.-P. Aubin and A. Cellina, Differential Inclusions, Springer, New York, 1984.
[2] M. Benäım, A dynamical system approach to stochastic approximations, SIAM J. Control

Optim., 34 (1996), pp. 437–472.
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