Stochastic Approximations and Differential Inclusions, Part II: Applications

Michel Benaïm
Institut de Mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, Neuchâtel, Switzerland, michel.benaim@unine.ch
Josef Hofbauer
Department of Mathematics, University College London, London WC1E 6BT, United Kingdom and Institut für Mathematik, Universität Wien, Nordbergstrasse 15, 1090 Wien, Austria, j.hofbauer@ucl.ac.uk
Sylvain Sorin
Equipe Combinatoire et Optimisation, UFR 929, Université P. et M. Curie-Paris 6, 175 Rue du Chevaleret, 75013 Paris, France, sorin@math.jussieu.fr

Abstract

We apply the theoretical results on "stochastic approximations and differential inclusions" developed in Benaïm et al. [M. Benaïm, J. Hofbauer, S. Sorin. 2005. Stochastic approximations and differential inclusions. SIAM J. Control Optim. 44 328-348] to several adaptive processes used in game theory, including classical and generalized approachability, no-regret potential procedures (Hart and Mas-Colell [S. Hart, A. Mas-Colell. 2003. Regret-based continuous time dynamics. Games Econom. Behav. 45 375-394]), and smooth fictitious play [D. Fudenberg, D. K. Levine. 1995. Consistency and cautious fictitious play. J. Econom. Dynam. Control 19 1065-1089].

Key words: stochastic approximation; differential inclusions; set-valued dynamical systems; approachability; no regret; consistency; smooth fictitious play MSC2000 subject classification: 62L20, 34G25, 37B25, 62P20, 91A22, 91A26, 93E35, 34F05 OR/MS subject classification: Primary: noncooperative games, stochastic model applications; secondary: Markov processes History: Received May 4, 2005; revised December 31, 2005.

1. Introduction. The first paper of this series (Benaïm et al. [10]), henceforth referred to as BHS, was devoted to the analysis of the long-term behavior of a class of continuous paths called perturbed solutions that are obtained as certain perturbations of trajectories solutions to a differential inclusion in \mathbb{R}^{m}

$$
\begin{equation*}
\dot{\mathbf{x}} \in M(\mathbf{x}) \tag{1}
\end{equation*}
$$

A fundamental and motivating example is given by (continuous time-linear interpolation of) discrete stochastic approximations of the form

$$
\begin{equation*}
X_{n+1}-X_{n}=a_{n+1} Y_{n+1} \tag{2}
\end{equation*}
$$

with

$$
\mathrm{E}\left(Y_{n+1} \mid \mathscr{F}_{n}\right) \in M\left(X_{n}\right),
$$

where $n \in \mathbb{N}, a_{n} \geq 0, \sum_{n} a_{n}=+\infty$, and \mathscr{F}_{n} is the σ-algebra generated by $\left(X_{0}, \ldots, X_{n}\right)$, under conditions on the increments $\left\{Y_{n}\right\}$ and the coefficients $\left\{a_{n}\right\}$. For example, if:
(i) $\sup _{n}\left\|Y_{n+1}-\mathrm{E}\left(Y_{n+1} \mid \mathscr{F}_{n}\right)\right\|<\infty$ and
(ii) $a_{n}=o(1 / \log (n))$,
the interpolation of a process $\left\{X_{n}\right\}$ satisfying Equation (2) is almost surely a perturbed solution of Equation (1).
Following the dynamical system approach to stochastic approximations initiated by Benaïm and Hirsch (Benaïm [5], [6], Benaïm and Hirsch [8], [9]), it was shown in BHS that the set of limit points of a perturbed solution is a compact invariant attractor free set for the set-valued dynamical system induced by Equation (1).

From a mathematical viewpoint, this type of property is a natural generalization of Benaïm and Hirsch's previous results. ${ }^{1}$ In view of applications, it is strongly motivated by a large class of problems, especially in game theory, where the use of differential inclusions is unavoidable since one deals with unilateral dynamics where the strategies chosen by a player's opponents (or nature) are unknown to this player.

In BHS, a few applications were given: (1) in the framework of approachability theory (where one player aims at controlling the asymptotic behavior of the Cesaro mean of a sequence of vector payoffs corresponding to the outcomes of a repeated game) and (2) for the study of fictitious play (where each player uses, at each stage of a repeated game, a move that is a best reply to the past frequencies of moves of the opponent).

[^0]The purpose of the current paper is to explore much further the range of possible applications of the theory and to convince the reader that it provides a unified and powerful approach to several questions such as approachability or consistency (no regret). The price to pay is a bit of theory, but as a reward we obtain neat and simpler (sometimes much simpler) proofs of numerous results arising in different contexts.

The general structure for the analysis of such discrete time dynamics relies on the identification of a state variable for which the increments satisfy an equation like (2). This requires in particular vanishing step size (for example, the state variable will be a time average-of payoffs or moves-) and a Markov property for the conditional law of the increments (the behavioral strategy will be a function of the state variable).

The organization of the paper is as follows. Section 2 summarizes the results of BHS that will be needed here. In §3, we first consider generalized approachability where the parameters are a correspondence N and a potential function Q adapted to a set C, and we extend some results obtained by Hart and Mas-Colell [25]. In $\S 4$ we deal with (external) consistency (or no regret): The previous set C is now the negative orthant, and an approachability strategy is constructed explicitly through a potential function P, following Hart and MasColell [25]. A similar approach (§5) also allows us to recover conditional (or internal) consistency properties via generalized approachability. Section 6 shows analogous results for an alternative dynamics: smooth fictitious play. This allows us to retrieve and extend certain properties obtained by Fudenberg and Levine [19], [21] on consistency and conditional consistency. Section 7 deals with several extensions of the previous results to the case where the information available to a player is reduced, and $\S 8$ applies to results recently obtained by Benaïm and Ben Arous [7].
2. General framework and previous results. Consider the differential inclusion (Equation 1). All the analysis will be done under the following condition, which corresponds to Hypothesis 1.1 in BHS:

Hypothesis 2.1 (Standing Assumptions). M is an upper semicontinuous correspondence from \mathbb{R}^{m} to itself, with compact convex nonempty values and which satisfies the following growth condition. There exists $c>0$ such that for all $x \in \mathbb{R}^{m}$,

$$
\sup _{z \in M(x)}\|z\| \leq c(1+\|x\|) .
$$

Here $\|\cdot\|$ denotes any norm on \mathbb{R}^{m}.
Remark. These conditions are quite standard and such correspondences are sometimes called Marchaud maps (see Aubin [1, p. 62]). Note also that in most of our applications, one has $M(x) \subset K_{0}$, where K_{0} is a given compact set, so that the growth condition is automatically satisfied.

In order to state the main results of BHS that will be used here, we first recall some definitions and notation. The set-valued dynamical system $\left\{\Phi_{t}\right\}_{t \in \mathbb{R}}$ induced by Equation (1) is defined by

$$
\Phi_{t}(x)=\{\mathbf{x}(t): \mathbf{x} \text { is a solution to Equation (1) with } \mathbf{x}(0)=x\}
$$

where a solution to the differential inclusion (Equation 1) is an absolutely continuous mapping $\mathbf{x}: \mathbb{R} \rightarrow \mathbb{R}^{m}$, satisfying

$$
\frac{d \mathbf{x}(t)}{d t} \in M(\mathbf{x}(t))
$$

for almost every $t \in \mathbb{R}$.
Given a set of times $T \subset \mathbb{R}$ and a set of positions $V \subset \mathbb{R}^{m}$,

$$
\Phi_{T}(V)=\bigcup_{t \in T} \bigcup_{v \in V} \Phi_{t}(v)
$$

denotes the set of possible values, at some time in T, of trajectories being in V at time 0 . Given a point $x \in \mathbb{R}^{m}$, let

$$
\omega_{\Phi}(x)=\bigcap_{t \geq 0} \overline{\Phi_{[t, \infty)}(x)}
$$

denote its ω-limit set (where as usual the bar stands for the closure operator). The corresponding notion for a set Y, denoted as $\omega_{\Phi}(Y)$, is defined similarly with $\Phi_{[t, \infty)}(Y)$ instead of $\Phi_{[t, \infty)}(x)$.

A set A is invariant if, for all $x \in A$ there exists a solution \mathbf{x} with $\mathbf{x}(0)=x$ such that $\mathbf{x}(\mathbb{R}) \subset A$ and is strongly positively invariant if $\Phi_{t}(A) \subset A$ for all $t>0$. A nonempty compact set A is an attracting set if there exists a neighborhood U of A and a function \mathbf{t} from $\left(0, \varepsilon_{0}\right)$ to \mathbb{R}^{+}with $\varepsilon_{0}>0$ such that

$$
\Phi_{t}(U) \subset A^{\varepsilon}
$$

for all $\varepsilon<\varepsilon_{0}$ and $t \geq \mathbf{t}(\varepsilon)$, where A^{ε} stands for the ε-neighborhood of A. This corresponds to a strong notion of attraction, uniform with respect to the initial conditions and the feasible trajectories. If additionally A is invariant, then A is an attractor.

Given an attracting set (respectively attractor) A, its basin of attraction is the set

$$
B(A)=\left\{x \in \mathbb{R}^{m}: \omega_{\Phi}(x) \subset A\right\} .
$$

When $B(A)=\mathbb{R}^{m}, A$ is a globally attracting set (resp. a global attractor).
Remark. The following terminology is sometimes used in the literature. A set A is asymptotically stable if it is
(i) invariant,
(ii) Lyapounov stable, i.e., for every neighborhood U of A there exists a neighborhood V of A such that its forward image $\Phi_{[0, \infty)}(V)$ satisfies $\Phi_{[0, \infty)}(V) \subset U$, and
(iii) attractive, i.e., its basin of attraction $B(A)$ is a neighborhood of A.

However, as shown in (BHS, Corollary 3.18) attractors and compact asymptotically stable sets coincide.
Given a closed invariant set L, the induced dynamical system Φ^{L} is defined on L by

$$
\Phi_{t}^{L}(x)=\{\mathbf{x}(t): \mathbf{x} \text { is a solution to Equation (1) with } \mathbf{x}(0)=x \text { and } \mathbf{x}(\mathbb{R}) \subset L\}
$$

An invariant set L is attractor free if there exists no proper subset A of L that is an attractor for Φ^{L}.
We now turn to the discrete random perturbations of Equation (1) and consider, on a probability space (Ω, \mathscr{F}, P), random variables $X_{n}, n \in \mathbb{N}$, with values in \mathbb{R}^{m}, satisfying the difference inclusion

$$
\begin{equation*}
X_{n+1}-X_{n} \in a_{n+1}\left[M\left(X_{n}\right)+U_{n+1}\right] \tag{3}
\end{equation*}
$$

where the coefficients a_{n} are nonnegative numbers with

$$
\sum_{n} a_{n}=+\infty
$$

Such a process $\left\{X_{n}\right\}$ is a discrete stochastic approximation (DSA) of the differential inclusion (Equation 1) if the following conditions on the perturbations $\left\{U_{n}\right\}$ and the coefficients $\left\{a_{n}\right\}$ hold:
(i) $\mathrm{E}\left(U_{n+1} \mid \mathscr{F}_{n}\right)=0$ where \mathscr{F}_{n} is the σ-algebra generated by $\left(X_{1}, \ldots, X_{n}\right)$,
(ii) (a) $\sup _{n} \mathrm{E}\left(\left\|U_{n+1}\right\|^{2}\right)<\infty$ and $\sum_{n} a_{n}^{2}<+\infty$ or
(b) $\sup _{n}\left\|U_{n+1}\right\|<K$ and $a_{n}=o(1 / \log (n))$.

Remark. More general conditions on the characteristics $\left(a_{n}, U_{n}\right)$ can be found in (BHS, Proposition 1.4).
A typical example is given by equations of the form Equation (2) by letting

$$
U_{n+1}=Y_{n+1}-\mathrm{E}\left(Y_{n+1} \mid \mathscr{F}_{n}\right) .
$$

Given a trajectory $\left\{X_{n}(\omega)\right\}_{n \geq 1}$, its set of accumulation points is denoted by $L(\omega)=L\left(\left\{X_{n}(\omega)\right\}\right)$. The limit set of the process $\left\{X_{n}\right\}$ is the random set $L=L\left(\left\{X_{n}\right\}\right)$.

The principal properties established in BHS express relations between limit sets of DSA and attracting sets through the following results involving internally chain transitive (ICT) sets. (We do not define ICT sets here since we only use the fact that they satisfy Properties 2 and 4 below; see BHS §3.3.)

Property 1. The limit set L of a bounded DSA is almost surely an ICT set.
This result is, in fact, stated in BHS for the limit set of the continuous time interpolated process, but under our conditions both sets coincide.

Properties of the limit set L will then be obtained through the next result (BHS, Lemma 3.5, Proposition 3.20, and Theorem 3.23):

Property 2.
(i) ICT sets are nonempty, compact, invariant, and attractor free.
(ii) If A is an attracting set with $B(A) \cap L \neq \varnothing$ and L is ICT, then $L \subset A$.

Some useful properties of attracting sets or attractors are the two following (BHS, Propositions 3.25 and 3.27).
Property 3 (Strong Lyapounov). Let $\Lambda \subset \mathbb{R}^{m}$ be compact with a bounded open neighborhood U and $V: \bar{U} \rightarrow[0, \infty[$. Assume the following conditions:
(i) U is strongly positively invariant,
(ii) $V^{-1}(0)=\Lambda$,
(iii) V is continuous and for all $x \in U \backslash \Lambda, y \in \Phi_{t}(x)$ and $t>0, V(y)<V(x)$.

Then, Λ contains an attractor whose basin contains U. The map V is called a strong Lyapounov function associated to Λ.

Let $\Lambda \subset \mathbb{R}^{m}$ be a set and $U \subset \mathbb{R}^{m}$ an open neighborhood of Λ. A continuous function $V: U \rightarrow \mathbb{R}$ is called a Lyapounov function for $\Lambda \subset \mathbb{R}^{m}$ if $V(y)<V(x)$ for all $x \in U \backslash \Lambda, y \in \Phi_{t}(x), t>0$; and $V(y) \leq V(x)$ for all $x \in \Lambda, y \in \Phi_{t}(x)$ and $t \geq 0$.

Property 4 (Lyapounov). Suppose V is a Lyapounov function for Λ. Assume that $V(\Lambda)$ has an empty interior. Then, every internally chain transitive set $L \subset U$ is contained in Λ and $V \mid L$ is constant.
3. Generalized approachability: A potential approach. We follow here the approach of Hart and MasColell [25], [27]. Throughout this section, C is a closed subset of \mathbb{R}^{m} and Q is a "potential function" that attains its minimum on C. Given a correspondence N, we consider a dynamical system defined by

$$
\begin{equation*}
\dot{\mathbf{w}} \in N(\mathbf{w})-\mathbf{w} \tag{4}
\end{equation*}
$$

We provide two sets of conditions on N and Q that imply convergence of the solutions of Equation (4) and of the corresponding DSA to the set C. When applied in the approachability framework (Blackwell [11]), this will extend Blackwell's property.

Hypothesis 3.1. Q is a \mathscr{C}^{1} function from \mathbb{R}^{m} to \mathbb{R} such that

$$
Q \geq 0 \quad \text { and } \quad C=\{Q=0\}
$$

and N is a correspondence satisfying the standard Hypothesis 2.1.

3.1. Exponential convergence.

Hypothesis 3.2. There exists some positive constant B such that for $w \in \mathbb{R}^{m} \backslash C$

$$
\langle\nabla Q(w), N(w)-w\rangle \leq-B Q(w)
$$

meaning $\left\langle\nabla Q(w), w^{\prime}-w\right\rangle \leq-B Q(w)$, for all $w^{\prime} \in N(w)$.
Theorem 3.3. Let $\mathbf{w}(t)$ be a solution of Equation (4). Under Hypotheses 3.1 and 3.2, $Q(\mathbf{w}(t))$ goes to zero at exponential rate and the set C is a globally attracting set.

Proof. If $\mathbf{w}(t) \notin C$

$$
\frac{d}{d t} Q(\mathbf{w}(t))=\langle\nabla Q(\mathbf{w}(t)), \dot{\mathbf{w}}(t)\rangle
$$

hence,

$$
\frac{d}{d t} Q(\mathbf{w}(t)) \leq-B Q(\mathbf{w}(t))
$$

so that

$$
Q(\mathbf{w}(t)) \leq Q(\mathbf{w}(0)) e^{-B t}
$$

This implies that, for any $\varepsilon>0$, any bounded neighborhood V of C satisfies $\Phi_{t}(V) \subset C^{\varepsilon}$, for t large enough.
Alternatively, Property 3 applies to the forward image $W=\Phi_{[0, \infty)}(V)$.
Corollary 3.4. Any bounded DSA of Equation (4) converges a.s. to C.
Proof. Being a DSA implies Property 1. C is a global attracting set, thus Property 2 applies. Hence, the limit set of any DSA is a.s. included in C.
3.2. Application: Approachability. Following again Hart and Mas-Colell [25], [27] and assuming Hypothesis 3.2, we show here that the above property extends Blackwell's approachability theory (Blackwell [11], Sorin [33]) in the convex case. (A first approach can be found in BHS, §5.)

Let I and L be two finite sets of moves. Consider a two-person game with vector payoffs described by an $I \times L$ matrix A with entries in \mathbb{R}^{m}. At each stage $n+1$, knowing the previous sequence of moves $h_{n}=$ $\left(i_{1}, l_{1}, \ldots, i_{n}, l_{n}\right)$, player 1 (resp. 2) chooses i_{n+1} in I (resp. l_{n+1} in L). The corresponding stage payoff is $g_{n+1}=A_{i_{n+1}, l_{n+1}}$ and $\bar{g}_{n}=(1 / n) \sum_{m=1}^{n} g_{m}$ denotes the average of the payoffs until stage n. Let $X=\Delta(I)$ denote the simplex of mixed moves (probabilities on I) and similarly $Y=\Delta(L) . \mathscr{H}_{n}=(I \times L)^{n}$ denotes the space of all possible sequences of moves up to time n. A strategy for player 1 is a map

$$
\sigma: \bigcup_{n} \mathscr{H}_{n} \rightarrow X, \quad h_{n} \in \mathscr{H}_{n} \rightarrow \sigma\left(h_{n}\right)=\left(\sigma_{i}\left(h_{n}\right)\right)_{i \in I}
$$

and similarly $\tau: \bigcup_{n} \mathscr{H}_{n} \rightarrow Y$ for player 2. A pair of strategies (σ, τ) for the players specifies at each stage $n+1$ the distribution of the current moves given the past according to the formulae:

$$
P\left(i_{n+1}=i, l_{n+1}=l \mid \mathscr{F}_{n}\right)\left(h_{n}\right)=\sigma_{i}\left(h_{n}\right) \tau_{l}\left(h_{n}\right)
$$

where \mathscr{F}_{n} is the σ-algebra generated by h_{n}. It then induces a probability on the space of sequences of moves $(I \times L)^{\mathbb{N}}$ denoted $\mathrm{P}_{\sigma, \tau}$.

For x in X we let $x A$ denote the convex hull of the family $\left\{x A_{l}=\sum_{i \in I} x_{i} A_{i l} ; l \in L\right\}$. Finally $d(., C)$ stands for the distance to the closed set $C: d(x, C)=\inf _{y \in C} d(x, y)$.

Definition 3.5. Let N be a correspondence from \mathbb{R}^{m} to itself. A function \tilde{x} from \mathbb{R}^{m} to X is N-adapted if

$$
\tilde{x}(w) A \subset N(w), \quad \forall w \notin C .
$$

Theorem 3.6. Assume Hypotheses 3.1 and 3.2 and that \tilde{x} is N-adapted. Then, any strategy σ of player 1 that satisfies $\sigma\left(h_{n}\right)=\tilde{x}\left(\bar{g}_{n}\right)$ at each stage n, whenever $\bar{g}_{n} \notin C$, approaches C : explicitly, for any strategy τ of player 2 ,

$$
d\left(\bar{g}_{n}, C\right) \rightarrow 0 \quad \mathrm{P}_{\sigma, \tau} \text { a.s. }
$$

Proof. The proof proceeds in two steps.
First, we show that the discrete dynamics associated to the approachability process is a DSA of Equation (4), as in BHS, $\S 2$ and $\S 5$. Then, we apply Corollary 3.4. Explicitly, the sequence of outcomes satisfies:

$$
\bar{g}_{n+1}-\bar{g}_{n}=\frac{1}{n+1}\left(g_{n+1}-\bar{g}_{n}\right)
$$

By the choice of player 1's strategy, $E_{\sigma, \tau}\left(g_{n+1} \mid \mathscr{F}_{n}\right)=\gamma_{n}$ belongs to $\tilde{x}\left(\bar{g}_{n}\right) A \subset N\left(\bar{g}_{n}\right)$, for any strategy τ of player 2. Hence, one writes

$$
\bar{g}_{n+1}-\bar{g}_{n}=\frac{1}{n+1}\left(\gamma_{n}-\bar{g}_{n}+\left(g_{n+1}-\gamma_{n}\right)\right)
$$

which shows that $\left\{\bar{g}_{n}\right\}$ is a DSA of Equation (4) (with $a_{n}=1 / n$ and $Y_{n+1}=g_{n+1}-\bar{g}_{n}$, so that $E\left(Y_{n+1} \mid \mathscr{F}_{n}\right) \in$ $\left.N\left(\bar{g}_{n}\right)-\bar{g}_{n}\right)$. Then, Corollary 3.4 applies.

Remark. The fact that \tilde{x} is N-adapted implies that the trajectories of the deterministic continuous time process when player 1 follows \tilde{x} are always feasible under N, while N might be much more regular and easier to study.

Convex Case. Assume C convex. Let us show that the above analysis covers the original framework of Blackwell [11]. Recall that Blackwell's sufficient condition for approachability states that for any $w \notin C$, there exists $x(w) \in X$ with:

$$
\begin{equation*}
\left\langle w-\Pi_{C}(w), x(w) A-\Pi_{C}(w)\right\rangle \leq 0 \tag{5}
\end{equation*}
$$

where $\Pi_{C}(w)$ denotes the projection of w on C.
Convexity of C implies the following property:
Lemma 3.7. Let $Q(w)=\left\|w-\Pi_{C}(w)\right\|_{2}^{2}$, then Q is C^{1} with $\nabla Q(w)=2\left(w-\Pi_{C}(w)\right)$.
Proof. We simply write $\|w\|^{2}$ for the square of the L^{2} norm:

$$
\begin{aligned}
Q\left(w+w^{\prime}\right)-Q(w) & =\left\|w+w^{\prime}-\Pi_{C}\left(w+w^{\prime}\right)\right\|^{2}-\left\|w-\Pi_{C}(w)\right\|^{2} \\
& \leq\left\|w+w^{\prime}-\Pi_{C}(w)\right\|^{2}-\left\|w-\Pi_{C}(w)\right\|^{2} \\
& =2\left\langle w^{\prime}, w-\Pi_{C}(w)\right\rangle+\left\|w^{\prime}\right\|^{2}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
Q\left(w+w^{\prime}\right)-Q(w) & \geq\left\|w+w^{\prime}-\Pi_{C}\left(w+w^{\prime}\right)\right\|^{2}-\left\|w-\Pi_{C}\left(w+w^{\prime}\right)\right\|^{2} \\
& =2\left\langle w^{\prime}, w-\Pi_{C}\left(w+w^{\prime}\right)\right\rangle+\left\|w^{\prime}\right\|^{2} .
\end{aligned}
$$

C being convex, Π_{C} is continuous (1 Lipschitz); hence, there exist two constants c_{1} and c_{2} such that

$$
c_{1}\left\|w^{\prime}\right\|^{2} \leq Q\left(w+w^{\prime}\right)-Q(w)-2\left\langle w^{\prime}, w-\Pi_{C}(w)\right\rangle \leq c_{2}\left\|w^{\prime}\right\|^{2} .
$$

Thus, Q is C^{1} and $\nabla Q(w)=2\left(w-\Pi_{C}(w)\right)$.

Proposition 3.8. If player 1 uses a strategy σ which, at each position $\bar{g}_{n}=w$, induces a mixed move $x(w)$ satisfying Blackwell's condition (Equation 5), then approachability holds: for any strategy τ of player 2,

$$
d\left(\bar{g}_{n}, C\right) \rightarrow 0 \quad \mathrm{P}_{\sigma, \tau} \text { a.s. }
$$

Proof. Let $N(w)$ be the intersection of \mathbf{A}, the convex hull of the family $\left\{A_{i l} ; i \in I, l \in L\right\}$, with the closed half space $\left\{\theta \in \mathbb{R}^{m} ;\left\langle w-\Pi_{C}(w), \theta-\Pi_{C}(w)\right\rangle \leq 0\right\}$. Then, N is u.s.c. by continuity of Π_{C} and Equation (5) makes $x \mathrm{~N}$-adapted. Furthermore, the condition

$$
\left\langle w-\Pi_{C}(w), N(w)-\Pi_{C}(w)\right\rangle \leq 0
$$

can be rewritten as

$$
\left\langle w-\Pi_{C}(w), N(w)-w\right\rangle \leq-\left\|w-\Pi_{C}(w)\right\|^{2}
$$

which is

$$
\left\langle\frac{1}{2} \nabla Q(w), N(w)-w\right\rangle \leq-Q(w)
$$

with $Q(w)=\left\|w-\Pi_{C}(w)\right\|^{2}$ by the previous Lemma 3.7. Hence, Hypotheses 3.1 and 3.2 hold and Theorem 3.6 applies.

Remark. (i) The convexity of C was used to get the property of Π_{C}, hence of Q (\mathscr{C}^{1}) and of N (u.s.c.). Define the support function of C on \mathbb{R}^{m} by:

$$
w_{C}(u)=\sup _{c \in C}\langle u, c\rangle .
$$

The previous condition of Hypothesis 3.2 holds in particular if Q satisfies

$$
\begin{equation*}
\langle\nabla Q(w), w\rangle-w_{C}(\nabla Q(w)) \geq B \cdot Q(w) \tag{6}
\end{equation*}
$$

and N fulfills the following inequality:

$$
\begin{equation*}
\langle\nabla Q(w), N(w)\rangle \leq w_{C}(\nabla Q(w)) \quad \forall w \in \mathbb{R}^{m} \backslash C, \tag{7}
\end{equation*}
$$

which are the original conditions of Hart and Mas-Colell [25, p. 34].
(ii) Blackwell [11] obtains also a speed of convergence of $n^{-1 / 2}$ for the expectation of the distance: $\rho_{n}=$ $\mathrm{E}\left(d\left(\bar{g}_{n}, C\right)\right)$. This corresponds to the exponential decrease $\rho_{t}^{2}=Q(\mathbf{x}(t)) \leq L e^{-t}$ since in the DSA, stage n ends at time $t_{n}=\sum_{m \leq n}(1 / m) \sim \log (n)$.
(iii) BHS proves results very similar to Proposition 3.8 (Corollaries 5.1 and 5.2 in BHS) for arbitrary (i.e., not necessarily convex) compact sets C but under a stronger separability assumption.
3.3. Slow convergence. We follow again Hart and Mas-Colell [25] in considering a hypothesis weaker than Hypothesis 3.2.

Hypothesis 3.9. Q and N satisfy, for $w \in \mathbb{R}^{m} \backslash C$:

$$
\langle\nabla Q(w), N(w)-w\rangle<0
$$

Remark. This is in particular the case if C is convex, inequality (7) holds, and whenever $w \notin C$:

$$
\begin{equation*}
\langle\nabla Q(w), w\rangle>w_{C}(\nabla Q(w)) \tag{8}
\end{equation*}
$$

(A closed half space with exterior normal vector $\nabla Q(w)$ contains C and $N(w)$ but not w (see Hart and MasColell [25, p. 31])).

Theorem 3.10. Under Hypotheses 3.1 and 3.9, Q is a strong Lyapounov function for Equation (4).
Proof. Using Hypothesis 3.9, one obtains if $\mathbf{w}(t) \notin C$:

$$
\frac{d}{d t} Q(\mathbf{w}(t))=\langle\nabla Q(\mathbf{w}(t)), \dot{\mathbf{w}}(t)\rangle=\langle\nabla Q(\mathbf{w}(t)), N(\mathbf{w}(t))-\mathbf{w}(t)\rangle<0
$$

Figure 1. Condition (5).

Corollary 3.11. Assume Hypotheses 3.1 and 3.9. Then, any bounded DSA of Equation (4) converges a.s. to C. Furthermore, Theorem 3.6 applies when Hypothesis 3.2 is replaced by Hypothesis 3.9.

Proof. The proof follows from Properties 1,2 , and 3 . The set C contains a global attractor; hence, the limit set of a bounded DSA is included in C.

We summarize the different geometrical conditions as in Figures 1, 2, and 3.
The hyperplane through $\Pi_{C}(z)$ orthogonal to $z-\Pi_{C}(z)$ separates z and $N(z)$ (Blackwell [11]) as in condition (5) (see Figure 1).

The supporting hyperplane to C with orthogonal direction $\nabla Q(z)$ separates $N(z)$ from z (Hart and Mas-Colell [24]) as in Conditions (7) and (8) (see Figure 2).

Figure 2. Conditions (7) and (8).

Figure 3. Condition of Hypothesis 3.9.
$N(z)$ belongs to the interior of the half space defined by the exterior normal vector $\nabla Q(z)$ at z as in Figure 3.
4. Approachability and consistency. We consider here a framework where the previous set C is the negative orthant and the vector of payoffs describes the vector of regrets in a strategic game (see Hart and Mas-Colell [25], [27]). The consistency condition amounts to the convergence of the average regrets to C. The interest of the approach is that the same function P will be used to play the role of the function Q on the one hand and to define the strategy and, hence, the correspondence N on the other. Also, the procedure can be defined on the payoff space as well as on the set of correlated moves.
4.1. No regret and correlated moves. Consider a finite game in strategic form. There are finitely many players labeled $a=1,2, \ldots, A$. We let S^{a} denote the finite moves set of player $a, S=\prod_{a} S^{a}$, and $Z=\Delta(S)$ the set of probabilities on S (correlated moves). Since we will consider everything from the view point of player 1, it is convenient to set $S^{1}=I, X=\Delta(I)$ (mixed moves of player 1), $L=\prod_{a \neq 1} S^{a}$, and $Y=\Delta(L)$ (correlated mixed moves of player 1's opponents), hence $Z=\Delta(I \times L)$. Throughout, $X \times Y$ is identified with a subset of Z through the natural embedding $(x, y) \rightarrow x \times y$, where $x \times y$ stands for the product probability of x and y. As usual, $I(L, S)$ is also identified with a subset of $X(Y, Z)$ through the embedding $k \rightarrow \delta_{k}$. We let $U: S \rightarrow \mathbb{R}$ denote the payoff function of player 1 , and we still denote by U its linear extension to Z and its bilinear extension to $X \times Y$. Let m be the cardinality of I and $R(z)$ denote the m-dimensional vector of regrets for player 1 at z in Z, defined by

$$
R(z)=\left\{U\left(i, z^{-1}\right)-U(z)\right\}_{i \in I}
$$

where z^{-1} stands for the marginal of z on L. (Player 1 compares his payoff using a given move i to his actual payoff, assuming the other players' behavior, z^{-1}, given.)

Let $D=\mathbb{R}_{-}^{m}$ be the closed negative orthant associated to the set of moves of player 1.
Definition 4.1. H (for Hannan's set; see Hannan [22]) is the set of probabilities in Z satisfying the no-regret condition for player 1. Formally:

$$
H=\left\{z \in Z: U\left(i, z^{-1}\right) \leq U(z), \forall i \in I\right\}=\{z \in Z: R(z) \in D\}
$$

Definition 4.2. $\quad P$ is a potential function for D if it satisfies the following set of conditions:
(i) P is a \mathscr{C}^{1} nonnegative function from \mathbb{R}^{m} to \mathbb{R},
(ii) $P(w)=0$ iff $w \in D$,
(iii) $\nabla P(w) \geq 0$, and
(iv) $\langle\nabla P(w), w\rangle>0, \forall w \notin D$.

Definition 4.3. Given a potential P for D, the P-regret-based dynamics for player 1 is defined on Z by

$$
\begin{equation*}
\dot{\mathbf{z}} \in N(\mathbf{z})-\mathbf{z} \tag{9}
\end{equation*}
$$

where
(i) $N(z)=\varphi(R(z)) \times Y \subset Z$, with
(ii) $\varphi(w)=\nabla P(w) /|\nabla P(w)| \in X$ whenever $w \notin D$ and $\varphi(w)=X$ otherwise.

Here $|\nabla P(w)|$ stands for the L^{1} norm of $\nabla P(w)$.
Remark. This corresponds to a process where only the behavior of player 1 , outside of H, is specified. Note that even the dynamics is truly independent among the players ("uncoupled" according to Hart and Mas-Colell; see Hart [23]) the natural state space is the set of correlated moves (and not the product of the sets of mixed moves) since the criteria involves the actual payoffs and not only the marginal empirical frequencies.

The associated discrete process is as follows. Let $s_{n} \in S$ be the random variable of profile of actions at stage n and \mathscr{F}_{n} the σ-algebra generated by the history $h_{n}=\left(s_{1}, \ldots, s_{n}\right)$. The average $\bar{z}_{n}=(1 / n) \sum_{m=1}^{n} s_{m}$ satisfies:

$$
\begin{equation*}
\bar{z}_{n+1}-\bar{z}_{n}=\frac{1}{n+1}\left[s_{n+1}-\bar{z}_{n}\right] . \tag{10}
\end{equation*}
$$

Definition 4.4. A P-regret-based strategy for player 1 is specified by the conditions:
(i) For all $(i, l) \in I \times L$

$$
\mathrm{P}\left(i_{n+1}=i, l_{n+1}=l \mid \mathscr{F}_{n}\right)=\mathrm{P}\left(i_{n+1}=i \mid \mathscr{F}_{n}\right) \mathrm{P}\left(l_{n+1}=l \mid \mathscr{F}_{n}\right), \quad \text { and }
$$

(ii) $\mathrm{P}\left(i_{n+1}=i \mid \mathscr{F}_{n}\right)=\varphi_{i}\left(R\left(\bar{z}_{n}\right)\right)$ whenever $R\left(\bar{z}_{n}\right) \notin D$, where $\varphi(\cdot)=\left\{\varphi_{i}(\cdot)\right\}_{i \in I}$ is like in Definition 4.3. The corresponding discrete time process (Equation 10) is called a P-regret-based discrete dynamics.

Clearly, one has the following property:
Proposition 4.5. The P-regret-based discrete dynamics Equation (10) is a DSA of Equation (9).
The next result is obvious but crucial.
Lemma 4.6. Let $z=x \times y \in X \times Y \subset Z$, then

$$
\langle x, R(z)\rangle=0 .
$$

Proof. One has

$$
\sum_{i \in I} x_{i}[U(i, y)-U(x \times y)]=0 .
$$

4.2. Blackwell's framework. Given $w \in \mathbb{R}^{m}$, let w^{+}be the vector with components $w_{k}^{+}=\max \left(w_{k}, 0\right)$. Define $Q(w)=\sum_{k}\left(w_{k}^{+}\right)^{2}$. Note that $\nabla Q(w)=2 w^{+}$; hence, Q satisfies the conditions (i)-(iv) of Definition 4.2. If Π denotes the projection on D, one has $w-\Pi(w)=w^{+}$and $\left\langle w^{+}, \Pi(w)\right\rangle=0$.
In the game with vector payoff given by the regret of player 1 , the set of feasible expected payoffs corresponding to $x A$ (cf. $\S 3.2$), when player 1 uses θ, is $\left\{R(z) ; z=\theta \times z^{-1}\right\}$. Assume that player 1 uses a Q-regret-based strategy. Since at $w=\bar{g}_{n}, \theta(w)$ is proportional to $\nabla Q(w)$, hence to w^{+}, Lemma 4.6 implies that condition (5): $\langle w-\Pi w, x A-\Pi w\rangle \leq 0$ is satisfied; in fact, this quantity reduces to: $\left\langle w^{+}, R(y)-\Pi w\right\rangle$, which equals 0 . Hence, a Q-regret-based strategy approaches the orthant D.
4.3. Convergence of P-regret-based dynamics. The previous dynamics in $\S 3$ were defined on the payoff space. Here, we take the image by R (which is linear) of the dynamical system (Equation 9) and obtain the following differential inclusion in \mathbb{R}^{m} :

$$
\begin{equation*}
\dot{\mathbf{w}} \in \widehat{N}(\mathbf{w})-\mathbf{w} \tag{11}
\end{equation*}
$$

where

$$
\widehat{N}(w)=R(\varphi(w) \times Y) .
$$

The associated discrete dynamics to Equation (10) is given as

$$
\begin{equation*}
\bar{w}_{n+1}-\bar{w}_{n}=\frac{1}{n+1}\left(w_{n+1}-\bar{w}_{n}\right) \tag{12}
\end{equation*}
$$

with $w_{n}=R\left(z_{n}\right)$.
Theorem 4.7. The potential P is a strong Lyapounov function associated to the set D for Equation (11) and, similarly, $P \circ R$ to the set H for Equation (9). Hence, D contains an attractor for Equation (11) and H contains an attractor for Equation (9).

Proof. Remark that $\langle\nabla P(w), \widehat{N}(w)\rangle=0$; in fact, $\nabla P(w)=0$ for $w \in D$, and for $w \notin D$ use Lemma 4.6. Hence, for any $\mathbf{w}(t)$ solution to Equation (11),

$$
\frac{d}{d t} P(\mathbf{w}(t))=\langle\nabla P(\mathbf{w}(t)), \dot{\mathbf{w}}(t)\rangle=-\langle\nabla P(\mathbf{w}(t)), \mathbf{w}(t)\rangle<0
$$

and P is a strong Lyapounov function associated to D in view of conditions (i)-(iv) of Definition 4.2. The last assertion follows from Property 3.

Corollary 4.8. Any P-regret-based discrete dynamics (Equation 10) approaches D in the payoff space; hence, H is in the action space.

Proof. $\quad D$ (resp. H) contains an attractor for Equation (11) whose basin of attraction contains $R(Z)$ (resp. Z) and the process Equation (12) (resp. Equation (10)) is a bounded DSA, hence Properties 1, 2, and 3 apply.

Remark. A direct proof is available as follows:
Let \mathbf{R} be the range of R and define for $w \notin D$

$$
N(w)=\left\{w^{\prime} \in \mathbb{R}^{m} ;\left\langle w^{\prime}, \nabla P(w)\right\rangle=0\right\} \cap \mathbf{R} .
$$

Hypotheses 3.1 and 3.9 are satisfied and Corollary 3.11 applies.
5. Approachability and conditional consistency. We keep the framework of $\S 4$ and the notation introduced in $\S 4.1$ and follow Hart and Mas-Colell [24], [25], [26] in studying conditional (or internal) regrets. One constructs again an approachability strategy from an associate potential function P. As in $\S 4$, the dynamics can be defined either in the payoff space or in the space of correlated moves.

We still consider only player 1 and denote by U his payoff.
Given $z=\left(z_{s}\right)_{s \in S} \in Z$, introduce the family of m comparison vectors of dimension m (testing k against j with $(j, k) \in I^{2}$) defined by

$$
C(j, k)(z)=\sum_{l \in L}[U(k, l)-U(j, l)] z_{(j, l)} .
$$

(This corresponds to the change in the expected gain of player 1 at z when replacing move j by k.) Remark that if one let $(z \mid j)$ denote the conditional probability on L induced by z given $j \in I$ and z^{1} the marginal on I, then

$$
\{C(j, k)(z)\}_{k \in I}=z_{j}^{1} R((z \mid j)),
$$

where we recall that $R((z \mid j))$ is the vector of regrets for player 1 at $(z \mid j)$.
Definition 5.1. The set of no conditional regret (for player 1) is

$$
C^{1}=\{z ; C(j, k)(z) \leq 0, \forall j, k \in I\} .
$$

It is obviously a subset of H since

$$
\sum_{j}\{C(j, k)(z)\}_{k \in I}=R(z)
$$

Property. The intersection over all players a of the sets C^{a} is the set of correlated equilibria of the game.
5.1. Discrete standard case. Here we will use approachability theory to retrieve the well-known fact (see Hart and Mas-Colell [24]) that player 1 has a strategy such that the vector $C\left(\bar{z}_{n}\right)$ converges to the negative orthant of $\mathbb{R}^{m^{2}}$, where $\bar{z}_{n} \in Z$ is the average (correlated) distribution on S.

Given $s \in S$, define the auxiliary "vector payoff" $B(s)$ to be the $m \times m$ real valued matrix, where if $s=$ $(j, l) \in I \times L$, hence j is the move of player 1 and the only nonzero line is line j with entry on column k being $U(k, l)-U(j, l)$. The average payoff at stage n is thus a matrix B_{n} with coefficient

$$
B_{n}(j, k)=\frac{1}{n} \sum_{r, i_{r}=j}\left(U\left(k, l_{r}\right)-U\left(j, l_{r}\right)\right)=C(j, k)\left(\bar{z}_{n}\right),
$$

which is the test of k versus j on the dates up to stage n where j was played.
Consider the Markov chain on I with transition matrix

$$
M_{n}(j, k)=\frac{B_{n}(j, k)^{+}}{b_{n}}
$$

for $j \neq k$ where $b_{n}>\max _{j} \sum_{k} B_{n}(j, k)^{+}$. By standard results on finite Markov chains, M_{n} admits (at least) one invariant probability measure. Let $\mu_{n}=\mu\left(B_{n}\right)$ be such a measure. Then (dropping the subscript n),

$$
\mu_{j}=\sum_{k} \mu_{k} M(k, j)=\sum_{k \neq j} \mu_{k} \frac{B(k, j)^{+}}{b}+\mu_{j}\left(1-\sum_{k \neq j} \frac{B(j, k)^{+}}{b}\right) .
$$

Thus, b disappears and the condition writes

$$
\sum_{k \neq j} \mu_{k} B(k, j)^{+}=\mu_{j} \sum_{k \neq j} B(j, k)^{+} .
$$

Theorem 5.2. Any strategy of player 1 satisfying $\sigma\left(h_{n}\right)=\mu_{n}$ is an approachability strategy for the negative orthant of $\mathbb{R}^{m^{2}}$. Namely,

$$
\forall j, k \quad \lim _{n \rightarrow \infty} B_{n}(j, k)^{+}=0 \quad \text { a.s. }
$$

Equivalently, $\left(\bar{z}_{n}\right)$ approaches the set of no conditional regret for player 1 :

$$
\lim _{n \rightarrow \infty} d\left(\bar{z}_{n}, C^{1}\right)=0 .
$$

Proof. Let Ω denote the closed negative orthant of $\mathbb{R}^{m^{2}}$. In view of Proposition 3.8, it is enough to prove that inequality (5)

$$
\left\langle b-\Pi_{\Omega}(b), b^{\prime}-\Pi_{\Omega}(b)\right\rangle \leq 0, \quad \forall b \notin \Omega
$$

holds for every regret matrix b^{\prime}, feasible under $\mu=\mu(b)$.
As usual, since the projection is on the negative orthant $\Omega, b-\Pi_{\Omega}(b)=b^{+}$and $\left\langle b-\Pi_{\Omega}(b), \Pi_{\Omega}(b)\right\rangle=0$.
Hence, it remains to evaluate

$$
\sum_{j, k} B(j, k)^{+} \mu_{j}[U(k, l)-U(j, l)],
$$

but the coefficient of $U(j, l)$ is precisely

$$
\sum_{k} B^{+}(k, j) \mu_{k}-\mu_{j} \sum_{k} B^{+}(j, k)=0
$$

by the choice of $\mu=\mu(b)$.
5.2. Continuous general case. We first state a general property (compare Lemma 4.6):

Lemma 5.3. Given $a \in \mathbb{R}^{m^{2}}$, let $\mu \in X$ satisfy:

$$
\sum_{k: k \neq j} \mu_{k} a(k, j)=\mu_{j} \sum_{k: k \neq j} a(j, k), \quad \forall j \in I,
$$

then

$$
\langle a, C(\mu \times y)\rangle=0, \quad \forall y \in Y .
$$

Proof. As above, one computes:

$$
\sum_{j} \sum_{k} a(j, k) \mu_{j}[U(k, y)-U(j, y)],
$$

but the coefficient of $U(j, y)$ is precisely

$$
\sum_{k} a(k, j) \mu_{k}-\mu_{j} \sum_{k} a(j, k)=0 .
$$

Let P be a potential function for Ω the negative orthant of $\mathbb{R}^{m^{2}}$; for example, $P(w)=\sum_{i j}\left(w_{i j}^{+}\right)^{2}$, as in the standard case above.
Definition 5.4. The P-conditional regret dynamics in continuous time is defined on Z by:

$$
\begin{equation*}
\dot{\mathbf{z}} \in \mu(\mathbf{z}) \times Y-\mathbf{z}, \tag{13}
\end{equation*}
$$

where $\mu(z)$ is the set of $\mu \in X$ that are solution to:

$$
\sum_{k} \mu_{k} \nabla P_{k j}(C(z))=\mu_{j} \sum_{k} \nabla P_{j k}(C(z))
$$

whenever $C(z) \notin \Omega\left(\nabla P_{j k}\right.$ denotes the $j k$ component of the gradient of $\left.P\right)$. In particular, $\mu(z)=X$ whenever $C(z) \in \Omega$.
The associated process in $\mathbb{R}^{m^{2}}$ is the image under C :

$$
\begin{equation*}
\dot{\mathbf{w}} \in C(\nu(\mathbf{w}) \times Y)-\mathbf{w}, \tag{14}
\end{equation*}
$$

where $\nu(w)$ is the set of $\nu \in X$ with

$$
\sum_{k} \nu_{k} \nabla P_{k j}(w)=\nu_{j} \sum_{k} \nabla P_{j k}(w) .
$$

Theorem 5.5. The processes (13) and (14) satisfy:

$$
C^{+}(j, k)(\mathbf{z}(t))=\mathbf{w}_{j k}^{+}(t) \rightarrow_{t \rightarrow \infty} 0
$$

Proof. Apply Theorem 3.10 with:

$$
N(w)=\left\{w^{\prime} \in\left(\mathbb{R}^{m}\right)^{2}:\left\langle\nabla P(w), w^{\prime}\right\rangle=0\right\} \cap \mathbf{C}
$$

where \mathbf{C} is the range $C(Z)$ of C. Since $\mathbf{w}(t)=C(\mathbf{z}(t))$, Lemma 5.3 implies that $\dot{\mathbf{w}}(t) \in N(\mathbf{w}(t))-\mathbf{w}(t)$.
The discrete processes corresponding to Equations (13) and (14) are, respectively, in Z

$$
\begin{equation*}
\bar{z}_{n+1}-\bar{z}_{n}=\frac{1}{n+1}\left[\mu_{n+1} \times z_{n+1}^{-1}-\bar{z}_{n}+\left(z_{n+1}-\mu_{n+1} \times z_{n+1}^{-1}\right)\right] \tag{15}
\end{equation*}
$$

where μ_{n+1} satisfies:

$$
\sum_{k \in S} \mu_{n+1}^{k} \nabla P_{k j}\left(C\left(\bar{z}_{n}\right)\right)=\mu_{n+1}^{j} \sum_{k} \nabla P_{j k}\left(C\left(\bar{z}_{n}\right)\right)
$$

and in $\mathbb{R}^{m^{2}}$

$$
\begin{equation*}
\bar{w}_{n+1}-\bar{w}_{n}=\frac{1}{n+1}\left[C\left(\mu_{n+1} \times z_{n+1}^{-1}\right)-\bar{w}_{n}+\left(w_{n+1}-C\left(\mu_{n+1} \times z_{n+1}^{-1}\right)\right]\right. \tag{16}
\end{equation*}
$$

Corollary 5.6. The discrete processes (15) and (16) satisfy:

$$
C^{+}(j, k)\left(\bar{z}_{n}\right)=\bar{w}_{n}^{j k,+} \rightarrow_{t \rightarrow \infty} 0 \quad \text { a.s. }
$$

Proof. Equations (15) and (16) are bounded DSA of Equations (13) and (14), and Properties 1, 2, and 3 apply.

Corollary 5.7. If all players follow the above procedure, the empirical distribution of moves converges a.s. to the set of correlated equilibria.
6. Smooth fictitious play (SFP) and consistency. We follow the approach of Fudenberg and Levine [19], [21] concerning consistency and conditional consistency, and deduce some of their main results (see Theorems 6.6 and 6.12) as corollaries of dynamical properties. Basically, the criteria are similar to the ones studied in §§4 and 5, but the procedure is different and based only on the previous behavior of the opponents. As in $\S \S 4$ and 5 , we continue to adopt the point of view of player 1.
6.1. Consistency. Let

$$
V(y)=\max _{x \in X} U(x, y) .
$$

The average regret evaluation along $h_{n} \in \mathscr{H}_{n}$ is

$$
e\left(h_{n}\right)=e_{n}=V\left(\bar{y}_{n}\right)-\frac{1}{n} \sum_{m=1}^{n} U\left(i_{m}, l_{m}\right)
$$

where as usual \bar{y}_{n} stands for the time average of $\left(l_{m}\right)$ up to time n. (This corresponds to the maximal component of the regret vector $R\left(\bar{z}_{n}\right)$.)

Definition 6.1 (Fudenberg and Levine [19]). Let $\eta>0$. A strategy σ for player 1 is said η-consistent if for any opponent's strategy τ

$$
\limsup _{n \rightarrow \infty} e_{n} \leq \eta \quad \mathrm{P}_{\sigma, \tau} \text { a.s. }
$$

6.2. Smooth fictitious play. A smooth perturbation of the payoff U is a map

$$
U^{\varepsilon}(x, y)=U(x, y)+\varepsilon \rho(x), \quad 0<\varepsilon<\varepsilon_{0}
$$

such that:
(i) $\rho: X \rightarrow \mathbb{R}$ is a \mathscr{C}^{1} function with $\|\rho\| \leq 1$,
(ii) $\arg \max _{x \in X} U^{\varepsilon}(., y)$ reduces to one point and defines a continuous map

$$
\mathbf{b r}^{\varepsilon}: Y \rightarrow X
$$

called a smooth best reply function, and
(iii) $D_{1} U^{\varepsilon}\left(\mathbf{b r}^{\varepsilon}(y), y\right) . D \mathbf{b r} \mathbf{r}^{\varepsilon}(y)=0$ (for example, $D_{1} U^{\varepsilon}(., y)$ is zero at $\mathbf{b r}^{\varepsilon}(y)$). (This occurs in particular if $\mathbf{b r}^{\varepsilon}(y)$ belongs to the interior of X.)

Remark. A typical example is

$$
\begin{equation*}
\rho(x)=-\sum_{k} x_{k} \log x_{k}, \tag{17}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\mathbf{b r}_{i}^{\varepsilon}(y)=\frac{\exp (U(i, y) / \varepsilon)}{\sum_{k \in I} \exp (U(k, y) / \varepsilon)} \tag{18}
\end{equation*}
$$

as shown by Fudenberg and Levine [19], [21].
Let

$$
V^{\varepsilon}(y)=\max _{x} U^{\varepsilon}(x, y)=U^{\varepsilon}\left(\mathbf{b r}^{\varepsilon}(y), y\right)
$$

Lemma 6.2 (Fudenberg and Levine [21]).

$$
D V^{\varepsilon}(y)(h)=U\left(\mathbf{b r}^{\varepsilon}(y), h\right)
$$

Proof. One has

$$
D V^{\varepsilon}(y)=D_{1} U^{\varepsilon}\left(\mathbf{b r}^{\varepsilon}(y), y\right) \cdot D \mathbf{b r}^{\varepsilon}(y)+D_{2} U^{\varepsilon}\left(\mathbf{b r}^{\varepsilon}(y), y\right)
$$

The first term is zero by condition (iii) above. For the second term, one has

$$
D_{2} U^{\varepsilon}\left(\mathbf{b r}^{\varepsilon}(y), y\right)=D_{2} U\left(\mathbf{b r}^{\varepsilon}(y), y\right),
$$

which by linearity of $U(x,$.$) gives the result.$
Definition 6.3. A smooth fictitious play strategy for player 1 associated to the smooth best response function $\mathbf{b r}^{\varepsilon}$ (in short a $\operatorname{SFP}(\varepsilon)$ strategy) is a strategy σ^{ε} such that

$$
\mathrm{E}_{\sigma^{\varepsilon}, \tau}\left(i_{n+1} \mid \mathscr{F}_{n}\right)=\mathbf{b r}^{\varepsilon}\left(\bar{y}_{n}\right)
$$

for any τ.
There are two classical interpretations of $\operatorname{SFP}(\varepsilon)$ strategies. One is that player 1 chooses to randomize his moves. Another one called stochastic fictitious play (Fudenberg and Levine [20], Benaïm and Hirsch [9]) is that payoffs are perturbed in each period by random shocks and that player 1 plays the best reply to the empirical mixed strategy of its opponents. Under mild assumptions on the distribution of the shocks, it was shown by Hofbauer and Sandholm [28] (Theorem 2.1) that this can always be seen as an $\operatorname{SFP}(\varepsilon)$ strategy for a suitable ρ.
6.3. SFP and consistency. Fictitious play was initially used as a global dynamics (i.e., the behavior of each player is specified) to prove convergence of the empirical strategies to optimal strategies (see Brown [12] and Robinson [32]; for recent results, see BHS, §5.3 and Hofbauer and Sorin [29]).

Here we deal with unilateral dynamics and consider the consistency property. Hence, the state space can not be reduced to the product of the sets of mixed moves but has to incorporate the payoffs.

Explicitly, the discrete dynamics of averaged moves is

$$
\begin{equation*}
\bar{x}_{n+1}-\bar{x}_{n}=\frac{1}{n+1}\left[i_{n+1}-\bar{x}_{n}\right], \quad \bar{y}_{n+1}-\bar{y}_{n}=\frac{1}{n+1}\left[l_{n+1}-\bar{y}_{n}\right] . \tag{19}
\end{equation*}
$$

Let $u_{n}=U\left(i_{n}, l_{n}\right)$ be the payoff at stage n and \bar{u}_{n} be the average payoff up to stage n so that

$$
\begin{equation*}
\bar{u}_{n+1}-\bar{u}_{n}=\frac{1}{n+1}\left[u_{n+1}-\bar{u}_{n}\right] . \tag{20}
\end{equation*}
$$

Lemma 6.4. Assume that player 1 plays a $\operatorname{SFP}(\varepsilon)$ strategy. Then, the process $\left(\bar{x}_{n}, \bar{y}_{n}, \bar{u}_{n}\right)$ is a DSA of the differential inclusion

$$
\begin{equation*}
\dot{\boldsymbol{\omega}} \in N(\boldsymbol{\omega})-\boldsymbol{\omega}, \tag{21}
\end{equation*}
$$

where $\omega=(x, y, u) \in X \times Y \times \mathbb{R}$ and

$$
N(x, y, u)=\left\{\left(\mathbf{b r}^{\varepsilon}(y), \beta, U\left(\mathbf{b r}^{\varepsilon}(y), \beta\right)\right): \beta \in Y\right\}
$$

Proof. To shorten notation, we write $\mathrm{E}\left(. \mid \mathscr{F}_{n}\right)$ for $\mathrm{E}_{\sigma^{\varepsilon}, \tau}\left(. \mid \mathscr{F}_{n}\right)$, where τ is any opponent's strategy. By assumption, $\mathrm{E}\left(i_{n+1} \mid \mathscr{F}_{n}\right)=\mathbf{b r}^{\varepsilon}\left(\bar{y}_{n}\right)$. Set $\mathrm{E}\left(l_{n+1} \mid \mathscr{F}_{n}\right)=\beta_{n} \in Y$. Then, by conditional independence of i_{n+1} and l_{n+1}, one gets that $\mathrm{E}\left(u_{n+1} \mid \mathscr{F}_{n}\right)=U\left(\mathbf{b r}^{\varepsilon}\left(\bar{y}_{n}\right), \beta_{n}\right)$. Hence, $\mathrm{E}\left(\left(i_{n+1}, l_{n+1}, u_{n+1}\right) \mid \mathscr{F}_{n}\right) \in N\left(x_{n}, y_{n}, u_{n}\right)$.

Theorem 6.5. The set $\left\{(x, y, u) \in X \times Y \times \mathbb{R}: V^{\varepsilon}(y)-u \leq \varepsilon\right\}$ is a global attracting set for Equation (21). In particular, for any $\eta>0$, there exists $\bar{\varepsilon}$ such that for $\varepsilon \leq \bar{\varepsilon}$, $\lim _{\sup _{t \rightarrow \infty} V^{\varepsilon}(\mathbf{y}(t))-\mathbf{u}(t) \leq \eta \text { (i.e., continuous }}$ SFP (ε) satisfies η-consistency).

Proof. Let $\mathbf{w}^{\varepsilon}(t)=V^{\varepsilon}(\mathbf{y}(t))-\mathbf{u}(t)$. Taking time derivative, one obtains, using Lemma 6.2 and Equation (21):

$$
\begin{aligned}
\dot{\mathbf{w}}^{\varepsilon}(t) & =D V^{\varepsilon}(\mathbf{y}(t)) \cdot \dot{\mathbf{y}}(t)-\dot{\mathbf{u}}(t) \\
& =U\left(\mathbf{b r}^{\varepsilon}(\mathbf{y}(t)), \beta(t)\right)-U\left(\mathbf{b r}^{\varepsilon}(\mathbf{y}(t)), \mathbf{y}(t)\right)-U\left(\mathbf{b r}^{\varepsilon}(\mathbf{y}(t)), \beta(t)\right)+\mathbf{u}(t) \\
& =\mathbf{u}(t)-U\left(\mathbf{b r}^{\varepsilon}(\mathbf{y}(t)), \mathbf{y}(t)\right) \\
& =-\mathbf{w}^{\varepsilon}(t)+\varepsilon \rho\left(\sigma^{\varepsilon}(\mathbf{y}(t))\right)
\end{aligned}
$$

Hence,

$$
\dot{w}^{\varepsilon}(t)+w^{\varepsilon}(t) \leq \varepsilon
$$

so that $w^{\varepsilon}(t) \leq \varepsilon+K e^{-t}$ for some constant K and the result follows.
Theorem 6.6. For any $\eta>0$, there exists $\bar{\varepsilon}$ such that for $\varepsilon \leq \bar{\varepsilon}, \operatorname{SFP}(\varepsilon)$ is η-consistent.
Proof. The assertion follows from Lemma 6.4, Property 1, Property 2(ii), and Theorem 6.5.
6.4. Remarks and generalizations. The definition given here of an $\operatorname{SFP}(\varepsilon)$ strategy can be extended in some interesting directions. Rather than developing a general theory, we focus on two particular examples.

1. Strategies Based on Pairwise Comparison of Payoffs. Suppose that ρ is given by Equation (17). Then, playing an $\operatorname{SFP}(\varepsilon)$ strategy requires for player 1 the computation of $\mathbf{b r}^{\varepsilon}\left(\bar{y}_{n}\right)$ given by Equation (18) at each stage. In a case where the cardinality of S^{1} is very large (say, 2^{N} with $N \geq 10$), this computation is not feasible! An alternative feasible strategy is the following: Assume that I is the set of vertices set of a connected symmetric graph. Write $i \sim j$ when i and j are neighbours in this graph, and let $N(i)=\{j \in I \backslash\{i\}: i \sim j\}$. The strategy is as follows: Let i be the action chosen at time n (i.e., $i_{n}=i$). At time $n+1$, player 1 picks an action j at random in $N(i)$. He then switches to j (i.e., $i_{n+1}=j$) with probability

$$
R\left(i, j, \bar{y}_{n}\right)=\min \left[1, \frac{|N(i)|}{|N(j)|} \exp \left(\frac{1}{\varepsilon}\left(U\left(j, \bar{y}_{n}\right)-U\left(i, \bar{y}_{n}\right)\right)\right)\right]
$$

and keeps i (i.e., $i_{n+1}=i$) with the complementary probability $1-R\left(i, j, \bar{y}_{n}\right)$. Here $|N(i)|$ stands for the cardinal of $N(i)$. Note that this strategy only involves at each step the computation of the payoff's difference $\left(U\left(j, \bar{y}_{n}\right)-\right.$ $\left.U\left(i, \bar{y}_{n}\right)\right)$. While this strategy is not an $\operatorname{SFP}(\varepsilon)$ strategy, one still has:

Theorem 6.7. For any $\eta>0$, there exists $\bar{\varepsilon}$ such that, for $\varepsilon \leq \bar{\epsilon}$, the strategy described above is η-consistent.
Proof. For fixed $y \in Y$, let $Q(y)$ be the Markov transition matrix given by $Q(i, j, y)=(1 /|N(i)|) R(i, j, y)$ for $j \in N(i), Q(i, j, y)=0$ for $j \notin N(i) \cup\{i\}$, and $Q(i, i, y)=1-\sum_{j \neq i} Q(i, j, y)$. Then, $Q(y)$ is an irreducible Markov matrix having $\mathbf{b r}^{\varepsilon}(y)$ as unique invariant probability; this is easily seen by checking that $Q(y)$ is reversible with respect to $\mathbf{b r}^{\varepsilon}(y)$. That is, $\mathbf{b r} r_{i}^{\varepsilon}(y) Q(i, j, y)=\mathbf{b r}{ }_{j}^{\varepsilon}(y) Q(j, i, y)$.

The discrete time process (19) and (20) is not a DSA (as defined here) to Equation (21) because $\mathrm{E}\left(i_{n+1} \mid \mathscr{F}_{n}\right) \neq$ $\mathbf{b r}^{\varepsilon}\left(\bar{y}_{n}\right)$. However, the conditional law of i_{n+1} given \mathscr{F}_{n} is $Q\left(x_{n}, \cdot, \bar{y}_{n}\right)$ and using the techniques introduced by Métivier and Priouret [31] to deal with Markovian perturbations (see, e.g., Duflo [14, Chapter 3.IV]), it can still be proved that the assumptions of Proposition 1.3 in BHS are fulfilled, from which it follows that the interpolated affine process associated to Equations (19) and (20) is a perturbed solution (see BHS for a precise definition) to Equation (21). Hence, Property 1 applies and the end of the proof is similar to that for the proof of Theorem 6.6.
2. Convex Sets of Actions. Suppose that X and Y are two convex compact subsets of finite dimensional Euclidean spaces. U is a bounded function with $U(x,$.$) linear on Y$. The discrete dynamics of averaged moves is

$$
\begin{equation*}
\bar{x}_{n+1}-\bar{x}_{n}=\frac{1}{n+1}\left[x_{n+1}-\bar{x}_{n}\right], \quad \bar{y}_{n+1}-\bar{y}_{n}=\frac{1}{n+1}\left[y_{n+1}-\bar{y}_{n}\right], \tag{22}
\end{equation*}
$$

with $x_{n+1}=\operatorname{br}^{\varepsilon}\left(\bar{y}_{n}\right)$. Let $u_{n}=U\left(x_{n}, y_{n}\right)$ be the payoff at stage n and \bar{u}_{n} be the average payoff up to stage n so that

$$
\begin{equation*}
\bar{u}_{n+1}-\bar{u}_{n}=\frac{1}{n+1}\left[u_{n+1}-\bar{u}_{n}\right] . \tag{23}
\end{equation*}
$$

Then, the results of $\S 6.3$ still hold.
6.5. SFP and conditional consistency. We keep here the framework of $\S 4$ but extend the analysis from consistency to conditional consistency (which is like studying external regrets (§4) and then internal regrets (§5)). Given $z \in Z$, recall that we let $z^{1} \in X$ denote the marginal of z on I. That is,

$$
z^{1}=\left(z_{i}^{1}\right)_{i \in I} \quad \text { with } z_{i}^{1}=\sum_{l \in L} z_{i l} .
$$

Let $z[i] \in \mathbb{R}^{L}$ be the vector with components $z[i]_{l}=z_{i l}$. Note that $z[i]$ belongs to $t Y$ for some $0 \leq t \leq 1$. A conditional probability on L induced by z given $i \in I$ satisfies

$$
z \mid i=(z \mid i)_{l \in L} \quad \text { with }(z \mid i)_{l} z_{i}^{1}=z_{i l}=z[i]_{l} .
$$

Let $[0,1] . Y=\{t y: 0 \leq t \leq 1, y \in Y\}$. Extend U to $X \times([0,1] \times Y)$ by $U(x, t y)=t U(x, y)$ and similarly for V. The conditional evaluation function at $z \in Z$ is

$$
c e(z)=\sum_{i \in I} V(z[i])-U(i, z[i])=\sum_{i \in I} z_{i}^{1}[V(z \mid i)-U(i, z \mid i)]=\sum_{i \in I} z_{i}^{1} V(z \mid i)-U(z),
$$

with the convention that $z_{i}^{1} V(z \mid i)=z_{i}^{1} U(i, z \mid i)=0$ when $z_{i}^{1}=0$.
As in $\S 5$, conditional consistency means consistency with respect to the conditional distribution given each event of the form " i was played." In a discrete framework, the conditional evaluation is thus

$$
c e_{n}=c e\left(\bar{z}_{n}\right)
$$

where as usual \bar{z}_{n} stands for the empirical correlated distribution of moves up to stage n. Conditional consistency is defined like consistency but with respect to $\left(c e_{n}\right)$. More precisely:

Definition 6.8. A strategy σ for player 1 is said to be η-conditionally consistent if for any opponent's strategy τ

$$
\limsup _{n \rightarrow \infty} c e_{n} \leq \eta \quad \mathrm{P}_{\sigma, \tau} \text { a.s. }
$$

Given a smooth best reply function $\mathbf{b r}^{\varepsilon}: Y \rightarrow X$, let us introduce a correspondence $\mathbf{B r}^{\varepsilon}$ defined on $[0,1] \times Y$ by $\mathbf{B r}^{\varepsilon}(t y)=\mathbf{b r}^{\varepsilon}(y)$ for $0<t \leq 1$ and $\mathbf{B r}^{\varepsilon}(0)=X$. For $z \in Z$, let $\mu^{\varepsilon}(z) \subset X$ denote the set of all $\mu \in X$ that are solutions to the equation

$$
\begin{equation*}
\sum_{i \in I} \mu_{i} b^{i}=\mu \tag{24}
\end{equation*}
$$

for some vectors family $\left\{b^{i}\right\}_{i \in I}$ such that $b^{i} \in \mathbf{B r}^{\varepsilon}(z[i])$.
Lemma 6.9. μ^{ε} is an u.s.c. correspondence with compact convex nonempty values.
Proof. For any vector's family $\left\{b^{i}\right\}_{i \in I}$ with $b^{i} \in X$, the function $\mu \rightarrow \sum_{i \in I} \mu_{i} b^{i}$ maps continuously X into itself. It then has fixed points by Brouwer's fixed point theorem, showing that $\mu^{\varepsilon}(z) \neq \varnothing$. Let $\mu, \nu \in \mu^{\varepsilon}(z)$. That is, $\mu=\sum_{i} \mu_{i} b^{i}$ and $\nu=\sum_{i} \nu^{i} c^{i}$ with $b^{i}, c^{i} \in \mathbf{B r}^{\varepsilon}(z[i])$. Then, for any $0 \leq t \leq 1 t \mu+(1-t) \nu=\sum_{i}\left(t \mu_{i}+\right.$ $\left.(1-t) \nu_{i}\right) d^{i}$ with $d^{i}=\left(t \mu_{i} b^{i}+(1-t) \nu_{i} c^{i}\right) /\left(t \mu_{i}+(1-t) \nu_{i}\right)$. By convexity of $\mathbf{B r}^{\varepsilon}(z[i]), d^{i} \in \operatorname{Br}^{\varepsilon}(z[i])$. Thus, $t \mu+(1-t) \nu \in \mu^{\varepsilon}(z)$, proving convexity of $\mu^{\varepsilon}(z)$. Using the fact that $\mathbf{B r}^{\varepsilon}$ has a closed graph, it is easy to show that μ^{ε} has a closed graph, from which it will follow that it is u.s.c. with compact values. Details are left to the reader.

Definition 6.10. A conditional smooth fictitious play (CSFP) strategy for player 1 associated to the smooth best response function $\mathbf{b r}^{\varepsilon}$ (in short a $\operatorname{CSFP}(\varepsilon)$ strategy) is a strategy σ^{ε} such that $\sigma^{\varepsilon}\left(h_{n}\right) \in \mu^{\varepsilon}\left(\bar{z}_{n}\right)$.

The random discrete process associated to $\operatorname{CSFP}(\varepsilon)$ is thus defined by:

$$
\begin{equation*}
\bar{z}_{n+1}-\bar{z}_{n}=\frac{1}{n+1}\left[z_{n+1}-\bar{z}_{n}\right], \tag{25}
\end{equation*}
$$

where the conditional law of $z_{n+1}=\left(i_{n+1}, l_{n+1}\right)$ given the past up to time n is a product law $\sigma^{\varepsilon}\left(h_{n}\right) \times \tau\left(h_{n}\right)$. The associated differential inclusion is

$$
\begin{equation*}
\dot{\mathbf{z}} \in \mu^{\varepsilon}(\mathbf{z}) \times Y-\mathbf{z} . \tag{26}
\end{equation*}
$$

Extend $\mathbf{b r}^{\varepsilon}$ to a map, still denoted $\mathbf{b r}{ }^{\varepsilon}$, on $[0,1] \times Y$ by choosing a nonempty selection of $\mathbf{B r}^{\varepsilon}$ and define

$$
V^{\varepsilon}(z[i])=U\left(\mathbf{b r}^{\varepsilon}(z[i]), z[i]\right)-\varepsilon z_{i}^{1} \rho\left(\mathbf{b r}^{\varepsilon}(z[i])\right)
$$

(so that if $z_{i}^{1}>0 V^{\varepsilon}(z[i])=z_{i}^{1} V^{\varepsilon}(z \mid i)$ and $V^{\varepsilon}(0)=0$). Let

$$
c e^{\varepsilon}(z)=\sum_{i}\left(V^{\varepsilon}(z[i])-U(z[i])\right)=\sum_{i} V^{\varepsilon}(z[i])-U(z)
$$

The evaluation along a solution $t \rightarrow z(t)$ to (26) is

$$
\mathbf{W}^{\varepsilon}(t)=c e^{\varepsilon}(\mathbf{z}(t))
$$

The next proof is in spirit similar to $\S 6.3$ but technically heavier. Since we are dealing with smooth best reply to conditional events, there is a discontinuity at the boundary and the analysis has to take care of this aspect.

Theorem 6.11. The set $\left\{z \in Z: c e^{\varepsilon}(z) \leq \varepsilon\right\}$ is an attracting set for Equation (26), whose basin is Z. In particular, conditional consistency holds for continuous $\operatorname{CSFP}(\varepsilon)$.

Proof. We shall compute

$$
\dot{\mathbf{W}}^{\varepsilon}(t)=\frac{d}{d t} \sum_{i} V^{\varepsilon}(\mathbf{z}[i](t))-\frac{d}{d t} U(\mathbf{z}(t))
$$

The last term is

$$
\frac{d}{d t} U(\mathbf{z}(t))=U\left(\mu^{\varepsilon}(t), \beta(t)\right)-U(\mathbf{z}(t))
$$

by linearity, with $\beta(t) \in Y$ and $\mu^{\varepsilon}(t) \in \mu^{\varepsilon}(\mathbf{z}(t))$. We now pass to the first term. First, observe that

$$
\frac{d}{d t} \mathbf{z}_{i}^{1} \in \mu_{i}^{\varepsilon}(\mathbf{z})-\mathbf{z}_{i}^{1} \geq-\mathbf{z}_{i}^{1}
$$

Hence, $\mathbf{z}_{i}^{1}(t)>0$ implies $\mathbf{z}_{i}^{1}(s)>0$ for all $s \geq t$. It then exists $\tau_{i} \in[0, \infty]$ such that $\mathbf{z}_{i}^{1}(s)=0$ for $s \leq \tau_{i}$ and $\mathbf{z}_{i}^{1}(s)>0$ for $s>\tau_{i}$. Consequently, the map $t \rightarrow V^{\varepsilon}(\mathbf{z}[i](t))$ is differentiable everywhere but possibly at $t=\tau_{i}$ and is zero for $t \leq \tau_{i}$. If $t>\tau_{i}$, then

$$
\begin{align*}
\frac{d}{d t} V^{\varepsilon}(\mathbf{z}[i](t)) & =\frac{d}{d t} U^{\varepsilon}\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t)), \mathbf{z}[i](t)\right)-\varepsilon \mathbf{z}_{i}^{1}(t) \rho\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t))\right) \\
& =U^{\varepsilon}\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t)), \dot{\mathbf{z}}[i](t)\right)-\dot{\mathbf{z}}_{i}^{1}(t) \varepsilon \rho\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t))\right) \tag{27}
\end{align*}
$$

by Lemma 6.2. If now $t<\tau_{i}$, both $\dot{\mathbf{z}}[i](t)$ and $(d / d t) V^{\varepsilon}(\mathbf{z}[i](t))$ are zero, so that equality (27) is still valid.
Finally, using $(d / d t) \mathbf{z}_{i j}(t)=\mu^{\varepsilon}{ }_{i}(t) \beta_{j}(t)-\mathbf{z}_{i j}(t)$, we get that
$\dot{\mathbf{W}}^{\varepsilon}(t)=\sum_{i} U^{\varepsilon}\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t)), \mu_{i}^{\varepsilon}(t) \beta(t)-\mathbf{z}[i](t)\right)+\sum_{i}\left(\mu_{i}^{\varepsilon}(t)-\mathbf{z}_{i}^{1}(t)\right) \varepsilon \rho\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t))\right)-U\left(\mu^{\varepsilon}(t), \beta(t)\right)+U(\mathbf{z}(t))$
for all (but possibly finitely many) $t \geq 0$. Replacing gives

$$
\dot{\mathbf{W}}^{\varepsilon}(t)=-\mathbf{W}^{\varepsilon}(t)+\mathbf{A}(t)
$$

where

$$
\mathbf{A}(t)=-U\left(\mu^{\varepsilon}(t), \beta(t)\right)+\sum_{i} U^{\varepsilon}\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t)), \mu_{i}^{\varepsilon}(t) \beta(t)\right)+\sum_{i} \mu_{i}^{\varepsilon}(t) \varepsilon \rho\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t))\right)
$$

Thus, one obtains:

$$
\mathbf{A}(t)=-U\left(\mu^{\varepsilon}(t), \beta(t)\right)+\sum_{i} \mu_{i}^{\varepsilon}(t)\left[U\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t)), \beta(t)\right)+\varepsilon \rho\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t))\right)\right]
$$

Now Equation (24) and linearity of $U(., y)$ implies

$$
\left.U\left(\mu^{\varepsilon}(t), \beta(t)\right)=\sum_{i} \mu_{i}^{\varepsilon}(t) U\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t)), \beta(t)\right)\right)
$$

Hence,

$$
\mathbf{A}(t)=\varepsilon \sum_{i} \mu_{i}^{\varepsilon}(t) \rho\left(\mathbf{b r}^{\varepsilon}(\mathbf{z}[i](t))\right)
$$

so that

$$
\dot{\mathbf{W}}^{\varepsilon}(t) \leq-\mathbf{W}^{\varepsilon}(t)+\varepsilon
$$

for all (but possibly finitely many) $t \geq 0$. Hence,

$$
\mathbf{W}^{\varepsilon}(t) \leq e^{-t}\left(\mathbf{W}^{\varepsilon}(0)-\varepsilon\right)+\varepsilon
$$

for all $t \geq 0$.

Theorem 6.12. For any $\eta>0$, there exists $\bar{\varepsilon}>0$ such that for $\varepsilon \leq \bar{\varepsilon} a \operatorname{CSFP}(\varepsilon)$ strategy is η-consistent.
Proof. Let $\mathscr{L}=\mathscr{L}\left(\bar{z}_{n}\right)$ be the limit set of $\left(\bar{z}_{n}\right)$ defined by Equation (25). Since $\left(\bar{z}_{n}\right)$ is a DSA to Equation (26) and $\left\{z \in Z: c e^{\varepsilon}(z) \leq \varepsilon\right\}$ is an attracting set for Equation (26), whose basin is Z (Theorem 6.11), it suffices to apply Property 2(ii).
7. Extensions. We study in this section extensions of the previous dynamics in the case where the information of player 1 is reduced: Either he does not recall his past moves or he does not know the other players' moves sets, or he is not told their moves.
7.1. Procedure in law. We consider here procedures where player 1 is uninformed of his previous sequences of moves but knows only its law (team problem).

The general framework is as follows. A discrete time process $\left\{w_{n}\right\}$ is defined through a recursive equation by:

$$
\begin{equation*}
w_{n+1}-w_{n}=a_{n+1} V\left(w_{n}, i_{n+1}, l_{n+1}\right) \tag{28}
\end{equation*}
$$

where $\left(i_{n+1}, l_{n+1}\right) \in I \times L$ are the moves ${ }^{2}$ of the players at stage $n+1$ and $V: \mathbb{R}^{m} \times I \times L \rightarrow \mathbb{R}^{m}$ is some bounded measurable map.

A typical example is given in the framework of approachability (see §3.2) by

$$
\begin{equation*}
V(w, i, l)=-w+A_{i l} \tag{29}
\end{equation*}
$$

where $A_{i l}$ is the vector valued payoff corresponding to (i, l) and $a_{n}=1 / n$. In such case $w_{n}=\bar{g}_{n}$ is the average payoff.

Assume that player 1 uses a strategy (as defined in §3.2) of the form

$$
\sigma\left(h_{n}\right)=\psi\left(w_{n}\right)
$$

where for each $w, \psi(w)$ is some probability over I. Hence, w plays the role of a state variable for player 1, and we call such σ a ψ-strategy. Let $V_{\psi}(w)$ be the range of V under σ at w, namely, the convex hull of

$$
\left\{\int_{I} V(w, i, l) \psi(w)(d i) ; l \in L\right\} .
$$

Then, the associated continuous time process associated to Equation (28) is

$$
\begin{equation*}
\dot{\mathbf{w}} \in V_{\psi}(\mathbf{w}) . \tag{30}
\end{equation*}
$$

We consider now another discrete time process, where, after each stage n, player 1 is not informed upon his realized move i_{n} but only upon l_{n}. Define by induction the new input at stage $n+1$:

$$
\begin{equation*}
w_{n+1}^{*}-w_{n}^{*}=a_{n+1} \int_{I} V\left(w_{n}^{*}, i, l_{n+1}\right) \psi\left(w_{n}^{*}\right)(d i) \tag{31}
\end{equation*}
$$

Remark that the range of V under $\psi\left(w^{*}\right)$ at w^{*} is $V_{\psi}\left(w^{*}\right)$ so that the continuous time process associated to Equation (31) is again Equation (30). Explicitly Equations (28) and (31) are DSA of the same differential inclusion (Equation 30).

Definition 7.1. A ψ-procedure in law is a strategy σ of the form $\sigma\left(h_{n}\right)=\psi\left(w_{n}^{*}\right)$, where for each $w, \psi(w)$ is some probability over I and $\left\{w_{n}^{*}\right\}$ is given by Equation (31).

The key observation is that a procedure in law for player 1 is independent on the moves of player 1 and only requires the knowledge of the map V and the observation of the opponents' moves. The interesting result is that such a procedure will in fact induce, under certain assumptions (see Hypothesis 7.2 below), the same asymptotic behavior in the original discrete process.

Suppose that player 1 uses a ψ-procedure in law. Then, the coupled system (Equations 28 and 31) is a DSA to the differential inclusion

$$
\begin{equation*}
\left(\dot{w}, \dot{w}^{*}\right) \in V_{\psi}^{2}\left(w, w^{*}\right) \tag{32}
\end{equation*}
$$

where $V_{\psi}^{2}\left(w, w^{*}\right)$ is the convex hull of

$$
\left\{\left(\int_{I} V(w, i, l) \psi\left(w^{*}\right)(d i), \int_{I} V\left(w^{*}, i, l\right) \psi\left(w^{*}\right)(d i)\right) ; l \in L\right\} .
$$

[^1]We shall assume, from now on, that Equation (32) meets the standing Hypothesis 2.1. We furthermore assume the following:

Hypothesis 7.2. The map V satisfies one of the two following conditions:
(i) There exists a norm $\|\cdot\|$ such that $w \rightarrow w+V(w, i, l)$ is contracting uniformly in $s=(i, l)$. That is

$$
\|w+V(w, s)-(u+V(u, s))\| \leq \rho\|w-u\|
$$

for some $\rho<1$.
(ii) V is C^{1} in w and there exists $\alpha>0$ such that all eigenvalues of the symmetric matrix

$$
\frac{\partial V}{\partial w}(w, s)+{ }^{t} \frac{\partial V}{\partial w}(w, s)
$$

are bounded by $-\alpha$.
${ }^{t}$ stands for the transpose. Remark that Hypothesis 7.2 holds trivially for Equation (29). Under this later hypothesis, one has the following result.

Theorem 7.3. Assume that $\left\{w_{n}, w_{n}^{*}\right\}$ is a bounded sequence. Under a ψ-procedure in law the limit sets of $\left\{w_{n}\right\}$ and $\left\{w_{n}^{*}\right\}$ coincide, and this limit set is an ICT set of the differential inclusion (Equation 30). Under a ψ-strategy the limit set of $\left\{w_{n}\right\}$ is also an ICT set of the same differential inclusion.

Proof. Let \mathscr{L} be the limit set of $\left\{w_{n}, w_{n}^{*}\right\}$. By Properties 1 and $2, \mathscr{L}$ is compact and invariant. Choose $\left(w, w^{*}\right) \in \mathscr{L}$ and let $t \rightarrow\left(\mathbf{w}(t), \mathbf{w}^{*}(t)\right)$ denote a solution to Equation (32) that lies in \mathscr{L} (by invariance) with initial condition $\left(w, w^{*}\right)$. Let $\mathbf{u}(t)=\mathbf{w}(t)-\mathbf{w}^{*}(t)$.

Assume condition (i) in Hypothesis 7.2. Let $Q(t)=\|\mathbf{u}(t)\|$. Then, for all $0 \leq s \leq 1$,

$$
Q(t+s)=\|\mathbf{u}(t)+\dot{\mathbf{u}}(t) s+o(s)\|=\|(1-s) \mathbf{u}(t)+(\dot{\mathbf{u}}(t)+\mathbf{u}(t)) s+o(s)\| \leq(1-s) Q(t)+s\|\dot{\mathbf{u}}(t)+\mathbf{u}(t)\|+o(s)
$$

Now $\dot{\mathbf{u}}(t)+\mathbf{u}(t)$ can be written as

$$
\mathbf{w}(t)-\mathbf{w}^{*}(t)+\int_{I \times L}\left[V(\mathbf{w}(t), i, l)-V\left(\mathbf{w}^{*}(t), i, l\right)\right] \psi\left(\mathbf{w}^{*}(t)\right)(d i) d \nu(l)
$$

for some probability measure ν over L. Thus, by condition (i),

$$
Q(t+s) \leq(1-s) Q(t)+s \rho Q(t)+o(s)
$$

from which it follows that

$$
\dot{Q}(t) \leq(\rho-1) Q(t)
$$

for almost every t. Hence, for all $t \geq 0$:

$$
Q(0) \leq e^{(\rho-1) t} Q(-t) \leq e^{(\rho-1) t} K
$$

for some constant K. Letting $t \rightarrow+\infty$ shows that $Q(0)=0$. That is, $w=w^{*}$.
Assume now condition (ii). Let $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^{m} and $\langle\cdot, \cdot\rangle$ the associated scalar product. Then,

$$
\begin{aligned}
\left\langle V(w, s)-V\left(w^{*}, s\right), w-w^{*}\right\rangle & =\int_{0}^{1}\left\langle\partial_{w} V\left(w^{*}+u\left(w-w^{*}\right), s\right) \cdot\left(w-w^{*}\right), w-w^{*}\right\rangle d u \\
& \leq-\frac{\alpha}{2}\left\|w-w^{*}\right\|^{2}
\end{aligned}
$$

Therefore,

$$
\frac{d}{d t} Q^{2}(t)=2\left\langle\mathbf{w}(t)-\mathbf{w}^{*}(t), \dot{\mathbf{w}}(t)-\dot{\mathbf{w}}^{*}(t)\right\rangle \leq-\alpha Q^{2}(t)
$$

from which it follows (like previously) that $Q(0)=0$.
We then have proved that given Hypothesis $7.2,\left\{w_{n}\right\}$ and $\left\{w_{n}^{*}\right\}$ have the same limit set under a ψ-procedure in law. Since $\left\{w_{n}^{*}\right\}$ is a DSA to Equation (30), this limit set is ICT for Equation (30) by Property 1. The same property holds for $\left\{w_{n}\right\}$ under a ψ-strategy.

Remark. Let \mathscr{R} denote the set of chain-recurrent points for Equation (28). Hypothesis 7.2 can be weakened to the assumption that conditions (i) or (ii) are satisfied for V restricted to $\mathscr{R} \times I \times L$.

The previous result applies to the framework of $\S \S 4$ and 5 and show that the discrete regret dynamics will have the same properties when based on the (conditional) expected stage regret $E_{x} R(s)$ or $E_{x} C(s)$.
7.2. Best prediction algorithm. Consider a situation where at each stage n an unknown vector U_{n} $\left(\in[-1,+1]^{I}\right)$ is selected and a player chooses a component $i_{n} \in I$. Let $\omega_{n}=U_{n}^{i_{n}}$. Assume that U_{n} is announced after stage n. Consistency is defined through the evaluation vector V_{n} with $V_{n}^{i}=\bar{U}_{n}^{i}-\bar{\omega}_{n}, i \in I$, where, as usual, \bar{U}_{n} is the average vector and $\bar{\omega}_{n}$ the average realization. Conditional consistency is defined through the evaluation matrix W_{n} with $W_{n}^{j k}=(1 / n)\left(\sum_{m, i_{m}=j} U_{m}^{k}-\omega_{m}\right)$. This formulation is related to online algorithms; see Foster and Vohra [17] or Freund and Schapire [18] for a general presentation. In the previous framework, the vector U_{n} is $U\left(., l_{n}\right)$, where l_{n} is the choice of players other than 1 at stage n. The claim is that all previous results go through (V_{n} or W_{n} converges to the negative orthant) when dealing with the dynamics expressed on the payoffs space. This means that player 1 does not need to know the payoff matrix or the set of moves of the other players; only a compact range for the payoffs is requested. A sketch of proofs is as follows.
7.2.1. Approachability: Consistency. We consider the dynamics of $\S 4$. The regret vector R^{*} if i is played is $R^{*}(i)=\left\{U^{j}-U^{i}\right\}_{j \in I}$. Lemma 4.6 is now, for $\theta \in \Delta(I)$,

$$
\left\langle\theta, R^{*}(\theta)\right\rangle=0
$$

and since $R^{*}(\theta)$, the expectation of R^{*} under θ is

$$
R^{*}(\theta)=\sum_{i \in I} \theta(i) R^{*}(i)=\left\{U^{j}-\langle\theta, U\rangle\right\}_{j} ;
$$

hence, the properties of the P-regret-based dynamics on the payoff space \mathbb{R}^{m} still hold (Theorem 4.7 and Corollary 4.8).
7.2.2. Approachability: Conditional consistency. The content of $\S 5$ extends as well. The $I \times I$ regret matrix is defined at stage n, given the move i_{n}, by all lines being zero except line i_{n}, which is the vector $\left\{U_{n}^{j}-U_{n}^{i}\right\}_{j \in J}$. Then, the analysis is identical, and the convergence of the regret to the negative orthant holds for P-conditional regret dynamics as in Theorem 5.5 and Corollary 5.6.
7.2.3. SFP: Consistency. In the framework of $\S 6$, the only hypothesis used on the set Y was that it was convex compact; hence, one can take $L=[-1,+1]^{I}$ and $U(x, l)=\langle x, l\rangle$. Then, all computations go through.
7.2.4. SFP: Conditional consistency. For the analog of $\S 6.5$, let us define the $I \times I$ evaluation matrix M_{n} at stage n and, given the move i_{n}, by all lines equal to zero, except line i_{n} being the vector U_{n}. Its average at stage n is $\bar{M}_{n} . \mu_{n}$ is an invariant measure for the Markov matrix defined by the family $\operatorname{BR}^{\epsilon}\left(\bar{M}_{n}^{i}\right)$, where $\left(\bar{M}_{n}^{i}\right)$ denotes the i-line of $\left(\bar{M}_{n}\right)$.
7.3. Partial information. We consider here the framework of $\S 7.2$ but where only ω_{n} is observed by player 1 , not the vector U_{n}. In a game theoretical framework, this means that the move of the opponent at stage n is not observed by player 1 but only the corresponding payoff $U\left(i_{n}, l_{n}\right)$ is known.

This problem has been studied in Auer et al. [2, 3], Foster and Vohra [15], Fudenberg and Levine [21], Hart and Mas-Colell [26], and, in a game theoretical framework, by Banos [4] and Megiddo [30]. (Note that working in the framework of $\S 7.2$ is more demanding than finding an optimal strategy in a game, since the payoffs can actually vary stage after stage.)

The basic idea is to generate, from the actual history of payoffs and moves $\left\{\omega_{n}, i_{n}\right\}$ and the knowledge of the strategy σ, a sequence of pseudovectors $\widetilde{U}_{n} \in \mathbb{R}^{S}$ to which the previous procedures apply.
7.3.1. Consistency. We follow Auer et al. [2] and define \widetilde{U}_{n} by

$$
\widetilde{U}_{n}^{i}=\frac{\omega_{n}}{\sigma_{n}^{i}} \mathbf{1}_{\left\{i=i_{n}\right\}},
$$

where as usual i_{n} is the component chosen at stage n and σ_{n}^{i} stands for $\sigma\left(h_{n-1}\right)(i)$. The associated pseudoregret vector is $\left\{\widetilde{R}_{n}^{i}=\widetilde{U}_{n}^{i}-\omega_{n}\right\}_{i \in I}$. Notice that

$$
E\left(\widetilde{R}_{n}^{i} \mid h_{n-1}\right)=U_{n}^{i}-\left\langle\sigma_{n}, U_{n}\right\rangle
$$

hence, in particular

$$
\left\langle\sigma_{n}, E\left(\widetilde{R}_{n} \mid h_{n-1}\right)\right\rangle=0
$$

To keep \widetilde{U}_{n} bounded, one defines first τ_{n} adapted to the vector \widetilde{U}_{n} as in $\S 7.2$, namely, proportional to $\nabla P\left((1 /(n-1)) \cdot \sum_{m=1}^{n-1} \widetilde{R}_{m}\right)$ (see $\left.\S 4\right)$, then σ is specified by

$$
\sigma_{n}^{i}=(1-\delta) \tau_{n}^{i}+\delta / K
$$

for $\delta>0$ small enough, K being the cardinality of the set I.
The discrete dynamics is thus

$$
\overline{\tilde{R}}_{n}-\overline{\widetilde{R}}_{n+1}=\frac{1}{n}\left(\tilde{R}_{n+1}-\overline{\widetilde{R}}_{n}\right) .
$$

The corresponding dynamics in continuous time satisfies:

$$
\dot{\mathbf{w}}(t)=\alpha(t)-\mathbf{w}(t)
$$

with $\alpha(t)=U_{t}-\left\langle p(t), U_{t}\right\rangle$ for some measurable process U_{t} with values in $[-1,1]$ and $p(t)=(1-\delta) q(t)+\delta / K$ with

$$
\nabla P(w(t))=\|\nabla P(w(t))\| q(t)
$$

Define the condition

$$
\begin{equation*}
\langle\nabla P(w), w\rangle \geq B\|\nabla P(w)\|\left\|w^{+}\right\| \tag{33}
\end{equation*}
$$

on $\mathbb{R}^{S} \backslash D$ for some positive constant B (satisfied, for example, by $\left.P(w)=\sum_{s}\left(w_{s}^{+}\right)^{2}\right)$.
Proposition 7.4. Assume that the potential satisfies in addition Equation (33). Then, consistency holds for the continuous process \widetilde{R}_{t} and both discrete processes \widetilde{R}_{n} and R_{n}.

Proof. One has

$$
\begin{aligned}
\frac{d}{d t} P(w(t)) & =\langle\nabla P(w(t)), \dot{w}(t)\rangle \\
& =\langle\nabla P(w(t)), \alpha(t)-w(t)\rangle
\end{aligned}
$$

Now,

$$
\begin{aligned}
\langle\nabla P(w(t)), \alpha(t)\rangle & =\|\nabla P(w(t))\|\langle q(t), \alpha(t)\rangle \\
& =\|\nabla P(w(t))\|\left\langle\frac{1}{1-\delta} p_{t}-\frac{\delta}{(1-\delta) K}, \alpha(t)\right\rangle \\
& \leq\|\nabla P(w(t))\| \frac{\delta}{(1-\delta) K} R
\end{aligned}
$$

for some constant R since $\langle p(t), \alpha(t)\rangle=0$ and the range of α is bounded. It follows, using Equation (33), that given $\varepsilon>0, \delta>0$ small enough and $\left\|w^{+}(t)\right\| \geq \varepsilon$ implies

$$
\begin{aligned}
\frac{d}{d t} P(w(t)) & \leq\|\nabla P(w(t))\|\left(\frac{\delta}{(1-\delta) K} R-B\left\|w^{+}(t)\right\|\right) \\
& \leq-\|\nabla P(w(t))\| B \varepsilon / 2
\end{aligned}
$$

Now, $\langle\nabla P(w), w\rangle>0$ for $w \notin D$ implies $\|\nabla P(w)\| \geq a>0$ on $\left\|w^{+}\right\| \geq \varepsilon$. Let $\beta>0, A=\{P \leq \beta\}$, and choose $\varepsilon>0$ such that $\left\|w^{+}\right\| \leqq \varepsilon$ is included in A. Then, the complement of A is an attracting set, and consistency holds for the process $\widetilde{\widetilde{R}}_{t}$ hence, as in $\S 4$, for the discrete time process \widetilde{R}_{n}. The result concerning the actual process R_{n} with $R_{n}^{k}=U_{n}^{k}-\omega_{n}$ finally follows from another application of Theorem 7.3, since both processes have the same conditional expectation.
7.3.2. Conditional consistency. A similar analysis holds in this framework. The pseudoregret matrix is now defined by

$$
\widetilde{C}_{n}(i, j)=\frac{\sigma_{n}^{i}}{\sigma_{n}^{j}} U_{n}^{j} \mathbf{1}_{\left\{j=i_{n}\right\}}-U_{n}^{i} \mathbf{1}_{\left\{i=i_{n}\right\}},
$$

hence

$$
E\left(\widetilde{C}_{n}(i, j) \mid h_{n-1}\right)=\sigma_{n}^{i}\left(U_{n}^{j}-U_{n}^{i}\right)
$$

and this relation allows us to invoke ultimately Theorem 7.3, hence to work with the pseudoprocess. The construction is similar to that in $\S 5.2$, in particular Equation (A6). The measure $\mu(w)$ is a solution of

$$
\sum_{k} \mu^{k}(w) \nabla_{k j} P(w)=\mu^{j}(w) \sum_{k} \nabla_{j k} P(w)
$$

and player 1 uses a perturbation $\nu(t)=(1-\delta) \mu(w(t))+\delta u$ where u is uniform. Then, the analysis is as above and leads to the following proposition:

Proposition 7.5. Assume that the potential satisfies, in addition, Equation (33). Then, consistency holds for the continuous process \widetilde{C}_{t} and both discrete processes \widetilde{C}_{n} and C_{n}.
8. A learning example. We consider here a process analyzed by Benaïm and Ben Arous [7]. Let $S=$ $\{0, \ldots, K\}$,

$$
X=\Delta(S)=\left\{x \in \mathbb{R}^{K+1}: x_{k} \geq 0, \sum_{k=0}^{K} x_{k}=1\right\}
$$

be the K dimensional simplex and $f=\left\{f_{k}\right\}, k \in S$ a family of bounded real valued functions on X. Suppose that a "player" has to choose an infinite sequence $x_{1}, x_{2}, \ldots \in S$ (identified with the extreme points of X) and is rewarded at time $n+1$ by

$$
y_{n+1}=f_{x_{n+1}}\left(\bar{x}_{n}\right)
$$

where

$$
\bar{x}_{n}=\frac{1}{n} \sum_{1 \leq m \leq n} x_{m}
$$

Let

$$
\bar{y}_{n}=\frac{1}{n} \sum_{1 \leq m \leq n} y_{m}
$$

denote the average payoff at time n. The goal of the player is thus to maximize its long-term average payoff $\lim \inf \bar{y}_{n}$. In order to analyze this system, note that the average discrete process satisfies

$$
\begin{gathered}
\bar{x}_{n+1}-\bar{x}_{n}=\frac{1}{n}\left(x_{n+1}-\bar{x}_{n}\right), \\
\bar{y}_{n+1}-\bar{y}_{n}=\frac{1}{n}\left(f_{x_{n+1}}\left(\bar{x}_{n}\right)-\bar{y}_{n}\right) .
\end{gathered}
$$

Therefore, it is easily seen to be a DSA of the following differential inclusion

$$
\begin{equation*}
(\dot{\mathbf{x}}, \dot{\mathbf{y}}) \in-(\mathbf{x}, \mathbf{y})+N(\mathbf{x}, \mathbf{y}) \tag{34}
\end{equation*}
$$

where $(x, y) \in X \times\left[\alpha_{-}, \alpha_{+}\right], \alpha_{-}=\inf _{S, X} f_{k}(x), \alpha_{+}=\sup _{S, X} f_{k}(x)$, and N is defined as

$$
N(x, y)=\{(\theta,\langle\theta, f(x)\rangle): \theta \in X\}
$$

Definition 8.1. The function f has a gradient structure if, letting

$$
g_{k}\left(x_{1}, \ldots, x_{K}\right)=f_{0}\left(1-\sum_{k=1}^{K} x_{k}, x_{1}, \ldots, x_{K}\right)-f_{k}\left(1-\sum_{k=1}^{K} x_{k}, x_{1}, \ldots, x_{K}\right)
$$

there exists a C^{1} function V, defined in a neighborhood of

$$
Z=\left\{z \in \mathbb{R}^{K}, z=\left\{z_{k}\right\}, k=1, \ldots, K, \text { with }\left(x_{0}, z\right) \in X \text { for some } x_{0} \in[0,1]\right\}
$$

satisfying

$$
\nabla V(z)=g(z)
$$

Theorem 8.2. Assume that f has a gradient structure. Then, every compact invariant set of Equation (34) meets the graph

$$
S=\left\{(x, y) \in X \times\left[\alpha_{-}, \alpha_{+}\right]: y=\langle f(x), x\rangle\right\}
$$

Proof. We follow the computation in Benaïm and Ben Arous [7]. Note that Equation (34) can be rewritten as

$$
\begin{gathered}
\dot{x}+x \in X \\
\dot{y}=\langle x+\dot{x}, f(x)\rangle-y .
\end{gathered}
$$

Hence,

$$
\begin{aligned}
\frac{y(s+t)-y(s)}{t} & =\frac{1}{t} \int_{s}^{s+t} \dot{y}(u) d u \\
& =\frac{1}{t}\left[\int_{s}^{s+t}\langle f(x(u)), x(u)\rangle-y(u) d u+\int_{s}^{s+t}\langle f(x(u)), \dot{x}(u)\rangle d u\right]
\end{aligned}
$$

but $x(u) \in X$ implies

$$
\begin{aligned}
\langle f(x(u)), \dot{x}(u)\rangle & =\sum_{k=0}^{K} f_{k}(x(u)) \dot{x}_{k}(u) \\
& =\sum_{k=1}^{K}\left[-f_{0}(x(u))+f_{k}(x(u))\right] \dot{x}_{k}(u) \\
& =-\sum_{k=1}^{K} g_{k}(z(u)) \dot{z}_{k}(u) \\
& =-\frac{d}{d t} V(z(u))
\end{aligned}
$$

where $z(u) \in \mathbb{R}^{m}$ is defined by $z_{k}(u)=x_{k}(u)$. So that

$$
\frac{1}{t} \int_{s}^{s+t}(\langle f(x(u)), x(u)\rangle-y(u)) d u=\frac{(y(s+t)+V(z(s+t))-(y(s)+V(z(s))}{t}
$$

and the right-hand term goes to zero uniformly (in s, y, z) as $t \rightarrow \infty$. Let now \mathscr{L} be a compact invariant set. Replacing \mathscr{L} by one of its connected components we can always assume that \mathscr{L} is connected. Suppose that $\mathscr{L} \cap S=\varnothing$. Then, $(\langle f(x), x\rangle-y)$ has constant sign on $\mathscr{L}($ say,$>0)$ and, by compactness, is bounded below by a positive number δ. Thus, for any trajectory $t \rightarrow(x(t), y(t))$ contained in \mathscr{L}

$$
\frac{1}{t} \int_{s}^{s+t}(\langle f(x(u)), x(u)\rangle-y(u)) d u \geq \delta
$$

a contradiction.
Corollary 8.3. The limit set of $\left\{\left(\bar{x}_{n}, \bar{y}_{n}\right)_{n}\right\}$ meets S. In particular,

$$
\liminf \bar{y}_{n} \leq \sup _{x \in X}\langle x, f(x)\rangle
$$

If, furthermore, $\left(x_{n}\right)$ is such that $\lim _{n \rightarrow \infty} \bar{x}_{n}=x^{*}$, then

$$
\lim _{n \rightarrow \infty} \bar{y}_{n}=\sup _{x \in X}\left\langle x^{*}, f\left(x^{*}\right)\right\rangle
$$

Proof. One uses the fact that the discrete process is a DSA, hence the limit set is invariant, being ICT by Property 2. The second part of the corollary follows from the proof part (a) of Theorem 4 in Benaïm and Ben Arous [7].
9. Concluding remarks. The main purpose of the paper was to show that stochastic approximation tools are extremely effective for analyzing several game dynamics and that the use of differential inclusions is needed. Note that certain discrete dynamics do not enter this framework: One example is the procedure of Hart and Mas-Colell [25], which depends both on the average regret and on the last move. The corresponding continuous process generates in fact a differential equation of order two. Moreover, as shown in Hart and Mas-Colell [27] (see also Cahn [13]), this continuous process has regularity properties not shared by the discrete counterpart.

Among the open problems not touched upon in the present work are the questions related to the speed of convergence and to the convergence to a subset of the approachable set.

Acknowledgments. The authors acknowledge financial support from the Swiss National Science Foundation Grant 200021-1036251/1 and from University College London's Centre for Economic Learning and Social Evolution (ELSE).

References

[1] Aubin, J.-P. 1991. Viability Theory. Birkhäuser.
[2] Auer, P., N. Cesa-Bianchi, Y. Freund, R. E. Schapire. 1995. Gambling in a rigged casino: The adversarial multi-armed bandit problem. Proc. 36th Annual IEEE Sympos. Foundations Comput. Sci., 322-331.
[3] Auer, P., N. Cesa-Bianchi, Y. Freund, R. E. Schapire. 2002. The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32 48-77.
[4] Banos, A. 1968. On pseudo-games. Ann. Math. Statist. 39 1932-1945.
[5] Benaïm, M. 1996. A dynamical system approach to stochastic approximation. SIAM J. Control Optim. 34 437-472.
[6] Benaïm, M. 1999. Dynamics of stochastic approximation algorithms. Séminaire de Probabilités XXXIII, Lecture Notes in Mathematics, Vol. 1709. Springer, 1-68.
[7] Benaïm, M., G. Ben Arous. 2003. A two armed bandit type problem. Internat. J. Game Theory 32 3-16.
[8] Benaïm, M., M. W. Hirsch. 1996. Asymptotic pseudotrajectories and chain recurrent flows, with applications. J. Dynam. Differential Equations 8 141-176.
[9] Benaïm, M., M. W. Hirsch. 1999. Mixed equilibria and dynamical systems arising from fictitious play in perturbed games. Games Econom. Behav. 29 36-72.
[10] Benaïm, M., J. Hofbauer, S. Sorin. 2005. Stochastic approximations and differential inclusions. SIAM J. Control Optim. 44 328-348.
[11] Blackwell, D. 1956. An analog of the minmax theorem for vector payoffs. Pacific J. Math. 6 1-8.
[12] Brown, G. 1951. Iterative solution of games by fictitious play. T. C. Koopmans, ed. Activity Analysis of Production and Allocation. Wiley, 374-376.
[13] Cahn, A. 2004. General procedures leading to correlated equilibria. Internat. J. Game Theory 33 21-40.
[14] Duflo, M. 1996. Algorithmes Stochastiques. Springer.
[15] Foster, D., R. Vohra. 1997. Calibrated learning and correlated equilibria. Games Econom. Behav. 21 40-55.
[16] Foster, D., R. Vohra. 1998. Asymptotic calibration. Biometrika 85 379-390.
[17] Foster, D., R. Vohra. 1999. Regret in the on-line decision problem. Games Econom. Behav. 29 7-35.
[18] Freund, Y., R. E. Schapire. 1999. Adaptive game playing using multiplicative weights. Games Econom. Behav. 29 79-103.
[19] Fudenberg, D., D. K. Levine. 1995. Consistency and cautious fictitious play. J. Econom. Dynam. Control 19 1065-1089.
[20] Fudenberg, D., D. K. Levine. 1998. The Theory of Learning in Games. MIT Press.
[21] Fudenberg, D., D. K. Levine. 1999. Conditional universal consistency. Games Econom. Behav. 29 104-130.
[22] Hannan, J. 1957. Approximation to Bayes risk in repeated plays. M. Dresher, A. W. Tucker, P. Wolfe, eds. Contributions to the Theory of Games, Vol. III. Princeton University Press, Princeton, NJ, 97-139.
[23] Hart, S. 2005. Adaptive heuristics. Econometrica 73 1401-1430.
[24] Hart, S., A. Mas-Colell. 2000. A simple adaptive procedure leading to correlated equilibria. Econometrica 68 1127-1150.
[25] Hart, S., A. Mas-Colell. 2001. A general class of adaptive strategies. J. Econom. Theory 98 26-54.
[26] Hart, S., A. Mas-Colell. 2001. A reinforcement procedure leading to correlated equilibria. G. Debreu, W. Neuefeind, W. Trockel, eds. Economic Essays: A Festschrift for W. Hildenbrandt. Springer, 181-200.
[27] Hart, S., A. Mas-Colell. 2003. Regret-based continuous time dynamics. Games Econom. Behav. 45 375-394.
[28] Hofbauer, J., W. H. Sandholm. 2002. On the global convergence of stochastic fictitious play. Econometrica 70 2265-2294.
[29] Hofbauer, J., S. Sorin. 2006. Best response dynamics for continuous zero-sum games. Discrete Contin. Dynamical Systems, Series B 6 215-224.
[30] Megiddo, N. 1980. On repeated games with incomplete information played by non-Bayesian players. Internat. J. Game Theory 9 157-167.
[31] Métivier, M., P. Priouret. 1992. Théorèmes de convergence presque-sûre pour une classe d'algorithmes stochastiques à pas décroissants. Probab. Theory Related Fields 74 403-438.
[32] Robinson, J. 1951. An iterative method of solving a game. Ann. Math. 54 296-301.
[33] Sorin, S. 2002. A First Course on Zero-Sum Repeated Games. Springer.

[^0]: ${ }^{1}$ Benaïm and Hirsch's analysis was restricted to asymptotic pseudotrajectories (perturbed solutions) of differential equations and flows.

[^1]: ${ }^{2}$ For convenience, we keep the notation used for finite games, but it is unnecessary to assume here that the move spaces are finite.

