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Some Results on Zero-Sum Games with Incomplete Information: 
The Dependent Case 

By J.P. Ponssard, Paris 1 ). and S. Sorin, Paris 2) 

Abstract: In games with incomplete information, the players' states of information may be deter- 
mined either through independent chance moves or through a unique one. Generally, a unique 
chance move generates some dependance in the players' state of information thus giving rise to 
significant complications in the analysis. However, it turns out that many results obtained in the 
simpler independent case have their counterpart in the dependent one. This is proved in this 
paper for several previous results of the authors. 

1. In troduct ion  

The class o f  games under considerat ion is the following. 

(i) Let  G be a f ini te  two person game tree with its rules (sequence o f  moves  and infor- 
mat ion  sets). 

(ii) Let  M h be the zero sum payof f  associated with a play h of  G, M h is a discrete ran- 
dom variable defined by: 

Prob (M h = mkh) = p k  where p C P  ( the simplex of  R K) is a c o m m o n  knowledge 
probabil i ty.  Moreover the private informat ion  structure is the fol lowing [Mertens/ 
Zamir ]. 

There are two part i t ions o f K  = {1 . . . .  , k . . . . .  L )  denoted  by: 

KI: KI1, 

= ;KI ,  l . . . . .  

such that  if chance chooses k according to p, player 1 - the maximizer  - is informed 
of  a and player 2 - the minimizer  - is informed of  b where k belongs to K2 N K 11. 

1 ) j.p. Ponssard, Centre de Recherche en Gestion, Ecole Polytechnique, 17 rue Descartes 
F-75005 Paris, France. 

2) S. Sorin, Laboratoire d'Econom~trie, Universit~ Paris VI, 4 Place Jussieu F-75230 Paris 
Cedex 05, France. 
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All the above description is common knowledge and we shall denote by V(p) the 
value of this game. 

Tile independent case is obtained when K = {(a, b): a = 1 . . . . .  A, b = 1 . . . . .  B}, 
K l a = { ( a , b ) : b = l  . . . . .  B) ,K.! lq={~areb):a=l . . . . .  A ) a n d p k = r a q b w h e r e  
r = (r I , . . . ,  r A),  q = (ql . .  B) two probability vectors. 

We shall extend to the dependent case results proved for the simpler independent 
case. 

In section 2, we shall work with games with almost perfect information [Ponssard] 
and generalize a recursive formula for the value of such games. Section 3 will be devo- 
ted to the value of repeated sequential games with incomplete information [Sorin]. 

In the last section, we shall prove properties of V(p) using linear programming 
[Ponssard/Sorin ]. 

2. Value of Games with Almost Perfect Information 

We shall assume in this section that the sequences of moves and the information 
sets are as follows. 

After chance's move k player 1 chooses some ix E l l  which is told to player 2. Then 
player 2 chooses somejl  E Jl which is told to player 1 and so on, Finally player 1 
receives 

m k (ix, ]X . . . .  , i T, ] r  ) 

from player 2. 
We assume that T and all the sets I t, Jr, t E T are finite (so that we are in the frame- 

work of section 1). 
Let us introduce the following nonempty convex compact subsets ofP. [Mertens/ 

Zamir]. 
i11 ( p ) =  ((c~Xpl . . . . .  ~kpk  . . . . .  aLpL)  lak  >~ O, k = 1 . . . . .  L, Y~ akp k = 1 

k 
and a k = a k '  if k and k'  belong to the same K I }. 

lqll(P) = {(/3Xp, . . . . .  f3kpk . . . . .  ~ L p t )  i~k ~>0, k = 1 , . . .  ,L,  Z ~ k p k  = 1 
k 

and ~k = {3k' i fk  and k '  belong to the same K~I). 
For every real function defined on P,~, we shall denote by C a v f  the smallest real func- 

I 
tion u such that Vp EP,  u restricted to Hi(p) is concave (such a function will be said 
to be I-concave) and u(p) ~>f(p) on P; and similarly, Vex f is the greatest II-convex 

II 
function smaller t h a n f  [see Mertens/Zamir]. 

We can now state the following proposition (extension of  theorem 1 of Ponssard 
[1975]). 

Proposition 1: 

V(p)=Cav Max Vex Min . . .  Car Max Vex Min 
I i 1 ~ I  1 II 1"1EJ1 I iT~_I T II j T ~ J T  
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L pkmk  { ~ (i1,]1 . . . . .  i T ,IT)). 
k=l 

The proof of this proposition can be obtain as in Ponssard [ 1975 ] by using a com- 
pounded game. 

Let us denote by V il (p) the value of  G il , i.e. the game G where player's 1 first set 
of  strategies 11 is reduced to ( i l ) .  

Proposition 2: 

V(p) = Car Max V il (t9) 
I il ~-/1 

Proof: We obviously have V(p) >~ V il (p) Vii EI1, Vp EP. 
Since V(p) is I-concave ([see Mertens/Zamir, p. 49] an alternative proof is given in 

section 4) it follows that: 

V(p)/> Cav Max r 
I i l E l l  

To prove the opposite inequality let us normalize the strategies in the game where 
player 1 's first move is il .  Since I t and Jt are finite for all t, there exist two finite sets 
I and .l such that the strategies in G ~ 1 are given by: 

y( i l ,  a), a probability distribution over I for all il E I I ,  a EA 

z (il, b), a probability distribution over _l for all il E 11, b E B 

and let M(il, k) be the I I I X I _ll payoff  matrix of the compounded game ff chance 
choses k. 

Let x(a) be a probability distribution over 11, for all a EA.  Then the payoff  asso- 
ciated with the strategies ((x, y) ,  z) in G is 

H ( p , x , y , z ) =  a,b ~ il,i,/Z pk xi 1 (a)Yi( i l ,a)mk.( i l )z i( i l ,  b). 

Let us now introduce 

~il = Z ~ I pk a k~ K a Xil (a) 

and define for all i~, a, k with k EKIa, 

pk ~ Xi 1 (a)  
e,k = ~ ~il ~ 0 

1 Xi I 
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= arbitrary if xil = 0. 

Since Xil (a) depends on k only through a it follows that Pil belongs to Hi(p) for 
all il whenever Ril 4: 0. 

Now we have (where Z means ~; I; ) 
k a,b k~;ianKlbI 

H(p, x, y, z) = k,ilE, i,] pikl Xi,- Yi (i, , a) link ( i l )  z] (/'1, b) 

= ~ ~i 1 ]~ p k  Yi (il, (l) m~ (il) zj (i,, b), 
i 1 k,i,j 

Using the minimax theorem we obtain 

V ( p )  = max min H ( p ,  x ,  y ,  z )  
x,y z 

= m a x  2 Ril max rain Z pk Yi(i, ' a) m k ( i i ) z ] ( i , ,  b) 
x il y ( i l , . )  z ( i l , . )  k,i,j 

= max .2; xil Vq (Pil) by definition of y, z and m. 
X 11 

Thus 

V(p) ~< maXx ~" Ycil l~IMaXl Vl(pil ) 

Using the fact that .Z R i i Pi~ = P and .~ "~i 1 ~ 1 it follows that 
l l  ll  

tl1; Xil- M~xVt(Pix ) ~  Cav M a x i  I VI(p)" 

Hence V(p) ~< Car Max V 1 (p). 
I 1 

(This proof is a generalization of the proof of the main theorem of Ponssard/Zamir 
[19731). 

Proof of  Prop. 1: 
This follows from recursive application of Prop.2 to each move of the game since 

the value of the il, J l ,   9  9  9 i T, ]T restricted game is precisely 

Vil , f l  . . . . .  iT, JT = L pk m k 
1; ( q ,  A , . . . , i r ,  j r ) .  

k = l  
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3. Convergence of the Value for Sequential Games 

We now consider a specification of the game described in section 2: in fact we 
assume that 

l ~ mk  I t = I , J  t = J f o r a l l t a n d m k ( i l , ] l  . . . . .  i n , ] n ) = n t = l  (it, Jr) 

for aU k, n. 

G is now a sequential repeated game. We shall denote by v n (p) the value of the n-th 
repeated game and allow n to vary in order to study the asymptotic behavior of the 
value. 

Let us introduce some notation. 
u(p) is the value of the average game with payoff matrix given by: 

L ~_, p k M k = M ( p ) .  
k=l 

Consider the following system: 

f (p)  = Cav min {f(p), u(p)} 
I 

f ( p )  Vex max {f(p), u(p)). 
II 

In Mertens/Zamir [1971 ] it is shown that this system has only one solution 
which we shall denote by v(p). Moreover they prove that lim v n exists and equals 
v(p). n - ~  

Proposition 3: 

(i) The sequence v n (p) is increasing in n for all p. 

(ii) v(p) - v n (p) is bounded by C/n for some C E R § and this is the best bound. 

Proof: The above proposition is proved in the independent case by using only 
formula (1) and the recursive formula of Ponssard [ 1975] [see Sorin]. Since this one 
extends to the dependent case (section 2) the proposition follows. 

(1) 

4. The L.P. Formulation 

Since any finite zero-sum game in normal form is equivalent to a linear program we 
shall use the normalized strategies of the game G defined in section 1. Let us denote 
by L i E 1  = (1 . . . . .  m} a n d L / E  J =  (1 . . . .  , n} the moves of player 1 and player 2. 
A Bayesian mixed strategy for player 1 is now given by 
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= (x i (a); i E L a E A) such that xi(a ) = Prob (move i I k E Kla) x 

and similarly for player 2 

= Cv/ (b) ; /E  J, b EB)  such that y / (b )  = Prob ( m o v e / L k  EKII ) .  Y 

Finally M k is the m X n payoff  matrix if chance chooses k. Now we have: 

Lemma 1: V(p) is the value of the following program. 

Max ~ v b 
b 

s.t. (2) 
V b V j ~ ,  IF, p k x i ( a ) m k > ~ v b  

a k. EKIanKIl 
l 

Va ~ x i (a) = 1 
1 

V a V i  xi(a)>~O. 

Since the payoff  associated with the strategies x and y is 

H ( x , y ) =  ~ p k x i ( a ) y j ( b ) m g  
k,i,j 

we have by the min-max theorem 

V(p) = Max Min H(x,  y )  
x y 

= Max 5; Min Y~ N pk  xi (a) m k lj 
x b ] a kiEKlanK~l 

so that the result follows. 
Now, for all p E P let us introduce the following set: 

Q(p) = (q EP; q k = 8ak(3kp k where p,, = ( . . . .  o~gp k, . . .  ) belongs 

to IIl(P ) andpo = ( . . . .  Bkpk . . . .  ) belongs to IIii(p)}. 

Remark: Note that we always have 111 (p) C Q(p)  and 11ii (p) c Q(p).  Moreover if 
q E Q (P) with q k = 6 akfjkp k then q E H I (P~) N 11ii (Pa)" 

Definition: A function on D C P is said to be I-linear ff its restriction to each 
D O H I (p) is linear. Similarly, for II.linear, and I.II-bilinear if it is both I and II linear. 
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Theorem 1." V(p) is l-concave and II-convex on P. For all p C P there is a finite parti- 
tion of Q(p) into convex polyhedra C t such that V(p) is I-II-bilinear on each C t . 

From lemma 1 it follows that if q E Q(Po), V(q) is the value of the following pro- 
gram. 

Max Y, ~bvb 
s.t. (3) 

Vb V] ~ Z 8pk xi(a)aa mk >~v b tl a kEKIoKII  
 9 a o l 

Va ~. xi(a)= 1. 
l 

Vi  Va xi(a)>~O. 

Let us denote 8 x i (a) a a by Yi (a) for all i, a, so that the constraints are now 

V]'Vb ~ ~K~Ina K~ I pk  Yi (a) m k >1 v b a k 11 
l 

Va ~ yi(a) = S a  a i 
(4) 

Vi Va Yi(a) >~ O. 

Now let q' = (6'a'kfjkp k) and q" = (8"a"k~kp k) belong to II I (p~) with 
~q' + (1 __ h,) q,, = q. 

It is easy to see that if (y', v') is admissible in (4) for q'  (resp. O'", v") for q") then 
(~,y' + (1 - ~ )y" ,  ~v' + (1 - ~,) v") is admissible for q so that V(q) is I-concave. By 
duality V(q) is also II-convex. 

But V(q) is also the solution of the following program. 

Max ~ ~flbvb 
b 

s.t. 

Vb V/ 
a 

pk zi(a)mi~ >~v b 

l 

v a  z. z i (a )  = , ~  
i 

Vi Va z i (a)~O 

where z i (a) = &a xi(a). 



240 J.P. Ponssard, and S. Sorin 

It follows that V(q) is II-piecewise linear on Q(P0)- Moreover there exists a finite 
number of  vectors ~3s, s E S such that for every p~, V(q) is II-tinear on each convex 
polyhedron whose vertices are some of the Ps (a) vs where Ps (a) = ( . . . .  5 (a, j3s) 
(3skakpko . . . .  ) and whose interior contains none of these points.  [See Ponssard/Sorin]. 
It remains to note that Ps (a) belongs to IIi(ps), for all c~, where Ps = 
= ( . . . .  13skpo k . . . .  ). By duality V(q) is also I-piecewise linear on Q(Po) and there exists 
similarly a finite number of vectors at, r ~ R. 

Now if we define Prs EP by pkrs = 6af(3kspko whenever this is possible it follows 
that V(q) is I-ll-linear on each of  the convex polyedras constructed over the Pr, Ps and 
Prs' and that these are a finite number. 

Following theorem 1 we shall now say that V(p) is I-lI-piecewise bilinear on each 
Q(p), Vp ~e .  

5. Example 

Let P be the simplex in R a ;K = {1,2, 3}, K I = ({1), {2, 3}), and 
K n = ((1, 2}, (3}) (so that K I, K II is proper and complete). (See the Appendix.) 

From the definition of K 1 and K I1, it follows that for all p E P, H 1 (p) is the inter- 
section of the line joining (1,0,  0) to p with P, and Illl (at)) the intersection with P of 
the line joining (0, 0, 1) t o p .  Let 

A 1 (i  )A3:(I i) 
Since the first row is constant we can consider this game as a sequential game where 
player 1 plays first. 

We shall use Proposition 1 in order to compute V1. It will be observed that V1 is 
l-II-piecewise bilinear in accordance with theorem 1. We have 

V1 (p) = Car Max Vex Min (E pka~). 
1 i [I f k 

From the following figures 

V II  ~__ V 12 
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V~I 

V22 

we obtain 

V 1 = V e x m i n ( V  u ,  V 1 2 ) = V  11 = V  12. 
II 

Thus we have 

rain (V 21 , V 22) 
0 /3 ,~  2[3] 

So that 

V 2 = Vex min (V 21 , V 22) 
II 

In order to obtain VI, we first compute 

max (V 1, V 2) 

a 
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and then 

Vl = Cav max (V 1 , V ~) 
I 

J.P. Ponssard, and S. Sorin 

a 

c Ct 

b 

coordinates 

a (0, 1, O) 

b (1/3, 2/3, O) 

c (1, O, O) 

d (0,0, 1) 

e (0, 2/5, 3/5) 

f (0, 1/2, I/2) 

g (1/5, 2/5, 2/5) 

h (1/6, 1/3, 1/2) 

i (2/3, 1/3, O) 

1 

1 

0 

0 

0 

0 

1/5 

0 

0 

~ e  

c d 

Figure : V I (p) 
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6. Appendix 

Definition: The information structure K I, K II is complete if for all K '  C K there exists 
k E f t ,  and some a E A  or some b E B  such that {k} = K I ..., or {k} = KIIIK, where 
Kt K' denote the restriction of  the partition K t to K'. a m  

O O 

Lemma 2: I f K  I, K II is complete then for a l lp  E P ,  we have Q(p)  =P .  P is the interior 
of  P. 

Indeed, the result is true for L = 1 and we shall assume for L -- I. Since K I, K II is 
complete, we can suppose that {L} belongs to K I. 

O 

Now let p E P  and q EP .  We can change the letters such that if qk o 0 then 
qk' = 0 Vk' >/k. We introduce q '  in the simplex P '  of  R L ' I  and p '  E P '  defined by 

= qk = p k  
q,k __ p,k - -  f o r a l l k = l  . . . .  , L - - 1  

r P 

where 

L-1 L-1 pk.  q = ~  qk p = ~  
k=l k=l 

Now let K 'I, K 'II be the projection of  K I, K II on K'  = {1 . . . . .  L -- 1 } and note 
! _ I k  that K 'I, K 'II is complete. So q '  belongs to Q'(p').  Then there exist 8 , u , fl,k, 

k = 1 . . . . .  L -- 1 such that 

q'k = 6'ot'k[3'kp'k Vk: 1 . . . . .  L -- 1 

and 

, ,k  ,k p,~=(.--,~ p , . . . )  
I Pf3 = ( . . . .  ~,kp,k . . . .  ) 

belongs to II '  I (p') 
t belongs to 17ii (p'). 

Thus we have 

q k = 6 ,  ~ 1 P ~ xa'kt~[j'kp k V k = l  . . . .  , L - - 1  

where X and/~ are strictly positive. 
Now choose/3 'L =/3 ' L I  and ~ such that p~ = ( . . . .  /~/3'kp k, . . . )  belongs to 

IIii (p). Then we take a 'L such that 

qL = 6, q__ 13,La,L pL. 
P 

(If/~ 'L = 0 t h e n  f l ,L-1  = 0 SO that, qL-1 = O. But in this case q = (q', O) and there 
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exists p' E P  such that q' C Q'(p'); let ~ = (p', 0) and then q E Q(ff) so that we can 
assume that q' E P . )  

Finally, the coefficient X is taken such that p =(.., xa'kp k . . . .  ) belongs to H I (/9) 
and the result follows. 

Corollary 1: If K I, K I1 is complete, V(q) is I-II-piecewise bilinear on P. 

Remark: Let/7 be the coarsest common refinement o fK I and K II and say that K I, K II 
isregular i f / 7 =  [{1}, . . .  (k} . . . .  {L}]. 

Then it is easy to see that K I, K II regular is a necessary condition in Lemma 2 since 
if {1, 2} belongs to K{ (3 KI ~, then for eachp, q in/~ such that Ptq2 r we have 
p ~i Q(q), q ~ Q (p) so that there is an infinity of distincts sets Q(p) p EP.  Never- 
theless, this condition is not sufficient since if K = {1,2,3,4} with K I = [(1,2}, 
{3,4}] and K II = [{1,3}, {2,4}] then:q1 q4/q2q3 is constant on Q (p). 

Definition: Let H be the finest common coarsening o f K  I and K II and say that 
K I, K II ispropdifU = [{1 , . . .  ,L}]. 

Note that in this case Q ~ )  is the set of posterior probabilities which can arise 
from p and the partitions K l and K II. Note also that Q(p) may still be strictly smaller 
than P (see previous example). 

It is easy to see that rill (Pa) N riI (P/3) is reduced to at most one point for all 
p EP, pa E II l (p), p ~ E  Illi (p) ffand only ffK I, K II is proper. 

It follows that if K ~, K II is complete and proper we get a coordinate system, since 
we have the following. 

Lemma 3: If KI ,K 11 is proper and complete, then for all p E/~, q E/~ there is a unique 
couple (pa, p#) such that: 

P E H I (p), Pt3 E rill (p) and q E rIi1 (p~) (-1 H I (pt3). (*) 

Since K 1, K II is complete the existence follows. For all p,~, Pt3 satisfying (*) 

FII1 (Pc~) O H I (pt3) is reduced to one point (K I, K II proper). 

Suppose now that q E Fill (p,~) (3 H I (pp) N 1111 (P=') • HI (Pg')" It follows that 
q E Fill (p~) r H 1 (pg,), so we have 

qk = 5 (c~,/3) c~k/3kp k = 6 (a,/3') ak/3'kp k 

and thus 6 (a, /3) /3kp~ = ~ (~,/3,)/3,kpk since p E/~, q E/~. Now p~ and p~, E P  
which implies 6 (c~,/3) = 6 (c~,/3'), so that/3 =/3'; and similarly for ~, a'. 
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