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REVIEWS AND COMMENTS

With the intent of stimulating discussion, this section is reserved for book reviews,
comments, and letters; your input is welcome. By nature, this material may be subjective,
reflecting the opinions of the authors; your responses are therefore encouraged.

Repeated Games with Incomplete Information. Robert J. Aumann and
Michael B. Maschler, with the collaboration of Richard E. Stearns, MIT
Press, Cambridge, MA, 1995. ISBN 0-262-01147-6, $34.95.

ACDA ST/80, ACDA ST/116, ACDA ST/143. . . these mysterious codes were
well known to a small group of game theorists when I discovered them in 1978
while reading a paper by Mertens and Zamir (1971–1972). I was very frustrated
not to be able to get three (out of seven) of the references but fortunately, I was
lucky enough to meet J.-P. Ponssard, who kindly gave me a copy of these three
reports to the Arms Control and Disarmament Agency, prepared by Mathematica,
Princeton, New Jersey, in 1966, 1967, and 1968. I was so excited by the topic
and the results that I started to write notes describing the basic results in the
simplest case (Sorin, 1979). An English translation followed (1980) at a time
when Mertens and Zamir had already written three chapters of a book on the
subject. A few years later, I joined the project, and this work is still in progress
(a preliminary version appeared in 1994).

But now Aumann and Maschler provide us with a tremendous publication:Re-
peated Games with Incomplete Information. This book is first of all a public proof
of the existence of five of the chapters of these reports: Game Theoretic Aspects
of Gradual Disarmament (Aumann and Maschler, 1966); Repeated Games with
Incomplete Information: A Survey of Recent Results (Aumann and Maschler,
1967); A Formal Information Concept for Games with Incomplete Information
(Stearns, 1967); Repeated Games of Incomplete Information: The Zero-Sum Ex-
tensive Case (Aumann and Maschler, 1968); and Repeated Games of Incomplete
Information: An Approach to the Non-Zero-Sum Case (Aumann, Maschler, and
Stearns, 1968). It is amazing that these reports, although never published and
very difficult to obtain, have frequently been quoted and used and have laid the
foundations for an impressive field of research.
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But the book contains more: almost a third of it consists of comments on and
further explanations and descriptions of new results. It is clearly destined to be
the basic reference for all of the topics involving the strategic use of information
in multimove games.

The preface explains the origin of the reports to the ACDA and recalls the
role played by O. Morgenstern (to whom the book is dedicated) and H. Kuhn in
bringing together R. Aumann, G. Debreu, J. Harsanyi, M. Maschler, J. Mayberry,
H. Scarf, R. Selten, and R. Stearns to help understand the decision and game
theoretic aspects of arms control. Then it shows how, on the basis of two theories,
one concerning repeated games that emerged in the early 1960s, the other devoted
to incomplete information games and newly created by Harsanyi (1967–1968), a
new model was developed: repeated games with incomplete information where
some game is repeated but the players have uncertainty about which game it will
be.

Formally the basic model is a finite family of games with an initial probability
that determines which one of these games will be played. Once a game is chosen,
the players may obtain some information about it and the same game is played
over and over, in stages. After each stage, the players receive information on
their opponents’ moves and/or on the game chosen.

Altogether this book is a beautiful introduction to the topic, not only because it
presents the original initial proofs but also because it allows the reader to follow
the building of the theory step by step and so to see how the main ideas and
concepts emerge and then are refined or extended.

The book contains five chapters. Chapters I–IV treat zero-sum games, and
the results in the non-zero-sum case given in Chapter V depend heavily on the
previous analysis.

Chapter I deals with the simplest case where player I is fully informed about
which game is being played, player II has no initial information, and the moves
of both players are made public after each stage. The idea that the choice of a
move for a given strategy of player I transmits information leads to the notion
of nonrevealing and completely revealing strategies. Further it is shown that the
use of mixed strategies, corresponding to partial revelation, may achieve better
payoffs. The nonrevealing game is then introduced and the basic idea concerning
the use of private information is presented: the so-called “splitting lemma” shows
that the informed player can generate any martingale as a posterior probability.
As a consequence, to analyze a specific situation with some initial probability
p on the set of different games, one has to consider all initial probabilities and
from this one infers that the amount player I can obtain is a concave function
of p. By playing nonrevealingly player I wins at each stage the valueu(p) of
the nonrevealing gameD(p); henceCav u(p) is a lower bound on his payoff
(where the concavification operatorCav, applied to a functionf , denotes the
smallest concave function greater thanf ). Consider nowGn(p), the n-stage
repeated game. This being basically a finite game, it has a valuevn(p) and the
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minmax theorem may be invoked to assume that player II knows the strategy of
player I. The extra gain per stage due to the information of player I (compared to
his payoff inD(p)) may be shown to be bounded by the variation (inL1-norm)
of the martingale of posteriors (up to some constant). This finally implies that
vn(p) is less thanCav u(p) + C

/√
n for some constantC depending on the

game only. Consider now the infinitely repeated gameG∞(p): the same bound
applies to player I, while the analysis from the point of view of player II requires
new tools. To make player II immune against any bluffing strategy of player I,
Aumann and Maschler consider the incomplete information game as a game with
vector payoffs in the sense of Blackwell (1956), where each component of the
payoff corresponds to a specific state. Blackwell’s theorem is used to characterize
the payoffs that player II can approach and this leads to the proof of the existence
of a valuev∞(p) for G∞(p), whichv∞(p) = Cav u(p) (see also Postscript I.d).

Chapter II studies the situation with lack of information on both sides, where
each of the players has some private information on the true state of the game.
The independent case is obtained when the state space is a product spaceL×M
with a product probabilityp⊗ q: with probability pl qm the payoff’s matrix is
Al ,m, player I is informed ofl , and player II is informed ofm. As in the previous
chapter the nonrevealing gameD(p,q) with valueu(p,q) is defined. Then by
forgetting his initial information player I is in a situation similar to the one
studied above: in fact, now he is uninformed (aboutm) and player II plays the
role of the informed player (and because of the independence one can take the
average payoff w.r.t.p). Thus player I can getVexq u(p,q) (whereVexq is the
Convexification operator in the variableq) in the infinitely repeated game and
the “splitting lemma” gives a lower bound ofCavp Vexq u(p,q) on his payoff.
The proof that he cannot get more relies on a new concept introduced by Stearns
in Chapter III. Given a strategyσ of player I in the infinitely repeated game, the
amount of information contained in it,V(σ ), is the maximum of the total variation
(in L2 norm) of the martingale of posterior probabilities{pn} onL, taken over all
strategiesτ of player II. Explicitly,V(σ )− supτ Eσ,τ (

∑∞
m=1

∑
l (p

l
m+1− pl

m)
2).

Note that the supremum can be taken on the sequences of moves of player II;
hence given anyσ , player II can first play nonrevealingly up to some stage
N and can extract almost all the information fromσ . Then by the definition
of V(σ ), player I is essentially playing nonrevealingly from stageN on, and
using the results of Chapter I again, player II can prevent him from getting more
thanVexq u(pN,q), henceCavp Vexq u(p,q) on the average. This shows that
Cavp Vexq u(p,q) is the maxmin ofG∞(p,q) (and duallyVexq Cavp u(p,q)
is the minmax). Several examples in Chapter II show that these quantities can
differ, so in opposition to the one-sided information case, the infinitely repeated
game may have no value. In this framework Mertens and Zamir (1971–1972)
have proved that the sequence of values of then-stage game converges.

Chapter IV returns to the one-sided information case but develops a more
complex model (already introduced in Chapter II) motivated by the case where
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each stage is a game in extensive form. While it may be natural here to assume
that the moves of the players are public, usually the one-stage pure strategies are
not. The authors then define, for each statek and for each playerx = I, II, in
addition to the payoff matrix, a signaling matrixH x

k with values in some alphabet
and assume that after each staget the letterH x

k (i t , jt) is announced to playerx,
if the moves were(i t , jt). (This style of analysis is typical of the authors: any
refinement in the model is precisely and carefully justified by examples, but then
established in the greatest generality.) There are two main changes compared
to the analysis of Chapter I. First, the two notions of “not using one’s own
information” and of “not revealing it” are no longer equivalent and it appears
that the latter is the correct one. This leads to the definition of nonrevealing
strategies (that may be state dependent) and of the corresponding nonrevealing
game with a value still denoted byu. The fact that player I can always winCav u
is now as in Chapter I. In the proof that asymptotically he cannot obtain more in
the finite games (i.e., limvn = Cav u), the main steps mirror those of Chapter I,
but the analysis is really much more intricate because of the different ways the
information may be released. This result shows also that the infinitely repeated
game has a value, using the following neat trick (which has a much larger domain
of application): player II plays once optimally in the one-stage gameG1(p), then
during two stages optimally inG2(p), then during three stages inG3(p), and so
on, ignoring at each stage the nonrelevant information. It is clear that the average
payoff he can guarantee in this way is bounded above by limvn(p), hence the
result. However, and this is the second new aspect, the “approachability” strategy
of player II cannot be applied since he does not know player I’s move, not even
the stage vector payoff. These difficulties were finally overcome by Kohlberg
(1975).

Finally, Chapter V is devoted to the non-zero-sum case, and once more several
new and fundamental ideas and concepts are introduced. First it is observed that,
even if cooperation is possible and better for both players, there are situations
where it cannot occur in equilibrium because of incomplete information, lack of
trust, and the possibility of cheating. Then, based on the zero-sum analysis, and
in a quite similar way to the Folk Theorem, equilibrium payoffs generated by
“simple nonrevealing agreements” are defined: they basically consist of a plan
(a history to follow) and of threats that support the incentive compatibility con-
ditions for both players. The next step is to show that one can actually construct
a whole hierarchy of such agreements (yielding new equilibrium payoffs) by
adding two devices: one is signals sent by Player I and related to the “splitting
lemma” (in addition, a “no cheating” condition has to be satisfied); the other is
the “jointly controlled lottery” and corresponds in modern terminology to a pub-
lic correlated device generated by the players themselves through their moves.
One can look at the complexity of an agreement as being the number of stages
of signals and/or joint lottery before reaching a simple nonrevealing agreement.
It took almost 20 years before Hart (1985) proved that in fact all equilibrium



REVIEWS AND COMMENTS 351

strategies do generate a process similar to such a complex agreement, including
infinite complexity. The detailed and crystal-clear story of this construction may
be found in the 17 pages of Postscripts V.c to V.f. In addition, V.g carefully
presents Forges’s famous example (1990) requiring unbounded complexity.

There is no way to cover here all the topics discussed in the Postscripts such
as, among others, discounting (one regret: the report by Mayberry, 1967, is not
included), continuous time, and games without a recursive structure or with iden-
tical information. I would just like to point out some of them. The analysis of the
conceptual distinction between the large finite game and the infinite game (II.c
and II.d) is very profound and enlightening. The study of the value of informa-
tion and of the monotonicity ofvn (including a very illuminating presentation of
Lehrer’s counterexample, 1987) (I.e and IV.a) gives deep insights into the mean-
ing of the recursive structure. The case of incomplete information on “one and a
half sides” with a nice presentation of my joint work with Zamir (1985) and its
connections with the dependent case (II.i and II.j) shows the difference between
the information about the true game and the information about the information
of the other players. Finally, one finds an extensive discussion of the error term
(which corresponds to the speed of convergence ofvn to its limit) (I.c, IV.e),
first in the standard signaling case, with a subtle study of the time and size of
revelation of information, then in more general situations. One last comment on
this topic: the result reported on p. 215, l.11, is proved in Mertenset al. (1994,
Chap. IV, Corollary 4.9) and the exact bound in the case of lack of information
on one side and general signals has been very recently proved by Mertens (1995)
to belog(n)/n1/3.

In conclusion, this is a wonderful book and is highly recommended; the talent
of its authors makes it enjoyable to newcomers in the field, unforgettable to
graduate students, and precious to confirmed game theorists.
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Cahiers du Groupe de Mathématiques Economiques, Vol. 1, Paris. (English version: (1980) IMSSS,
Stanford, TR 312)

Sorin, S., and Zamir, S. (1985). “A 2-Person Game with Lack of Information on 1 1/2 Sides,”Math.
Oper. Res. 10, 17–23.

Sylvain Sorin∗

Laboratoire d’Econometrie
Ecole Polytechnique
1 rue Descartes
75005 Paris
France

∗E-mail: sorin@poly.polytechnique.fr.


