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OPTIMAL BEHAVIORAL STRATEGIES IN 0-SUM GAMES
WITH ALMOST PERFECT INFORMATION*!

JEAN-PIERRE PONSSARDJ AND SYLVAIN SORIN§

This paper provides the general construetion of the optimal strategies in a special class of
zero sum games with incomplete information, those in which the players move sequentially. It
is shown that at any point of the game tree, a player's optimal behavioral strategy may be
derived from a state variable involving two components: the first one keeps track of the
information he revealed, the second one keeps track of the (vector) payoff he should secure
over his opponent's possible position. This construction gives new insights on earlier results
obtained in the context of sequential repeated games. Several examples are discussed in detail.

I. Introduction. This paper is coticerned with the recursive construction of opti-
mal behavioral strategies for a class of 0-sutn extensive games with incomplete
information, defined as follows:

(i) Let G be a two-person finite game tree with perfect information.
(ii) Let Aff he the zero-sum payoff associated with a play / / of G, 4̂/̂  is a discrete

random variable such that PTob(Afj = a^) = p''q'' wherep = {p'')^^^, q = {q''')s^s ^^^
two independent probability distributions over two given finite sets R and S.

(iii) The game is played the following way: chance selects r ^ R and s G S
according to p and q and reveals r to Player I and s to Player II, theti the players
proceed along the game tree until they reach a play / / ; at that stage, Player II (the
minimizer) pays afj to Player I (the maximizer) and the game ends. All the preceding
description is common knowledge (i.e., r is revealed to Player I but not to Player II,
similarly for s, but both players know that, etc.)

This class of games called games with almost perfect information was first studied in
Ponssard (1975).

It overlaps with the class of repeated games with incomplete information (the study
of which was initiated by Aumann and Maschler (1966)), since it includes the
sequential finitely repeated games (Ponssard and Zamir, 1973).

Briefly speaking, in all these games, the strategic problem of information usage may
be stated in the following terms. First, the players are concerned with using their
private information (i.e., for Player I to correlate his moves with the event r selected by
chance and only known by himself) but this exposes them to reveal it to their
opponent (i.e., through the observation of Player Ts past moves, Player II may infer
something about the selected r) and possibly reduce its value for the future moves of
the game. Second, the players cannot take at its face value the information apparently
revealed by their opponent without beitig subject to bluffing.

These two aspects have been developed in the context of two persons zero-sum
infinitely repeated games in order to find "maxmin" strategies (Aumann, Maschler
(1966); Kohlberg (1975); Mertens. Zamir (1980)). In this context the main tools to
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construct an optimal strategy are conditional probabilities (use of private information)
and vector payoffs (limiting use of opponent's information).

For games with almost perfect information, it appears that a somewhat similar
construction can be explicitly made. However it takes advantage of two special
features of such games: the fact that they are finite and the fact that the players move
in sequence. In particular, we shall show that at any point of the game tree a player's
optimal strategy may be derived from a state variable involving two components: the
first one keeps track of the information he revealed, the second one keeps track of the
conditional vector payoff he should secure over his opponent's possible positions for
the remaining part of the game. This general recursive construction of the optimal
strategies is proved in part II and is applied in specific cases in the subsequent sections.
The present development uses the linear programming formulation of these games and
its implications (Ponssard and Sorin, 1980).

II. The recursive structure of optimal strategies in a compounded game.

1. Definitions. Define the following compounded game (Ponssard, 1975):
—Chance selects r EL R and 5 G S according to two given probability distributions

p = {p')r£,i E: P, q = {q^),^s G ^5 ^ is revealed to Player I, s is revealed to Player II.
—Player I selects a move t E: T (T is a finite set), then knowing t the players

proceed by playing the zero-sum matrix game B'\ Denote by G{p,q) this game, and
by V(p,q) its value.

Let / and J be the two player's strategy sets in fi" (we can always assume that / and
J are independent of r, s and /) and let V'{p,q) be the value of the above compounded
game where Player I's set T is restricted to the unique element /. Clearly, V'{p,q) is
the value of the game with incomplete information (fi/O^e/^jes-

2. Preliminary results.

LEMMA 1. V'(p,q) is the value of ihe following linear program where the unknowns
areiaf)^^,,^^ and {v\^s- :

subject to ^b[/'a[ > v' V5, Vy,
(1)

a[ > 0 V/, Vr.

This is Lemma 2 in (Ponssard and Sorin, 1980).
Note that if in this program the optimal value of the variables v = {v'')^f=^ are

known, the optimal value of the variables « = («/)r(r;«./e/ niay be derived without
recourse to the value of q.

Starting with some specific probability distributions/i^, ^^ we shall exhibit Player Ts
optimal strategy in the compounded game as:

—an optimal move on T: xf = Prob(/1 r),
—for each ? e 7" an associated (p,,v,) which can then be used in (1) to derive the

optimal moves in (^D^.e^.^es-
Let us introduce the following notations: For each function g.Px ^ ^ R , Cav g is

the smallest real function defined on P X Q, concave w.r.t. p and greater than g on
P X Q. Vex^ g is defined in a dual manner.

LEMMA 2.

) = Cav Max V'{p,q).
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This is Theorem 2 in (Ponssard, 1975).
DEFINITION. A function g:P X Q-^R is "piecewise bilinear" if there is a finite

partition of P (resp. Q) into convex polyhedra (Q)fcejt (resp. (D,),^^) such that the
restriction of g to each product set Q X D, is bilinear.

LEMMA 3. V and V are concave w.r.t. p, convex w.r.t. q and piecewise bilinear.

This is Theorem 1 in (Ponssard, Sorin, 1980).

LEMMA 4. For allp,q in P X Q there exist \ e [0,1] andp, E P where t e T such
that:

^\Pt=P^ 2 \ = 1 ««^ nP^q) = ^\y'{Pnq)- (2)

PROOF. Since V is continuous, Caratheodory's Theorem and Lemma 2 imply the
existence of Â  e [0,1], p,E P with r E R such that:

and

Now since each V' is concave w.r.t. p we can assume that if A, • Â , ^ 0 then t^ ^ t^,,
so that we can redefine the indices and this gives the result.

Since K' is a concave convex function we can define the following sets, for all

L'{p)= ( / G R - ^ ; lq< V'{p,q) on Q],

V{p,q) = (/ e (R ;̂ / e L'{p) and / • ^ = V'{p,q)],

M'{q)= [mSR^; mp> V'{p,q)onP],

M'{p,q)= {m elR^; m e M'(^) and m •/? = V'(p,q)).

We define similarly L(/j), L{p,q), M(q), M(p,q) for the function V.

3. The optimal strategies.

THEOREM 1. For all I e Lip^^qo) there exist (A,, /?,) / G T which satisfy (2) atpQ,qQ,
and I, e L'ipiyqo) for all t G T such that:

PROOF. Let us write the formula (2) in the following way

such that
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Now since V is piecewise linear and convex with respect to q there is a neighbor-
hood Q' of qQ and a finite numher of R X S matrices A/^, k E K such that:

It follows that if / belongs to L{pQ,qQ) there exist /x̂ , jit;, G [0,1], k E K, such that

= 2;t;'oMfeA with S i ^ i = 1-
Now since V is piecewise bilinear, this implies that, for ail /, .

k belongs to

It remains to see that each /J,V4^ belongs to L''*(/7,,^o) *̂̂ r some r,̂ , in T, since

Finally due to the concavity of each V the r,̂  are different for different values of /.
Now starting with formula (2) we have

with 2 ] , \ = I and S r V i = P-
Let us introduce p̂ ^ = \ / i ^ , p^^ = p^ and /,̂  = p^A/^ for all / and k, then we have:

and

whieh gives the result.

THEOREM 2. An optimal strategy for Player I in G(/?O'9o) '^ defined as follows:
(a) choose I E L{pQ,qQ) and then \,p,, /,, t E T such that:

(ii) l,eL'(p,) foralltST; (3)

(iii) (2.M - i)q>0 for all q E Q.

(b) Denoting by x[ the probability of playing t given r. Player Vs intital move is given

PI •" • • '

x^ = \ • —p for all t, r with PQ>0. '

(c) If Player Vs first move is t then he selects his move in B" according to (p,, /,) in (1).

PROOF. From Theorem 1, it follows that the admissible set of \,p,,l, in (a) is not
empty, since L'(p,,qQ) C L'{p,), hence the strategy is well defined.

We shall now prove that this strategy, denoted by CT, guarantees V{pQ,q^ to
Player I.

Assume that Player II knows o. Learning t he can compute a posterior probability
on R, given a and/? which is precisely/J, since we have:

Prob{rand/) x' X. P!
\ / I I rl rProb(r/0 = Prob(0
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Now for each q E Q, Player I can guarantee at {pr,<i) the amount /, • q since /,
belongs to L'{p,).

It remains to compute the total probability of playing / which is ^, p^xf = A, so that
Player I can assure himself 2 ( \ ' / ' ?• Hence from (a){iii) this amount is greater or
equal than I • q so that at q^ we obtain / • ^Q which is precisely V(pQ,q(^).

Note that this strategy rely only on the information Player 1 gives to Player II (i.e..,
the posteriors p,) and not on the information he can get (Player I will play in G'
without computing posteriors on S but by using/*,,/, in {I)).

III. Applications to special cases. The implications of Theorem 2 will now be
developed in the context of 0-sum games with almost perfect information. First, we
shall consider games with lack of information on one side. This will have the
advantage to explicitly dissociate the two problems mentioned in the introduction
(using one's own information, limiting use of opponent's information) thus giving rise
to simpler structure for optimal strategies. After some general considerations (part A)
we shall study two examples of sequential repeated games {part B). In the first one, the
informed player is playing in the second position. The second example where the
informed player in playing first was studied in Ponssard and Zamir (1973). Then in
part C we shall illustrate the case of lack of information on both sides through
poker-type games (Example 3).

A. Games with lack of information on one side: General considerations. Let us give
additional notation:

{i) the finite game tree G is assumed to consist in a succession of moves /Vy,, . . . , i,,
j , , . . . , i^,j^ in which /, belongs to some fixed set I for Player 1 andy, to some fixed set
J for Player II; a partial history of G, noted h, consists of a sequence of moves starting
from the beginning of the game tree; {it will be noted by h' if the number of moves is
even, h" otherwise; moreover h'i denote the history h' followed by / and similarly for
h"j).

(ii) Player I is informed. Let us denote this game by Gip). Recall the general
formula that gives the value of such games (Ponssard, 1975): For all complete histories
H of G let V'^(p) be V"(p) = 2 ,^/^ p'a^ then define recursively V''(p) by:

Eventually one obtains V{p) which gives the value of the game for any/j G P. Note
that for all h, V^{p) is the value of the game in which the players are restricted to
begin the game G by playing the dummy moves indicated in h and then effectively
play over the rest of the game tree of G.

COROLLARY I. The two players^ optimal behavioral strategies in G{pf-,) are the
following:

For Player I, for all h define pi,E P starting with the initial probability distribution />(,.
such that:

i^)Ph'i^Ph' y / ^ - / ;
(ii) the ph'I's, for all i E /, are obtained by solving the following system:
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then player Vs optimal strategy after the history h' is given by

For Player II, for all h, define m^ E W^ starting with some m^ which is a supporting
hyperplane to V(p) at p^ (i.e. mo B M{p^), and such that:

(iii) m^. = m^.- V/ E I.
(iv) starting from m -̂ the m^-j are obtained by solving the following system:

Then Player \Vs optimal strategy after the history h" is given by Vvoh{j\ h") = nl-.

PROOF. These strategies are merely the counterpart of Theorem 2 and its develop-
ment all along the game tree G since any restricted game may be viewed as a
compounded game through appropriate normalization.

For Player I, the informed player, the notation of supporting hyperplane is reduced
to its simplest form (the cardinality of S is one). Then, condition (3) may be directly
expressed in terms of the points V'"ip/,i) and this is precisely condition (ii).

For Player II, the noninformed player, it is the notion of conditional probabilities
that becomes trivial. Condition (iv) is exactly condition (3) but taken from Player II's
point of view.

COROLLARY 2. The set of conditional probabilities p/^ is a martingale over P, the set
of conditional hyperplanes m^ is decreasing in expectation over all P.

Furthermore, for all partial histories h that may occur with a positive probability when
both players use optimal strategies we have:

PROOF. The first two statements follow from Corollary 1, as for the last statement
it merely means that if Player II were to be revealed/?^, then he could not obtain more
than the value of the restricted game initiated by h and with a starting probability
distribution po = Ph-

It may be interesting to give a graphical interpretation of the construction of the
optima] strategies in the simplest case \R\ = 2.

Starting at some p,,., Player I's strategy will generate conditional probabilities on P
as depicted in Figure 1. It should be observed that Player I's optimal strategy is
conditioned over the sequence of probabilities which he generates himself: whereas he
knows the r selected by chance, the martingale on P is a state variable that keeps track
of what he revealed through his past moves thus generating a new starting point for the
future. This idea has been present in the literature from the very beginning (Aumann
and Maschler, 1966).

Player II's optimal strategy does not rely on posterior probabilities on P such as
guessing some p^ and then maximizing an expected payoff at this point. Although
by Corollary 2 it is consistent with Bayerian learning, it appears to be best interpreted
in a vector framework. Consider the value function V''". By construction V''" =
Min(F'' ', V'' ^). The recursive construction of an optimal strategy for Player II has the
following graphical counterpart. For any supporting hyperplane to V''", say m''", find
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-- Cav M a x V (p) ^
P I

FIGURE I. The informed player's optimal strategy.

two supporting hyperplanes to K'' ' and V''"-^, respectively, such that a linear combina-
tion of these two is everywhere below m'' . The coefficients of this combination give
the probabilities of the respective moves. Once Player II's move is made the hyper-
piane for future reference becomes either m'' ' or m^"^. Thus, Player II's optimal
strategy is conditioned at each stage by a set of successive hyperplanes each of which
appears as a vector payoff that should be secured over the remaining stages of the
game.

This construction has a similar feature with the construction of an optimal strategy
for the noninformed player in infinitely repeated games, called the "Blackwell Strat-
egy" {Aumann, Maschler, 1966), The initial probability distribution p(, plays a role
only through the specification of some supporting hyperplane. Then this hyperplane /̂
defines a set

A = {I EW^ r < II; VrER]

and Player II is now playing a game with vector-payoffs, each component correspond-
ing to a state r, as defined by Blackwell (1956). An optimal strategy for Player II will
then approach A (that is, with probability one, the distance between the average n

11,0]

; (T> t u . m
f i '2

FIGURE 2. The noninformed player's optimal strategy.
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Stage payoff and A will be close to zero for some large n on). Hence /„ is also a kind of
security level vector.

B. Examples. The two following examples fall in the class of sequential repeated
games. Since in a repeated game the total payoff is the sum of the stage payoffs (a,y^),
the value of the n repeated game with lack of information on both sides, ¥„ is given
by: . . . .

(5)

that is , • •

'^a[/pY+ V„_,{p,q)\
r,s I

'^nip>q) ^'^^ ^oip^q) — ̂

under the following assumptions: Player I is playing first, maximizes, is informed
about r and Player 11, who plays second and minimizes, is informed about s.

EXAMPLE 1. In this example /? = {!} and S = {1,2} that is Player I is uninformed
and Player H is informed. The stage game tree is described below:

(1.0)

FIGURE 3 • ,

Hence the strategies are / = I, 2, 3 for Player / and y' = 4, 5 for Player II, and, for
instance, the payoff (2,0) stands for (al^,aj^).

Note that if Player I's move is I or 2, Player II is a dummy. Hence, Player I
can make a relevant observation on Player II's strategy only by playing 3, but
this is clearly a bad move in the one stage game. Indeed if ^ = (?i'?2) ^^^^ ^liq) ~

iax{^i,^2}-
Using formula (5) which gives here . ,

The successive V^{q) are easily derived and it can be seen that V^{q)/n is constant
for « > 3.

Figure 4 gives the construction of ¥„ up to K4, where VJI stands for -J/

It should also be mentioned that the (a) figures are made only for / = 3 since for i = 1
and 2 we have , , , : I

- ^ ' ; " ' Vn=q'+Vn-x and Vi = q'^V^_,. ^



22 JEAN-PIERRE PONSSARD & SYLVAIN SORIN

FIGURE 4. Construclion of

(a) is used to construct Figure K(h) from Figure K(SL) then (fi) is used to get Figure
K(c) from Figure A;(b), then Figure K+ l(a) comes from Figure K{Q) through (y).

Now we shall compute optimal strategies in the 4-stage game. Assume that q^
= (1/2,1/2) so that the supporting hyperplane to V4 at q^ is 1^ = (8/3,8/3) (see 4(c)).

Note that a behavioral strategy for each player is constructed in four steps since it
gives the move at each stage given the past history.

(1) First step for Player I . C h o o s e \ ' e [ 0 , 1 ] a n d I^ = ( l . \ l ^ ) , i ^ I s u c h t h a t
S ,A ' = \,irq< nq)and(XM-h)-q>Q.

From Figure 4(b) this implies A"* = I and l^^ = l^. Hence Player I has to play 3 and to
keep the same reference hyperplane l^ = IQ-

(2) First step for Player II. Assuming Player I's move being 3, Player II has to find
{ii G [0, 1] and qy G QJ G / such that: S , dqy = ?o and S P-M\qy) < '^4(?o)-

From Figure 4(a) and 4(b) this implies /X3 = jii| = 1/2; 3̂4 = (2/3,1/3) 3̂5 = (1/3,
2/3).

Hence an optimal strategy for Player II is to play 4 with probability 2 /3 if 5 = 1
(Prob(y = 4\s = 1) = ^3^34/^0 = 2/3) and with probability 1/3 if 5 = 2, keeping in
mind q^ if bis move is actually y.

Assuming that the history is 34 we now obtain:
(3) Second step for Player I. Choose X^^ G [0,1] and l^^^ i G / such that S/^34 = 1'

^34;' q < ^iiq) and {2(^34'34( + 3̂4 ~ 3̂) • ^ ^̂  0 (obviously we have to deflate a^^
from the initial vector security level).
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This gives A]4 = \/3, Xj^ = 0, Xl^ = 2/3. /„ , = (3.0),/j^^ = (2.2) (from Figure 3(b)).
Hence Player I's optimal strategy at this step is to play 1 with probability 1/3 and 3

with probabihty 2 /3 , the vector security level being, according to the actual move
(3,0) or (2,2).

(4) Second step for Player U. If the history is 341, Player IPs move is not relevant.
If h = 343 Player II can either play 4 with probability 1 and then 93434 = q^^ = (2/3,
1/3) or choose some 3̂435 with qj^^^ > 1/2 and then A3434, A3435, 3̂434 such that:

. . . - : • ^3434^3434 "*" "3435^3435 ~ ^ 3 4 '

. ' • "^3434 ••" ^3435 — '

(for example A3434 = A3435 = 1/2, 73434 = (1,0) 3̂435 = (1/3,2/3) and then play 4 with
probability: A34347]434/1 if 5 = 1 and with probability A3434 • 7I434/ \ if s = 2).

(5) Third step for Player I.
If h = 3414 or 3415 the relevant vector security level is (2,0). Hence Player I has to

play 1 with probability one and /3414, = /3415, = (2,0) (see Fig. 2(b)).
\f h = 3434 the relevant vector security level is (2,0). Hence Player I has to play 1

with probability one and /34341 = (2,0).
\f h = 3435 we start with /3435 — a^^ = (0,2). Hence Player I plays 2 with probability

one and 73435, = (0,2).
(6) Third step for Player IL If Player II's move at this step is relevant (i.e., after a

move 3 by Player I, which is nonoptimal given the past history) then the optimal move
is to play completely revealing, i.e., 4 if s = 1 and 5 if 5 = 2.

(7) Fourth step for Player I.
-if h = 34lxly (recall that Player II's move after move 1 of the Player I is

irrelevant) Player I's optimal move is to play 1 with probability one;
-if h = 3434Ix same result as above;
-if h = 34352x Player I's optimal move is to play 2 with probability one.
(8) Fourth step for Player IL Here again if Player I plays optimally given the past

history. Player IPs move is irrelevant. Otherwise (i.e., if Player I chooses 3), then Player
II plays completely revealing, i.e., 4 if s = 1 and 5 if s = 2.

Let us discuss the optimal strategies along the following remarks.
REMARK 1. Let u{q) = max^xr\\n-^^a,^q\ Then the value of the infinitely repeated

game is given by V(q) = Vexuiq). (Aumann, Maschler, 1966).
Hence from Figure 5 it follows that the optimal first move of the informed player in

this four-stage game is his first optimal move in the infinitely repeated game. Whereas
in that case he should retain the conditional probabilities (2/3,1/3) or (1/3,2/3) for
the rest of the game, here we observe the end play effect: the informed player does not
care about revealing information at the end and it is quite advantageous if the
opportunity arises. It is not known whether this kind of structure for an optimal
strategy is true in general.

Observe that, in spite of the fact that K3/3 = K4/4 the optimal strategies for Player
II at the first step in both games are not the same.

FIGURE 5
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REMARK 2. The "Blackwell strategy" for Player I (the uninformed player) in the
infinitely repeated game would approach the set ̂  = {{x, y) E R^; x > 2/3,y > 2/3).
With our notations this means that the "security level" vector would be (2/3,2/3).

Note that in our construction it is (2n/3,2/?/3) at stage n, for « > 3 (the average
vector payoff being (2/3,2/3)), then it becomes (2n/3,2(n - 3)/3) if Player IPs first
move is 4 for example, etc.

Moreover Player I needs to randomize in order to achieve some security level
vectors whereas in the Blackwell strategy for sequential games he does not have to
randomize in order to approach the set A. Again, we observe similarities and
differences.

Note that the optimal strategy of the noninformed player makes intuitive sense
about information usage. The observation of a move 4 by Player I is a sign that s = 1
is more likely thus triggering a move 1 in response, whereas a move 5 triggers a move
2. But in order to avoid being bluffed. Player I has to come back from time to time to
move 3 which may be interpreted as an investment for information. As we said eariier,
this "story" need not be true; Player Fs strategy is a maximin strategy.

EXAMPLE 2. (the trap phenomenon revisited). We shall show here that there are
many more optimal strategies for the noninformed player than the one given in a
previous paper (Ponssard and Zamir, 1973), some of them exploiting mistakes more
than others. The idea of supporting hyperplane will enable us to formulate more
precisely the "trap phenomenon" pointed out in Ponssard (1976).

Let us consider the following sequential game where Player I, the maximizer, is
informed and plays first. The game is as follows:

H,2I

Formula (5) gives here:

and it is easy to see that:

Starting from /?„ = (1/2,1/2) the optimal strategies in the one-stage game G|(l/2)
follow from Figure 6. For player I this gives A, = A 2 = l / 2 and /?, = (2/3,1/3),
p2 = (1/3,2/3). Hence an optimal strategy is to play 1 with probability 2/3 if r = 1
and with probability 1/3 if r = 2.

Now for Player II we start with WIQ = (1,1). Let us suppose that Player I's move is 1,
then we have: m,3 = (0,3), m,4 = (2, - 1) and /H|3 = ^,4 = 1/2; hence Player II plays 3
with probability 1/2 and similarly if Player I's move is 2.
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FIGURE 6

Let us now consider the two stage game G2i\/2) and compute optimal strategies,
(a) First step for Player I. From Figure 7 below it follows that the strategy at this

step is the same as in G,(l/2).

(2/3,1/3) n/3.2/3)

11,0)

0

-1

10,11 (1.0)

FIGURE 7

(0,1)

Assume then that Player I plays 1 so that/?, = (2/3,1/3).
(b) First step for Player II. We start with mo = (2,2) (since

from Figure 8, it follows that there are three extremal solutions:
(!) mi4 = (2,2) and |LI,4 = 1
(2) m,3 = (0,6) m,4 = (3,0) and ,i,3 = 1/3 ^,4 = 2/3
(3) m,3 = (!,4)mi4 = (3,0)and^i3= 1/2JLI|4= 1/2. •

M{\/2))\ hence

' . ' ' ^~ •

(1,(11 10,1)

FIGURE 8

- Let us suppose that Player II plays 4.
(c) Second step for Player I given the history 14. The construction of

Figure 9. Since p^^ = (2/3,1/3) the only optimal move is 1.
is given in

.X'x
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FkiURf- ^

(d) Second step for Player II given the history 141. Using Figure 10 U follows thai
we have:

If m|4 = (2,2) then the only solution is jU|4]3 = ! (i.e.. play 3) with ^1^13 = (2.2),
If fn^4 = (3,0) the only solution is 1̂413 = |Lt|4i4 = 1/2 with m|4,3 = (2,2) and "1,414

= (4 , -2 ) .

•-^ v^

FIGURF: 10

(e) Second step for Player II given the history 142. In this case Player Vs strategy
involves an observable mistake. From Figure 11 we can make the following observa-
tions:

(1) If m,4 = (2,2) then Player II can use two extremal possibilities:

' " I 4 2 4 = ( l ' l )

"^1423 = ( ^ - '1424

and
^1424

Note that as long as he selects the first one with some nonzero probabilities we have:

J •• -

Player IT's vector security level is strictly decreasing, that is, he is exploiting the
mistake.

(2) If ^14 = (3,0) the only solution is now

' -V. v :

1424

FlUURL
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and ,; ' "

l A Ml424= V 2 ;

but in this case we have •- •

2J M 142/'" 142/-~ ' "U*
• " • - • - . • . . . /

that is. Player II cannot exploit the mistake.
Let us now suppose that Player II plays 3 at the first stage, that is, uses with positive

probability strategy (b)(2) or strategy (b)(3). Similar computation shows that if m,3
= (0,6) then the exploitation of a mistake is feasible whereas if m^ = (1,4) it is not.

Let us now conclude with some remarks.
REMARK 1. (Comparison with the optimal strategies exhibited in Ponssard and

Zamir, 1973). Player IPs set of optimal strategies is enlarged. In the earlier paper, only
strategy (b)(3) was used. In terms of exploiting the opponents' mistake we just showed
that this is possible only by selecting (b)(t) or (b)(2) with some positive probability. Of
course any optimal strategy is good enough to secure the value of the game, but in a
game in extensive form one may ask for more.

REMARK 2. The fact that the exploitation of a mistake at the second stage need be
prepared is made explicit by the fact that it crucially depends on which hyperplane is
selected at the first stage. But, we fail to see intuitively why (b)(l) or (b)(2) should be
preferred to (b)(3) by only considering VP and ¥2^.

REMARK 3. The interested reader will note that the algorithm proposed in Ponssard
(1975) to recursively obtain the optimal strategies breaks down in such an example
because of the following degeneracy: V^ and V2'* precisely intersects at the point at
which they are kinked.

C. Games with lack of information on both sides: a poker type game. Just as chess,
poker has always been a reference for game theory. From an economic point of view,
poker may be considered as a rough model of escalation with incomplete information,
and many extensions, involving nonzero sum elements, are certainly worth studying.
In this respect, it is interesting to note that the development of games with incomplete
information provides new tools for the analysis of such situations.

The following model is simply used as an illustration of the recursive computation of
optimal strategies and certainly not as a contribution to poker itself. The most striking
simplifications are the number of players, the number of cards, the independence of
the chance moves, the lack of interaction between successive plays which in practice
gives rise to a survival problem.

1. Description of the game. The following "poker game" is a generalization of
Friedman's "simple bluffing situations with possible reraise" (1971). Player I has a low
card up and one card down. Player II has a high card up and one card down. If both
players have either a high or a low card down, then Player II wins; otherwise the
player with the high card down wins. There are n units in the pot. Player I may either
drop or raise 1 unit. Then Player II may either drop, call or reraise (m - I) units.
Finally Player I may either drop or call.

Let PQ and q^ be the respective probabilities that Player I and Player II have a high
card down. Of course each player knows his own card down.

The game has the following extensive form and Player I is the maximizer, where the
letters Z), C, R stand for drop, call or raise, respectively.

2. Computation of the value. We shall make the computation stage by stage using
the recursive formula and represent the successive functions on the unit square
{0 < p < UO < q < 1).
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In '- -1

Here , , ,
Now using Lemma 2 we get:

and V^ are directly obtained from the game tree.

RRC

= Vex Min(

For the computation of the optimal strategies, it will be helpful to keep track of how
the Cav and Vex are constructed. This will be done by labeling the corresponding sides
of the rectangles. For instance for q e[O,(m + n+ l)/(2m -1- n)], V^'^ is a linear
combination of V'^^'^ aip = O and K '̂*'̂  at/? = 1, thus the respective labels D and C;
for ^ > (w + n + l)/(2w -I- n), V'*'^ = K'*'*^ and we give the label D to both sides of
the rectangle, and so on.

3. Computation of the optimal strategies. As an example we shall explicitly make the
computation for the case

Po^]O, n+ 1 ]0,
«(m -\- n + I)

(n + l)(2m -I- n)

(this case is the most interesting one because if ^ > n(m + n + l ) / (« + l)(2m + n), the
first move of Player I is obviously D, and it is R in the last case, see Figure 12 and the
labels corresponding to each case).

RRC RR .RD

0
-1

0
-1

-1
n
-1

c
ntrr

m+n-ti
2nnn

1 p

-1

-1

-1

R

C

R

-1
R

n D

-1

-1

n

2m*n

0

0

0

0

0

D

u
D
0

0

D

J

R R
-\ n

n(m--r+l j
(n-.1)(2tn.n)

n.2

FIGURE 12. Computation of the value. (The numbers inside the squares stand for the value of the
respective functions, the numbers outside give the coordinates inp and q.)
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(a) Player I ftrst optimal move. Since (pQ,qo) is an interior point of the left lower
rectangle, the construction is quite easy. The security level vector at (pQ, qo) is a linear
combination of the respective security level vectors on each side of the rectangle. Thus
to satisfy (3) of Theorem 2 we proceed as follows: take

+2) , l^ = (n, ~(n + 2)m/{n + m + 1)) "

(because l,f{q,\ — q) equals n for ^ = 0 and 0 for q = n{m + n + \)/{n + I)
• (2m -1- n)).

Now, find \^ and A^ such that

We obtain

By construction A^/^ + XD^D 'S the supporting hyperplane to V(pQ, •) at q^ and all
conditions are satisfied.

Player I's first optimal move is derived as:
-if H play R,
-if L play R with probability po/(n + l)(l — pg) • .

play D with probability 1 ~ p^/in + 1)(I —/̂ o)-
(b) Player IVs optimal move. We may assume that R is played by Player I since

otherwise the game ends. The supporting hyperplane to K(-,^o) at/?^ is:

m = (0,n{n + 2)/{n+\)-(n^2){2m-^ n)qj{n +m+\)).

By construction m is tangent to V'^ at p = (n + \)/(n + 2) so that to satisfy (3) we
are interested in the rectangles of K'* that contain the point {p, qo). Then knowing the
labels of these two rectangles, we proceed as follows: Take

+ n), m«^ = ( - 1, - 1),

Now, find A^,;, A/j^, A/̂ ^ such that

+
The only solution appears to be

^«« = ?o(2m + n)/{m -H rt + 1), AR^ = 1 - X^^^ - A^^. ^R« = ! / (« + 1).

Player II's optimal move is derived as:
-if H play R,

": -if L play ^ with probability {m - l)^o/(m + n + 1)(1 - q^),
play C with probability («/(« + 1) - ?o(2'" + n)/{m -\- n + 1))/(1 - q^,
piay Z) with probability \/{n + 1)(1 — q^.

(c) Player Vs optimal second move. Again, we may assume that R is played by
Player II since otherwise the game ends. We start with p^^ = p^ = (n+ l ) / (« + 2)
a n d l^^ = ( r t , - ( « + 2 ) m / ( n + m + ])). l^^ is t a n g e n t t o V'^'^ a t q = i m + n + \ ) /
{2m + n). This gives the relevant rectangles of V'^'* (in fact all of them at this stage).
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To satisfy (3) one may proceed as follows: Take

Find -' ^RRD

PRRD ^ •

that

•*• ^RRDPRRD ~ ' '

"*" ̂ RRD^RRD ~ 'R

The only solution appears to be

KRC = {"+

PRRD = (n +

m+\).

Player I's optimal second move is derived as:
-if H play C with probability (n + 2)/{n + /M + 1)

play D with probability {m - l) /(m + n + 1)
-if L play D.
(4) Remarks. The structure of the optimal strategies may be summarized through

the values they generate on the spaces of the state variables. As a numerical example,
let m = n = 2 and PQ= %= 1/2. In terms of conditional probabihties the optimal
strategies would, for instance, reveal the following information: Player I's first move is
R; then the probability that he has a high card goes from 1/2 to 3/4. Player ITs move
is R; then his probability of having a high card goes from 1/2 to 5/6. Player I's
second move is a drop; his probability of having a high card goes from 3/4 to 3/8 (see
Figure 12). But the optimal strategies do not use the information "revealed" by the
opponent. They are based on a sequence of vector security levels (see Figures 13 and
14). For instance at the first stage Player I secures a vector payoff mo = (4/3,
-16 /15) .

In this example Corollary 2 says that for any history which occurs with a positive
probability given the optimal strategies, we have:

for example at the beginning:

a n d ifh = RC,

+ = ^ X 3

= 2 with

/̂8 1/2 3/4 1 P

FIGURE 13. The conditional probabilities.
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-1

^RRD
—^—~-—,

- 2

1

• P = 1

4/^ 2

P=0

^•^--^RR:

FIGURE 14. Player I's vector security levels.

\

4/iO

/
'"RR

2

/

-1

y^'RD

2 q̂ o

FIGURE 15. Player IPs veclor security levels.
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