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We consider N person repeated games with complete information and standard signalling.
We first prove several ptopeities of the sets of feasible payo^s and Nash equilibrium payoffs
for the n-stage game and for the X-discounted game. In the second part we determine the set of
equilibrium payoffs for the Prisoner's Dilemma corresponding to the critical value of the
discount factor.

0. IntrodiK îoii. We consider iV-person repeated games with complete informa-
tion and standard signalling. We introduce the n-stage game, the X-discounted game
and the infinitely repeated game; then we prove several properties conceming the sets
of feasible payoffs and of Nash equilibrium payoffs.

The properties studied are mainly the relation between convexity and stationarity
and the simply-connectedness of the set of feasible payoffs.

The second part of the paper is devoted to^the study of the X-discounted Prisoner's
Dilemma. If X is greater than a critical value X the only Nash equilibrium payoff is the
usual one (like in any finite repetition). Then we determine exactly the set of Nash
equilibrium in the game with tibiis discount factor X, and this is a connected set of
dimension 2 which differs from the set of individually rational feasible payoffs.

1. NotatitHK and preUmiiuiries. Let (7, be an A -̂person game in normal form with
finite pure strategy sets 7 ,̂ / e N and payoff function X from r = nf-i^i i°to R'^.
We denote by ^/ the set of mixed strategies of player /. We associate to G, a repeated
game with perfect recall played as follows: at each stage m, knowing the previous
history h^ (i.e. the sequence of moves of all players up to stage m — I), each player /
chooses a move {, in Tj and this choice is told to all players.

We denote by S, (resp. S,) the set of pure (resp. mixed) strategies of player i in this
repeated game and S = nf- i'S',> 2 = flf-1^/- ^ ^ ^°^ define 3 games according to the
following payoffs:

(V«) • Sm-1^«. " e TV for G^ {n-stage repeated game),
^ • Sm- i(l - ^)"'" 'Ĵ m. ^ e (0,1] for Gx (X-discounted game),
^((1/") • Sm-i^^m) for ^00 (i^infinitely repeated game),

where x^ is the payoff at stage m and L a Banach limit.'
Let us now define D, {resp. D^, D^) to be the set of feasible payoffs using mixed

strategies and £„ (resp. E^,E^) to be the set of Nash equilibrium payoffs in Ĝ  (resp.

* Received July 26, \9S3\ revised December 28, 1984.
AMS 19m subject ctassification. Primary: 9OD15.
lAOR 1973 subfect classipcation. Main: Games.
OR/MS Index 1978 subject cbasifictttion. Primary: 238 Games/group decisions/noncooperative.
fCey tvonlt. N^pason rqpMted ^unes, games with complele information, Nash equilibrium.

'Remade that die foyofl in the i^infiai^y rqxated game is daiued as the t-limit of the expectation.
Nev«iheless in our set-up the results would be the same by taking the expectation of the Z l̂imit (diis is no

- true for games with incomptete information).

147
0364-765X/86/1101/0147$0175

Copyri^l O I9tfi, The Inttitute of Management Scienca/OperalkHn Research Society of America



148 SYLVAIN SORIN

Note that G, and Ĝ  are_special cases of games G:( .^ ,S , , / , / G N) where SJ are
compact strategy spaces, 2, regular probabilities on S, and / continuous (real)
functions on 5 = Ilf-i'^i- ^^^ (vector) payoff function is defined on 2 = 11^-12, by

It follows that D„ and Z)̂  will share all the properties of D (set of feasible payoffs in G)
and similarly for E„ and E^ with respect to E (set of equilibrium payoffs in G).

In particular we have:
(1) D is a nonempty, path-connected, compact set,
(2) £ is a nonempty compact set (Nash theorem).

Recall that D is usually not convex and E not connected.
Let F he the finite set of feasible payoffs in pure strategies in G, and let C = co F

denote the convex huU of F. Hence C is the set of payoffs achievable by using
correlated strategies in G,.

Finally define a, to be the individually rational level of player / and A to be the set
of individually rational payoffs in C, namely:

> a, = min maxA'̂ rT', f,) V/, where ^' = I I ŷ 1 •

Then the following asymptotic properties hold:
(3) D„ (resp. D^) converges in the Hausdorff topology as n goes to oo (resp. as X goes

to 0) to C and D^ equals C (see [2], [6] and Proposition 4 below).
(4) £x converges in the Hausdorff topolo©f, as X goes to 0, to A (see [2] or Lemma 2

below)^ and £ „ equals A (Folk theorem see [1] or [6]). It is well known that E„ does
not necessarily converge to A, see e.g. example in §3.

Thus Property (4) shows an important difference with zero-sum two-person repeated
games; in this framework the asymptotic behaviour of €„ (value of G„) and v^ (value of
Gx) is the same, even for stochastic games (where it converges to t;^ (value of G^), see
[4] and [8]) or for a large class of games with incomplete information (where Vg^ niay
not exist, see [9]).

2. Study of G„ and Gx- We first recall and prove briefly easy results.

LEMMA 1. (5) FCD,CD,
(6) Dec,
(7) D convex ^D = C,

where D stands for D„ or D^.
(8) £, C £ C A where E stands for E„ or £x-

PROOF. If an iV-tuple r of strategies in nf- i^ / generates the payoff x in Z),, then
a{r) defined in 2 by playing r i.i.d. at each stage gives the same payoff in D, hence (5).

Now each payoff in D is the expectation of barycenters of (random) points in F,
hence lies in C (6).

Finally since the extreme points of C lie in F, (5) and (6) imply (7). The first
inclusion in (8) is proved like in (S). The second follows from the fact that at each
stage m, conditionally to the history h„, each player can obtain an individually
rational payoff. •

LEMMA 2. £x converges in the Hausdoiff topology to A, as \ goes to 0.̂

^A condition is nwded, see added in proof.
^A condition is needed, see added in proof.
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PROOF. By (8) it is enough to prove that in any neighbourhood of a point from A
lies a point from £x, for X small enough.

Let X in A and assume first x, — a, > c > 0, V/' = 1 , . . . , ^ . Then we can write
X = S*-!'*"*-"^* *'ith X* in F, a^ in [0,1] and S**** ~ '• Hence there exist n^ in N
such that, if S*"* ~ ^ ^"'l S/t(''*/^)-"^* ~ y> ^^ have: / , > a, + e/2 and | / , — X;̂ ! <
£/2, Vi.

Choose now X such that (1 — X)* ' > 1 — c/4. It follows then that by playing «,
times a move inducing X], . . . , n̂  times a move inducing x* and so on and starting
again at stage R + \, the payoff in Gx will be some z with: |x, — z,| < e and
z, > a, + e/4, for X < X.

We now claim that this payoff can be obtained by equilibrium strategies for X small
enough. In fact since the strategies described above are pure any deviation can be
observed and the deviator's payoff reduced to a,.

Defining by L the greatest absolute value of the payoffs it follows that the gain by
deviating is at most: 2L(1 - ( 1 - X)*" '̂) - (e/4Xl -X)*"^' which is negative for X
small enough. This ends the proof if A is full dimensional.

If now, for some /, x, = a,, for all x in A, player / will always play a best reply and
no profitable deviation for him is profitable. It is then enough to specify the strategies
of the other players and the proof goes by induction. •

Note that contrary to the "Perfect Folk Theorem" (see [2]) the previous result does
not extend to perfect equilibria, for a counterexample see [5].

For any set X and any / in iV we define:
tX = {tx; xGX},
t*X={y,y = '2'^,iX^,x^eX}.

LEMMA 3. Let n = mp + r in N, then

PROOF. Let OQ '^ D, and aj in D^, f = I, . . . , m, he obtained by the A^-tuple of
strategies a{J), J = 0,. . ., m. Then the strategy a in 2 , defined by: play o(0) up to
stage r, a{f) from stage r -h (/ - 1)/? up to stage r+fp- I (independently from the
history at stage r + {j — l)p, induces a payoff in Gn equal to n ~ '(rao + S J - i/'̂ 'y) hence
(9).

Now if o(0) is an equilibrium strategy in G, and similarly for a{j) in G ,̂ j
= I,.. . ,m, then the strategy a defined above is still an equilibrium in G^ hence (10).

I

In particular this gives D„C D/^ \/k > I, k & N hence D^ C D„ for some k > 1
implies D„ convex and similarly for E„.

Nevertheless there are games for which:
(11) the sequences £>„ and £„ are not monotonic.
EXAMPLE 1. G, is a 2-person game defined by the following payoff matrix:

(1,0)

(0,0)

(0,0)

(0,1)

Note that ( i , | )«1(1 ,0) -I-1(0,1) belongs to £2 hence to 2)2- Obviously ( | ,^) is not

Now since this pay<rff is Pareto Optimal, the only way to achieve it in G3 is to play a
pure strawy at each sta^. This gives the payoffs (n/3,1 - n/3), n •= 0,1,2,3 and
(|,^) e? D3. Siaee £ , C / ) , (11) follows.

Note in this example that !)„ # C for all n. Remark abo that by duplicating one
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Strategy of one of the players, D, and £, will not change, but D2 will increase and
{\,\) will belong to Dy.

Moreover the variations of D„ and £„ are not related:
(12) D„ = £)„+, does not imply E„ = £,n + I -
EXAMPLE 2.

(1,0)

(0,0)

(2,2)

(0,1)

In this game D^=' C hence Z)] = Z)n for all n. £, is reduced to (2,2) since each player
has a strictly dominating strategy. Now we claim that (1,1) belongs to £2.

In fact this payoff is achievable through the following equilibrium strategies:
(Bottom, Left) at the first stage, and at the second stage:

—for player I: Bottom if player II played Right at the first stage.
Top otherwise.

—for player II: Left if player I played Top at the first stage.
Right otherwise.

Similarly we have:
(13) £„ = £„+, does not imply Z), = D„^.^.
EXAMPLE 3.

(1.0)

(0,0)

(1,1)

(1,0)

£, = {(l,x); X e [0,1]} = E„ for all n and ( i , i ) € Z)2\Z),. Note that Example 2 shows
also:

(14) £„ is not contained in the convex hull of £,.
Moreover:
(15) £„+, C £„ does not imply £,+2 C E„.
EXAMPLE 4.

(m,0)

(0,0)

(m+ l,m+ 1)

(0,m)

Since by playing first Bottom player I can achieve at most (n — IX"! + l) /n in G ,̂ the
fact that he can guarantee m by playing always t(^ implies by induction that £„ is
reduced to (m + I,m + 1) for all n < m.

Now it is easy to see that (m,m) beionp to £^^., (pky (0,0) once then (m + I,m +
I), see Sample 2). As for the game Gx we have, as in (11):

(16) the nets D^ and £x are not monotonic.
EXAMPLE 1 (revisited). By playing once (1,0) and then always (0,1), ihe players

achieve (7/8,1/8) in Ey/^.
It is clear tbat this payoff is not in Z),. To prove that it does not belong to D^/^ note

that since it is Pareto optimal it can only be achieved by using pure stratepes. The
payoff for player I in G3/4 is at most \ d X^'" (0,1) heace Xi has to be (1,0). Now if
"̂2 »= (1,0) player I get at least J| and at most ^ U X2'* (0,1).

We shall now focus 00 the sets of feasible ^ycrffs and study prcqierties d convexity
and stationarity.

For small values of X the description of I>x u easy ance we have the
(compare with (3) andexampk 1 where D^^C Vn):
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PROPOSITION 4.

(17) Dx = Cfor all X<l/N.

PROOF. By (5) and (6) C is the convex hull of Z), and Z), is connected (1). A
theorem of Fenchel (see e.g. [10, p. 169, Proposition 3.3]) now implies that each point
of C is a convex combination of at most N points of Z),. Thus given x in C, there exist
X, in Z), and X, in [0,1], / = 1, . . . , Â , with x = Sf-i^^/-

Now we can assume X, > l/N and we can introduce x' in C defined by:

such that X = Xx, + (1 - X)x'.
Doing the same decomposition for x' we obtain inductively:

with in D. for all m = 0,1,2 (
m-O

This implies that x is in D^, by playing at stage m + 1 a strategy in
ing x\'"K I

Note that this bound is the best one:
EXAMPLE 5. 7;. = {1, . . . , iV} for all / = 1, . . .

to 7?'̂  is defined by:

achiev-

The payoff function X from T

if f, = j for all /,X{ti,. . .,tf^) = ej (y-unit vector inR'

= 0 otherwise.

Then {l/N,..., l/N) does not belong to D^ for X > l/N.

PROPOSITION 5.

{IS) If D^ is convex then D„+J = D^, hence D^ = Cfor all m > n.

PROOF. Let X in Z)« be induced by an A -̂tuple of strategies a and let x„,
OT = 1, . . . , « be the corresponding expected payoff at stage m. It follows that

nx 21m- iXm with X, in Z), and x„ in C for all m.21m im , , „
Nowj = (Sm>i^m)/(« - 1) Still belongs to the convex set C which equals D„ by (7).

By (5) this implies that the line segment [x, , / ] lies in D„ hence: z = x,//i^ + (1 -
1/n^)/ belongs to D„ and is induced by some T.

Since we have x = (x, + nz)/{n + 1) it follows that x is achievable in G„+^ by
playing a at the first stage and then T. •

Reciprocally the following obviously holds:
(19) Z)« = D„ for all m > n implies £)„ = C (by (3) or (9)).
NevCTthdess we have:
(20) D„ convex does not imply D„_^ convex.
EXAMPLE 6. Let G, be the following two-pereon game:

(0,1)

(0,0)

(I.I)

(1.0)

(2,0)

(2,1)

(3,0)

(3,»)

(3/2,1) does not belong to i), (a payoff 1 to player II implies that player I is using a
pure strategy) but Z>, ojntains the two squ^^es C = co{(0,0),(0,1),(1, l),(l,O)} and
C = co{(2,0),(3,0),(3,1),(2,1)}. Thus we have, ) }

i(C' + C ) C i(Z), + Z),) C
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Remark that for a two-person game where each player has only two pure strategies,
either D^ = C (see Example 2) or D„¥= C for all n (see Example 1).

In a similar way one can prove:

PROPosmoN 6.
(21) Z/ Z)x is convex then Dg^ C for allO<S <\.

PROOF. Let x in D^ be induced by some a and denote by x„ the expected payoff at
stage m. Here also x, is in Z), and x„ is in C with x = X2m=i(l - ^T~^x^. Define^ to
be X2m>2(l - ^)'"~^x^, then7 belongs to C = Z)x and x = Xx, -(- (1 - X)>'.

Z>| being included in the convex set Z)x it follows that x' defined to be ((X — 5)/(l —
5))x, + ((1 - X)/(l - S))y belongs to Z)x and x = 5x, + (1 - 8)x'. Doing the same
decomposition for x' we obtain by induction x = S2^_o(l ~ Sy"x\'"^ with x^"* in Z>,
for all m = 0,1, . . . .By playing a^ at stage m + I, where a^ achieves x*,"̂  in G], the
players can obtain x in Gj hence x belongs to Dj. •

Reciprocally we have:
(22) Z)x = Dg for all 0 < 5 < X implies D),= C (by (17)).
Recall that C = coF is a convex polyhedron. Denote by L a one-dimensional face

of C. Then by (5), L n Z)x and LH D^ are nonempty for all X in (0,1] and all n > 1.
We now consider the feasible payoffs lying on L and prove that if this set is

decreasing then it contains all L. For N = 2, this property has interesting consequences
(see Corollary 12).

PROPOSITION 7.
(23) If for some 8,0 < S <\, DgH L is included in D^D L then L is included in Dg.

PROOF. Let us suppose that there exists a point in L which is not in Dg. Without
loss of generality we can assume that L is the line segment [XQ, F J with XQ
= (0,. . . , 0), Yo = (1 ,0 , . . . , 0) in /?^, and Xo, Y^ belonging to F C Dg.

For each point Z in L, let d{Z) denotes its distance to the conipact set Dg. n L. The
maximum of d{Z) on L, denoted by d, is taken at some point Z = (z,0,. . . , 0) and
is strictly positive by hypothesis. Let us introduce: X = {x,0, . . ., 0) and Y —
{y,0,..., 0) wi th x — z — d a n d y = z -^d. T h e n we h a v e :

(•) X and Y belong to Z)j n L and (A', Y) n Dg is empty. _
(••) No other couple of points A", Y' with ||A" - Y'\\ > 2d satisfy (*).

Let X he induced by a. Since X lies on a face of C, at each stage the random payoff
induced by a will belong to this face. Hence it is enough to consider the first
component of the payoff.

Let H be the set of histories at stage 2, having positive probability/;(/t), under 0. For
each h in H, let a{h) be the strategy from stage 2 on defined by a conditionally on h.

Denote by x, the expected payoff at stage 1 and by X2(A) the payoff induced in Gg
by a{h), for each h in H. Thus:

hBH

(a) If for some hf, in H, X2(/i0) is strictly less than 1, then by (**) there exists
Z = ( z , 0 , . . . , 0) in Dg with: X2(Ao) <2< ^2(^0) + 2J.

If Z is achievable by T in G ,̂ then the following strategy: play a, unless the history
at sta^ 2 is /ig and from this stage on use T, gives a payoff w with:

hen
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Note that 0 < w - x < ( l - 8)2d; thus W='(w,O, . . . ,0) belongs to Dg D {X, Y)
contradicting (*).

(b) Since we can do the same construction starting from Y it remains to consider the
case where:

x = 8x , - ( - (1 -5 ) , / = « / , .

We now use the fact that DgH L is included in Z)x n L, hence x can be written as
X«| + (1 - X)M2 with C/| = («,, 0 , . . . , 0) in Z),. Since U2 is less than one and 8 < X we
have M| > X|. Hence:

(§) 5M, < XM, < X,
(§§) 6H, + (1 - 8) > X.

Let us consider the following set: yl = {5M, + (1 - 5)/; 7 = (r,0,. . . , 0) is in DgD L}.
By (**), (§) and (§§) it follows that there exists z ia A satisfying: 0 < z - x < ( l - 5 )
2d. Now if z is 5«, + (1 - 5)/, let I/, be induced by a (in G,) and T he induced by T
(in Gg).

The strategy defined by playing 0 at stage 1 and T from stage 2 on gives as a payoff
in Gj, Z = ( z , 0 , . . . , 0) contradicting (•). •

As for the feasible payoffs in the finitely repeated game G„ we have:

PROPOSITION 8.

(25) Letn> Nm, then D„^„ C D„ implies D„^„ = C

PROOF. The proof goes by induction on the dimension of the faces of C and
follows obviously from the following:

PROPOSITION 9.

(26) Let P be a face of C of dimension p {p < N). If n > pm and D„^„ n P C D„ D

PROOF. By induction (the proof follows from (5) if/> = 0) we assume that each face
of P of dimension at most /> - 1 is in D^^.^ and we write D^ for Z>̂  D P, for all m.

Note that by (9) we can and shall assume m < n. Suppose tiiat P is not included in
^'n+m- Fo"" ^ c h point Z in P, rf(Z)^enotes its distance to the compact D'„^„ and the
maximum, rf > 0, is taken at some_Z._ _

Let B = B{Z,d) n P where B{Z,d) is the closed ball in /?^ with center Z and
radius d.

We first need the following:

LEMMA 10. Z belongs to the convex hull of B n D^^.^.

PROOF. By definition of d,B n Z);^.^ is not empty. Define H to be the convex hull
of S n ^, '+«, fl' is a compact convex set. If Z is not in /f, let y be a closest point to Z
in H. Thus:

(Z-Y,Zy>(Z-Y,Ty for all Tin/f. (*)

For every t > 0 let B. = B{Z^,J) n P where Z, = Z-I-€(Z - Y). Since by induction
the frontier of P is in D;,^.„, Z, is in P for « small enough, hence B^ n £)„'+„ is not
empty. Note now that if T belongs to B^ and

<z - Y,Ty < <z- y.z + | (z"- r)>

then r belongs to the interior i of 5^ By the choice of Z,_B n Z)„'̂ .„ is empty hence
there exists T in S. n Z);+« with < Z - Y,T'y > < Z - Y,Z'y. By compacity we thus
obtain a point F in i? n D^m satisfying iZ-Y,Ty>(Z-Y,zy contradicting (•).

I
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Using Caratheodory's^eorem we can now introduce •Y*in5 n D^+^,k= I,...,
q, q <, p + I, such that Z lies in the convex hull of the AT*, and this family is minimal
with respect to this property. If Â* is generated by 0* in Gn^.^, let us denote by 5* the
average expected payoff up to stage m and for each history in Hi^: set of histories at
stage m + 1 having positive probability p{h) under 0*, let U {h) he the average
expected payoff for the remaining n stages in G„^„, conditionally on h. Thus:

(n + m)A'* = mS* + n ^ p{h) U''{h). (**)

Since -Y* belongs to the face P, S* and U''{h) have the same property,
(a) Assume that there exists AQ in Hi^ such that:

<t/*(Ao),A'* - Z> > min <r,X* - Z> « a*. (•**)

Since the frontier of P is in D^+^, the intersection of Z)̂ +^ with the closed ball
centered at U''{hQ) — A"* + Z and of radius d is not empty.

Using (•*•) there exists a point Z*(A(,) in this intenection and different from

o
Since Z);+^ is included in D^, Z*(Ao) is in D^ hence A'* defined by

belongs to D^^^ (see the proof of Proposition 7).
It remains to compute the distance from this new point to Z. But

IIA"* - Zf = 11^* - A"*!!̂  + IIA'* - Zf + 2<r* - A'*,A'* - Z}.

Note that

<r* - XW' - Z> = p{ho) j^^f-^ (Z'{ho) - U'{ho),X' - Z>

hence this quantity is negative.
Moreover, since Z*(Ao) is in '

Thus:

which contradicts the definition of Z and J.
(b) We are now left the case where for each k and each h'm.

Let L be the linear ^ace ^nerated by th^A^* and denote by |2 ^ projection on L of
the points T in R" satisfying: <r,Ar* -~Zy> a'' for all k. Note that Q contains the
projection of P on L and that Q is homeom(»phic to a simplex of dimension

We shall write T for the projection of T on L and introduce barycentric coordinates
( a ' , . . . , a'') for the points in Q such that the set of a's with a* >» 0 carre^jonds to the
set of f in e with <f. A"* - Z> » a*. Let ( a ' , . . . , 5*) COTT^xmding to 1. It follows



REPEATED GAMES WITH C»MPLErE INFORMATION 155

from (**) and (•••) that 5* < m/{m + n) for all fc = 1,. . . , ^. Since '^^'^ = 1, this
inequality implies pm > n contradicting the assumption. •

In order to obtain more precise results for Â  = 2 we shall prove and use the
following property (recall that D is the set of feasible payoffs in a game G):

PROPOSITION 11.

(27) If N = 2 then D is simply connected.

PROOF. Let y be a closed continuous path in D (i.e. y is a continuous map from
[0,1] to D with Y(0) = 7(1)) and assume that there exists^ in R^\i5 such that:

For each / in [0,1] and each a (resp. T) strategy of player I (resp. player II) in G such
that A'(0,T) = y{t) we define a closed continuous path V {t;a,r] as follows:

Fix 00,To, such that A'(0O,TO) = Y(O). NOW I\t\ 0,T] coincides with y on [y{O),y{t)].
Starting from y{t) it follows the two line segments:

first Â (0,OTo + (1 - s)r) where s goes from 0 to 1,
then A'(M0O + (1 - «)0,TO) where u goes from 0 to 1.

By construction we have Ind(j, I^O,0o,TJ) = Ind(>', Y(0)) = 0 and, since y(0) = y(l),
Ind(j, r[l, 0o,To]) = Ind(/, y) ^ 0.

Using the continuity of r[-; •, ] and the compactness of the strategies' sets we
obtain the existence of two couples of strategies (0, T) and (0', T') and of a point t in
[0,1] such that: y{t) = X{a,T) = X{a',T') and \nA{y,Y[f,a,r])i- Ind(j,r[/;0',T']).

Defining y by T\t;a,T\- Y\f,a',f'\ we obviously have: Ind(/,y) =5̂ 0. The idea of
the proof now is to introduce a new path y*, such that Ind(/, y) = Ind(j, y*), with the
additional property that y* will be the image under A" of a path in the strategy's space.
The latter being simply connected (in fact contractile) this will imply Ind(j,y*) = 0,
hence the contradiction.

Recall that y is defined by:

y(0) = ^ (00 , To),-^ X{O', To) ̂  ^ ( 0 ' , T')

We define y* by adding to y from the point y{t) the closed path p

y (0 = X{<i', T') ̂  ^(0, T') ̂  ^(0, T)

Note that, since X is linear in each variable, p consists of a line segment in Z) in both
directions hence Ind(>',y*) = Ind(/,y). Obviously y* is now the image under X of the
following closed continuous path in the strategy's space:

(Oo > To) -» (« ' , To) -» (0 ' , T ' ) -> (0, T ' ) - ^ (0, T) - ^ (0, To) ^ (00 , To),

hence the result. •

COROLLARY 12.

If JV-2, 0 < 5 < X , Z)aCZ)x im^ies Dg = C,
m>% D^^^dD, implies D„^„ = C.

PROOF. Using (23) Dg contains the frontier of C hence is equal to C by (27). The
proof is similar for D„.^„ by using (26) with /> = 1, then (9) to reduce to the case
w < n, and finally (27). •

Open problem: is D simply connected or even contractile for N >21



156 SYLVAIN SORIN

3. Simiy <rf the prfaoner's dileflma. In this part we shall study the following
two-person game:

L

(4,4)

(5,0)

R

(0,5)

(1,1)

We first remark that D^^^ C hence Z)n = C for all n and that A = {x = (x,,X2) | x E C,
X, > 1, / = 1,2). Moreover £, == {(1,1)) since B and R are strictly dominating strate-
gies in G,.

This game has been widely analyzed and it is well known that E„ — {(1,1)}, see e.g.
[7, pp. 95-102]. Nevertheless this property is not a consequence of the existence of
strictly dominating strategies (see Example 4) and backwards induction arguments
lead only to perfect Nash equilibrium payoffs.

A more general class of games for which an analog property holds is described by
the following result:(recall that a,

PROPOSITION 13. Let G, be an N-person game such that £, = {a} then En=^ [a) for
alln.

PROOF. Let 0 be a Nash equilibrium iV-tuple of strategies in Ĝ  corresponding to a
payoff different from a. Denote by H^{a) the set of histories up to stage m having a
positive probability under 0.

Obviously, since a is the tmly one-stage Nash equilibrium payoff, the payoff induced
by 0 at stage n conditionally to any history in ^^^(0) is a. Hence there exists a stage m
and an history h^ in H^{a) such that:

—the payoff induced by 0 at stage m conditionally to h^ is different from a,
—the payoff at any further stage k> m + \ conditionally to any h,^ that follows h^

and belongs to Hi^{a) is a.
In particular this implies that 0 is not in equilibria at stage m, conditionally to h^;

hence we can assume that player 1 can strictly increase his payoff at that stage by
using some T,.

Now, by definition of a,, whatever being 0', player 1 can obtain at least a, for the
remaining stages, which was his payoff under 0.

It follows that by deviating at stage m if A ,̂ player can strictly increase his average
payoff; since h^ belongs to H^{a) we obtain a contradiction. I

Note that this condition is also necessary since a recent result states that for N = 2,
£, ^ {a} implies that E„ converges to A (see [3]).

We now turn to the study of die discounted game.
The following result was already announced in [2].

PROPOSITION 14. £x is reduced to {(1,1)} for all X in (J, I].

PROOF. Let (0,T) be an equilibrium pair in G^. !!„ will denote the set of histories
up to stage n and H* those histories in H^ having positive probability under (0tT). We
write «„ for the random payt^ of player I at stage n, and s„(h„) (reap. t^{hj) for the
probability of playing T {r&sp. L) at stage n, conditionally onh„,a and T.

The equilibrium condition can be written as follows:
For each h„ in H* and each 0' whi<^ ccHncides with 0 up to stage n — 1:

(and simil^ly for player II).
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In particular if a' is after h^, play always bottom:

E,.rian I K ) - E,.,ia„ | / « „ ) = - s„{h„) a n d £ „ . , , ( « „ + „ \ h „ ) > l

(*) now implies

Define: y^^

all A, in //* .

) = £,,,(a,+« + b„^„ \h„)-2 and note that

(4 + 4K(A«)̂ «(A«) + (5 + 0)(i - s„{h„))^h„)

+ (0 + 5)̂ «(A«)(1 - ?„(/»„)) + (1 + 1)(1 - s„(h„)){\ - t„(h„)) - 2

From (•) and the similar inequality for player II we obtain:

1

Let us introduce, for all m,
(*•) gives

oo

) ** lyni^n) for all h„ in H*. (**)

,^(a^ + b„- 2). Since P',^(//*) = 1, integrating

for all « > 1.
1

Letting y be the supremum of the % it follows that r > 3 Yn- Thus

Hence either y = 0, i.e. y^ = 0 for all m, and the payoff is always (1,1) or X < | . I
In the last proposition we shall describe explicitly the set of equilibrium payoffs

in G3/4.
We first define S to be the square with extreme points (1,1), (1,4), (4,4), (4,1) and A

to be the union of S with the two line segments: [(4, l),(19/4,1)],[(1,4),(1,19/4)J:

(0,5)

(4,4)

(5,0)

FlounE I. Equiliimum paytrffs in the imsona-'s ditemina with discount factor 3/4.
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We can now state the result:

PROPOsmoN 15. £3/4 = A.

PROOF.

First part: A C £3/4. Straightforward computation shows that the extreme points
of S are equilibrium payoffs (we describe the pure equilibrium strategies by their
sequence of payoffs on H*, both players using their dominating strategies outside H*):

for (4,4) always (4,4),
for (1,1) always (1,1),
for (4,1) alternating sequence of (5,0), (0,5) . . . starting from (5,0) and symmetri-

cally for (1,4).
Now given {a, b) in S, write a as 4/ + 1 - / and b as 4s + I - s, t and s being in [0,1].

The strategies are now:
At the first stage, for player I plays T with probability s, for player II plays L with

probability l.
From stage 2 on:

if (4,4) is the payoff at stage 1 play always (4,4)
(5.0) (0,5) (5 ,0 ) . . .
(0,5) (5,0) (0 ,5 ) . . .

(1.1) (1 ,1 ) . . .

It is easy to see that the payoffs of both players are independent of their first moves.
Since from stage 2 on no deviation is profitable the above description gives an
equilibrium and it is easy to see that the corresponding payoff is (a, b).

Finally, in order to obtain a payoff equal to (4 + | a , 1), a €[0,1] in £3/4 the
strategies are:

play (5,0) at the first stage, then achieve the equilibrium payoff (1 + 3a, 4), which
belongs to S, in (J3/4 starting from stage 2. Here also none of the players has incentive
to deviate at stage i, hence the equlibrium with the right payoff: 5(5,0) + |(1 + 3a,4).

Second part: £3/4 C A. Obviously £3/4 is included in A, hence it remains to prove,
by symmetry that there exists no (a,b) in £3/4 with a>4, b > I and (a - 4X6 - 1)
= X(a,6)>0.

We shall prove that if there is such a payoff this implies the existence of another
payoff (a',b') in £3/4 with a' > 4, b' > I and X(a',fr') > 4\{a,b), hence the contradic-
tion.

(a) Let o,T be the equilibrium strategies corresponding to (a,b). We define a | to be
the maximal payoff that player I can achieve in G3/4 if player II is using rih^ with
A2-(r ,L).

In words a, corresponds to the normalized payoff from stage 2 on if player I uses a
best response to T, conditionally on {T,L) at stage 1.

6| is defined in the same way for player II and similarly (02,^2) correspond to
{T,R), (03,63) to iB,L) and (04,64) to (B,R). (Note that a, > 1,6, > 1.) Hence the
players face a matrix with current and future payoffs

(4,4)
(ai,*i)

(5,0)
{03, by)

(0,5)
(02,62)

0,1)
(fl4.*4)
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Let s and / be the strate^es induced by a and T at the first stage. If we define/(I, /)
for every s, i by:

f(-s,I) = 1(4^-/+ 5(1 - s)i+ (1 - J)(l - 0)

+ i( j /a , + s{l- i)a2 + (1 - s)ia^ + (I - s)(\ - i)a^),

then the equilibrium condition implies:

f{s,t)>f{s,t) for all j (•)

(and similarly for a function g corresponding to player IPs payoff) and

j , / > 0 = > ( a , , 6 , ) e £ 3 / 4 , . y ( l - / ) > 0=^(02,62) € £ 3 / 4 ,

(**)
(1 - s)t > 0=*(a3,63) G £3/4, (1 - s){l -t)> 0=!.(a4,64) G £3/4.

(b) We can assume t >0 otherwise a is less than 4; and .J < 1 otherwise by playing
t = 0 player II obtains | 5 - l - ^ 6 2 > | 5 + | = 4 hence a is again less than 4.

Using (*) we now obtain, with a = 4 + x, b=l+)>,
(1) 4 -H ;c = | [ 5 / + (1 - 01

As 04 < 5 we obtain from (1) that:
(3) 03 > 1 -h 4x.
(c) If i = 0. By (2) we have 63 = 4 + 4y. By (»*), this implies that (03,63) is in £3/4,

hence by symmetry (63,03) also. Now 63 > 4, 03 > 1 and X(63,O3) > I6xy = 16X(o,6).
(d) Assume now j > 0. (•) implies:
(4) 4-I-X = 1(40 + K^fli + 0 - 0^2).
(5) I + J > 1(55 -1- (1 - s)) + K562 + (1 - :r)64).

From (2) and (5) it follows that
(6) 56, + (1 - .s)63 > 3 -I- 562 + (1 - .5)64 > 4;

hence using again (2)
(7) s < 7 /3 .

Finally from (4) we get:
(8) o, > 4 -I- 4x.

We now consider two cases:
—either 6, > 1 -H /

Then by <8) we obtain X(o,,6,) > 4xy = 4X(a,6) hence the result.
—or 6, < 1 -h / .

Using again (2) we have:

4 + 4 / < 5(12 + 1 + 7 - 63) 4- 63

< I (12-I-H-^--63)+ 63 by(7).

This in^uality gi

Since x>Q implks^ < 3 it follows fliat
(10) 63 > 4-!->'.

By (3) and (10) we obtain Hbi,a:i) > 4^a,b) and this achieves the proof. •
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p-x,p-x

P,a- X

a- X, fi

a, a

CONCLUDING REMARKS. (1) The computations made in the proof of Proposition 14
show also that for the following values of the parameters

with p- x>a

x>0

similar results hold with a critical value X = (j8 — a — x)/( p — a).
(2) One can also prove that the analog of Proposition 15 holds, at least for

fi > max{l + a, 1 +2x}.
(3) To compute £;î  for other values of the discount factor seems quite difficult. It is

nevertheless easy to see that £;̂  is not monotonic: there are denumbrably many points
on the Pareto boundary for 1/2 < X < 3/4.

(4) We use deeply the fact that the "gain of deviating" was uniform, namely x. In
the more general case:

p-y,P-y
P,a- X

a- X, P

a, a

with p— y> a
x>Q, y>0

the critical value is X = max{ p-a-x, p-a- y}/iP - a).
In fact if / > X an alternate sequence (p,a - x),ia - x, P),... gives an equilib-

rium at X; and simUarly if x >y a. stationary sequence of (p — y, P — y) is an
equilibrium. Now if for some X > X, (a, T) is an equlibrium, it keeps this property as x
OT y decrease, in particular for x'= y'= tmn{x, y) contradicting Remark 1. The
explicit computation of B^ seems more delicate.

Added in proof. Lemma 2 holds under the following additional assumption: A is
full dimensional or iV = 2, as used in the proof. Forges, Mertens and Neyman have a
counterexample where ^ = 3 and A is 2-dimensional.
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