On a Pair of Simultaneous Functional Equations

S. Sorin
Laboratoire d'Économétrie, Université Paris VI, 4 Place Jussieu, 75230 Paris Cedex 05, France

Submitted by R. P. Boas

For each p in the simplex P of \mathbb{R}^{k} we introduce convex subsets of $P, \Pi_{1}(p)$ and $\Pi_{11}(p)$. For f a real function on P we define $\mathrm{Cav}_{1} f$ to be the smallest function greater than f on P and concave on $\Pi_{1}(p)$ for each p in P (and similarly Vex ${ }_{11} f$). Given u a continuous real function on P we prove that the following problems:

```
Minimize \(f ; f: P \rightarrow \mathbb{R}, f \geqslant \mathrm{Cav}_{1} \mathrm{Vex}_{11} \max \{u, f\}\)
Maximize \(f ; f: P \rightarrow \mathbb{R}, f \leqslant \operatorname{Vex}_{I I} \operatorname{Cav}_{1} \min \{u, f\}\)
```

have the same solution which is also the only solution of $f=V^{11} \max \{u, f\}=$ $\mathrm{Cav}_{1} \min \{u, f\}$. This is an extension of a former proof by Mertens and Zamir for the case where P is a product of convex R and S with $\Pi_{1}(p)=r \times S$ and $\Pi_{\mathrm{n}}(p)=R \times s$.

1. Introduction

A certain problem in game theory gives rise to a pair of simultaneous functional equations involving the operations of concavification and convexification of a function. Using game theoretical arguments and techniques it was proved in [1] that this set of equations has a unique solution. This result was proved in the independent case in [2] by purely analytic means. The purpose of this paper is to extend this demonstration to the dependent case. The tools used here were introduced in [4]. We shall follow the plan and the numbering of [2] and just state without proof the propositions, corollaries or lemmas the extensions of which are straightforward.

2. Notations and Statements of the Theorems

Let P be the simplex of the k-dimensional euclidean space \mathbb{R}^{k}. Let u be a continuous real-valued function on P. We denote by F the set of all realvalued function on P. Let $K=\left\{1, \ldots, r_{1}, \ldots, k\right\}$ and $K^{\mathrm{I}}=\left\{K_{1}^{\mathrm{I}}, \ldots, K_{l}^{\mathrm{I}}, \ldots, K_{L}^{\mathrm{I}}\right\}$, $K^{\text {II }}=\left\{K_{1}^{\mathrm{II}}, \ldots, K_{m}^{\mathrm{II}}, \ldots, K_{M}^{\mathrm{II}}\right\}$ be two partitions of the set K. We shall say that 296
$g: K \rightarrow \mathbb{R}$ is I-measurable if g is measurable with respect to the σ-field generated by K^{1}, and similarly for II-measurable. Given c and p in \mathbb{R}^{k} we define $c * p$ in \mathbb{R}^{k} by $(c * p)_{r}=c_{r} p_{r}, \forall r \in K$. Let us now introduce, for any $p \in P$, the following subsets of P (see [1]):

$$
\begin{aligned}
\Pi_{\mathrm{I}}(p) & =\left\{q=a * p \mid q \in P ; a: r \rightarrow a_{r} \text { is I-measurable }\right\}, \\
\Pi_{\mathrm{II}}(p) & =\left\{q=b * p \mid q \in P ; b: r \rightarrow b_{r} \text { is II-measurable }\right\} .
\end{aligned}
$$

A function $f \in F$ will be called I-concave if for any $p_{0} \in P, f$ restricted to $\Pi_{\mathrm{I}}\left(p_{0}\right)$ is concave, and similarly for II-convex.

Definition. Let $f \in F$. The I -concavification of f is denoted by $\mathrm{Cav}_{1} f$ and is defined by $\operatorname{Cav}_{1} f=\min \{g \in F \mid g$ is I -concave and $g(p) \geqslant f(p)$ for all $p \in P\}$. The II-convexification of f is denoted by Vex ${ }_{\text {II }} f$ and is defined by Vex $_{\text {II }} f=\max \{g \in F \mid g$ is II-convex and $g(p) \leqslant f(p)$ for all $p \in P\}$. Here min and max always mean a pointwise minimization and maximization, respectively, of the functions under consideration.

Let us now consider the following pair of dual problems:
Problem I: Minimize f subject to

$$
\begin{equation*}
f \geqslant \underset{1}{\operatorname{Cav}_{11}} \operatorname{Vex} \max (u, f) . \tag{2.1}
\end{equation*}
$$

Problem II: Maximize g subject to

$$
\begin{equation*}
g \leqslant \operatorname{Vex}_{I I} \operatorname{Cav} \min (u, g) . \tag{2.2}
\end{equation*}
$$

The independent case considered in [2] is obtained when

$$
K=\left\{(l, m) \mid l=1, \ldots, k_{1}, m=1, \ldots, k_{2}\right\}, \quad p^{l, m}=s^{\prime} t^{m}, \quad \sum_{1}^{k_{1}} s^{\prime}=\sum_{1}^{k_{2}} t^{m}=1
$$

and

$$
K_{l}^{1}=\left\{(l, m) \mid m=1, \ldots, k_{2}\right\}, \quad K_{m}^{11}=\left\{(l, m) \mid l=1, \ldots, k_{1}\right\} .
$$

Theorem 2.1. Both Problems I and II have solutions and the two solutions are equal.

Theorem 2.2. The common solution of Problems I and II is also a simultaneous solution, and the only simultaneous solution, of the following two functional equations:

$$
\begin{align*}
& f=\operatorname{Vexx}_{\mathrm{II}} \max (u, f), \tag{2.3}\\
& f=\operatorname{Cav}_{\mathrm{I}} \min (u, f) . \tag{2.4}
\end{align*}
$$

3. Proofs

Denote by F_{1} the set of functions satisfying (2.1) and F_{2} the set of functions satisfying (2.2).

Proposition 3.1. $F_{1} \neq \varnothing$ and $F_{2} \neq \varnothing$.
Let $\underline{v}=\inf \left\{f \mid f \in F_{1}\right\}$ and $\bar{v}=\sup \left\{g \mid g \in F_{2}\right\}$.
Proposition 3.2. $\underline{v} \in F_{1}$ and $\bar{v} \in F_{2}$.
Corollary 3.3. $\underline{v}=\min \left\{f \mid f \in F_{1}\right\}$ and is the solution of Problem I . $\bar{v}=\max \left\{f \mid f \in F_{2}\right\}$ and is the solution of Problem II.

Proposition 3.4. $\underline{v}=\operatorname{Cav}_{1} \operatorname{Vex}_{11} \max (u, \underline{v}), \bar{v}=\operatorname{Vex}_{11} \operatorname{Cav}_{1} \min (u, \bar{v})$.
Lemma 3.5. For any $f \in F$, each of $\operatorname{Cav}_{{ }_{\mathrm{I}}} \operatorname{Vex}_{\mathrm{II}} f$ and $\operatorname{Vex}_{{ }_{11}} \operatorname{Cav}_{1} f$ is both I-concave and II-convex.

Proof. It is enough to prove that if g is II-convex, then $\mathrm{Cav}_{1} g$ is IIconvex. So we want to show that for each $p \in P, b_{1} * p$ and $b_{2} * p \in \Pi_{11}(p)$ such that $\lambda b_{1}^{r} p^{r}+(1-\lambda) b_{2}^{r} p^{r}=p^{r}, \forall r \in K$, where $\left.\lambda \in\right] 0,1[$ we have

$$
\begin{equation*}
\operatorname{Cav}_{1} g(p) \leqslant \lambda \operatorname{Cav} g\left(b_{1} * p\right)+(1-\lambda) \operatorname{Cav}_{1} g\left(b_{2} * p\right) \tag{3.1}
\end{equation*}
$$

We shall use the fact that, for $n \geqslant k$,

$$
T^{n} g=\operatorname{Cav} g
$$

where T is defined by

$$
\begin{gather*}
\operatorname{Tg}(p)=\sup _{\mu, a_{1}, a_{2}}\left\{\mu g\left(a_{1} * p\right)+(1-\mu) g\left(a_{2} * p\right) \mid a_{1} * p \text { and } a_{2} * p \in \Pi_{1}(p),\right. \\
\left.\mu \in[0,1], \mu a_{1}^{r}+(1-\mu) a_{2}^{r}=1, \forall r \in K\right\} . \tag{3.2}
\end{gather*}
$$

Now, for each μ, a_{1}, a_{2}, satisfying the constraints in (3.2) we shall construct $p_{i j}, i=1,2, j=1,2, \lambda_{j}, j=1,2$, and $\mu_{i}, i=1,2$ such that

$$
\begin{array}{ll}
p_{i j} \in \Pi_{\mathrm{II}}\left(a_{i} * p\right), & j=1,2, i=1,2, \tag{3.3}\\
\lambda_{i} p_{i 1}+\left(1-\lambda_{i}\right) p_{i 2}=a_{i} * p, & \lambda_{i} \in[0,1], i=1,2 .
\end{array}
$$

$$
\begin{align*}
& p_{i j} \in \Pi_{\mathrm{I}}\left(b_{j} * p\right), i=1,2, j=1,2, \tag{3.4}\\
& \mu_{j} p_{1 j}+\left(1-\mu_{j}\right) p_{2 j}=b_{j} * p, \mu_{j} \in[0,1], j=1,2 . \\
& \mu \lambda_{1}=\lambda \mu_{1},(1-\mu) \lambda_{2}=\lambda\left(1-\mu_{1}\right), \mu\left(1-\lambda_{1}\right) \\
&=(1-\lambda) \mu_{2},(1-\mu)\left(1-\lambda_{2}\right)=(1-\lambda)\left(1-\mu_{2}\right) . \tag{3.5}
\end{align*}
$$

Assuming that (3.3)-(3.5) hold true we get

$$
g\left(a_{i} * p\right) \leqslant \lambda_{i} g\left(p_{i 1}\right)+\left(1-\lambda_{i}\right) g\left(p_{i 2}\right)
$$

since g is II-convex. So we have

$$
\begin{aligned}
& \mu g\left(a_{1} * p\right)+(1-\mu) g\left(a_{2} * p\right) \\
& \quad \leqslant \lambda_{1} \mu g\left(p_{11}\right)+(1-\mu) \lambda_{2} g\left(p_{21}\right) \\
& \quad+\left(1-\lambda_{1}\right) \mu g\left(p_{12}\right)+(1-\mu)\left(1-\lambda_{2}\right) g\left(p_{22}\right) .
\end{aligned}
$$

Using (3.5) the majorant is

$$
\lambda\left(\mu_{1} g\left(p_{11}\right)+\left(1-\mu_{1}\right) g\left(p_{21}\right)\right)+(1-\lambda)\left(\mu_{2} g\left(p_{12}\right)+\left(1-\mu_{2}\right) g\left(p_{22}\right)\right)
$$

which is smaller than

$$
\begin{equation*}
\lambda \operatorname{Tg}\left(b_{1} * p\right)+(1-\lambda) \operatorname{Tg}\left(b_{2} * p\right) \tag{3.6}
\end{equation*}
$$

Since this inequality holds true for all μ, a_{1}, a_{2} we use (3.2) and obtain the following: g is II-convex implies $T g$ is II-convex, hence by induction $T^{k} g=\mathrm{Cav}_{1} g$ is II-convex.

Let us now construct the auxiliary variables. If $\mu=0$ or 1 , the majorization (3.6) is obvious. Now let $\mu \in] 0,1[$. From (3.1) and (3.2) it follows that we can assume that $a_{1} \cdot\left(b_{1} * p\right) \neq 0$ and $a_{2} \cdot\left(b_{2} * p\right) \neq 0$. Now if $a_{1} \cdot\left(b_{2} * p\right) \neq 0$ and $a_{2} \cdot\left(b_{1} * p\right) \neq 0$, we take, with $\delta=1 / \sum_{r=1}^{k} a_{1}^{r} b_{1}^{r} p^{r}$,

$$
\begin{align*}
p_{11}=\delta a_{1} *\left(b_{1} * p\right), & p_{12}=\frac{\delta(1-\lambda)}{(\delta-\lambda)} a_{1} *\left(b_{2} * p\right) \\
p_{21}=\frac{\delta(1-\mu)}{(\delta-\mu)} \cdot a_{2} *\left(b_{1} * p\right), & p_{22}=\frac{(1-\lambda)(1-\mu)}{\left(1-\lambda-\mu+\frac{\lambda \mu}{\delta}\right)}\left(a_{2} *\left(b_{2} * p\right)\right) \\
\lambda_{1}=\frac{\lambda}{\delta} \lambda_{2}=\frac{\lambda}{\delta}\left(\frac{\delta-\mu}{1-\mu}\right), & \mu_{1}=\frac{\mu}{\delta}, \quad \mu_{2}=\frac{\mu}{\delta}\left(\frac{\delta-\mu}{1-\lambda}\right) \tag{3.7}
\end{align*}
$$

Figure 1

If $a_{1} \cdot\left(b_{2} * p\right)=0$ and $a_{2} \cdot\left(b_{1} * p\right) \neq 0$, we take

$$
p_{11}=\lambda a_{1} *\left(b_{1} * p\right)=p_{12}
$$

and the other variables as above with $\delta=\lambda$, similarly if $a_{1} \cdot\left(b_{2} * p\right) \neq 0$ and $a_{2} \cdot\left(b_{1} * p\right)=0$. Finally if $a_{1} \cdot\left(b_{2} * p\right)=a_{2} \cdot\left(b_{1} * p\right)=0$, we have $\lambda=\mu$ and we choose

$$
\begin{array}{ll}
p_{11}=\lambda a_{1} *\left(b_{1} * p\right), & \lambda_{1}=\mu_{1}=1, \\
p_{22}=\lambda a_{2} *\left(b_{2} * p\right), & \lambda_{2}=\mu_{2}=0 .
\end{array}
$$

This completes the proof of the lemma. ${ }^{1}$

Corollary 3.6. Each of \underline{v} and \bar{v} is both I-concave and II-convex.

[^0]Lemma 3.7.

$$
\begin{aligned}
\underline{v} & =\operatorname{Vex}_{\mathrm{II}} \max (u, \underline{v}), \\
\bar{v} & =\operatorname{Cav}_{\mathrm{I}} \min (u, \bar{v}) .
\end{aligned}
$$

Define now two sequences of functions $\left\{\underline{u}_{n}\right\}$ and $\left\{\bar{u}_{n}\right\}$ by $\underline{u}_{0} \equiv-\infty$ and $\bar{u}_{0} \equiv+\infty$ and

$$
\begin{array}{ll}
\underline{u}_{n+1}=\underset{1}{\operatorname{Cav}} \operatorname{Vex}_{11} \max \left(u, \underline{u}_{n}\right), & n \geqslant 1, \\
\tilde{u}_{n+1}=\operatorname{Vex}_{11} \operatorname{Cav}_{1} \min \left(u, \vec{u}_{n}\right), & n \geqslant 1 . \tag{3.9}
\end{array}
$$

Proposition 3.8. $\left\{\underline{u}_{n}\right\}$ is an increasing sequence, uniformly converging to a finite continuous function $\underline{u} .\left\{\bar{u}_{n}\right\}$ is a decreasing sequence uniformly converging to a finite continuous function \bar{u}.

Proposition 3.9.

$$
\begin{aligned}
& \underline{u} \geqslant \underline{v}, \\
& \bar{u} \leqslant \bar{v} .
\end{aligned}
$$

Proposition 3.10.

$$
\begin{aligned}
& \underline{u}=\underline{v}, \\
& \bar{u}=\bar{v} .
\end{aligned}
$$

Let $\mathfrak{U}=\left\{u \in F \mid u(p)=\max _{i \in I} \min _{j \in J} \sum_{r} a_{i j}^{r} p^{r}\right.$, where $a_{i j}^{r} \in \mathbb{R}$ for all i, j, r, I and J are finite sets $\}$.

Lemma 3.11. For all $u \in \mathbb{U}, \bar{v} \leqslant \underline{v}$.
Proof. Let us introduce the following sequence:

$$
\begin{aligned}
& v_{1}(p)=\mathrm{Cav}_{1} \max _{i} \operatorname{Vex}_{n} \min _{j} \sum_{r} a_{i j}^{r} p^{r} \\
& n v_{n}(p)=\operatorname{Cav}_{1} \max _{i} \operatorname{Vex}_{1} \min _{j}\left\{\sum_{r}^{-} a_{i j}^{r} p^{r}+(n-1) v_{n-1}(p)\right\} .
\end{aligned}
$$

We shall first prove that $v_{n}(p) \leqslant \underline{u}_{n}(p)$ for all $p \in P$. In fact, we have
$v_{1}(p) \leqslant \operatorname{Cav}_{\mathrm{I}} \operatorname{Vex}_{11} \max _{i} \min _{j} \sum_{r} a_{i j}^{r} p^{r}=\operatorname{Cav}_{\mathrm{I}} \operatorname{Vex}_{11} u(p)=\underline{u}_{1}(p) . \quad$ Assume now that $v_{n-1}(p) \leqslant \underline{u}_{n-1}(p)$, then

$$
\begin{aligned}
n v_{n}(p) & \leqslant \operatorname{Cav}_{\mathrm{I}} \operatorname{Vex}_{\mathrm{I}}\left\{\max _{i} \min _{j} \sum_{i} a_{i j}^{r} p^{r}+(n-1) v_{n-1}(p)\right\} \\
& \leqslant \operatorname{Cav}_{\mathrm{I}}^{\operatorname{Vex}}\left\{u(p)+(n-1) \underline{u}_{n-1}(p)\right\} \\
& \leqslant \underset{\mathrm{I}}{\mathrm{Cav}} \underset{\mathrm{~V}}{\operatorname{Vex}}\left\{n \max \left(u, \underline{u}_{n-1}\right)\right\}(p)=n \underline{u}_{n}(p) .
\end{aligned}
$$

Now we shall show that $v_{n}(p) \geqslant \bar{u}_{n}(p)+K / n$ for some $K \in R$. Let us define, for all $i \in I, f_{i}(p)=-\min _{j} \sum_{r} a_{i j}^{r} p^{r}$ and $f(p)=\sum_{i} f_{i}(p)-L$ where L is chosen such that $v_{1}(p) \geqslant \bar{u}_{1}(p)+f(p)$ (v_{1} and \bar{u}_{1} are bounded on P). Assume now that $v_{n}(p) \geqslant \bar{u}_{n}(p)+f(p)$. Then we get

$$
\begin{aligned}
(n+1) v_{n+1}(p) & \geqslant \operatorname{Cav}_{1} \max _{i} \operatorname{Vex}_{\mathrm{II}} \min _{j}\left\{\sum_{r} a_{i j}^{r} p^{r}+f(p)+n \bar{u}_{n}(p)\right) \\
& \geqslant \operatorname{Cav}_{1} \max _{i}\left(\operatorname{Vex}_{11}\left(\min _{j} \sum_{r} a_{i j}^{r} p^{r}+f(p)\right)+n \bar{u}_{n}(p)\right)
\end{aligned}
$$

since \bar{u}_{n} is II-convex by Lemma 3.5. But by construction $\min _{j} \sum_{r} a_{i j}^{r}+f(p)$ is convex, thus it is II-convex:

$$
\begin{aligned}
(n+1) v_{n+1} & \geqslant \operatorname{Cav}_{1}\left(u+f+n \bar{u}_{n}\right) \\
& \geqslant \operatorname{Cav}_{1}\left(u+n \bar{u}_{n}\right)-\operatorname{Cav}(-f) \\
& \geqslant \operatorname{Vex}_{11} \operatorname{Cav}_{1}\left\{(n+1) \min \left(u, \bar{u}_{n}\right)\right\}+f=(n+1) \bar{u}_{n}+f
\end{aligned}
$$

and since f is bounded, the result follows. Hence letting $n \rightarrow \infty$ we obtain $v \geqslant \bar{v}$.

Now it is easy to see, applying the last part of [2] that Theorems 2.1 and 2.2 hold true for all $u \in \mathfrak{u}$, the solution being $\underline{v}=\bar{v}$. Denote by $C(P)$ the space of all continuous functions on P.

Proposition 3.12. (a) \mathfrak{U} is a vector lattice which contains the affine functions
(b) Hence \mathfrak{U} is dense in $C(P)$.

Proof. (a)(1) \mathfrak{U} obviously contains the affine functions.
(2) $u \in \mathfrak{U} \Rightarrow-u \in \mathfrak{U}$.

Let $u(p)=\max _{i \in I} \min _{j \in J} \sum_{r} a_{i j}^{r} p^{r}$. Define $J^{\prime}=J^{I} \quad$ for all $i \in I$, $j^{\prime}=\left(j^{\prime}(1), \ldots, j^{\prime}(i), \ldots, j^{\prime}(I)\right) \in J^{\prime}, b_{i j^{\prime}}^{r}=a_{i j^{\prime}(i)}$. Then we have

$$
u(p)=\max _{I} \min _{J^{\prime}} \sum_{r} b_{i j^{\prime}}^{r} p^{r}=\min _{J^{\prime}} \max _{I} \sum_{r} b_{i j^{\prime}}^{r} p^{r} .
$$

Letting $c_{j / i}^{r}=-b_{i j}^{r}$, it follows that

$$
\operatorname{Max}_{J^{\prime}} \operatorname{Min}_{I} \sum_{r} c_{j^{\prime} i}^{r} p^{r}=-\operatorname{Min}_{J^{\prime}} \operatorname{Max}_{I} \sum_{r} b_{i j^{\prime}}^{r} p^{r}=-u(p) .
$$

(3) $u \in \mathfrak{u}, \lambda \geqslant 0 \Rightarrow \lambda u \in \mathfrak{u}$. λu comes from $\lambda a_{i j}^{r}$
(4) $u_{1} \in \mathfrak{U}, u_{2} \in \mathfrak{U} \Rightarrow u_{1}+u_{2} \in \mathfrak{U}$.

Let $I=I_{1} \times I_{2}$ and $J=J_{1} \times J_{2}$ and define, where $i=\left(i_{1}, i_{2}\right), j=\left(j_{1}, j_{2}\right)$,

$$
a_{i j}^{r}=a_{i_{1} i_{1}}^{r}+a_{i_{2} i_{2}}^{r},
$$

then

$$
\max _{I} \min _{J} \sum_{r} a_{i j}^{r} p^{r}=u_{1}(p)+u_{2}(p) .
$$

(5) $u \in \mathfrak{U} \Rightarrow \max (u, 0) \in \mathfrak{U}$. Add to I some letter α and define $a_{\alpha^{\prime}}=0$ for all j, then $\max (u, 0)=\max _{l \in I \cup\{a\}} \min _{j} \sum_{r} a_{l j}^{r} p^{r}$.
(b) This follows from (a) and the Stone-Weierstrass theorem for lattices, see, e.g., [3, p. 243].
Now define $\varphi: \mathfrak{u} \rightarrow C(P)$ where $\varphi(u)$ is the solution of Problems I and Problem II. It was proved in [1] (Proposition 5.2) that φ has a unique continuous extension $\tilde{\varphi}$: $C(P) \rightarrow C(P)$ whenever \mathfrak{U} is dense in $C(P)$. Moreover Theorem 5.3 in [1] implies that Theorems 2.1 and 2.2 remain true for all u in $C(P)$ and that the solution is $\tilde{\varphi}(u)$.

References

1. J. F. Mertens and S. Zamir, The value of two-person zero-sum repeated games with lack of information on both sides, Inter. J. Game Theory 1 (1971), 39-64.
2. J. F. Mertens and S. Zamir. A duality theorem on a pair of simultaneous functional equations, J. Math. Anal. Appl. 60 (1977), 550-558.
3. H. H. Schaefer, "Topological Vector Spaces," Macmillan Company, New York, 1967.
4. S. Sorin, A note on the value of zero-sum sequential repeated games with incomplete information, Inter. J. Game Theory 8 (1979), 217-223.

[^0]: ${ }^{1}$ I am indebted to the referee for calling my attention to an inaccuracy in the first version of this lemma.

