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For each p in the simplex P of R’ we introduce convex subsets of P, IT,(p) and 
II,,(p). For f a real function on P we define Cav,f to be the smallest function 
greater thanfon P and concave on Ii’,(p) for each p in P (and similarly Vex,, f). 
Given u a continuous real function on P we prove that the following problems: 

MinimizeS;f: P+ iR, f > Cav, Vex,, max(u, f  1 
Maximize f; f :  P-r R, f  < Vex,, Cav, min(u, f) 

have the same solution which is also the only solution off = Vex,, max(u,ft = 
Cav, min(u,f). This is an extension of a former proof by Mertens and Zamir for 
the case where P is a product of convex R and S with U,(p)= r X S and 
n,,(p) = R x s. 

1. INTRODUCTION 

A certain problem in game theory gives rise to a pair of simultaneous 
functional equations involving the operations of concavification and convex- 
ification of a function. Using game theoretical arguments and techniques it 
was proved in [ 11 that this set of equations has a unique solution. This result 
was proved in the independent case in [2] by purely analytic means. The 
purpose of this paper is to extend this demonstration to the dependent case. 
The tools used here were introduced in [4]. We shall follow the plan and the 
numbering of [2] and just state without proof the propositions, corollaries or 
lemmas the extensions of which are straightforward. 

2. NOTATIONS AND STATEMENTS OF THE THEOREMS 

Let P be the simplex of the k-dimensional euchdean space Rk. Let u be a 
continuous real-valued function on P. We denote by F the set of all real- 
valued function on P. Let K = { l,..., r ,..., k} and K’ = {K: ,..., Kj ,..., Ki}, 
K” = (K;‘,..., K; ,..., Ki} be two partitions of the set K. We shall say that 
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g: K + R is I-measurable if g is measurable with respect to the o-field 
generated by K’, and similarly for II-measurable. Given c and p in Rk we 
define c * p in Rk by (c * p), = crpr, Vr E K. Let us now introduce, for any 
p E P, the following subsets of P (see [ 1 I): 

n,(p) = {q = a * p 1 q E P; u: Y + a, is I-measurable}, 

U,,(P) = {q = b * p ( q E P; b: r + b, is II-measurable}. 

A function f E F will be called I-concave if for any pO E P, f restricted to 
D,(p,,) is concave, and similarly for II-convex. 

DEFINITION. Let f E F. The I-concavification off is denoted by Cav, f 
and is defined by Cav, f = min{ g E F 1 g is I-concave and g(p) > f(p) for 
all p E P). The II-convexification off is denoted by Vex,, f and is defined by 
Vex,, f = max{ g E F ] g is II-convex and g(p) &f(p) for all p E P}. Here 
min and max always mean a pointwise minimization and maximization, 
respectively, of the functions under consideration. 

Let us now consider the following pair of dual problems: 
Problem I: Minimize f subject to 

f > Cfiv VEX max(u, f ). (2.1) 

Problem II: Maximize g subject to 

g < V;x CFV min(z.4, g). (2.2) 

The independent case considered in [2] is obtained when 

kl 
K=((l,m)II=l,..., k,,m=l,..., k,}, pr-m=S1tm, ~~~=~tm=l 

I 1 

and 

K: = {(I, m) 1 m = l,..., k,}, Kz = { (1, m) 1 I= l,..., k, }. 

THEOREM 2.1. Both Problems I and II have solutions and the two 
solutions are equal. 

THEOREM 2.2. The common solution of Problems I and II is also a 
simultaneous solution, and the only simultaneous solution, of the following 
two functional equations: 
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f = V;x max(u, f), 

f = Cpv min(u, f). 

(2.3) 

(2.4) 

3. PROOFS 

Denote by F, the set of functions satisfying (2.1) and F, the set of 
functions satisfying (2.2). 

PROPOSITION 3.1. F, # 0 and F, f 0. 

Let_v=inf{fIfEF,} and 6=sup{g(gEF,}. 

PROPOSITION 3.2. _v E F, and UE F,. 

COROLLARY 3.3. _v = min(f 1 f E F,) and is the solution of Problem I. 
d = max{ f 1 f E F2} and is the solution of Problem II. 

PROPOSITION 3.4. _v = Cav, Vex,, max(u, _v), IT= Vex,, Cav, min(u, V). 

LEMMA 3.5. For any f E F, each of Cav, Vex,, f and Vex,, Cav, f is 
both I-concave and II-convex. 

Proof: It is enough to prove that if g is II-convex, then Cav, g is II- 
convex. So we want to show that for each p E P, b, * p and b, * p E n,,(p) 
such that lb: p’ + (1 - A) b’, p’ = p’, Vr E K, where A E 10, 1 [ we have 

C$v g(P) < d Cy db, * P) + (I- A) Cp g(bz * P) (3.1) 

We shall use the fact that, for n > k, 

where T is defined by 

2-g = cfv g, 

Q(p) = sup {lug(ai * PI + (1 -pU)& * PI I aI * P anda * P E n,(~)~ 
P.al.Qz 

p G [0, i],pa; + (1 -p) a: = 1, Vr E K}. (3.2) 

Now, for each ,u, a,, a,, satisfying the constraints in (3.2) we shall construct 
pij, i= 1,2, j= 1,2, Aj, j= 1,2, and pi, i= 1,2 such that 

Pij E nII(ai * PI* j= 1,2,i= 1,2, 

kiPil + C1 -Li)Pi* = ai * P, Izi E [0, 1 J, i = 1, 2. (3.3) 
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Pij E nI(bj * PI, i= 1,2,j= 1,2, 
(3.4) 

pjplj + (1 -Pj>Pzj=bj * P, /Jj E [O, l]Vj= ‘3 2* 

~~,=n~,,(l-~)~,=~(l-~u,),~u(l--l) 

= (1 -A)&, (1 -P)(l -A,)= (1 -A)(1 -P*)* (3.5) 

Assuming that (3.3~(3.5) hold true we get 

g(ai * P) G Aig(Pil) + (l -ni) g(Pi*) 

since g is II-convex. So we have 

Pug(% * P) + (1 -P)g(% * P) 

Gnliug(Pll) + (1 -P)Ag(P*J 

+ (1 - ~,)EIg(P1*) + (1 -F)(l -A*) g(p**)* 

Using (3.5) the majorant is 

Gl g(p,,) + (1 -iu,) g(p*,)) + (1 -A)cu*g(P,*) + (1 -iu*)g(P**)) 

which is smaller than 

JTg(b, * P) + (1 -A) Mb, * P). (3.6) 

Since this inequality holds true for all p, a,, a, we use (3.2) and obtain the 
following: g is II-convex implies Tg is II-convex, hence by induction 
T”g = Cav, g is II-convex. 

Let us now construct the auxiliary variables. If ,u = 0 or 1, the 
majorization (3.6) is obvious. Now let p E IO, I[. From (3.1) and (3.2) it 
follows that we can assume that a, . (b, * p) # 0 and a, . (b, * p) # 0. Now 
if a, . (b, * p) # 0 and a, . (b, * p) # 0, we take, with 6 = l/C:=, ai hip’, 

~11 =h * (b, *P), 
S(1 -A) 

plz= t6-Aj a,*@,*ph 

a(1 -PI 
pzl= (d-p) .az*(b,*~), 

p2* = (1 -A>(1 -PI 

( 
1-L-,+$ 

) 

(a, * (b, * P)), 



300 S. SORIN 

FIGURE I 

If a, . (b, * p) = 0 and a, . (b, * p) # 0, we take 

PI1 = Aa, * (b, * P> = PI2 

and the other variables as above with 6 = 1, similarly if a, . (b, * p) # 0 and 
a, . (b, * p) = 0. Finally if a, . (b, * p) = u2 . (b, * p) = 0, we have 1 =p 
and we choose 

P,I = Aa, * (b, * PI, II, =p, = 1, 

~22 = Aa, * (b, * P>, I12=,u2=o. 

This completes the proof of the lemma.’ 

COROLLARY 3.6. Each of _v and V is both I-concave and II-convex. 

’ I am indebted to the referee for calling my attention to an inaccurac’y in the first version 
of this lemma. 
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LEMMA 3.7. 

_v = VEX max(u, g), 

301 

27 = Cp min(u, 6). 

Define now two sequences of functions {g,} and {z7,,} by _u,, = --co and 
z&=+co and 

_u n+ 1 = Cy V;x max(u, _u,>, n> 1, (3.8) 

f,+, = V;x CBV min(u, z&J nh 1. (3.9) 

PROPOSITION 3.8. {_u,) is an increasing sequence, uniformly converging 
to a finite continuous function _u. {ii,} is a decreasing sequence uniformly 
converging to a finite continuous function ii. 

PROPOSITION 3.9. 

_u 23 
ii< 6. 

PROPOSITION 3.10. 

_u =_v, 
ii = ii. 

Let U = {u E F 1 u(p) = maxis minjeJ Cr a;pr, where a> E R for all i, j, r, I 
and J are finite sets}. 

LEMMA 3.11. ForaNuEll,~<~. 

ProoJ: Let us introduce the following sequence: 

vi(p) = CFV max V;x rnp C a;pr, 
I 

nv,(p) = Cy m:x VEX mjn /F abp’ -t (n - 1) v,-,(p)! . 

We shall first prove that v,(p) <g,,(p) for all p E P. In fact, we have 
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ui(p) < Cav, Vex,, maxi mini C,U;P’ = Cav, Vex,, u(p) = _ul(p). Assume 
now that v .-,(P) < _u,-,(P), then 

nun(p) < Cy V;x /my mjn x a;p’ t (n - 1) v,~ ,(p)/ 
i 

< cy y {U(P) + (n - 1) !&l(P)1 

< Cy V;x {n ma+, _u,-Jltp) = n_u,(p). 

Now we shall show that v,(p) > c,,(p) + K/n for some K E R. Let us define, 
for all i E 1, f,(p) = -mini C, a;p’ and f(p) = Cifi(p) -L where L is 
chosen such that v,(p) > cl(p) + f(p) (vi and U, are bounded on P). 
Assume now that v,(p) > zi,(p) +f(p). Then we get 

tn+ 1) v,+ l(P) > Cy my V;x mjn )T u;p’ t f(p) t n%(p)) 

since U, is II-convex by Lemma 3.5. But by construction mini Cr a; + f(p) 
is convex, thus it is II-convex: 

(n+ l)v n+l~c~vtutf+nu”) 

> cy (24 + nii,) - Cfw(-f) 

>V~xC~v{(n+l)min(u,zi,)}tf=(nt1)zi,+f 

and since f is bounded, the result follows. Hence letting n + co we obtain 
_v > 27. 

Now it is easy to see, applying the last part of [2] that Theorems 2.1 and 
2.2 hold true for all u E U, the solution being _v = 6. Denote by C(P) the 
space of all continuous functions on P. 

PROPOSITION 3.12. (a) ll is a vector lattice which contains the afine 
functions 

(b) Hence U is dense in C(P). 

Proof: (a)(l) U obviously contains the affine functions. 
(2) u E u =G- -2.4 E u. 
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Let u(p) = maxis minisJ 2, abp’. Define J’ = J’ for all iE I, 
j’ = (j’( 1) ,..., j’(i) ,..., j’(Z)) E J’, b;, = ai,,uj. Then we have 

u(p) = m;x mJi,n c b;,p’= mJin rnfx c b;,p’. 
r I 

Letting cJsj = -b;, it follows that 

MJax M,‘n c cIsipr = -Yin MFX x b’,,p’= -u(p). 
r I 

(3) u E U, A > 0 * Au E U. Au comes from AaFi 
(4) 24, E u, u2 E u =G- 24, + u* E u. 

Let Z = I, X I, and J = J, X J, and define, where i = (i, , iz), j = (j, , j,), 

a; = aj,,j, + UL2j2, 

then 

m;x rn;lnx a;p’ = ul(p) + u2(p). 
r 

(5) u E U + max(u, 0) E U. Add to Z some letter a and define 
a,] = 0 for allj, then max(u, 0) = max,,,,,,, min, Cr a;jp’. 

(b) This follows from (a) and the Stone-Weierstrass theorem for 
lattices, see, e.g., [3, p. 2431. 

Now define o: U --f C(P) where (D(U) is the solution of Problems I and 
Problem II. It was proved in [l] (Proposition 5.2) that u, has a unique 
continuous extension 6: C(P) + C(P) whenever LI is dense in C(P). Moreover 
Theorem 5.3 in [l] implies that Theorems 2.1 and 2.2 remain true for all u in 
C(P) and that the solution is G(u). 
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