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For each p in the simplex P of R* we introduce convex subsets of P, I1;(p) and
11,,(p). For f a real function on P we define Cav, f to be the smallest function
greater than f on P and concave on I1,(p) for each p in P (and similarly Vex,, f).
Given u a continuous real function on P we prove that the following problems:

Minimize f; f/: P> R, f > Cav, Vex;, max{u, /'}

Maximize f; f: P—= R, f < Vex,  Cav, min{u, f'}
have the same solution which is also the only solution of f = Vex, max{u, f} =
Cav, min{u, /'}. This is an extension of a former proof by Mertens and Zamir for

the case where P is a product of convex R and S with II,(p)=rX S and
Iy(p)=R Xs.

1. INTRODUCTION

A certain problem in game theory gives rise to a pair of simultaneous
functional equations involving the operations of concavification and convex-
ification of a function. Using game theoretical arguments and techniques it
was proved in [1] that this set of equations has a unique solution. This result
was proved in the independent case in [2] by purely analytic means. The
purpose of this paper is to extend this demonstration to the dependent case.
The tools used here were introduced in [4]. We shall follow the plan and the
numbering of [2] and just state without proof the propositions, corollaries or
lemmas the extensions of which are straightforward.

2. NOTATIONS AND STATEMENTS OF THE THEOREMS

Let P be the simplex of the k-dimensional euclidean space R*. Let u be a
continuous real-valued function on P. We denote by F the set of all real-
valued function on P. Let K = {l,..., F,..., k} and K'={(K!},...K}.... K},
K" = {KY.. . K., K} be two partitions of the set K. We shall say that

296

0022-247X/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.



PAIR OF SIMULTANEOUS FUNCTIONAL EQUATIONS 297

g: K- R is I-measurable if g is measurable with respect to the o-field
generated by K', and similarly for II-measurable. Given ¢ and p in R* we
define ¢ * p in R* by (c * p),=c,p,, Yr € K. Let us now introduce, for any
p € P, the following subsets of P (see [1]):

II(p)={g=ax* p|q€ P;a:r— a, is I-measurable},
II(p)={q=bx p|qE P;b:r> b, is Il-measurable}.

A function f € F will be called I-concave if for any p, € P, f restricted to
II,(p,) is concave, and similarly for II-convex.

DerFINITION. Let f € F. The I-concavification of f is denoted by Cav, f
and is defined by Cav, f =min{g € F| g is I-concave and g(p) > f(p) for
all p € P}. The II-convexification of fis denoted by Vex,, f and is defined by
Vex;, f=max{g € F|g is II-convex and g(p) < f(p) for all p € P}. Here
min and max always mean a pointwise minimization and maximization,
respectively, of the functions under consideration.

Let us now consider the following pair of dual problems:
Problem I: Minimize f subject to

f> Cflv Vﬁx max(u, f). (2.1)
Problem II: Maximize g subject to

g< Vlelx C?v min(u, g). (2.2)
The independent case considered in [2] is obtained when

ky k2
K={(m)|l= Ll k,m=1l.,k}, p""=st", V=N =]

i i

and
Ki={l,m)|m=1,.., k,}, Kn={(Lm)|l=1,.,k}

THEOREM 2.1. Both Problems 1 and 11 have solutions and the two
solutions are equal.

THEOREM 2.2. The common solution of Problems1 and I is also a
simultaneous solution, and the only simultaneous solution, of the following
two functional equations:
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JS= Vﬁx max(u, /), (2.3)
J = Cav min(u, /). (2.4)
3. PrROOFS

Denote by F, the set of functions satisfying (2.1) and F, the set of
functions satisfying (2.2).

ProposiTION 3.1. F,#Q@ and F,+ 3.
Let v =inf{f|f € F,} and 5 = sup{g| g € F,}.

PROPOSITION 3.2. vEF, and U EF,.

COROLLARY 3.3. v=min{f|fEF,} and is the solution of Problem].
v =max{f|f € F,} and is the solution of Problem II.

ProprositioN 3.4. v = Cav, Vex,, max(u, v), 7 = Vex,, Cav, min(u, 7).

LemMa 3.5. For any f € F, each of Cav, Vex, f and Vex, Cav, f is
both I-concave and 11-convex.

Proof. It is enough to prove that if g is Il-convex, then Cav, g is II-
convex. So we want to show that for each pE€ P, b, * p and b, *x p € I,,(p)
such that Ab7p" + (1 — 1) bip" = p’, ¥r EK, where 4 € |0, 1| we have

Cav g(p) <A Cav g(b, * p) + (1 —4) Cav g(b, * p) (3.1)

We shall use the fact that, for n > k,
I'g=Cavyg,
where T is defined by

Tg(p)= sup {ugla, = p)+ (1 —p)g(a,* p)|a, * panda, x p € I,(p),

u,ay5,a;y

LE [0, 1], ual + (1 —pu)ah=1,¥rEK}. (3.2)

Now, for each g, a,, a,, satisfying the constraints in (3.2) we shall construct
pij, i= l, 2,j= 1, 2, lj,j:: 1’ 2’ and Uss i= 1’ 2 such that
py € My(a; = p), j=1,2i=1,2,

(3.3)
lip“%-(l—li)pn:ai*p, ).,-E[O,lj,izl,z.



PAIR OF SIMULTANEOUS FUNCTIONAL EQUATIONS 299

py; € I (b, * p), i=1,2,j=1,2 4
#ipy+ (L —p)py=byxp, €0 1],j=12
pAy= Ay, (L=p) Ay =201 —py), 01 — 4,)
=1 =)y, (1 —p)(1 —1y)= (1 =) —p,). (3.5)

Assuming that (3.3)-(3.5) hold true we get
gla; * p) <A g(pn) + (1 —24,) g(pin)
since g is II-convex. So we have
ug(a, * p)+ (1 —u) g(a, * p)

SAug(py)+ (1 —u)i, g(p)
+ (1 —=A4,)ug(pyy) + (1 —u)(1 —4,) g(P1)

Using (3.5) the majorant is
Ap,g(piy) + (1 —u,) g(p2n) + (1 = A2 8(p12) + (1 — 1) 8(p22))

which is smaller than
ATg(b, * p) + (1 — A) Tg(b, * p). (3.6)

Since this inequality holds true for all 4, a,, @, we use (3.2) and obtain the
following: g is Il-convex implies Tg is II-convex, hence by induction
T*g = Cav, g is Il-convex.

Let us now construct the auxiliary variables. If u=0 or 1, the
majorization (3.6) is obvious. Now let z € |0, 1[. From (3.1) and (3.2) it
follows that we can assume that a, - (b, * p)# 0 and a, - (b, * p)# 0. Now
if a, - (b, * p)#0 and a, - (b, * p) # 0, we take, with 6 =1/Y"%_ a}b}p’,

—A
Py =0a, * (b, * p), Pu:%l_—l))'al*(bz*ﬁ’)a
o1 — 1—A)(1 -
P21=((5_:))'02*(b1*17), Dpn= ( )a ‘Z) (a, x (b, * p)),
(=

A A6- d—
A =512=‘§' (_,U)’ Hy =%9 :u2=%t(1—_ll/{) . 3.7)
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FIGURE |

If a, - (b, * p)=0 and a, - (b, * p) # 0, we take
pi=4a,* (by* p)=p,,
and the other variables as above with ¢ = A, similarly if a, - (b, * p)+# 0 and

a, - (b; * p)=0. Finally if a, - (b,* p)=a,- (b, * p)=0, we have A=y
and we choose

P =4a, * (b, * p), A=u =1,
Py = 4Aay * (b * p), Ay =ty =0.

This completes the proof of the lemma.’

COROLLARY 3.6. Fach of v and ¥ is both 1-concave and 1l-convex.

'1 am indebted to the referee for calling my attention to an inaccuraéy in the first version
of this lemma.
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Lemma 3.7.

v= Vﬁx max(u, v),

7= C?v min(u, 7).
Define now two sequences of functions {u,} and {#,} by uy=-—co and
#t, = +oo and

Upy = Clav Vl?x max(u, u,), nzl, (3.8)

Hypy = Vgx C;cw min(u, @, ), n> 1l 3.9)

ProrosITION 3.8. {u,} is an increasing sequence, uniformly converging
to a finite continuous function u. {d,} is a decreasing sequence uniformly
converging to a finite continuous function i.

PRrROPOSITION 3.9.

uzu,

a< o
ProposITION 3.10.

u=y,

Uu="=v

Let W = {u € F|u(p) = max,_, min;, >, a;,p’, where a; € R for all i, j,r, 1
and J are finite sets}.

LEmMmA 3.11. Foralluel, v <.

Proof. Let us introduce the following sequence:
vy(p) = Cav max Vex min Zr a;p’,
n,(p)= C;:w max Vle;x min {> af;p"+ (n— v, ,(p);.
{ J r

We shall first prove that v,(p)<u,(p) for all p€ P. In fact, we have
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v1(p) < Cav, Vex,; max, min; 3, aj;p" = Cav, Vex,  u(p) =u,(p). Assume
now that v,_,(p) <u,_,(p), then

nv,(p) < Cav Vex jmaxmin 3" a;p" + (1= 1) v,_(p)
i Jj 7
< Cav Vex fu(p)+ (n—Du, (p)}

< Cav Vex {n max(u, u,_,)}(p) = nu,(p).

Now we shall show that v,(p) > #,(p) + K/n for some K € R. Let us define,

for all i€, f(p)=-—min;}  aj;p" and f(p)=3,fi(p)—L where L is
chosen such that v,(p)>a,(p)+ f(p) (v, and @, are bounded on P).
Assume now that v,(p) > @,(p) + f(p). Then we get

(n+ 1)0,,,(p) > Cav max Vex min
i J

F;‘ a;p"+f(p)+ mI,,(P))
> C?v max (Vﬁx (mjin ; a;p" + f(P)) + ”ﬁn(P))

since i, is [I-convex by Lemma 3.5. But by construction min; 3", aj; + f(p)
is convex, thus it is II-convex:

(n+ 1) v,y > Cav (u+.f + i)
> Cav (u + na,) — Cav(-f)

>Vﬁx C?v {(n+ )min(uw,a)}+f=(+D)a,+f

and since f is bounded, the result follows. Hence letting n — co we obtain
v

Now it is easy to see, applying the last part of [2] that Theorems 2.1 and
2.2 hold true for all u € U, the solution being v = 0. Denote by C(P) the
space of all continuous functions on P.

ProposiTiON 3.12. (a) U is a vector lattice which contains the affine
Sfunctions

(b) Hence W is dense in C(P).

Proof. (a)(1) U obviously contains the affine functions.
2) ueU=—ucl.
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Let u(p)=max,, min;,  a;p’. Define J' =J' for all i€l
J' =" Wyeers j' @yers j')) €', bl;. = ay;.;y- Then we have

u(p) = max min > b}, p" = min max Nblp
1 g J! <
Letting c}.; = —by,. it follows that
Max Min }’ ¢}, p" = —Min Max > b/, p" = —u(p).
J’ I 7 J’ I ,

(3) u€U,1>0=iu€ U. lu comes from iaj;
4) welu,elU=>u, +u, EU.
Let I=1, X I, and J=J, X J, and define, where i = (i,, i,), j = (j;» j,)»

ro__ o r
i=a;; ta

a i

’
12?

then

max mJin Y ayp = u(p)+ uy(p).
r

(5) u€U=max(u,0)cU. Add to I some letter @ and define
a,,;= 0 for all j, then max(u, 0) = max, ., ,, min, >, aj; p".

(b) This follows from (a) and the Stone—Weierstrass theorem for
lattices, see, e.g., [3, p. 243].

Now define ¢:U— C(P) where ¢(u) is the solution of ProblemsI and
Problem II. It was proved in [1]| (Proposition 5.2) that ¢ has a unique
continuous extension ¢: C(P) - C(P) whenever U is dense in C(P). Moreover
Theorem 5.3 in [1] implies that Theorems 2.1 and 2.2 remain true for all % in
C(P) and that the solution is @(u).
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