On a Pair of Simultaneous Functional Equations

S. SORIN

Laboratoire d'Économétrie, Université Paris VI, 4 Place Jussieu, 75230 Paris Cedex 05, France

Submitted by R. P. Boas

For each p in the simplex P of \mathbb{R}^k we introduce convex subsets of P, $\Pi_I(p)$ and $\Pi_{11}(p)$. For f a real function on P we define Cav₁ f to be the smallest function greater than f on P and concave on $\Pi_I(p)$ for each p in P (and similarly Vex₁₁ f). Given u a continuous real function on P we prove that the following problems:

Minimize $f; f: P \to \mathbb{R}, f \ge \operatorname{Cav}_1 \operatorname{Vex}_{11} \max\{u, f\}$ Maximize $f; f: P \to \mathbb{R}, f \le \operatorname{Vex}_{11} \operatorname{Cav}_1 \min\{u, f\}$

have the same solution which is also the only solution of $f = \text{Vex}_{11} \max\{u, f\} = \text{Cav}_1 \min\{u, f\}$. This is an extension of a former proof by Mertens and Zamir for the case where P is a product of convex R and S with $\Pi_1(p) = r \times S$ and $\Pi_{11}(p) = R \times s$.

1. INTRODUCTION

A certain problem in game theory gives rise to a pair of simultaneous functional equations involving the operations of concavification and convexification of a function. Using game theoretical arguments and techniques it was proved in [1] that this set of equations has a unique solution. This result was proved in the independent case in [2] by purely analytic means. The purpose of this paper is to extend this demonstration to the dependent case. The tools used here were introduced in [4]. We shall follow the plan and the numbering of [2] and just state without proof the propositions, corollaries or lemmas the extensions of which are straightforward.

2. NOTATIONS AND STATEMENTS OF THE THEOREMS

Let P be the simplex of the k-dimensional euclidean space \mathbb{R}^k . Let u be a continuous real-valued function on P. We denote by F the set of all real-valued function on P. Let $K = \{1, ..., r, ..., k\}$ and $K^1 = \{K_1^1, ..., K_l^1, ..., K_L^1\}$, $K^{11} = \{K_1^{11}, ..., K_m^{11}, ..., K_m^{11}\}$ be two partitions of the set K. We shall say that

 $g: K \to \mathbb{R}$ is I-measurable if g is measurable with respect to the σ -field generated by K^1 , and similarly for II-measurable. Given c and p in \mathbb{R}^k we define c * p in \mathbb{R}^k by $(c * p)_r = c_r p_r$, $\forall r \in K$. Let us now introduce, for any $p \in P$, the following subsets of P (see [1]):

$$\Pi_{I}(p) = \{q = a * p \mid q \in P; a: r \to a_{r} \text{ is I-measurable}\},\$$
$$\Pi_{II}(p) = \{q = b * p \mid q \in P; b: r \to b_{r} \text{ is II-measurable}\}.$$

A function $f \in F$ will be called I-concave if for any $p_0 \in P$, f restricted to $\Pi_1(p_0)$ is concave, and similarly for II-convex.

DEFINITION. Let $f \in F$. The I-concavification of f is denoted by $\operatorname{Cav}_1 f$ and is defined by $\operatorname{Cav}_1 f = \min\{g \in F \mid g \text{ is I-concave and } g(p) \ge f(p) \text{ for all } p \in P\}$. The II-convexification of f is denoted by $\operatorname{Vex}_{II} f$ and is defined by $\operatorname{Vex}_{II} f = \max\{g \in F \mid g \text{ is II-convex and } g(p) \le f(p) \text{ for all } p \in P\}$. Here min and max always mean a pointwise minimization and maximization, respectively, of the functions under consideration.

Let us now consider the following pair of dual problems:

Problem I: Minimize f subject to

$$f \ge \operatorname{Cav}_{\mathrm{I}} \operatorname{Vex}_{\mathrm{II}} \max(u, f).$$
(2.1)

Problem II: Maximize g subject to

$$g \leq \operatorname{Vex}_{II} \operatorname{Cav}_{I} \min(u, g).$$
(2.2)

The independent case considered in [2] is obtained when

$$K = \{(l, m) \mid l = 1, ..., k_1, m = 1, ..., k_2\}, p^{l,m} = s^l t^m, \sum_{1}^{k_1} s^l = \sum_{1}^{k_2} t^m = 1$$

and

$$K_l^{I} = \{(l, m) \mid m = 1, ..., k_2\}, \qquad K_m^{II} = \{(l, m) \mid l = 1, ..., k_1\}.$$

THEOREM 2.1. Both Problems I and II have solutions and the two solutions are equal.

THEOREM 2.2. The common solution of Problems I and II is also a simultaneous solution, and the only simultaneous solution, of the following two functional equations:

S. SORIN

$$f = \operatorname{Vex}_{11} \max(u, f), \qquad (2.3)$$

$$f = \operatorname{Cav}_{\mathbf{I}} \min(u, f).$$
 (2.4)

3. PROOFS

Denote by F_1 the set of functions satisfying (2.1) and F_2 the set of functions satisfying (2.2).

PROPOSITION 3.1. $F_1 \neq \emptyset$ and $F_2 \neq \emptyset$. Let $\underline{v} = \inf\{f \mid f \in F_1\}$ and $\overline{v} = \sup\{g \mid g \in F_2\}$.

PROPOSITION 3.2. $v \in F_1$ and $\bar{v} \in F_2$.

COROLLARY 3.3. $v = \min\{f \mid f \in F_1\}$ and is the solution of Problem I. $\bar{v} = \max\{f \mid f \in F_2\}$ and is the solution of Problem II.

PROPOSITION 3.4. $v = \operatorname{Cav}_{I} \operatorname{Vex}_{II} \max(u, v), \ \bar{v} = \operatorname{Vex}_{II} \operatorname{Cav}_{I} \min(u, \bar{v}).$

LEMMA 3.5. For any $f \in F$, each of $Cav_I Vex_{II} f$ and $Vex_{II} Cav_I f$ is both I-concave and II-convex.

Proof. It is enough to prove that if g is II-convex, then $Cav_1 g$ is II-convex. So we want to show that for each $p \in P$, $b_1 * p$ and $b_2 * p \in \Pi_{11}(p)$ such that $\lambda b_1^r p^r + (1 - \lambda) b_2^r p^r = p^r$, $\forall r \in K$, where $\lambda \in [0, 1]$ we have

$$\operatorname{Cav}_{I} g(p) \leq \lambda \operatorname{Cav}_{I} g(b_{1} * p) + (1 - \lambda) \operatorname{Cav}_{I} g(b_{2} * p)$$
(3.1)

We shall use the fact that, for $n \ge k$,

$$T^n g = \operatorname{Cav} g,$$

where T is defined by

$$Tg(p) = \sup_{\mu, a_1, a_2} \{ \mu g(a_1 * p) + (1 - \mu) g(a_2 * p) \mid a_1 * p \text{ and } a_2 * p \in \Pi_{\mathsf{I}}(p), \\ \mu \in [0, 1], \mu a_1^r + (1 - \mu) a_2^r = 1, \forall r \in \mathsf{K} \}.$$
(3.2)

Now, for each μ , a_1 , a_2 , satisfying the constraints in (3.2) we shall construct p_{ij} , $i = 1, 2, j = 1, 2, \lambda_j$, j = 1, 2, and μ_i , i = 1, 2 such that

$$p_{ij} \in \Pi_{II}(a_i * p), \qquad j = 1, 2, i = 1, 2, \lambda_i p_{i1} + (1 - \lambda_i) p_{i2} = a_i * p, \qquad \lambda_i \in [0, 1], i = 1, 2.$$
(3.3)

$$p_{ij} \in \Pi_{I}(b_{j} * p), \qquad i = 1, 2, j = 1, 2,$$

$$\mu_{j} p_{1j} + (1 - \mu_{j}) p_{2j} = b_{j} * p, \qquad \mu_{j} \in [0, 1], j = 1, 2.$$

$$\mu\lambda_{1} = \lambda\mu_{1}, (1 - \mu)\lambda_{2} = \lambda(1 - \mu_{1}), \mu(1 - \lambda_{1})$$

$$= (1 - \lambda) \mu_{2}, (1 - \mu)(1 - \lambda_{2}) = (1 - \lambda)(1 - \mu_{2}). \qquad (3.5)$$

Assuming that (3.3)–(3.5) hold true we get

$$g(a_i * p) \leq \lambda_i g(p_{i1}) + (1 - \lambda_i) g(p_{i2})$$

since g is II-convex. So we have

$$\mu g(a_1 * p) + (1 - \mu) g(a_2 * p)$$

$$\leq \lambda_1 \mu g(p_{11}) + (1 - \mu) \lambda_2 g(p_{21})$$

$$+ (1 - \lambda_1) \mu g(p_{12}) + (1 - \mu)(1 - \lambda_2) g(p_{22}).$$

Using (3.5) the majorant is

$$\lambda(\mu_1 g(p_{11}) + (1 - \mu_1) g(p_{21})) + (1 - \lambda)(\mu_2 g(p_{12}) + (1 - \mu_2) g(p_{22}))$$

which is smaller than

$$\lambda Tg(b_1 * p) + (1 - \lambda) Tg(b_2 * p).$$
(3.6)

Since this inequality holds true for all μ , a_1 , a_2 we use (3.2) and obtain the following: g is II-convex implies Tg is II-convex, hence by induction $T^kg = \text{Cav}_1 g$ is II-convex.

Let us now construct the auxiliary variables. If $\mu = 0$ or 1, the majorization (3.6) is obvious. Now let $\mu \in [0, 1[$. From (3.1) and (3.2) it follows that we can assume that $a_1 \cdot (b_1 * p) \neq 0$ and $a_2 \cdot (b_2 * p) \neq 0$. Now if $a_1 \cdot (b_2 * p) \neq 0$ and $a_2 \cdot (b_1 * p) \neq 0$, we take, with $\delta = 1/\sum_{r=1}^k a_1^r b_1^r p^r$,

$$p_{11} = \delta a_{1} * (b_{1} * p), \qquad p_{12} = \frac{\delta(1-\lambda)}{(\delta-\lambda)} a_{1} * (b_{2} * p),$$

$$p_{21} = \frac{\delta(1-\mu)}{(\delta-\mu)} \cdot a_{2} * (b_{1} * p), \qquad p_{22} = \frac{(1-\lambda)(1-\mu)}{\left(1-\lambda-\mu+\frac{\lambda\mu}{\delta}\right)} (a_{2} * (b_{2} * p)),$$

$$\lambda_{1} = \frac{\lambda}{\delta} \lambda_{2} = \frac{\lambda}{\delta} \left(\frac{\delta-\mu}{1-\mu}\right), \qquad \mu_{1} = \frac{\mu}{\delta}, \qquad \mu_{2} = \frac{\mu}{\delta} \left(\frac{\delta-\mu}{1-\lambda}\right). \qquad (3.7)$$

FIGURE 1

If $a_1 \cdot (b_2 * p) = 0$ and $a_2 \cdot (b_1 * p) \neq 0$, we take

$$p_{11} = \lambda a_1 * (b_1 * p) = p_{12}$$

and the other variables as above with $\delta = \lambda$, similarly if $a_1 \cdot (b_2 * p) \neq 0$ and $a_2 \cdot (b_1 * p) = 0$. Finally if $a_1 \cdot (b_2 * p) = a_2 \cdot (b_1 * p) = 0$, we have $\lambda = \mu$ and we choose

$$p_{11} = \lambda a_1 * (b_1 * p), \qquad \lambda_1 = \mu_1 = 1,$$

$$p_{22} = \lambda a_2 * (b_2 * p), \qquad \lambda_2 = \mu_2 = 0.$$

This completes the proof of the lemma.¹

COROLLARY 3.6. Each of v and \bar{v} is both I-concave and II-convex.

^{&#}x27; I am indebted to the referee for calling my attention to an inaccuracy in the first version of this lemma.

Lemma 3.7.

$$\underline{v} = \operatorname{Vex}_{II} \max(u, \underline{v}),$$

 $\overline{v} = \operatorname{Cav}_{I} \min(u, \overline{v}).$

Define now two sequences of functions $\{\underline{u}_n\}$ and $\{\overline{u}_n\}$ by $\underline{u}_0 \equiv -\infty$ and $\overline{u}_0 \equiv +\infty$ and

$$\underline{u}_{n+1} = \operatorname{Cav}_{1} \operatorname{Vex}_{11} \max(u, \underline{u}_n), \qquad n \ge 1,$$
(3.8)

$$\tilde{u}_{n+1} = \operatorname{Vex}_{11} \operatorname{Cav}_{11} \min(u, \tilde{u}_n), \qquad n \ge 1.$$
(3.9)

PROPOSITION 3.8. $\{\underline{u}_n\}$ is an increasing sequence, uniformly converging to a finite continuous function \underline{u} . $\{\overline{u}_n\}$ is a decreasing sequence uniformly converging to a finite continuous function \overline{u} .

PROPOSITION 3.9.

Proposition 3.10.

$$\begin{split} & \underline{u} = \underline{v}, \\ & \overline{u} = \overline{v}. \end{split}$$

Let $\mathfrak{U} = \{u \in F \mid u(p) = \max_{i \in I} \min_{j \in J} \sum_{r} a_{ij}^{r} p^{r}$, where $a_{ij}^{r} \in \mathbb{R}$ for all i, j, r, I and J are finite sets}.

LEMMA 3.11. For all $u \in \mathfrak{U}, v \leq v$.

Proof. Let us introduce the following sequence:

$$v_{1}(p) = \operatorname{Cav}_{1} \max_{i} \operatorname{Vex}_{11} \min_{j} \sum_{r} a_{ij}^{r} p^{r},$$
$$nv_{n}(p) = \operatorname{Cav}_{1} \max_{i} \operatorname{Vex}_{11} \min_{j} \left\{ \sum_{r} a_{ij}^{r} p^{r} + (n-1) v_{n-1}(p) \right\}.$$

We shall first prove that $v_n(p) \leq \underline{u}_n(p)$ for all $p \in P$. In fact, we have

 $v_1(p) \leq \operatorname{Cav}_{I} \operatorname{Vex}_{II} \max_{i} \min_{j} \sum_{r} a_{ij}^r p^r = \operatorname{Cav}_{I} \operatorname{Vex}_{II} u(p) = \underline{u}_1(p).$ Assume now that $v_{n-1}(p) \leq \underline{u}_{n-1}(p)$, then

$$nv_{n}(p) \leq C_{1}^{av} \bigvee_{11}^{v} \left\{ \max_{i} \min_{j} \sum_{i} a_{ij}^{r} p^{r} + (n-1) v_{n-1}(p) \right\}$$
$$\leq C_{1}^{av} \bigvee_{11}^{v} \{u(p) + (n-1) \underline{u}_{n-1}(p)\}$$
$$\leq C_{1}^{av} \bigvee_{11}^{v} \{n \max(u, \underline{u}_{n-1})\}(p) = n\underline{u}_{n}(p).$$

Now we shall show that $v_n(p) \ge \bar{u}_n(p) + K/n$ for some $K \in \mathbb{R}$. Let us define, for all $i \in I$, $f_i(p) = -\min_j \sum_r a_{ij}^r p^r$ and $f(p) = \sum_i f_i(p) - L$ where L is chosen such that $v_1(p) \ge \bar{u}_1(p) + f(p)$ (v_1 and \bar{u}_1 are bounded on P). Assume now that $v_n(p) \ge \bar{u}_n(p) + f(p)$. Then we get

$$(n+1) v_{n+1}(p) \ge C_{\mathrm{I}} \operatorname{vmax}_{i} \operatorname{Vex}_{\mathrm{II}} \min_{j} \left\{ \sum_{r} a_{ij}^{r} p^{r} + f(p) + n \bar{u}_{n}(p) \right\}$$
$$\ge C_{\mathrm{I}} \operatorname{vmax}_{i} \left(\operatorname{Vex}_{\mathrm{II}} \left(\min_{j} \sum_{r} a_{ij}^{r} p^{r} + f(p) \right) + n \bar{u}_{n}(p) \right)$$

since \bar{u}_n is II-convex by Lemma 3.5. But by construction $\min_j \sum_r a_{ij}^r + f(p)$ is convex, thus it is II-convex:

$$(n+1) v_{n+1} \ge C_{1}^{av} (u+f+n\bar{u}_{n})$$

$$\ge C_{1}^{av} (u+n\bar{u}_{n}) - C_{1}^{av} (-f)$$

$$\ge V_{11}^{ev} C_{1}^{av} \{(n+1)\min(u,\bar{u}_{n})\} + f = (n+1) \bar{u}_{n} + f$$

and since f is bounded, the result follows. Hence letting $n \to \infty$ we obtain $v \ge \overline{v}$.

Now it is easy to see, applying the last part of [2] that Theorems 2.1 and 2.2 hold true for all $u \in \mathfrak{U}$, the solution being v = v. Denote by C(P) the space of all continuous functions on P.

PROPOSITION 3.12. (a) \mathfrak{U} is a vector lattice which contains the affine functions

(b) Hence \mathfrak{U} is dense in C(P).

Proof. (a)(1)
$$\mathfrak{U}$$
 obviously contains the affine functions.

(2)
$$u \in \mathfrak{U} \Rightarrow -u \in \mathfrak{U}$$
.

Let $u(p) = \max_{i \in I} \min_{j \in J} \sum_{r} a_{ij}^{r} p^{r}$. Define $J' = J^{I}$ for all $i \in I$, $j' = (j'(1), ..., j'(i), ..., j'(I)) \in J'$, $b_{ij'}^{r} = a_{ij'(i)}$. Then we have

$$u(p) = \max_{I} \min_{J'} \sum_{r} b_{ij'}^r p^r = \min_{J'} \max_{I} \sum_{r} b_{ij'}^r p^r.$$

Letting $c_{j'i}^r = -b_{ij'}^r$ it follows that

$$\operatorname{Max}_{J'} \operatorname{Min}_{I} \sum_{r} c_{j'i}^{r} p^{r} = -\operatorname{Min}_{J'} \operatorname{Max}_{I} \sum_{r} b_{ij'}^{r} p^{r} = -u(p).$$

(3)
$$u \in \mathfrak{U}, \lambda \ge 0 \Rightarrow \lambda u \in \mathfrak{U}. \lambda u$$
 comes from λa_{ii}^r

(4) $u_1 \in \mathfrak{U}, u_2 \in \mathfrak{U} \Rightarrow u_1 + u_2 \in \mathfrak{U}.$

Let $I = I_1 \times I_2$ and $J = J_1 \times J_2$ and define, where $i = (i_1, i_2), j = (j_1, j_2)$,

$$a_{ij}^r = a_{i_1j_1}^r + a_{i_2j_2}^r$$

then

$$\max_{I} \min_{J} \sum_{r} a_{ij}^{r} p^{r} = u_{1}(p) + u_{2}(p).$$

(5) $u \in \mathfrak{U} \Rightarrow \max(u, 0) \in \mathfrak{U}$. Add to *I* some letter α and define $a_{\alpha j} = 0$ for all *j*, then $\max(u, 0) = \max_{l \in I \cup \{\alpha\}} \min_{J} \sum_{r} a_{lj}^{r} p^{r}$.

(b) This follows from (a) and the Stone-Weierstrass theorem for lattices, see, e.g., [3, p. 243].

Now define $\varphi: \mathfrak{U} \to C(P)$ where $\varphi(u)$ is the solution of Problems I and Problem II. It was proved in [1] (Proposition 5.2) that φ has a unique continuous extension $\tilde{\varphi}: C(P) \to C(P)$ whenever \mathfrak{U} is dense in C(P). Moreover Theorem 5.3 in [1] implies that Theorems 2.1 and 2.2 remain true for all u in C(P) and that the solution is $\tilde{\varphi}(u)$.

References

- 1. J. F. MERTENS AND S. ZAMIR, The value of two-person zero-sum repeated games with lack of information on both sides, *Inter. J. Game Theory* 1 (1971), 39-64.
- 2. J. F. MERTENS AND S. ZAMIR. A duality theorem on a pair of simultaneous functional equations, J. Math. Anal. Appl. 60 (1977), 550–558.
- 3. H. H. SCHAEFER, "Topological Vector Spaces," Macmillan Company, New York, 1967.
- 4. S. SORIN, A note on the value of zero-sum sequential repeated games with incomplete information. *Inter. J. Game Theory* 8 (1979), 217-223.