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On Some Global and Unilateral Adaptive Dynamics

Sylvain Sorin

Abstract. The purpose of this chapter is to present some adaptive dynamics
arising in strategic interactive situations. We will deal with discrete time and
continuous time procedures and compare their asymptotical properties. We
will also consider global or unilateral frameworks and describe the wide range of
applications covered by this approach. The study starts with the discrete time

fictitious play procedure and its continuous time counterpart which is the best
reply dynamics. Its smooth unilateral version presents interesting consistency
properties. We then analyze its connection with the time average replicator
dynamics. Several results rely on the theory of stochastic approximation and
basic tools are briefly presented in a last section.

1. Fictitious Play and Best Reply Dynamics

Fictitious play is one of the oldest and most famous dynamical processes in-
troduced in game theory. It has been widely studied and is a good introduction to
the field of adaptive dynamics. This procedure is due to Brown (1949, 1951) and
corresponds to an interactive adjustment process with (increasing and unbounded)
memory.

1.1. Discrete fictitious play.
Consider a game in strategic form with a finite set of players i ∈ I, each having

a finite pure strategy set Si. For each i ∈ I, the mixed strategy set Xi = Δ(Si)
corresponds to the simplex on Si. F i : S =

∏
j∈I S

j → R is the payoff of player i

and we define F i(y) = EyF (s) for every y ∈ Δ(S), where E stands for the expecta-
tion.
The game is played repeatedly in discrete time. Given an n-stage history, which is
the sequence of profiles of past moves of the players, hn = (x1 = {xi

1}i=1,...,I , x2, ..., xn) ∈
Sn, the fictitious play procedure requires the move xi

n+1 of each player i at stage
n+ 1 to be a best reply to the “time average moves” of her opponents.
There are two variants, that coincide in the case of two-player games :
- independent FP: for each i, let

xi
n =

1

n

∑n

m=1
xi
m
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and x−i
n = {xj

n}j �=i. Player i computes, at each stage n and for each of her opponents
j ∈ I, the empirical distribution of her past moves and considers the product
distribution. Then, her next move at stage n+ 1 satisfies:

(1.1) xi
n+1 ∈ BRi(x−i

n )

where BRi denotes the best reply correspondence of player i, from Δ(S−i) to Xi,
with S−i =

∏
j �=i S

i: BRi(y−i) = {xi ∈ Xi;F i(xi, y−i) = maxzi∈Xi F i(zi, y−i)}.
- correlated FP: one defines a point x̃−i

n in Δ(S−i) by :

x̃−i
n =

1

n

∑n

m=1
x−i
m

which is the empirical distribution of the joint moves of the opponents −i of player
i. Here the discrete time process satisfies:

(1.2) xi
n+1 ∈ BRi(x̃−i

n ).

Since one deals with time averages one has

xi
n+1 =

nxi
n + xi

n+1

n+ 1

hence the stage difference is expressed as

xi
n+1 − xi

n =
xi
n+1 − xi

n

n+ 1

so that (1.1) can also be written as :

(1.3) xi
n+1 − xi

n ∈ 1

(n+ 1)
[BRi(x−i

n )− xi
n].

Definition. A sequence {xn} of moves in S satisfies discrete fictitious play
(DFP) if (1.3) holds.
Remarks.

xi
n does not appear explicitly any more in (1.3): the natural state variable of

the process is xn which is the product of the marginal empirical averages xj
n ∈ Xj .

One can define a procedure based, for each player, on her past vector payoffs

gin = {F i(si, x−i
n )}si∈Si ∈ R

Si

, rather than on the past moves of all players, as

follows: xi
n+1 ∈ bri(ḡin) with bri(U) = argmaxXi〈x, U〉 and ḡin = 1

n

∑n
m=1 g

i
m.

Due to the linearity of the payoffs, this corresponds to the correlated fictitious play
procedure. Note that xn is no longer the common state variable but rather the
correlated empirical distribution of moves x̃n which satisfies:

x̃n+1 =
nx̃n + xn+1

n+ 1

and has the same marginal on each factor space Xi. The joint process (1.2) is
defined by:

(1.4) x̃n+1 − x̃n ∈ 1

(n+ 1)
[
∏
i

BRi(x̃n)− x̃n].
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1.2. Continuous fictitious play and best reply dynamics.
The continuous time (formal) counterpart of the above difference inclusion (1.3)

is the differential inclusion, called continuous fictitious play (CFP):

(1.5) Ẋi
t ∈

1

t
[BRi(X−i

t )−Xi
t ].

The change of time Zs = Xes leads to

(1.6) Żi
s ∈ [BRi(Z−i

s )− Zi
s]

which is the (continuous time) best reply dynamics (CBR) introduced by
Gilboa and Matsui (1991), see Section 12 in K. Sigmund’s chapter.
Note that the asymptotic properties of (CFP) or (CBR) are the same, since the
differential inclusions differ only by their time scales.
The interpretation of (CBR) in evolutionary game theory is as follows: at each
stage n a randomly selected fraction ε of the current population Zn dies and is
replaced by newborns Yn+1 selected according to their abilities to adjust to the
current population. The discrete time process is thus

Zn+1 = εYn+1 + (1− ε)Zn

with Yn+1 ∈ BR(Zn) leading to the difference inclusion

Zn+1 − Zn ∈ ε[BR(Zn)− Zn].

Note that it is delicate in his framework to justify the fact that the step size ε
(which is induced by the choice of the time unit) should go to 0. However numer-
ous asymptotic results are available for small step sizes.

Comments. Recall that a solution of a differential inclusion of the form

(1.7) żt ∈ Ψ(zt)

where Ψ is a correspondence defined on a subset of Rn with values in R
n, is an ab-

solutely continuous function z from R to R
n that satisfies (1.7) almost everywhere.

Let Z be a compact convex subset of Rn and Φ : Z⇒Z a correspondence from Z
to itself, upper semi continuous and with non empty convex values. Consider the
differential inclusion

(1.8) żt ∈ Φ(zt)− zt.

Lemma 1.1. For every z(0) ∈ Z, ( 1.8) has a solution with zt ∈ Z and z0 =
z(0).

See e.g. Aubin and Cellina (1984).
In particular this applies to (CBR) where Z =

∏
Xi is the product of the sets of

mixed strategies.
Note also that rest points of (1.8) coincide with fixed points of Φ.

1.3. General properties.
We recall briefly here basic properties of (DFP) or (CFP), in particular the link

to Nash equilibrium.
Definition. A process zn (discrete) or zt (continuous) converges to a subset Z of
some metric space if d(zn, Z) or d(zt, Z) goes to 0 as n or t → ∞.

Proposition 1.1. If (DFP) or (CFP) converges to a point x, x is a Nash
equilibrium.
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Proof. If x is not a Nash equilibrium then d(x,BR(x)) = δ > 0. Hence by
upper semicontinuity of the best reply correspondence d(y,BR(z)) ≥ δ/2 > 0 for
each y and z in a neighborhood of x which prevents convergence of the discrete
time or continuous time processes. �
The dual property is clear:

Proposition 1.2. If x is a Nash equilibrium, it is a rest point of (CFP).

Comments.
(i) (DFP) is “predictable”: in the game with payoffs

√
2 0
0 1

if player 1 follows (DFP) her move is always pure, since the past frequency of Left,

say y, is a rational number so that y
√
2 = 1 − y is impossible; hence player 1 is

guaranteed only 0. It follows that the unilateral (DFP) process has bad properties,
see Section 2.
(ii) Note also the difference between convergence of the marginal distribution and
convergence of the product distribution of the moves and in particular the conse-
quences in terms of payoffs. In the next game

L R
T 1 0
B 0 1

a sequence of TR,BL, TR, ... induces asymptotical average marginal distributions
(1/2, 1/2) for both players (hence optimal strategies) but the average payoff is 0
while an alternative sequence TL,BR, ... would have the same average marginal
distributions and payoff 1.

We analyze now (DFP) and (CFP) in some classes of games. We will deduce
properties of the initial discrete time process from the analysis of the continuous
time counterpart.

1.4. Zero-sum games.
This is the framework in which (DFP) was initialy introduced in order to gen-

erate optimal strategies. The continuous time model is mathematically easier to
analyze.

1.4.1. Continuous time.
We first consider the finite case.
1) Finite case : Harris (1998); Hofbauer (1995); Hofbauer and Sandholm (2009).
The game is defined by a bilinear map F = F 1 = −F 2 on a product of simplexes
X × Y .
Introduce a(y) = maxx∈X F (x, y) and b(x) = miny∈Y F (x, y) that correspond to
the best reply levels, then the duality gap at (x, y) is W (x, y) = a(y) − b(x) ≥ 0.
Moreover (x∗, y∗) belongs to the set of optimal strategies, XF ×YF , iff W (x∗, y∗) =
0, see Section 3 of K. Sigmund’s chapter. Consider the evaluation of the duality
gap W (xt, yt) along a trajectory of (1.5).

Proposition 1.3. The “duality gap” criteria converges to 0 at a speed of 1/t
in (CFP).
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Proof. Let (xt, yt) be a solution of (CBR) (1.6) and introduce

αt = xt + ẋt ∈ BR1(yt)

βt = yt + ẏt ∈ BR2(xt).

The duality gap along the trajectory is given by wt = W (xt, yt). Note that a(yt) =
F (αt, yt) hence taking derivative with respect to the time

d

dt
a(yt) = D1F (αt, yt)α̇t +D2F (αt, yt)ẏt

but the first term is 0 (envelope theorem). As for the second one

D2F (αt, yt)ẏt = F (αt, ẏt)

by linearity. Thus:

ẇt = F (αt, ẏt)− F (ẋt, βt) = F (xt, ẏt)− F (ẋt, yt)

= F (xt, βt)− F (αt, yt) = b(xt)− a(yt) = −wt.

It follows that exponential convergence holds for (CBR)

wt = e−tw0

hence convergence at a rate 1/t in the original (CFP). �
This proof in particular implies the minmax theorem and is reminiscent of the

analysis due to Brown and von Neumann (1950).
The analysis extends to the framework of continuous strategy space as follows.

2) Saddle case : Hofbauer and Sorin (2006)
Define the condition (H) : F is a continuous, concave/convex real function defined
on a product X × Y of two compact convex subsets of an euclidean space.

Proposition 1.4. Under (H), any solution wt of (CBR) satisfies

ẇt ≤ −wt a.e.

The proof, while much more involved, is in the spirit of Proposition 1.3 and
the main application is (see Section 5 for the definitions):

Corollary 1.1. For (CBR)
i) XF × YF is a global attractor .
ii) XF × YF is a maximal invariant subset.

Proof. From the previous Proposition 1.4 one deduces the following property:
∀ε > 0, ∃T such that for all (x0, y0), t ≥ T implies

wt ≤ ε

hence in particular the value vF of the game F exists and for t ≥ T

b(xt) ≥ vF − ε.

Continuity of F ( and hence of the function b) and compactness of X imply that
for any δ > 0, there exists T ′ such that d(xt, XF ) ≤ δ as soon as t ≥ T ′. This shows
that XF × YF is a global attractor.
Now consider any invariant trajectory. By Proposition 1.4 at each point w one can
write, for any t, w = wt ≤ e−tw0, but the duality gap w0 is bounded, hence w equal
to 0 which gives ii). �

To deduce properties of the discrete time process we introduce a general pro-
cedure.
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1.4.2. Discrete deterministic approximation.
Consider again the framework of (1.8).
Let αn a sequence of positive real numbers with

∑
αn = +∞.

Given a0 ∈ Z, define inductively an through the following difference inclusion:

(1.9) an+1 − an ∈ αn+1[Φ(an)− an].

The interpretation is that the evolution of the process satisfies an+1 = αn+1ãn+1+
(1−αn+1)an with some ãn+1 ∈ Φ(an), and where αn+1 is the step size at stage n+1.

Definition. A sequence {an} ∈ Z following (1.9) is a discrete deterministic
approximation (DDA) of (1.8).
The associated continuous time trajectoryA : R+ → Z is constructed in two stages.
First define inductively a sequence of times {τn} by: τ0 = 0, τn+1 = τn + αn+1;
then let Aτn = an and extend the trajectory by linear interpolation on each interval
[τn, τn+1]:

At = an +
(t− τn)

(τn+1 − τn)
(an+1 − an).

Since
∑

αn = +∞ the trajectory is defined on R
+.

To compare A to a solution of (1.8) we will need the approximation property
corresponding to the next proposition: it states that two differential inclusions de-
fined by correspondences having graphs close one to the other will also have sets of
solutions close one to each other, on a given compact time interval.

Notations. Let A(Φ, T, z) = {z; z is a solution of (1.8) on [0, T ] with z0 = z},
DT (y, z) = sup0≤t≤T ‖yt − zt‖. GΦ is the graph of Φ and Gε

Φ is an ε-neighborhood
of GΦ.

Proposition 1.5. ∀T ≥ 0, ∀ε > 0, ∃δ > 0 such that

inf{DT (y, z); z ∈ A(Φ, T, z)} ≤ ε

for any solution y of
ẏt ∈ Φ̃(yt)− yt

with y0 = z and d(GΦ, GΦ̃) ≤ δ.

See e.g. Aubin and Cellina (1984), Chapter 2.

Let us now compare the two dynamics defined by {an} and A.

Case 1 Assume αn decreasing to 0.
In this case the set L({an}) of accumulation points of the sequence {an} coincides
with the limit set of the trajectory: L(A) = ∩t≥0A[t,+∞).

Proposition 1.6.
i) If Z0 is a global attractor for ( 1.8), it is also a global attractor for ( 1.9).
ii) If Z0 is a maximal invariant subset for ( 1.8), then L({an}) ⊂ Z0.

Proof. i) Given ε > 0, let T1 be such that any trajectory z of (1.8) is within
ε of Z0 after time T1. Given T1 and ε, let δ > 0 be defined by Proposition 1.5.
Since αn decreases to 0, given δ > 0, for n ≥ N large enough for an, hence t ≥ T2

large enough for At, one can write :

Ȧt ∈ Ψ(At) with GΨ ⊂ Gδ
Φ−Id.
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Consider now At for some t ≥ T1 + T2. Starting from any position At−T1
the

continuous time process z defined by (1.8) approaches within ε of Z0 at time t.
Since t−T1 ≥ T2, the interpolated process As remains within ε of the former zs on
the interval [t− T1, t], hence is within 2ε of Z0 at time t. In particular this shows:
∀ε, ∃N0 such that n ≥ N0 implies

d(an, Z0) ≤ 2ε.

ii) The result follows from the fact that L(A) is invariant.
In fact consider a ∈ L(A), hence let tn → +∞ and Atn → a. Given T > 0 let
Bn denote the translated solution At−tn defined on [tn − T, tn + T ]. The sequence
{Bn} of trajectories is equicontinuous and has an accumulation point B satisfying
B0 = a and Bt is a solution of (1.8) on [−T,+T ]. This being true for any T the
result follows. �

Case 2 αn small not vanishing.

Proposition 1.7. If Z0 is a global attractor for ( 1.8), then for any ε > 0
there exists α such that if lim supn→∞ αn ≤ α, there exists N with d(an, Z0) ≤ ε
for n ≥ N . Hence a neighborhood of Z0 is still a global attractor for ( 1.9).

Proof. The proof of Proposition 1.6 implies easily the result. �
We are now in position to study the initial discrete time fictitious play proce-

dure.
1.4.3. Discrete time.

Recall that XF × YF denote the product of the sets of optimal strategies in the
zero-sum game with payoff F .

Proposition 1.8. (DFP) converges to XF ×YF in the continuous saddle zero-
sum case.

Proof. The result follows from 1) the properties of the continuous time pro-
cess, Corollary 1.1, 2) the approximation result, Proposition 1.6 and 3) the fact that
the discrete time process (DFP) is a DDA of the continuous time one (CFP). �

The initial convergence result in the finite case is due to Robinson (1951). Her
proof is quite involved and explicitly uses the finiteness of the strategy sets.
In this framework one has also the next result on the payoffs which is not implied
by the convergence of the marginal empirical plays. In fact the distribution of the
moves at each stage need not converge.

Proposition 1.9. (Rivière, 1997)
The average of the realized payoffs along (DFP) converges to the value in the finite
zero-sum case.

Proof. Write X = Δ(I), Y = Δ(J) and let Un =
∑n

p=1 F (., jp) be the sum of
the columns played by player 2. Consider the sum of the realized payoffs

Rn =

n∑
p=1

F (ip, jp) =

n∑
p=1

(U ip
p − U

ip
p−1)

Thus

Rn =
n∑

p=1

U ip
p −

n−1∑
p=1

U ip+1
p = U in

n +
n−1∑
p=1

(U ip
p − U ip+1

p )
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but the fictitious property implies, since ip+1 is a best reply to Ūp, that

U ip
p − U ip+1

p ≤ 0.

Thus lim sup Rn

n ≤ lim supmaxi
Ui

n

n ≤ v by the previous Proposition 1.8 and the
dual property implies the result. �

To summarize, in zero sum games the average empirical marginal distribution
of moves are close to optimal strategies and the average payoff close to the value
when the number of repetitions is large enough and both players follow (DFP).

We turn now to general I player games.

1.5. Potential games.
For a general presentation of this class, see the chapter by W. Sandholm. Since

we are dealing with best-reply based processes, we can assume that the players
share the same payoff function.
Hence the game is defined by a continuous payoff function F from X to R where
each Xi, i ∈ I is a compact convex subset of an euclidean space. Let NE(F ) be
the set of Nash equilibria of the game defined by F .

1.5.1. Discrete time.
We study here the finite case and we follow Monderer and Shapley (1996).
Recall that xn converges toNE(F ) if d(xn, NE(F )) goes to 0. Since F is continuous
and X is compact, an equivalent property is to require that for any ε > 0, for any
n large enough xn is an ε-equilibrium in the sense that:

F (xn) + ε ≥ F (xi, x−i
n )

for all xi ∈ Xi and all i ∈ I.

Proposition 1.10. (DFP) converges to NE(F ).

Proof. Since F is multilinear and bounded, one has:

F (x̄n+1)− F (x̄n) = F (x̄n +
1

n+ 1
(xn+1 − x̄n))− F (x̄n)

hence, by a Taylor approximation

F (x̄n+1)− F (x̄n) ≥
∑
i

1

n+ 1
[F (xi

n+1, x̄
−i
n )− F (x̄n)]−

K1

(n+ 1)2

for some constant K1 independent of n. Let an+1 =
∑

i[F (xi
n+1, x̄

−i
n ) − F (x̄n)],

which is ≥ 0 by definition of (DFP). Adding the previous inequality implies

F (x̄n+1) ≥
n+1∑
m=1

am
m

−K2

for some constant K2. Since am ≥ 0 and F is bounded,
∑n+1

m=1
am

m converges.
This property in turn implies

(1.10) lim
N→∞

1

N

∑
n≤N

an = 0,

Now a consequence of (1.10) is that, for any ε > 0,

(1.11)
#{n ≤ N ; x̄n /∈ NEε(F )}

N
→ 0, as N → ∞.
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In fact, there exists δ > 0 such that x̄n /∈ NEε(F ) forces an+1 ≥ δ. Inequality
(1.11) in turns implies that x̄n belongs to NE2ε(F ) for n large enough. Otherwise
x̄m /∈ NEε(F ) for all m in a neighborhood of n of non negligible relative size of the
order O(ε) . (This is a general property of Cesaro mean of Cesaro means). �

1.5.2. Continuous time.
The finite case was studied in Harris (1998), the compact case in Benaim, Hofbauer
and Sorin (2005).
Let (H’) be the following hypothesis: F is defined on a product X of compact
convex subsets Xi of a euclidean space, C1 and concave in each variable.

Proposition 1.11. Under (H’), (CBR) converges to NE(F).

Proof. Let W (x) =
∑

i[G
i(x) − F (x)] where Gi(x) = maxs∈Xi F (s, x−i).

Thus x is a Nash equilibrium iff W (x) = 0. Let xt be a solution of (CBR) and

consider ft = F (xt). Then ḟt =
∑

i DiF (xt)ẋ
i
t. By concavity one obtains:

F (xi
t, x

−i
t ) +DiF (xi

t, x
−i
t )ẋi

t ≥ F (xi
t + ẋi

t, x
−i
t )

which implies

ḟt ≥
∑
i

[F (xi
t + ẋi

t, x
−i
t )− F (xt)] = W (xt) ≥ 0

hence f is increasing but bounded. f is thus constant on the limit set L(x). By
the previous inequality, for any accumulation point x∗ one has W (x∗) = 0 and x∗

is a Nash equilibrium. �

In this framework also, one can deduce the convergence of the discrete time
process from the properties of the continuous time analog, however NE(F ) is not a
global attractor and the proof is much more involved (Benaim, Hofbauer and Sorin,
2005).

Proposition 1.12. Assume F (XF ) with non empty interior. Then (DFP)
converges to NE(F ).

Proof. Contrary to the zero-sum case where XF × YF was a global attractor
the proof uses here the tools of stochastic approximation, see Section 5, Proposition
5.3, with −F as Lyapounov function and NE(F ) as critical set and Theorem 5.3.

�

Remarks. Note that one cannot expect uniform convergence. See the standard
symmetric coordination game:

(1, 1) (0, 0)
(0, 0) (1, 1)

The only attractor that contains NE(F ) is the diagonal. In particular convergence
of (CFP) does not imply directly convergence of (DFP). Note that the equilibrium
(1/2, 1/2) is unstable but the time to go from (1/2+, 1/2−) to (1, 0) is not bounded.

1.6. Complements.
We assume here the payoff to be multilinear and we state several properties of

(DFP) and (CFP).
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1.6.1. General properties.
Strict Nash are asymptotically stable and stricly dominated strategies are elimi-
nated.

1.6.2. Anticipated and realized payoff.
Monderer, Samet and Sela (1997) introduce a comparison between the anticipated
payoff at stage n (Ei

n = F i(xi
n, x̄

−i
n−1)) and the average payoff up to stage n (exclu-

sive) (Ai
n = 1

n−1

∑n−1
p=1 F

i(xp)).

Proposition 1.13. Assume (DFP) for player i (with 2 players or correlated
(DFP)), then

(1.12) Ei
n ≥ Ai

n.

Proof. In fact, by definition of (DFP) and by linearity:

(1.13)
∑

m≤n−1

F i(xi
n, x

−i
m ) ≥

∑
m≤n−1

F i(s, x−i
m ), ∀s ∈ Xi.

Write (n − 1)Ei
n = bn =

∑
m≤n−1 a(n,m) for the left hand side. By choosing

s = xi
n−1 one obtains

bn ≥ a(n− 1, n− 1) + bn−1

hence by induction

Ei
n ≥ Ai

n =
∑

m≤n−1

a(m,m)/(n− 1).

�

Remark

This is a unilateral property: no hypothesis is made on the behavior of player −i.

Corollary 1.2. The average payoffs converge to the value for (DFP) in the
zero-sum case.

Proof. Recall that in this case E1
n (resp. E2

n) converges to v (resp. −v), since
x̄−i
n converges to the set of optimal strategies of −i. �

The corresponding result in the continuous time setting is

Proposition 1.14. Assume (CFP) for player i in a two-person game, then

lim
t→+∞

(Ei
t −Ai

t) = 0.

Proof. Denote by αs the move at time s so that:

txt =

∫ t

0

αsds.

and αt ∈ BR1(yt). One has

tẋt + xt = αt

which is

ẋt ∈
1

t
[BR1(yt)− xt].

Hence the anticipated payoff for player 1 is

E1
t = F 1(αt, yt)
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and the past average payoff satisfies

tA1
t =

∫ t

0

F 1(αs, βs)ds.

Taking derivatives one obtains

d

dt
[tA1

t ] = F 1(xt + tẋt, yt + tẏt) = F 1(αt, βt)

d

dt
[tE1

t ] = E1
t + t

d

dt
E1

t .

But D1F
1(α, y) = 0 (envelope theorem) and D2F

1(α, y)ẏ = F 1(α, ẏ) by linearity.
Using again linearity one obtains

d

dt
[tE1

t ] = F 1(xt + tẋt, yt) + F 1(xt + tẋt, tẏt) =
d

dt
[tA1

t ]

hence there exists C such that

Et −At =
C

t
.

�

Corollary 1.3. Convergence of the average payoffs to the value holds for
(CFP) in the zero-sum case.

Proof. Since yt converges to YF , E
1
t and the average payoff converges to the

value. �

1.6.3. Improvement principle.
An interesting property is due to Monderer and Sela (1993). Note that it is not
expressed in the usual state variable (x̄n) but is related to Myopic Adjustment
Dynamics satisfying: F (ẋ, x) ≥ 0.

Proposition 1.15. Assume (DFP) for player i with 2 players; then

(1.14) F i(xi
n, x

−i
n−1) ≥ F i(xn−1).

Proof. In fact the (DFP) property implies

(1.15) F i(xi
n−1, x

−i
n−2) ≥ F i(xi

n, x
−i
n−2)

and

(1.16) F i(xi
n, x

−i
n−1) ≥ F i(xi

n−1, x
−i
n−1).

Hence if equation (1.14) is not satisfied adding it to (1.15) and using the linearity
of the payoff would contradict (1.16). �

These properties will be useful in proving non convergence.
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1.7. Shapley’s example.
Consider the next two player game, due to Shapley (1964):

G =

(0, 0) (a, b) (b, a)
(b, a) (0, 0) (a, b)
(a, b) (b, a) (0, 0)

with a > b > 0. Note that the only equilibrium is (1/3, 1/3, 1/3).

Proposition 1.16. (DFP) does not always converge.

Proof.

Proof 1. Starting from a Pareto entry the improvement principle (1.14) implies
that (DFP) will stay on Pareto entries. Hence the sum of the stage payoffs will
always be (a+b). If (DFP) converges then it converges to (1/3, 1/3, 1/3) so that the
anticipated payoff converges to the Nash payoff a+b

3 which contradicts inequality
(1.12).

Proof 2. Add a line to the Shapley matrix G defining a new matrix

G’ =

(0, 0) (a, b) (b, a)
(b, a) (0, 0) (a, b)
(a, b) (b, a) (0, 0)
(c, 0) (c, 0) (c, 0)

with 2a > b > c > a+b
3 .

By the improvement principle (1.14), starting from a Pareto entry one will stay
on the Pareto set, hence line 4 will not be played so that (DFP) in G′ is also
(DFP) in G. If there were convergence it would be to a Nash equilibrium hence
to (1/3, 1/3, 1/3) in G, thus to [(1/3, 1/3, 1/3, 0); (1/3, 1/3, 1/3)] in G′. But a best
reply for player 1 to (1/3, 1/3, 1/3) in G′ is the fourth line, contradiction.
Proof 3. Following Shapley (1964) let us study explicitly the (DFP) trajectory.
Starting from (12), there is a cycle : 12, 13, 23, 21, 31, 32, 12,... Let r(ij) be
the duration of the corresponding entry and α the vector of cumulative payoffs of
player 1 at the beginning of the cycle i.e. if it occurs at stage n+ 1, given by:

αi =
n∑

m=1

Aimjm

which is proportional to the payoff of move i against the empirical average ȳn.
Thus, after r(12) stages of (12) and r(13) stages of (13) the new vector α′ satisfies

α′
1 = α1 + r(12)a+ r(13)b

α′
2 = α2 + r(12)0 + r(13)a

and then player 1 switches to move 2, hence one has

α′
2 ≥ α′

1

but also
α1 ≥ α2

(because 1 was played) so that

α′
2 − α2 ≥ α′

1 − α1
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which gives

r(13)(a− b) ≥ r(12)a

and by induction at the next round

r′(11) ≥ [
a

(a− b)
]6r(11)

so that exponential growth occurs and the empirical distribution does not converge
(compare with the Shapley triangle, see Gaunersdorfer and Hofbauer (1995) and
the chapter by J. Hofbauer). �

1.8. Other classes.
1.8.1. Coordination games.

A coordination game is a two person (square) game where each diagonal entry
defines a pure Nash equilibrium. There are robust examples of coordination games
where (DFP) fails to converge, Foster and Young (1998). Note that it is possible to
have convergence of (DFP) and convergence of the payoffs to a non Nash payoff - like
always mismatching. Better processes allow to select among the memory: choose
s dates among the last m ones or work with finite memory adding a perturbation,
see the survey in Young (2004).

1.8.2. Dominance solvable games.
Convergence properties are obtained in Milgrom and Roberts (1991).

1.8.3. Supermodular games.
In this class, convergence results are proved in Milgrom and Roberts (1990). For
the case of strategic complementarity and diminishing marginal returns see Krishna
and Sjöstrom (1997,1998), Berger (2008).

2. Unilateral Smooth Best Replies and Consistency

We consider here an unilateral process that will exhibit robust properties and
which is deeply related to (CFP).

2.1. Consistency.
2.1.1. Model and definitions.

Consider a discrete time process {Un} of vectors in U = [0, 1]K .
At each stage n, a player having observed the past realizations U1, ..., Un−1, chooses
a component kn in K. Then Un is announced and the outcome at that stage is
ωn = Ukn

n .
A strategy σ in this prediction problem is specified by σ(hn−1) ∈ Δ(K) (the simplex
of RK) which is the probability distribution of kn given the past history hn−1 =
(U1, k1, ..., Un−1, kn−1).

External regret
The regret given k ∈ K and U ∈ R

K is defined by the vector R(k, U) ∈ R
K with

R(k;U)� = U � − Uk, 	 ∈ K.
Hence the evaluation at stage n is Rn = R(kn, Un) i.e. R

k
n = Uk

n − ωn.
Given a sequence {um}, we define as usual ūn = 1

n

∑n
m=1 um. Hence the average

external regret vector at stage n is Rn with

R
k

n = U
k

n − ωn

It compares the actual (average) payoff to the payoff corresponding to a constant
choice of a component, see Foster and Vohra (1999), Fudenberg and Levine (1995).
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Definition 2.1. A strategy σ satisfies external consistency (EC) if, for every
process {Um}:

max
k∈K

[R
k

n]
+ −→ 0 a.s., as n → +∞

or, equivalently
∑n

m=1(U
k
m − ωm) ≤ o(n), ∀k ∈ K.

Internal regret
The evaluation at stage n is given by a K ×K matrix Sn defined by:

Sk�
n =

{
U �
n − Uk

n for k = kn

0 otherwise.

Hence the average internal regret matrix is

S
k�

n =
1

n

n∑
m=1,km=k

(U �
m − Uk

m).

This involves a comparison, for each component k, of the average payoff obtained
on the dates where k was played, to the payoff that would have been induced by
an alternative choice 	, see Foster and Vohra (1999), Fudenberg and Levine (1999).
Note that we normalize by 1

n to ignore the scores of unfrequent moves.

Definition 2.2. A strategy σ satisfies internal consistency (IC) if, for every
process {Um} and every couple k, 	:

[S
k�

n ]+ −→ 0 a.s., as n → +∞
Note that no assumption is made on the process {Un} (like stationarity or the

Markov property), moreover the player has no a priori beliefs on the law of {Un}: we
are not in a Bayesian framework and there is in general no learning, but adaptation.

2.1.2. Application to games.
Consider a finite game with #I players having action spaces Sj , j ∈ I. The game
is repeated in discrete time and after each stage the previous profile of moves is
announced. Each player i knows her payoff function Gi : S = Si × S−i → R and
her observation is the vector of moves of her opponents, s−i ∈ S−i.
Fix i and let K = Si. Player i knows in particular after stage n his stage payoff
ωn = Gi(kn, s

−i
n ) as well as his vector payoff Un = Gi(., s−i

n ) ∈ R
K . The previous

process describes precisely the situation that a player faces in a repeated game
(with complete information and standard monitoring). She first has to choose her
action, then she discovers the profile played and can evaluate her regret.
Introduce zn = 1

n

∑n
m=1 sm ∈ Δ(S) with sm = {sjm}, j ∈ I which is the empirical

distribution of profile of moves up to stage n so that by linearity

R̄n = {Gi(k, z−i
n )−Gi(zn); k ∈ K}.

Then we can express the property on the payoffs as a property on the moves.
σ satisfies EC is equivalent to : zn → Hi a.s. with

Hi = {z ∈ Δ(S);Gi(k, z−i)−Gi(z) ≤ 0, ∀k ∈ K}.
Hi is the Hannan’s set of player i, Hannan (1957).
Similarly S̄n = S(zn) with

Sk,j(z) =
∑

�∈S−i

[Gi(j, 	)−Gi(k, 	)]z(k, 	)
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and σ satisfies IC is equivalent to zn → Ci a.s. with

Ci = {z ∈ Δ(S);Sk,j(z) ≤ 0, ∀k, j ∈ K}
This corresponds to the set of correlated distributions z where, for each move k ∈ Si,
k is a best reply of player i to the conditional distribution of z given k on S−i.
Note that ∩iC

i is the set of correlated equilibrium distributions, Aumann
(1974).
In particular the existence of internally consistent procedures will provide an al-
ternative proof of existence of correlated equilibrium distributions: consider any
accumulation point of a trajectory generated by players using IC procedures.

2.2. Smooth fictitious play.
We described here a procedure that will satisfies IC. There are two connections

with the previous section. First we will deduce properties of the random discrete
time process from properties of a deterministic continuous time counterpart. Second
the strategy is based on a smooth version of (DFP). Note that this procedure relies
only on the previous observations of the process {Un} and not on the moves of
the predictor, hence the regret needs not to be known, see Fudenberg and Levine
(1995).

Definition 2.3. A smooth perturbation of the payoff U is a map

V ε(x, U) = 〈x, U〉+ ερ(x),

with 0 < ε < ε0, such that:
(i) ρ : X → R is a C1 function with uniform norm ‖ρ‖ ≤ 1,
(ii) argmaxx∈XV ε(., U) reduces to one point and defines a continuous map brε :
U → X
called a smooth best reply function,
(iii) D1V

ε(brε(U), U).Dbrε(U) = 0
(for example D1U

ε(., U) is 0 at brε(U)).

A typical example is obtained via the entropy function

(2.1) ρ(x) = −
∑
k

xk log xk.

which leads to the smooth perturbed best reply function

(2.2) [brε(U)]k =
exp(Uk/ε)∑

j∈K exp(U j/ε)
.

Let
W ε(U) = max

x
V ε(x, U) = V ε(brε(U), U)

that is close to the largest component of U and will be the evaluation criteria. A
useful property is the following:

Lemma 2.1. (Fudenberg and Levine (1999))

DW ε(U) = brε(U).

Let us first consider external consistency.

Definition 2.4. A smooth fictitious play strategy σε associated to the smooth
best response function brε (in short a SFP(ε) strategy) is defined by:

σε(hn) = brε(Un).
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The corresponding discrete dynamics written in the spaces of both vectors and
outcomes is

(2.3) Un+1 − Un =
1

n+ 1
[Un+1 − Un].

(2.4) ωn+1 − ωn =
1

n+ 1
[ωn+1 − ωn].

with

(2.5) E(ωn+1|Fn) = 〈brε(Un), Un+1〉
which express the fact that the choice of the component of the unknown vector
Un+1 is done according to σε(hn) = brε(Un).

We now use the properties of Section 5 to obtain, following Benäım, Hofbauer
and Sorin (2006):

Lemma 2.2. The process (Un, ωn) is a Discrete Stochastic Approximation of
the differential inclusion with values in R

K × R

(2.6) (u̇, ω̇) ∈ {(U − u, 〈brε(u), U〉 − ω);U ∈ U}.

The main property of the continuous dynamics is given by:

Theorem 2.1. The set {(u, ω) ∈ U ×R : W ε(u)−ω ≤ ε} is a global attracting
set for the continuous dynamics.
In particular, for any η > 0, there exists ε̄ such that for ε ≤ ε̄, lim supt→∞ W ε(u(t))−
ω(t) ≤ η (i.e. continuous SFP(ε) satisfies η-consistency).

Proof. Let q(t) = W ε(u(t))− ω(t).
Taking time derivative one obtains, using the previous two Lemmas:

q̇(t) = DW ε(u(t)).u̇(t)− ω̇(t)

= 〈brε(u(t)), u̇(t)〉 − ω̇(t)

= 〈brε(u(t)), U − u(t)〉 − (〈brε(u(t)), U〉 − ω(t))

≤ −q(t) + ε.

so that q(t) ≤ ε+Me−t for some constant M . �

In particular we deduce from Theorem 5.3 properties of the discrete time pro-
cess:

Theorem 2.2. For any η > 0, there exists ε̄ such that for ε ≤ ε̄, SFP(ε) is η-
consistent.

Let us now consider internal consistency.
Define Ūn[k] as the average of Um on the dates 1 ≤ m ≤ n, where k was played.
σ(hn) is now an invariant measure for the matrix defined by the columns

{brε(Ūn[k])}k∈K .

Properties similar to the above shows that σ satisfies IC, see Benäım, Hofbauer and
Sorin (2006).

For general properties of global smooth fictitious play procedures, see Hofbauer
and Sandholm (2002).
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Aternative consistent procedures can be found in Hart and Mas Colell (2000, 2003),
see also Cesa-Bianchi and Lugosi (2006).

3. Best Reply and Average Replicator Dynamics

3.1. Presentation.
We follow here Hofbauer, Sorin and Viossat (2009).

Recall that in the framework of a symmetric 2 person game with K × K payoff
matrix A played within a single population, the replicator dynamics is defined
on the simplex Δ of RK by

(3.1) ẋk
t = xk

t

(
ekAxt − xtAxt

)
, k ∈ K (RD)

where xk
t denotes the frequency of strategy k at time t. It was introduced by Taylor

and Jonker (1978) as the basic selection dynamics for the evolutionary games of
Maynard Smith (1982).
In this framework the best reply dynamics is the differential inclusion on Δ

(3.2) żt ∈ BR(zt)− zt, t ≥ 0 (CBR)

which is the prototype of a population model of rational (but myopic) behaviour.
Despite the different interpretation and the different dynamic character there

are amazing similarities in the long run behaviour of these two dynamics, that have
been summarized in the following heuristic principle:
For many games, the long run behaviour (t → ∞) of the time averages Xt =
1
t

∫ t

0
xsds of the trajectories xt of the replicator equation is the same as for the BR

trajectories.
We provide here a rigorous statement that largely explains this heuristic by

showing that for any interior solution of (RD), for every t ≥ 0, xt is an approximate
best reply against Xt and the approximation gets better as t → ∞. This implies
that Xt is an asymptotic pseudo trajectory of (CBR), see section 5, and hence the
limit set of Xt has the same properties as a limit set of a true orbit of (CBR), i.e.
it is invariant and internally chain transitive under (CBR).
The main tool to prove this is via the logit map which is a canonical smoothing of
the best response correspondence. We show that xt equals the logit approximation
at Xt with error rate 1

t .

3.2. Unilateral processes.
The model will be in the framework of an I-person game but we consider the

dynamics for one player, without hypotheses on the behavior of the others. The
framework is unilateral, as in the previous section, but now in continuous time.
Hence, from the point of view of this player, she is facing a (measurable) vector
outcome process U = {Ut, t ≥ 0}, with values in the cube C = [−c, c]K where K is
her move set and c is some positive constant. Uk

t is the payoff at time t if k is the

move at that time. The cumulative vector outcome up to stage t is St =
∫ t

0
Usds

and its time average is denoted Ūt =
1
tSt.

br denotes the (payoff based) best reply correspondence from C to Δ defined by

br(U) = {x ∈ Δ; 〈x, U〉 = max
y∈Δ

〈y, U〉}.

The U-best reply process (CBR) is defined on Δ by

(3.3) Ẋt ∈ [br(Ūt)−Xt].
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The U-replicator process (RP) is specified by the following equation on Δ:

(3.4) ẋk
t = xk

t [U
k
t − 〈xt, Ut〉], k ∈ K.

Explicitly, in the framework of an I-player game with payoff for player 1 defined
by a function G from

∏
i∈I S

i to R, with Xi = Δ(Si), U is the vector payoff i.e.

Ut = G(., x−1
t ).

If all the players follow a (payoff based) continuous time correlated fictitious play
dynamics, each time average strategy satisfies (3.3).
If all the players follow the replicator dynamics then (3.4) is the replicator dynamics
equation.

3.3. Logit rule and perturbed best reply.
Define the map L from R

K to Δ by

(3.5) Lk(V ) =
expV k∑
j expV

j
.

Given η > 0, let [br]η be the correspondence from C to Δ with graph being the
η-neighborhood for the uniform norm of the graph of br.
The L map and the br correspondence are related as follows:

Proposition 3.1. For any U ∈ C and ε > 0

L(U/ε) ∈ [br]η(ε)(U)

with η(ε) → 0 as ε → 0.

Remarks. L is also given by

L(V ) = argmaxx∈Δ{〈x, V 〉 −
∑
k

xk log xk}.

Hence introducing the (payoff based) perturbed best reply brε from C to Δ defined
by

brε(U) = argmaxx∈Δ{〈x, U〉 − ε
∑
k

xk log xk}

one has L(U/ε) = brε(U).
The map brε is the logit approximation, see (2.2).

3.4. Explicit representation of the replicator process.
The following procedure has been introduced in discrete time in the framework

of on-line algorithms under the name “multiplicative weight algorithm”, Little-
stone and Warmuth (1994). We use here the name (CEW) (continuous exponential
weight) for the process defined, given U , by

xt = L(

∫ t

0

Usds).

The main property of (CEW) that will be used is that it provides an explicit solution
of (RP).

Proposition 3.2. (CEW ) satisfies (RP ).
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Proof. Straightforward computations lead to

ẋk
t = xk

tU
k
t − xk

t

∑
j

U j
t exp

∫ t

0
U j
vdv∑

j exp
∫ t

0
U j
vdv

which is
ẋk
t = xk

t [U
k
t − 〈xt, Ut〉]

hence gives the previous (RP) equation (3.4). �
The link with the best reply correspondence is the following:

Proposition 3.3. (CEW ) satisfies

xt ∈ [br]δ(t)(Ūt)

with δ(t) → 0 as t → ∞.

Proof. Write

xt = L(

∫ t

0

Usds) = L(t Ūt).

Then
xt = L(U/ε) ∈ [br]η(ε)(U)

with U = Ūt and ε = 1/t, by Proposition 3.1. Let then δ(t) = η(1/t). �
We describe here the consequences for the time average process. Define

Xt =
1

t

∫ t

0

xsds.

Proposition 3.4. If xt follows (CEW) then Xt satisfies

(3.6) Ẋt ∈
1

t
([br]δ(t)(Ūt)−Xt).

with δ(t) → 0 as t → ∞.

Proof. One has, taking derivatives:

tẊt +Xt = xt

and the result follows from the properties of xt. �
3.5. Consequences for games.
Consider a 2 person (bimatrix) game (A,B).

If the game is symmetric this gives rise to the single population replicator dynamics
(RD) and best reply dynamics (BRD) as defined in section 1.
Otherwise, we consider the two population replicator dynamics

(3.7) ẋk
t = xk

t

(
ekAyt − xtAyt

)
, k ∈ S1

ẏkt = ykt
(
xtBek − xtByt

)
, k ∈ S2

and the corresponding BR dynamics as in (3).
Let M be the state space (a simplex Δ or a product of simplices Δ1×Δ2). We now
use the previous results with the process U being defined by Ut = Ayt for player 1,
hence Ūt = AYt. Note that br(AY ) = BR1(Y ).

Proposition 3.5. The limit set of every replicator time average process Xt

starting from an initial point x0 ∈ M is a closed subset of M which is invariant
and internally chain transitive under (CBR).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

100 SYLVAIN SORIN

Proof. Equation (3.6) implies that Xt satisfies a perturbed version of (CFP)
hence Xet is a perturbed solution to the differential inclusion (CBR), according to
Section 5 and Theorems 5.1 and 5.2 apply. �

In particular this implies:

Proposition 3.6. Let A be the global attractor (i.e., the maximal invariant
set) of (CBR). Then the limit set of every replicator time average process Xt is a
subset of A.

3.6. External consistency.
The natural continuous time counterpart of the (discrete time) notion is the

following: a procedure satisfies external consistency if for each process U taking
values in R

K , it produces a process xt ∈ Δ, such that for all k∫ t

0

[Uk
s − 〈xs, Us〉]ds ≤ Ct = o(t)

where, using a martingale argument, we have replaced the actual random payoff
at time s by its conditional expectation 〈xs, Us〉. This property says that the
(expected) average payoff induced by xt along the play is asymptotically not less
than the payoff obtained by any fixed choice k ∈ K.

Proposition 3.7. (RP ) satifies external consistency.

Proof. By integrating equation (3.4), one obtains, on the support of x0:∫ t

0

[Uk
s − 〈xs, Us〉]ds =

∫ t

0

ẋk
s

xk
s

ds = log(
xk
t

xk
0

) ≤ − log xk
0 .

�

This result is the unilateral analog of the fact that interior rest points of (RD)
are equilibria. A myopic unilateral adjustment process provides asymptotic optimal
properties in terms of no regret.

Back to a game framework this implies that if player 1 follows (RP ) the set of
accumulation points of the empirical correlated distribution process will belong to
her reduced Hannan set:

H̄1 = {θ ∈ Δ(S);G1(k, θ−1) ≤ G1(θ), ∀k ∈ S1}

with equality for at least one component.
The example due to Viossat (2007, 2008) of a game where the limit set for the
replicator dynamics is disjoint from the unique correlated equilibrium shows that
(RP ) does not satisfy internal consistency.
This later property uses additional information that is not taken into account in
the replicator dynamics. This topic deserves further study.

3.7. Comments.
We can now compare several processes in the spirit of (payoff based) fictitious

play.
The original fictitious play process (I) is defined by

xt ∈ br(Ūt)
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The corresponding time average satisfies (CFP ).
With a smooth best reply process one has (II)

xt = brε(Ūt)

and the corresponding time average satisfies a smooth fictitious play process.
Finally the replicator process (III) satisfies

xt = br1/t(Ūt)

and the time average follows a time dependent perturbation of the fictitious play
process.

While in (I), the process xt follows exactly the best reply correspondence, the
induced average Xt does not have good unilateral properties.
One the other hand for (II), Xt satisfies a weak form of external consistency, with
an error term α(ε) vanishing with ε.
In contrast, (III) satisfies exact external consistency due to a both smooth and
time dependent approximation of br.

4. General Adaptive Dynamics

We consider here random processes corresponding to adaptive behavior in re-
peated interactions.
The analysis is done from the point of view of one player, having a finite set K of
actions. Time is discrete and the behavior of the player depends upon a parameter
z ∈ Z.
At stage n, the state is zn−1 and the process is defined by two functions:
a decision map σ from Z to Δ(K) (the simplex on K) defining the law πn of the
current action kn as a function of the parameter:

πn = σ(zn−1)

and given the observation ωn of the player, after the play at stage n, an updating
rule for the state variable, that depends upon the stage:

zn = Φn(zn−1, ωn).

Remark
Note that the decision map is stationary but that the updating rule may depend
upon the stage.
A typical assumption in game theory is that the player knows his payoff function
G : K ×L → R and that the observation ω is the vector of moves of his opponents,
	 ∈ L. In particular ωn contains the stage payoff gn = G(kn, 	n) as well as the
vector payoff Un = G(., 	n) ∈ R

K .

Example 1: Fictious Play
The state space is usually the empirical distribution of actions of the opponents
but one can as well take ωn = Un, the vector payoff, then zn = Un is the average
vector payoff thus satisfies:

zn =
(n− 1)zn−1 + Un

n
and

σ(z) ∈ BR(z) or σ(z) = BRε(z).
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Example 2: Potential regret dynamics
Here

Rn = Un − gn1

is the “regret vector” at stage n and the updating rule zn = Φn(zn−1, ωn) is simply

zn = Rn.

Choose P to be a “potential function” for the negative orthant D = R
K
− and for

z /∈ D let σ(z) be proportional to ∇P (z).

Example 3: Cumulative proportional reinforcement
The observation ωn is only the stage payoff gn (we assume all payoffs ≥ 1).
The updating rule is

zkn = zkn−1 + gn I{kn=k}

and the decision map is σ(z) proportional to the vector z.
There is an important literature on such reinforcement dynamics, see e.g. Beggs
(2005), Börgers, Morales and Sarin (2004), Börgers and Sarin (1997), Hopkins
(2002), Hopkins and Posch (2005), Laslier, Topol and Walliser (2001), Leslie and
Collins (2005), Pemantle (2007), Posch (1997).

Note that these three procedures can be written as

zn =
(n− 1)zn−1 + vn

n

where vn is a random variable depending on the action(s) 	 of the opponent(s) and
on the action kn having distribution σ(zn−1). Thus

zn − zn−1 =
1

n
[vn − zn−1].

Write

vn = Eπn
(vn|z1, ..., zn−1) + [vn − Eπn

(vn|z1, ..., zn−1)]

and define

S(zn−1) = Co{Eπn
(vn|z1, ..., zn−1); 	 ∈ L}

where Co stands for the convex hull. Thus

zn − zn−1 ∈ 1

n
[S(zn−1)− zn−1].

The differential inclusion is

(4.1) ż ∈ S(z)− z

and the process zn is a Discrete Stochastic Approximation of (4.1), see section 5.

For further results with explicit applications of this procedure see e.g. Hof-
bauer and Sanholm (2002), Benäım, Hofbauer and Sorin (2006), Cominetti, Melo
and Sorin (2010).

In conclusion, a large class of adaptive dynamics can be expressed in discrete
time as a random difference equation with vanishing step size. Information on the
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asymptotic behavior can then be obtained by studing the continuous time deter-
ministic analog obtained as above.

5. Stochastic Approximation for Differential Inclusions

We summarize here results from Benäım, Hofbauer and Sorin (2005).

5.1. Differential inclusions.
Given a correspondence F from R

m to itself, consider the differential inclusion

ẋ ∈ F (x) (I)

It induces a set-valued dynamical system {Φt}t∈R defined by

Φt(x) = {x(t) : x is a solution to (I) with x(0) = x}.
We also write x(t) = φt(x).

Definition 5.1.
1) x is a rest point if 0 ∈ F (x).
2) A set C is strongly forward invariant (SFI) if Φt(C) ⊂ C for all t ≥ 0.
3) C is invariant if for any x ∈ C there exists a complete solution: φt(x) ∈ C for
all t ∈ R.
4) C is Lyapounov stable if: ∀ε > 0, ∃δ > 0 such that d(y, C) ≤ δ implies
d(Φt(y), C) ≤ ε for all t ≥ 0, i.e.

Φ[0,+∞)(C
δ) ⊂ Cε.

5) C is a sink if there exists δ > 0 such that for any y ∈ Cδ and any φ:

d(φt(y), C) → 0 as t → ∞.

A neighborhood U of C having this property is called a basin of attraction of C.
6) C is attracting if it is compact and the previous property is uniform. Thus there
exist δ > 0, ε0 > 0 and a map T : (0, ε0) → R

+ such that: for any y ∈ Cδ, any
solution φ, φt(y) ∈ Cε for all t ≥ T (ε), i.e.

Φ[T (ε),+∞)(C
δ) ⊂ Cε, ∀ε ∈ (0, ε0).

A neighborhood U of C having this property is called a uniform basin of attraction
of C and we will write (C;U) for the couple.
7) C is an attractor if it is attracting and invariant.
8) C is forward precompact if there exists a compact K and a time T such that
Φ[T,+∞)(C) ⊂ K.
9) The ω-limit set of C is defined by

(5.1) ωΦ(C) = ∩s≥0∪y∈C ∪t≥s Φt(y) = ∩s≥0Φ[s,+∞)(C)

where A denotes the closure of the set A.

Definition 5.2.
i) Given a closed invariant set L, the induced set-valued dynamical system ΦL is
defined on L by

ΦL
t (x) = {x(t) : x is a solution to (I) with x(0) = x and x(R) ⊂ L}.

Note that L = ΦL
t (L) for all t.

ii) Let A ⊂ L be an attractor for ΦL. If A �= L and A �= ∅, then A is a proper
attractor.
An invariant set L is attractor free if ΦL has no proper attractor.
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5.2. Attractors.
The next notion is fondamental in the analysis.

Definition 5.3.
C is asymptotically stable if it has the following properties
i) invariant
ii) Lyapounov stable
iii) sink.

Proposition 5.1. Assume C compact. Attractor is equivalent to asymptoti-
cally stable.

Proposition 5.2. Let A be a compact set, U be a relatively compact neighbor-
hood and V a function from U to R

+. Consider the following properties
i) U is (SFI)
ii) V −1(0) = A
iii) V is continuous and strictly decreasing on trajectories on U \A:

V (x) > V (y), ∀x ∈ U \A, ∀y ∈ φt(x), ∀t > 0

iv) V is upper semi continuous and strictly decreasing on trajectories on U \A.
a) Then under i), ii) and iii) A is Lyapounov stable and (A;U) is attracting.
b) Under i), ii) and iv), (B;U) is an attractor for some B ⊂ A.

Definition 5.4.
A real continuous function V on U open in R

m is a Lyapunov function for A ⊂ U
if : V (y) < V (x) for all x ∈ U \ A, y ∈ φt(x), t > 0; and V (y) ≤ V (x) for all
x ∈ A, y ∈ φt(x) and t ≥ 0.
Note that for each solution φ, V is constant along its limit set

L(φ)(x) = ∩s≥0φ[s,+∞)(x).

Proposition 5.3. Suppose V is a Lyapunov function for A. Assume that V (A)
has empty interior. Let L be a non empty, compact, invariant and attractor free
subset of U . Then L is contained in A and V is constant on L.

5.3. Asymptotic pseudo-trajectories and internally chain transitive
sets.

5.3.1. Asymptotic pseudo-trajectories.

Definition 5.5. The translation flow Θ : C0(R,Rm) × R → C0(R,Rm) is
defined by

Θt(x)(s) = x(s+ t).

A continuous function z : R+→R
m is an asymptotic pseudo-trajectory (APT) for Φ

if for all T

(5.2) lim
t→∞

inf
x∈Sz(t)

sup
0≤s≤T

‖z(t+ s)− x(s)‖ = 0.

where Sx denotes the set of all solutions of (I) starting from x at 0 and S =⋃
x∈RmSx.

In other words, for each fixed T , the curve: s → z(t+ s) from [0, T ] to R
m shadows

some trajectory for (I) of the point z(t) over the interval [0, T ] with arbitrary
accuracy, for sufficiently large t. Hence z has a forward trajectory under Θ attracted
by S. One extends z to R by letting z(t) = z(0) for t < 0.
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5.3.2. Internally chain transitive sets.
Given a set A ⊂ R

m and x, y ∈ A, we write x →A y if for every ε > 0 and
T > 0 there exists an integer n ∈ IN, solutions x1, . . . ,xn to (I), and real numbers
t1, t2, . . . , tn greater than T such that
a) xi(s) ∈ A for all 0 ≤ s ≤ ti and for all i = 1, . . . , n,
b) ‖xi(ti)− xi+1(0)‖ ≤ ε for all i = 1, . . . , n− 1,
c) ‖x1(0)− x‖ ≤ ε and ‖xn(tn)− y‖ ≤ ε.
The sequence (x1, . . . ,xn) is called an (ε, T ) chain (in A from x to y) for (I).

Definition 5.6.
A set A ⊂ R

m is internally chain transitive (ICT) if it is compact and x →A y for
all x, y ∈ A.

Lemma 5.1. An internally chain transitive set is invariant.

Proposition 5.4. Let L be internally chain transitive. Then L has no proper
attracting set for ΦL.

This (ICT) notion of recurrence due to Conley (1978) for classical dynamical
systems is well suited to the description of the asymptotic behavior of APT, as
shown by the following theorem. Let

L(z) =
⋂
t≥0

{z(s) : s ≥ t}

be the limit set.

Theorem 5.1. Let z be a bounded APT of (I). Then L(z) is internally chain
transitive.

5.4. Perturbed solutions.
The purpose of this paragraph is to study trajectories which are obtained as

(deterministic or random) perturbations of solutions of (I).
5.4.1. Perturbed solutions.

Definition 5.7.
A continuous function y : R+ = [0,∞) → R

m is a perturbed solution to (I) if it
satisfies the following set of conditions (II):
i) y is absolutely continuous.
ii) There exists a locally integrable function t �→ U(t) such that

lim
t→∞

sup
0≤v≤T

∥∥∥∥
∫ t+v

t

U(s) ds

∥∥∥∥ = 0

for all T > 0
iii)

dy(t)

dt
− U(t) ∈ F δ(t)(y(t))

for almost every t > 0, for some function δ : [0,∞) → R with δ(t) → 0 as t → ∞.

Here F δ(x) := {y ∈ R
m : ∃z : ‖z − x‖ < δ, d(y, F (z)) < δ}.

The aim is to investigate the long-term behavior of y and to describe its limit
set L(y) in terms of the dynamics induced by F .

Theorem 5.2. Any bounded solution y of (II) is an APT of (I).
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5.4.2. Discrete stochastic approximation.
As will be shown here, a natural class of perturbed solutions to F arises from certain
stochastic approximation processes.

Definition 5.8.
A discrete time process {xn}n∈IN with values in R

m is a solution for (III) if it
verifies a recursion of the form

xn+1 − xn − γn+1Un+1 ∈ γn+1F (xn), (III)

where the characteristics γ and U satisfy
i) {γn}n≥1 is a sequence of nonnegative numbers such that∑

n

γn = ∞, lim
n→∞

γn = 0;

ii) Un ∈ R
m are (deterministic or random) perturbations.

To such a process is naturally associated a continuous time process as follows.

Definition 5.9.
Let τ0 = 0 and τn =

∑n
i=1 γi for n ≥ 1, and define the continuous time affine

interpolated process w : R+ → R
m by

w(τn + s) = xn + s
xn+1 − xn

τn+1 − τn
, s ∈ [0, γn+1). (IV )

5.5. From interpolated process to perturbed solutions.
The next result gives sufficient conditions on the characteristics of the discrete

process (III) for its interpolation (IV ) to be a perturbed solution (II).
If (Ui) are random variables, assumptions (i) and (ii) below hold with probability
one.

Proposition 5.5. Assume that the following hold:
(i) For all T > 0

lim
n→∞

sup

{∥∥∥∥∥
k−1∑
i=n

γi+1Ui+1

∥∥∥∥∥ : k = n+ 1, . . . ,m(τn + T )

}
= 0,

where

(5.3) m(t) = sup{k ≥ 0 : t ≥ τk};
(ii) supn ‖xn‖ = M < ∞.
Then the interpolated process w is a perturbed solution of (I).

We describe now sufficient conditions.
Let (Ω,Ψ, P ) be a probability space and {Ψn}n≥0 a filtration of Ψ (i.e., a non-
decreasing sequence of sub-σ-algebras of Ψ). A stochastic process {xn} given by
(III) satisfies the Robbins–Monro condition with martingale difference noise if its
characteristics satisfy the following:
i) {γn} is a deterministic sequence.
ii) {Un} is adapted to {Ψn}, which means that Un is measurable with respect to
Ψn for each n ≥ 0.
iii) E(Un+1 | Ψn) = 0.
The next proposition is a classical estimate for stochastic approximation processes.
Note that F does not appear, see Benäım (1999) for a proof and further references.
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Proposition 5.6. Let {xn} given by (III) be a Robbins–Monro process. Sup-
pose that for some q ≥ 2

sup
n

E(‖Un‖q) < ∞

and ∑
n

γ1+q/2
n < ∞.

Then assumption (i) of Proposition 5.5 holds with probability 1.

Remark. Typical applications are
i) Un uniformly bounded in L2 and γn = 1

n ,

ii) Un uniformly bounded and γn = o( 1
log n ).

5.6. Main result.
Consider a random discrete process defined on a compact subset of RK and

satisfying the differential inclusion :

Yn − Yn−1 ∈ an[T (Yn−1) +Wn]

where
i) T is an u.s.c. correspondence with compact convex values
ii) an ≥ 0,

∑
n an = +∞,

∑
n a

2
n < +∞

iii) E(Wn|Y1, ..., Yn1
) = 0.

Theorem 5.3. The set of accumulation points of {Yn} is almost surely a com-
pact set, invariant and attractor free for the dynamical system defined by the dif-
ferential inclusion:

Ẏ ∈ T (Y ).
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