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1 Preliminaries

In repeated games where the payoff is accumulated along the play, the players face
a problem since they have to take into account the impact of their choices both on
the current payoff and on the future of the game.

When considering long games this leads to two alternative cases. Whenever
the previous problem can be solved in a “robust” way the game possesses a uni-
form value. In the other situation optimal strategies are very sensitive to the exact
specification of the duration of the process. The asymptotic approach consists in
studying the values of games with finite expected length along a sequence with
length going to infinity and the questions are then the existence of a limit and its
dependence w.r.t. the sequence.

A typical example is the famous Big Match (Blackwell and Ferguson, 1968)
described by the following matrix:

α β

a 1∗ 0∗

b 0 1

This corresponds to a stochastic game where, as soon as Player 1 plays a, the game
reaches an absorbing state with a constant payoff corresponding to the entry played
at that stage. Both the n-stage value vn and the λ-discounted value vλ are equal to
1/2 and are also independent of the additional information transmitted along the
play to the players. Moreover, under standard signaling (meaning that the past play
is public knowledge), or with only known past payoffs, the uniform value exists.

∗Prepared for a plenary lecture at the International Symposium on Dynamic Games and
Applications, Adelaide, Australia, December 18-21, 2000.
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This is no longer the case with general signals: for example, when Player 1 has no
information on Player 2’s moves the max min is 0 (Kohlberg, 1974). It follows that
the existence of a uniform value for stochastic games depends on the signalling
structure on moves (Mertens and Neyman, 1981; Coulomb, 1992, 1999, 2001).
On the other hand, the asymptotic behavior does not (Shapley, 1953).

We now describe more precisely the model of two-person zero-sum repeated
game $ that we consider. We are given a parameter space M and a function g from
I×J×M to R: for each m∈M this defines a two-person zero-sum game with action
spaces I and J for players 1 and 2 respectively and payoff function g. To simplify
the presentation we will first consider the case where all sets are finite, avoiding
measurability issues. The initial parameter m1 is chosen at random and the players
receive some initial information about it, say a1 (resp. b1) for Player 1 (resp.
Player 2). This choice is performed according to some probability π on M×A×B,
where A and B are the signal sets of each player. In addition, after each stage the
players obtain some further information about the previous choice of actions and
both the previous and the current values of the parameter. This is represented by a
map Q from M×I×J to probabilities on M×A×B. At stage t given the state mt

and the moves (it , jt ), a triple (mt+1, at+1, bt+1) is chosen at random according
to the distribution Q(mt , it , jt ). The new parameter is mt+1, and the signal at+1
(resp. bt+1) is transmitted to Player 1 (resp. Player 2). A play of the game is thus a
sequence m1, a1, b1, i1, j1, m2, a2, b2, i2, j2, . . . while the information of Player
1 before his play at stage t is a private history of the form (a1, i1, a2, i2, . . ., at ) and
similarly for Player 2. The corresponding sequence of payoffs is g1, g2, . . . with
gt = g(it , jt , mt ). (Note that it is not known to the players except if included in the
signals.)

A strategy σ for Player 1 is a map from private histories to '(I ), the space of
probabilities on the set I of actions and τ is defined similarly for Player 2. Such
a couple (σ, τ ) induces, together with the components of the game, π and Q, a
distribution on plays, hence on the sequence of payoffs.

There are basically two ways of handling the game repeated a large number of
times that are described as follows (see Aumann and Maschler, 1995, Mertens,
Sorin and Zamir, 1994):

1) The first one corresponds to the “compact case”. One considers a sequence
of evaluations of the stream of payoffs converging to the “uniform distribution on
the set of integers, N”. For each specific evaluation, under natural assumptions on
the action spaces and on the reward and transition mappings, the strategy spaces
will be compact for a topology for which the payoff function will be continuous,
hence the value will exist.

Two typical examples correspond to:
1.1) the finite n-stage game $n with payoff given by the average of the first n

rewards:

γn(σ, τ ) = Eσ,τ

(

1
n

∑n

t=1
gt

)

.
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In the finite case (all sets considered being finite), this reduces to a game with
finitely many pure strategies.

1.2) the λ-discounted game $λ with payoff equal to the discounted sum of the
rewards:

γλ(σ, τ ) = Eσ,τ

(

∑∞
t=1

λ(1 − λ)t−1gt

)

.

The values of these games are denoted by vn and vλ respectively. The study of their
asymptotic behavior, as n goes to ∞ or λ goes to 0 is the study of the asymptotic
game.

Extensions consider games with random duration or random duration process
(Neyman, 2003, Neyman and Sorin, 2001).

2) An alternative analysis considers the whole family of “long games”. It does
not specify payoffs in some infinite game like lim inf 1

n

∑n
t=1gt or a measurable

function defined on plays (see Maitra and Sudderth, 1998), but requires uniformity
properties of the strategies.

Explicitly, v is the maxmin if the two following conditions are satisfied:

- Player 1 can guarantee v: for any ε > 0, there exists a strategy σ of Player
1 and an integer N such that for any n ≥ N and any strategy τ of Player 2:

γn(σ, τ ) ≥ v − ε.

(It follows from the uniformity in τ that if Player 1 can guarantee f both
lim infn→∞ vn and lim infλ→0 vλ will be greater than f .)

- Player 2 can defend v: for any ε > 0 and any strategy σ of Player 1, there
exist an integer N and a strategy τ of Player 2 such that for all n≥N :

γn(σ, τ ) ≤ v + ε.

(Note that to satisfy this requirement is stronger than to contradict the previous
condition; hence the existence of v is an issue.)

A dual definition holds for the minmax v. Whenever v = v, the game has
a uniform value, denoted by v∞. Remark that the existence of v∞ implies:

v∞ = lim
n→∞

vn = lim
λ→0

vλ.

We will be concerned here mainly with the asymptotic approach that relies more
on the recursive structure and the related value operator and less on the construction
of strategies. We will describe several recent ideas and results: the extension and
the study of the Shapley operator, the variational approach to the asymptotic game,
the use of the dual game, the limit game and the relation with differential games
of fixed duration.



70 S. Sorin

2 The Operator Approach

In this section the games are analyzed through the recursive relations that basically
extend the dynamic programming principle.

2.1 Operators and Games

2.1.1 Stochastic Games and Shapley Operator

Consider a stochastic game with parameter space +, action spaces I and J and
real bounded payoff function g from +×I×J . This corresponds to the model of
Section 1 with M = + and where the initial probability π is the law of a parameter
ω1 announced to both. In addition at each stage t + 1, the transition Q(·|ωt , it , jt )

determines the new parameter ωt+1 and the signal for each player at+1 or bt+1
contains at least the information ωt+1. It follows that + will be the natural state
space on which vn and vλ are defined.

Explicitly, let X = '(I ) and Y = '(J ) and extend by bilinearity g and Q to
X×Y . The Shapley (1953) operator - acts on the set F of real bounded measurable
functions f on + as follows:

-(f )(ω) = valX×Y

{

g(ω, x, y) +
∫

+
f (ω′)Q(dω′|ω, x, y)

}

(1)

where valX×Y stands for the value operator:

valX×Y = max
X

min
Y

= min
Y

max
X

.

A basic property is that - is non-expansive on F endowed with the uniform norm:

‖-(f ) − -(g)‖ ≤ ‖f − g‖ = sup
ω∈+

|f (ω) − g(ω)|.

- determines the family of values through:

nvn = -n(0),
vλ

λ
= -

(

(1 − λ)
vλ

λ

)

. (2)

The same relations hold for general state and action spaces when dealing with a
complete subspace of F on which - is well defined and which is stable under -.

2.1.2 Non-expansive Mappings

The asymptotic approach of the game is thus related to the following problems:
given T a non-expansive mapping on a linear normed space Z, study the iterates
T n(0)/n = vn as n goes to ∞ and the behavior of λzλ = vλ, where zλ is the fixed
point of the mapping z +→T ((1 − λ)z), as λ goes to 0.
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Kohlberg and Neyman (1981) proved the existence of a linear functional, f , of
norm 1 on Z such that:

lim
n→∞

f (vn) = lim
n→∞

‖vn‖ = lim
λ→0

f (vλ) = lim
λ→0

‖vλ‖ = inf
z∈Z

‖T (z) − z‖ (3)

Then they deduce that if Z is reflexive and strictly convex, there is weak conver-
gence to one point, and if the dual space Z∗ has a Frechet differentiable norm, the
convergence is strong.

In our framework the norm is the uniform norm on a space of real bounded
functions and is not strictly convex, see however section 5.3.

Neyman (2003) proved that if vλ is of bounded variation in the sense that for
any sequence λi decreasing to 0,

∑

i

‖vλi+1 − vλi ‖ < ∞, (4)

then limn→∞ vn = limλ→0 vλ.

2.1.3 ε-Weighted and Projective Operators

Back to the framework of Section 2.1.1, it is also natural to introduce the ε-weighted
operator:

.(ε, f )(ω) = valX×Y

{

εg(ω, x, y) + (1 − ε)

∫

+
f (ω′)Q(dω′|ω, x, y)

}

,

(5)

related to the initial Shapley operator by:

.(ε, f ) = ε-

(

(1 − ε)f

ε

)

. (6)

Then one has:

vn = . ((1/n), vn−1) , vλ = .(λ, vλ) (7)

which are the basic recursive equations for the values. The asymptotic study relies
thus on the behavior of .(ε, ·), as ε goes to 0. Obviously, if vn or vλ converges
uniformly, the limit w will satisfy:

w = .(0, w) (8)

hence .(ε, ·) also appears as a perturbation of the “projective” operator P which
gives the evaluation today of the payoff f tomorrow:

P(f )(ω) = .(0, f )(ω) = valX×Y

∫

+
f (ω′)Q(dω′|ω, x, y). (9)
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Explicitly, one has

.(ε, f )(ω) = valX×Y

{
∫

+
f (ω′)Q(dω′|ω, x, y) + εh(ω, x, y)

}

, (10)

with h(ω, x, y) = g(ω, x, y) −
∫

+ f (ω′)Q(dω′|ω, x, y).
One can also consider .(0, f ) as a function of - defined by:

.(0, f )(ω) = lim
ε→0

ε-

(

(1 − ε)

ε
f

)

(ω) = lim
ε→0

ε-

(

f

ε

)

(ω) (11)

thus .(0, .) is the recession operator associated to -. Note that this operator is
independent of g and relates to the stochastic game only through the transition Q.

2.1.4 Games with Incomplete Information

A similar representation is available in the framework of repeated games with
incomplete information, Aumann and Maschler (1995).

We will describe here the simple case of independent information and standard
signaling. In the setup of Section 1, the parameter space M is a product K×L

endowed with a product probability π = p ⊗ q ∈'(K)×'(L) and the initial
signals are a1 = k1, b1 = /1. Hence the players have partial private information
on the parameter (k1, /1). This one is fixed for the duration of the play ((kt , /t ) =
(k1, /1)) and the signals to the players reveal the previous moves at+1 = bt+1 =
(it , jt ). A one-stage strategy of Player 1 is an element x in X = '(I )K (resp. y in
Y = '(J )L for Player 2).

We represent now this game as a stochastic game. The basic state space is
χ = '(K)×'(L) and corresponds to the beliefs of the players on the param-
eter along the play. The transition is given by a map 1 from χ×X×Y to prob-
abilities on χ with 1((p(i), q(j))|(p, q), x, y) = x(i)y(j), where p(i) is the
conditional probability on K given the move i and x(i) the probability of this
move (and similarly for the other variable). Explicitly: x(i) =

∑

kp
kxk

i and
pk(i) = (pkxk

i )/(x(i)). - is now an operator on the set of real bounded saddle
(concave/convex) functions on χ , Rosenberg and Sorin (2001):

-(f )(p, q) = valX×Y

{

g(p, q, x, y) +
∫

χ
f (p′, q ′)1(d(p′, q ′)|(p, q), x, y)

}

(12)

with g(p, q, x, y) =
∑

k,/p
kq/g

(

k, /, xk, y/
)

. Then one establishes recursive for-
mula for vn and vλ, Mertens, Sorin and Zamir (1994), similar to the ones described
in section 2.1.1.

Note that by the definition of 1, the state variable is updated as a function of
the one-stage strategies of the players, which are not public information during
the play. The argument is thus first to prove the existence of a value (vn or vλ) and



New Approaches and Recent Advances 73

then using the minmax theorem to construct an equivalent game, in the sense of
having the same sequence of values, in which one-stage strategies are announced.
This last game is now reducible to a stochastic game.

2.1.5 General Recursive Structure

More generally a recursive structure holds for games described in Section 1 and
we follow the construction in Mertens, Sorin and Zamir (1994), Sections III.1,
III.2, IV.3.

Consider for example a game with lack of information on one side (described
as in Section 2.1.4 with L of cardinal 1) and with signals so that the conditional
probabilities of Player 2 on the parameter space are unknown to Player 1, but
Player 1 has probabilities on them. In addition Player 2 has probabilities on those
beliefs of Player 1 and so on.

The recursive structure thus relies on the construction of the universal belief
space, Mertens and Zamir (1985), that represents this infinite hierarchy of beliefs:
2 = M×31×32, where 3i , homeomorphic to '(M×3−i ), is the type set of
Player i, The signaling structure in the game, just before the moves at stage t ,
describes an information scheme that induces a consistent distribution on 2. This is
referred to as the entrance law Pt∈'(2). The entrance law Pt and the (behavioral)
strategies at stage t (say αt and βt ) from type set to mixed move set determine
the current payoff and the new entrance law Pt+1 = H(Pt , αt , βt ). This updating
rule is the basis of the recursive structure. The stationary aspect of the repeated
game is expressed by the fact that H does not depend on t . The Shapley operator
is defined on the set of real bounded functions on '(2) by:

-(f )(P) = sup
α

inf
β

{g(P, α, β) + f (H(P, α, β))} ,

(there is no indication at this level that sup inf commutes for all f ) and the usual
relations hold, see Mertens, Sorin and Zamir (1994) Section IV.3:

(n + 1)vn+1(P) = valα×β {g(P, α, β) + nvn(H(P, α, β))} ,

vλ(P) = valα×β {λg(P, α, β) + (1 − λ)vλ(H(P, α, β))} ,

where valα×β = supα infβ = infβ supα is the value operator for the “one stage
game on P”.

We have here a “deterministic” stochastic game: in the framework of a regular
stochastic game, it would correspond to working at the level of distributions on
the state space, '(+).

2.2 Variational Inequalities

We use here the previous formulations to obtain properties on the asymptotic
behavior of the values, following Rosenberg and Sorin (2001).
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2.2.1 A Basic Inequality

We first introduce sets of functions that will correspond to upper and lower bounds
on the sequences of values. This allows us, for certain classes of games, to identify
the asymptotic value through variational inequalities. The starting point is the next
inequality.

Given δ > 0, assume that the function f from + to R satisfies, for all R large
enough

-(Rf ) ≤ (R + 1)f + δ.

This gives -(R(f + δ)) ≤ (R + 1)(f + δ) and implies:

lim sup
n→∞

vn ≤ f + δ,

as well as

lim sup
λ→0

vλ ≤ f + δ.

In particular iff belongs to the setC+ of functions satisfying the stronger condition:
for all δ > 0 there exists Rδ such that R ≥ Rδ implies

-(Rf ) ≤ (R + 1)f + δ (13)

and one obtains that both lim supn→∞ vn and lim supλ→0 vλ are less than f .

2.2.2 Finite State Space

We first apply the above results to absorbing games: these are stochastic games
where all states except one are absorbing, hence the state can change at most once.
It follows that the study on + can be reduced to that at one point. In this case, one
has easily:

i) -(f ) ≤ ‖g‖∞ + f ,
ii) -(Rf ) − (R + 1)f is strictly decreasing in f :

In fact, let g − f = d > 0, then

-(Rg) − -(Rf ) ≤ -(R(f + d)) − -(Rf ) ≤ Rd = (R + 1)(g − f ) − d,

so that

-(Rf ) − (R + 1)f − (-(Rg) − (R + 1)g) ≥ d,

iii) -(Rf ) − (R + 1)f is decreasing in R, for f ≥ 0:

-((R + R′)f ) − (R + R′ + 1)f ≤ -(Rf ) − (R + 1)f.
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Define C− in a way symmetric to (13). From i), ii) and iii), there exists an
element f ∈C+∩C− and it is thus equal to both limn→∞ vn and limλ→0 vλ. This
extends the initial proof of Kohlberg (1974).

In the framework of recursive games where the payoff in all non absorbing
states (say +0) is 0, the Shapley operator is defined on real functions f on +0
(with an obvious extension f to +) by:

-(f )(ω) = valX×Y

∫

+
f (ω′)Q(dω′|ω, x, y).

It follows that condition (13) reduces to

-(f ) ≤ f and moreover f (ω) < 0 implies -(f )(ω) < f (ω), (14)

which defines a set E+. Everett (1957) has shown that the closure of the set E+

and of its symmetric E− have a non-empty intersection from which one deduces
that limn→∞ vn = limλ→0 vλ exists and is the only element of this intersection.

A recent result of Rosenberg and Vieille (2000) drastically extends this property
to recursive games with lack of information on both sides. The proof relies on an
explicit construction of strategies. Let w an accumulation point of the family vλ

as λ goes to 0. Player 1 will play optimally in the discounted game with a small
discount factor if w is larger than ε > 0 at the current value of the parameter and
optimally in the projective game -(0, w) otherwise. The sub-martingale property
of the value function and a bound on the upcrossings of [0, ε] are used to prove
that lim infn→∞ vn ≥ w, hence the result.

2.2.3 Simple Convergence

More generally, when + is not finite, one can introduce the larger class of functions
S+ where in condition (13) only simple convergence is required:
for all δ > 0 and all ω, there exists Rδ,ω such that R ≥ Rδ,ω implies

-(Rf )(ω) ≤ (R + 1)f (ω) + δ (15)

or

θ+(f )(ω) = lim sup
R→∞

{-(Rf )(ω) − (R + 1)f (ω)} ≤ 0. (16)

In the case of continuous functions on a compact set +, an argument similar to
point ii) above implies that f + ≥ f − for any functions f +∈S+ and f −∈S−

(defined similarly with θ−(f −) ≤ 0). Hence the intersection of the closures of S+

and S− contains at most one point.
This argument suffices for the class of games with incomplete information on

both sides: any accumulation point w of the family vλ as λ→0 belongs to the
closure of S+, hence by symmetry the existence of a limit follows. A similar
argument holds for lim supn→∞ vn.
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In the framework of (finite) absorbing games with incomplete information on
one side, where the parameter is both changing and unknown, Rosenberg (2000)
used similar tools in a very sophisticated way to obtain the first general results of
existence of an asymptotic value concerning this class of games. First she shows
that any w as above belongs to the closure of S+. Then that at any point (p, q),
lim supλ→0 vλ(p, q) ≤ w(p, q) which again implies convergence. A similar anal-
ysis is done for limn→∞ vn.

Remarks

1) Many of the results above only used the following two properties of the
operator -, Sorin (2004):
- is monotonic
- reduces the constants: for all δ > 0, -(f + δ) ≤ -(f ) + δ.

2) The initial and basic proof of convergence of limλ→0 vλ for stochastic games
relies on the finiteness of the sets involved (+, I and J ). Bewley and Kohlberg
(1976a) used an algebraic approach and proved that vλ is an algebraic func-
tion of λ, from which existence of limλ→0 vλ and equality with limn→∞ vn

follows.
3) The results sketched above correspond to three levels of proofs:

a) The non emptiness of the intersection of the closure of C+ and C−. This
set contains then one point, namely limn→∞ vn = limλ→0 vλ.

b) For continuous functions on a compact set +: any accumulation point of
the family of values (as the length goes to ∞) belongs to the intersection
of the closures of S+ and S−, which contains at most one element.

c) A property of some accumulation point (related to S+ or S−) and a
contradiction if two accumulation points differ.

2.3 The Derived Game

We follow here Rosenberg and Sorin (2001). Still dealing with the Shapley opera-
tor, condition (15) can be written in a simpler form. This relies, using the expression
(10), on the existence of a limit:

ϕ(f )(ω) = lim
ε→0+

.(ε, f )(ω) − .(0, f )(ω)

ε

extending a result of Mills (1956), see also Mertens, Sorin and Zamir (1994),
Section 1.1, Ex. 6. More precisely ϕ(f )(ω) is the value of the “derived game”
with payoff h(ω, x, y), see (10), played on the product of the subsets of optimal
strategies in .(0, f ). The relation with (16) is given by:

θ+(f ) = θ−(f ) =











ϕ(f ) if .(0, f ) = f

+∞ if .(0, f ) > f

−∞ if .(0, f ) < f
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In the setup of games with incomplete information, the family vλ(p, q) is uni-
formly Lipschitz and any accumulation point as λ→0 is a saddle function w(p, q)

satisfying: .(0, w) = w. Thus one wants to identify one point in the set of solu-
tions of equation (8) which contains in fact all saddle functions.

For this purpose, one considers the set A+ of continuous saddle functions f on
'(K)×'(L) such that for any positive strictly concave perturbation η on '(K):
ϕ(f + η) ≤ 0. The proof that w belongs to A+, which is included in the closure
of S+, shows then the convergence of the family vλ. A similar argument holds for
vn, which in addition implies equality of the limits. Note that the proof relies on
the explicit description of ϕ(f ) as the value of the derived game.

In addition one obtains the following geometric property. Given f on '(K),
say that p is an extreme point of f , p∈Ef , if (p, f (p)) cannot be expressed as a
convex combination of a finite family {(pi, f (pi))}. Then one shows that for any
f ∈A−, f (p, q) ≤ u(p, q) holds at any extreme point p of f (·, q), where u is the
value of the non-revealing game or equivalently:

u(p, q) = val'(I )×'(J )

∑

k,/
pkq/g(k, /, x, y).

Hence v = limn→∞ vn = limλ→0 vλ is a saddle continuous function satisfying
both inequalities:

p∈Ev(·, q)⇒v(p, q) ≤ u(p, q)

q∈Ev(p, ·)⇒v(p, q) ≥ u(p, q) (17)

and it is easy to see that it is the only one, Laraki (2001a).
Given a function f on a compact convex set C, let us denote by CavCf

the smallest function concave and greater than f on C. By noticing that, for
a function f continuous and concave on a compact convex set C, the property
p∈Ef ⇒ f (p) ≤ g(p) is equivalent to f = CavC min(g, f ) one recovers the
famous characterization of v due to Mertens and Zamir (1971):

v = Cav'(K) min(u, v) = Vex'(L) max(u, v) (18)

where Cav'(K)f (p, q) stands for Cav'(K)f (., q)(p).

2.4 The Splitting Game

This section deals again with games with incomplete information on both sides
as defined in Section 2.1.4 and follows Laraki (2001a). The operator approach is
then extended to more general games. Recall that the recursive formula for the
discounted value is:

vλ(p, q) = .(λ, vλ)(p, q) = valX×Y{λg(p, q, x, y) + (1 − λ)E(vλ(p
′, q ′))}
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where (p′, q ′) is the new posterior distribution and E stands for the expectation
induced by p, q, x, y. Denoting by Xλ(p, q) the set of optimal strategies of Player
1 in .(λ, vλ)(p, q) and using the concavity of vλ one deduces:

max
Xλ(p,q)

min
Y

{g(p, q, x, y) − E(vλ(p
′, q))} ≥ 0.

Let w be an accumulation point of the family {vλ} as λ goes to 0 and let p∈Ew(., q).
Then the set of optimal strategies for Player 1 in .(0, w)(p, q) is included in the
set NR1(p) of non-revealing strategies (namely with x(i)‖p(i) − p‖ = 0, recall
(8)), hence by uppersemicontinuity one gets from above:

max
NR1(p)

min
Y

{g(p, q, x, y) − E(w(p′, q))}

= max
X

min
Y

{g(p, q, x, y) − w(p, q)} ≥ 0

hence u(p, q) ≥ w(p, q) which is condition (17).
We now generalize this approach.
Since the payoff g(p, q, x, y) =

∑

pkq/xk
i y/

j g(k, /, i, j) is linear it can be
written as

∑

i,j x(i)y(j)g(p(i), q(j), i, j) so that the Shapley operator is:

-(f )(p, q) = valX×Y

{

∑

i,j
[g(p(i), q(j), i, j) + f (p(i), q(j))]x(i)y(j)

}

and one can consider that Player 1’s strategy set is the family of random variables
from I to'(K)with expectationp. In short, rather than deducing the state variables
from the strategies, the state variables are now taken as strategies. The second
step is to change the payoffs (introducing a perturbation of the order of n−1/2 in
vn) and to replace g(p(i), q(j), i, j) by the value of the “local game” at this state
u(p(i), q(j)). There is no reason now to keep the range of the martingale finite so
that the operator becomes:

S(f )(p, q) = val'2
p(K)×'2

q (L)E{u(p̃, q̃) + f (p̃, q̃)},

where '2
p(K) is the set of random variables p̃ with values in '(K) and expectation

p. The corresponding game is called the “splitting game”. The recursive formula
is now different:

wλ

λ
= S

(

(1 − λ)

λ
wλ

)

but with the same proof as above, it leads to the existence of w = limλ→0 wλ

satisfying the same functional equations:

w = Cav'(K) min(u, w) = Vex'(L) max(u, w).

These tools then allow us to extend the operator u +→M(u) = w (existence and
uniqueness of a solution) to more general products of compact convex sets P×Q

and functions u, see Laraki (2001b).
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3 Duality Properties

3.1 Incomplete Information, Convexity and Duality

Consider a two-person zero-sum game with incomplete information on one side
defined by sets of actions S and T , a finite parameter space K , a probability p

on K and for each k a real payoff function Gk on S×T . Assume S and T convex
and for each k, Gk bounded and bilinear on S×T . The game is played as follows:
k∈K is selected according to p and told to Player 1 (the maximizer) while Player
2 only knows p.

In normal form, Player 1 chooses s =
{

sk
}

in SK , Player 2 chooses t in T and
the payoff is

Gp(s, t) =
∑

k

pkGk
(

sk, t
)

.

Assume that this game has a value

v(p) = sup
SK

inf
T

Gp(s, t) = inf
T

sup
SK

Gp(s, t),

then v is concave and continuous on the set '(K) of probabilities on K .
Following De Meyer (1996a) one introduces, given z∈R

k , the “dual game”
G∗(z) where Player 1 chooses k, then Player 1 plays s in S (resp. Player 2 plays t

in T ) and the payoff is

h[z](k, s; t) = Gk(s, t) − zk.

Translating in normal form, Player 1 chooses (p, s) in '(K)×SK , Player 2 chooses
t in T and the payoff is

∑

k pkh[z]
(

k, sk; t
)

= Gp(s, t) − 〈p, z〉.
Then the game G∗(z) has a value w(z), which is convex and continuous on R

K

and the following duality relations holds:

w(z) = max
p∈'(K)

{v(p) − 〈p, z〉} = 8s(v)(z), (19)

v(p) = inf
z∈R

K
{w(z) + 〈p, z〉} = 8i (w)(p), (20)

Two consequences are:

Property 3.1. Given z, let p achieve the maximum in (19) and s be ε-optimal in
Gp: then (p, s) is ε-optimal in G∗(z).

Given p, let z achieve the infimum up to ε in (20) and t be ε-optimal in G∗(z):
then t is also 2ε-optimal in Gp.

Property 3.2. Let G′ be another game on K×S×T with corresponding primal
and dual values v′ and w′. Since Fenchel’s transform is an isometry one has

‖v − v′‖'(K) = ‖w − w′‖
R

K .



80 S. Sorin

3.2 The Dual of a Repeated Game with Incomplete Information

We consider now repeated games with incomplete information on one side as
introduced in 2.1.4. (with L reduced to one point), and study their duals, following
De Meyer (1996b). Obviously the previous analysis applies when working with
mixed strategies in the normalized form.

3.2.1 Dual Recursive Formula

The use of the dual game will be of interest for two purposes: construction of
optimal strategies for the uninformed player and asymptotic analysis. In both cases
the starting point is the recursive formula in the original game.

F(p) = .(ε, f )(p)

= valx∈X,y∈Y

{

ε
∑

k

pkxkGky + (1 − ε)
∑

i

x(i)f (p(i))

}

, (21)

where we write Gk
ij for g(k, i, j). Then one obtains:

F ∗(z) = max
p∈'(K)

{F(p) − 〈p, z〉}

= max
p,x

min
y

{

ε
∑

k

pkxkGky + (1 − ε)
∑

i

x(i)f (p(i)) − 〈p, z〉
}

.

We represent now the couple (p, x) in '(K)×'(I )K as an element π in '(K×I ):
p is the marginal on K and xk the conditional probability on I given k:

F ∗(z) = max
π

min
y

{

ε
∑

i,k

π(i, k)Gk
i y + (1 − ε)

∑

i

π(i)f (π(.|i)) − 〈p, z〉
}

.

The concavity of f w.r.t. p implies the concavity of
∑

i π(i)f (π(.|i)) w.r.t. π .
This allows us to use the minmax theorem leading to:

F ∗ = min
y

max
π

{

ε
∑

i,k

π(i, k)Gk
i y + (1 − ε)

∑

i

π(i)f (π(.|i)) − 〈p, z〉
}

,

hence, since pk =
∑

i π(i)π(k|i):

F ∗(z) = min
y

max
π(i)

{

∑

i

π(i)(1 − ε) max
π(.|i)

[

f (π(.|i))

−
〈

π(.|i), 1
1 − ε

z − ε

1 − ε
Giy

〉]}
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where Giy is the vector
{

Gk
i y

}

. This finally leads to the dual recursive formula:

F ∗(z) = min
y

max
i

(1 − ε)f ∗
(

1
1 − ε

z − ε

1 − ε
Giy

)

. (22)

The main advantage of dealing with (22) rather than with (21) is that the state
variable is known by Player 2 (who controls y and observes i) and evolves smoothly
from z to z + (ε/(1 − ε))(z − Giy).

3.2.2 Properties of Optimal Strategies

Rosenberg (1998) extended the previous duality to games having at the same time
incomplete information and stochastic transition on the parameters. There are then
two duality operators (D1 and D2) corresponding to the private information of
each player. D1 associates to each function on +×'(K)×'(L) a function on
+×'(K)×R

L. The duality is taken with respect to the unknown parameter of
Player 1 replacing q by a vector in R

L. The extension of formula (22) to each dual
game allows us to deduce properties of optimal strategies in this dual game for
each player. In the discounted case, Player 1 has stationary optimal strategies on a
private state space of the form +×'(K)×R

L. The component on + is the publicly
known stochastic parameter; the second component p is the posterior distribution
on '(K) that is induced by the use of x: it corresponds to the transmission of
information to Player 2; the last one is a vector payoff indexed by the unknown
parameter /∈L that summarizes the past sequence of payoffs. Similarly, in the
finitely repeated game, Player 1 has an optimal strategy which is Markovian on
+×'(K)×R

L. Obviously dual properties hold for Player 2.
Recall that as soon as lack of information on both sides is present the recursive

formula does not allow us to construct inductively optimal strategies (except in
specific classes, like games with almost perfect information where a construction
similar to the one above could be done, Ponssard and Sorin (1982)). It simply
expresses a property satisfied by an alternative game having the same sequence
of values, but not the same signals along the play, hence not the same strategy
sets. However the use of the dual game allows us, through Property 3.1 (Section
3.1), to deduce optimal strategies in the primal game from optimal strategies in the
dual game, and hence to recover an inductive procedure for constructing optimal
strategies.

Further properties of the duality operators have been obtained in Laraki (2000).
First one can apply the (partial 2) duality operator D2 to the (partial 1) dual game
D1($), then the duality transformations commute and other representations of the
global dual game D1 ◦ D2($) = D2 ◦ D1($) are established.

3.2.3 Asymptotic Analysis and Approximate Fixed Points

This section follows De Meyer and Rosenberg (1999). Going back to the class of
games with incomplete information on one side, Aumann and Maschler’s theorem
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on the convergence of the families vn or vλ to Cav'(K)u will appear as a conse-
quence of the convergence of the conjugate functions wn (value of the dual game
$∗

n) or wλ(z) (for $∗
λ) to the Fenchel conjugate of u.

Explicitly let

8s(u)(z) = max
'(K)

{u(p) − 〈p, z〉},

then the bi-conjugate

8i ◦ 8s(u)(z) = min
z∈R

K
{8s(u)(z) − 〈p, z〉}

equals Cav'(K)u. Using property 3.2 in Section 3.1 it is enough to prove the
convergence of wn or wλ to 8s(u). Heuristically one deduces from (22) that the
limit w should satisfy:

w(z) = (1 − ε) min
Y

max
X

{

w(z) + ε

(1 − ε)
〈∇w(z), z − xGy〉

}

,

which leads to the partial differential equation:

−w(z) + 〈∇w(z), z〉 + u(−∇w(z)} = 0, (23)

where we recall that u(q) = minY maxX

{
∑

kq
kxGky

}

.
Fenchel duality gives:

8su(z) − u(−q) = 〈q, z〉

for −q∈∂8su(z), which shows that 8su is a solution (in a weak sense) of (23).
The actual proof uses a general property of approximate operators and fixed points
that we described now. Consider a family of operators -n on a Banach space Z

with the following contracting property:

‖-n+1(f ) − -n+1(g)‖ ≤
(

n

n + 1

)a

‖f − g‖,

for some positive constant a, and n large enough. For example, - is non-expansive
and -n+1(.) = .

(

1
n+1 , .

)

. Define a sequence in Z by f0 = 0 and fn+1 =
-n+1(fn). Then if a sequence gn satisfies an approximate induction in the sense
that, for some positive b and n large enough:

‖-n+1(gn) − gn+1‖ ≤ 1
(n + 1)1+b

,

and gn converges to g, then fn converges to g also.
The result on the convergence of wn follows by choosing gn as a smooth pertur-

bation of 8su, like gn(z) = E
[

8su
(

z + (X/
√

n)
)]

, X being a cantered reduced
normal random variable.

A similar property holds for the sequence wλ.
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3.2.4 Speed of Convergence

The recursive formula and its dual also play a crucial role in the recent deep and
astonishing result of Mertens (1998). Given a game with incomplete information
on one side with finite state and action spaces but allowing for measurable signal
spaces the speed of convergence of vn to its limit is bounded by C

(

(ln n)/n
)1/3 and

this is the best bound. (Recall that the corresponding order of magnitude is n−1/2

for standard signaling and n−1/3 for state independent signals – even allowing for
lack of information on both sides.)

3.3 The Differential Dual Game

This section follows Laraki (2002) and starts again from equation (22). The recur-
sive formula for the value wn of the dual of the n stage game can be written, since
wn(z) is convex, as:

wn(z) = min
y

max
x

(

1 − 1
n

)

wn−1

(

1
(1 − (1/n))

(

z − 1
n
xGy

))

. (24)

This leads us to consider wn as the nth discretization of the upper value of a
differential game.

Explicitly consider the differential game (of fixed duration) on [0, 1] with
dynamic ζ(t)∈R

K given by:

dζ/dt = xtGyt , ζ(0) = −z

xt∈X, yt∈Y and terminal payoff maxk ζ k(1).
Given a partition 1 = {t0 = 0, ..., tk, ...} with θk = tk − tk−1 and

∑∞
k=1θk = 1

we consider the discretization of the game adapted to 1. Let W+
1 (tk, ζ ) denote the

upper value (correspondingly to the case where Player 2 plays first) of the game
starting at time tk from state ζ . It satisfies:

W+
1 (tk, ζ ) = min

y
max

x
W+

1 (tk+1, ζ + θk+1xGy).

In particular if 1n is the uniform discretization with mesh (1/n) one obtains:

W+
1n

(0, ζ ) = min
y

max
x

W+
1n

(

1
n
, ζ + 1

n
xGy

)

and by time homogeneity, W+
1n

(

1
n
, ζ

)

=
(

1 − 1
n

)

W+
1n−1

(

0, ζ
1−(1/n)

)

, so that:

W+
1n

(0, ζ ) = min
y

max
x

(

1 − 1
n

)

W+
1n−1

(

0,
ζ + (1/n)xGy

1 − (1/n)

)

. (25)
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Hence (24) and (25) prove that wn(z) and W+
1n

(0, −z) satisfy the same recursive
equation. They have the same initial value for n = 1 hence they coincide.

Basic results of the theory of differential games (see e.g. Souganidis (1999))
show that the game starting at time t from state ζ has a value ϕ(t, ζ ), which is the
only viscosity solution, uniformly continuous in ζ uniformly in t , of the following
partial differential equation with boundary condition:

∂ϕ

∂t
+ u(∇ϕ) = 0, ϕ(1, ζ ) = max

k
ζ k. (26)

One thus obtains ϕ(0, −z) = limn→∞ W+
1n

(0, −z) = limn→∞ wn(z) = w(z).
The time homogeneity property gives ϕ(t, ζ ) = (1 − t)ϕ (0, ζ/(1 − t)) , so that
w is a solution of

f (x) − 〈x, ∇f (x)〉 − u(−∇f (x)) = 0, lim
α→0

αf (x/α) = max
k

{

− xk
}

which is the previous equation (23) but with a limit (recession) condition.
One can identify the solution of (26), written with ψ(t, ζ ) = ϕ(1 − t, ζ ) as

satisfying:

∂ψ

∂t
+ L(∇ψ) = 0 ψ(0, ζ ) = b(ζ )

with L continuous, b uniformly Lipschitz and convex. Hence, using Hopf’s rep-
resentation formula, one obtains:

ψ(t, ζ ) = sup
p∈R

K

inf
q∈R

K
{b(q) + 〈p, ζ − q〉 − tL(p)}

which gives here:

ψ(t, ζ ) = sup
p∈R

K

inf
q∈R

K

{

max
k

qk + 〈p, ζ − q〉 + tu(p)
}

and finally w(z) = ψ(1, −z) = supp∈'(K){u(p)−〈p, z〉} = 8su(z), as in section
3.2.3.

In addition the results in Souganidis (1985) concerning the approximation
schemes give a speed of convergence of (δ(1))1/2 of W1 to ϕ (where δ(1) is the
mesh of the subdivision 1), hence by duality one obtains Aumann and Maschler’s
(1995) bound:

‖vn − Cav'(K)u‖ ≤ C√
n
, ‖vλ − Cav'(K)u‖ ≤ C

√
λ

for some constant C.
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A last result is a direct identification of the limit. Since w is the conjugate of a
concave continuous function v on '(K) and ϕ(t, ζ ) = (1 − t)w (−ζ/(1 − t)) the
conditions on ϕ can be translated as conditions on v. More precisely the first order
conditions in terms of local sub- and super-differentials imply that ϕ is a viscosity
subsolution (resp. supersolution) of (26) if and only if v satisfies the first (resp.
second) inequality in the variational system (17). In our framework this gives

p∈Ev ⇒v(p) ≤ u(p) and v(p) ≥ u(p), ∀p,

so that v = Cav'(K)u.

4 The Game in Continuous Time

4.1 Repeated Games and Discretization

The main idea here is to consider a repeated game (in the compact case, i.e. with
finite expected length) as a game played between time 0 and 1, the length of stage
n being simply its relative weight in the evaluation. Non-negative numbers θn with
∑∞

n=1θn = 1 define a partition 1 of [0, 1] with t0 = 0 and tn =
∑

m≤nθm. The
repeated game with payoff

∑

ngnθn corresponds to the game in continuous time
where changes in the moves can occur only at times tm. The finite n-stage game is
represented by the uniform partition 1n with mesh (1/n) while the λ-discounted
game is associated to the partition 1λ with tm = 1−(1−λ)m. In the framework of
section 2.1.5. one obtains a recursive formula for the value W1(t, P) of the game
starting at time t with state variable P:

W1(tn, P) = valα×β(θn+1g(P, α, β) + W1(tn+1, H(P, α, β))).

The fact that the payoff is time-independent is expressed by the relation:

W1(tn, .) = (1 − tn)W1[tn](0, .)

where 1[tm] is the renormalization to the whole interval [0, 1] of 1 restricted to
[tm, 1]. By enlarging the state space and incorporating the payoff as new parameter,
say ζ , we obtain new functions L1(t, ζ, P) with

L1(tn, ζ, P) = valα×βL1(tn+1, ζ + θn+1g(P, α, β), H(P, α, β))

and

L1(tn, ζ, P) = (1 − tn)L1[tn]

(

0,
ζ

1 − tn
, P

)

.

This time normalization explains why the PDE obtained as a limit is homoge-
neous.
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A first heuristic approach in this spirit is in Mertens and Zamir (1976a) where
they study, for a specific example of repeated game with lack of information on one
side, the limit of the “normalized error term” ηn(p) =

√
n (vn(p) − v∞(p)), on

[0, 1]. From the recursive formula for vn, they deduce another one for the sequence
ηn and obtain the following equation for the limit: ϕϕ′′ + 1 = 0. It follows then
that ϕ(p) is the normal density evaluated at its p-quantile.

Consider now a simple variation of the Big Match game where Player 1 knows
the true game while Player 2 does not and the payoffs are as follows:

α β

a 1∗ 0∗

b 0 0

α β

a 0∗ 0∗

b 0 1

Game 1: Probability p Game 2: Probability 1 − p

Sorin (1984) derives from the recursive formula the following equation for the
limit of vn: (2 − p)ϕ(p) = (1 − p) − (1 − p)2ϕ′(p) which leads to ϕ(p) = (1 −
p) {1 − exp (−p/(1 − p))}. Note that this function is not algebraic, which could
not be the case for stochastic games nor for games with incomplete information
on one side. (Moreover it is also equal to the max min v.)

4.2 The Limit Game

The recursive formula may also, by exhibiting properties of optimal strategies,
allow us to define an auxiliary game in continuous time, considered as a represen-
tation of the “limit game” on [0, 1]. Two examples are as follows.

A first class, Sorin (1984), corresponds to specific absorbing games with incom-
plete information on one side of the form:

a

b

ak∗
1 . . .∗ ak∗

J

bk
1 . . . bk

J

Game k: Probability pk

From the recursive formula one deduces that both players can be restricted to
strategies independent of the past. One constructs then a game on [0, 1] where
Player 1’s strategies are stopping times ρk corresponding to the first occurrence of
a in game k, while Player 2’s strategies are measurable functions f from [0, 1] to
'(J ). The payoff is the integral from 0 to 1 of the instantaneous payoff at time t ,
∑

kp
kgk

t

(

ρk, f
)

with

gk
t (ρ, f ) =

∫ t

0
ak(f (s))ρ(ds) + (1 − ρ([0, t]))bk(f (t)),
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where ak(f ) =
∑

j a
k
j fj and similarly for bk . This game has a value ν and it

is easy to show that ν = limn→∞ vn = limλ→0 vλ. In fact discretizations of ε-
optimal strategies in the limit game define strategies in Gn or Gλ and the payoff
is continuous.

A much more elaborate construction is in De Meyer (1999). The starting point
is again the asymptotic expansion of vn for games with incomplete information
on one side. More precisely the dual recursive formula for ηn =

√
n (vn − v∞)

leads on one hand to an heuristic second-order PDE (E) and on the other to prop-
erties of optimal strategies for both players. One shows that any regular solution
of (E) would be the limit of ηn. De Meyer constructs a family of games χ(z, t)

on [0, 1], endowed with a Brownian filtration where strategies for each player are
adapted stochastic processes and the payoff is defined through a stochastic inte-
gral on [0, 1]. The existence of a value W(z, t) and optimal strategies in χ(z, t)

are then established. One deduces that, under optimal strategies of the players,
the state variable Zs(z, t) in χ(z, t), t ≤ s ≤ 1, follows a stochastic differential
equation. The value being constant on such trajectories one obtains that W(z, 0)

is a solution to (E) – where the regularity remains to be proved.
Note that this approach is somehow a dual of the one used in differential games

where the initial model is in continuous time and is analyzed through discretization.
Here the game on [0, 1] is an idealization of discrete time model with a large
number of stages.

4.3 Repeated Games and Differential Games

The first example of resolution of a repeated game trough a differential game is
due to Vieille (1992). Consider a repeated game with vector payoffs described by
a function g from I×J to R

K . Given a compact set C in R
K let f (z) = −d(z, C)

where d is the euclidean distance and defines the n stage repeated game with
standard information Gn. The sequence of payoffs is g1 = g(i1j1), · · · , gn with
average gn and the reward is f (gn).

The game was introduced by Blackwell (1956) who proved the existence of a
uniform value (in the sense of Section 1) when C is convex or K = 1. He gave
also an example of a game in R

2 with no uniform value.
We consider here the asymptotic approach. The value of the Gn is vn =

V1n(0, 0) where V1n satisfies V1n(1, z) = f (z) and:

V1n(tk, z) = valX×Y Ex,y{V1n(tk+1, z + θk+1Gij )}

with X = '(I ), Y = '(J ). The idea is to replace the above equation by the two
equations:

W−
1n

(tk, z) = max
X

min
Y

W−
1n

(tk+1, z + θk+1Gij ),

W+
1n

(tk, z) = min
Y

max
X

W+
1n

(tk+1, z + θk+1Gij ),
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hence to approximate vn by the lower and upper values of the discretization of a
differential game $ played on X×Y between time 0 and 1, with terminal payoff
f

( ∫ 1
0 gudu

)

and deterministic differential dynamic given by:

dz

dt
= xtGyt .

The main results used are, see e.g. Souganidis (1999):
1) W−

1n
and W+

1n
converge to some functions W− and W+ as n goes to ∞,

2) W− is a viscosity solution on [0, 1] of the equation:

∂U

∂t
+ max

X
min

Y
〈∇U, xGy〉 = 0, U(1, z) = g(z)

which is condition (26) with a new limit condition,
3) this solution is unique.
A similar result for W+ and the property: maxX minY xGy = minY maxX xGy

finally imply: W− = W+ and we denote this value by W .
Hence if W(0, 0) = 0, for any ε > 0 there exists N such that if n ≥ N Player

1 can force an outcome within ε of C in the lower nth discretization $−
n . The fact

that Player 1 can do the same in the original game where the payoff is random relies
on a uniform law of large numbers. For L large enough, playing i.i.d. the mixed
move x in the mth block between stages mL (included) and (m + 1)L (excluded)
will generate in GnL an average path near the one generated by x at stage m of $−

n .
Otherwise, W(0, 0) ≤ 2δ < 0, in this case Player 2 can avoid a δ-neighborhood

of C and a symmetric argument applies.
Altogether the above construction shows that any set is either weakly approach-

able (gn will be near C with high probability) or weakly excludable (gn will be
near the complement of a neighborhood C with high probability)

A second example, Laraki (2002), was described in the earlier section 3.3.
Note that in both cases the random aspect due to the use of mixed moves was

eliminated, either by taking expectation or by working with the dual game.

5 Alternative Methods and Further Results

5.1 Dynamic Programming Setup

In the framework of dynamic programming (one person stochastic game), Lehrer
and Sorin (1992) gave an example where limn→∞ vn and limλ→0 vλ both exist
and differ.

They also proved that uniform convergence (on +) of vn is equivalent to uniform
convergence of vλ and then the limits are the same.

However this condition alone does not imply existence of the uniform value,
v∞, see Lehrer and Monderer (1994), Monderer and Sorin (1993).
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5.2 A Limit Game with Double Scale

Another example of a game where the play in $n between stages t1n and t2n is
approximated by the play in the limit game between time t1 and t2 is in Sorin
(1989). The framework is simple since there are no signals. However one cannot
work directly in continuous time because of the presence of two properties: some
moves are exceptional in the sense that they induce some change in the state and
the number of times they occur has to be taken into account; as for the other moves
only the frequency matters. The analysis is done through a “semi normalization”
of $n by a game GL. Each stage / in L corresponds to a large block of stages in
$n and the strategies used in GL at stage / are the summary of the ones used on
the block / in $n according to the above classification. One then shows that both
lim infn→∞ vn and lim infλ→0 vλ are greater than lim supL→∞ valGL and the
result follows.

One should add that these sets of reduced strategies were introduced by Mertens
and Zamir (1976b) for the uniform approach: they proved the existence of the
min max v and of the max min v and showed that they may differ. See also Water-
naux (1983).

5.3 Non-expansive Mappings and Convexity

A proof of the convergence of vn in the framework of one-sided incomplete infor-
mation repeated games; using Kohlberg and Neyman’s Theorem (result 2.1.2), was
achieved by Mertens; see Mertens, Sorin and Zamir (1994), Chapter V, Exercise 5.
Convergence of the sequence of norms ‖vn‖ implies convergence of the dual val-
ues hence of the primal values via Fenchel ’s transform. Let v be the limit. Then
the linear functional f appearing in Kohlberg and Neyman’s result is identified at
each extreme point of v and leads to v = Cavu.

5.4 Asymptotic and Uniform Approaches

There are several deep connections between the two approaches (recall Section 1),
in addition to the fact that the existence of a uniform value implies convergence of
the limiting values under very general conditions (even with private information
upon the duration) (Neyman (2003), Neyman and Sorin (2001)).

a) Under standard signaling (at = bt = (it , jt )) a bounded variation condition
on the discounted values, see (4), is a sufficient condition for the existence of
a uniform value in stochastic games, Mertens and Neyman (1981). In addition
an optimal strategy is constructed stage after stage by computing at stage t

a discounted factor λt as a function of the past history of payoffs and then
playing once optimally in $λt .

b) A general conjecture states that in (finitely generated) games where Player
1’s information includes Player 2’s information the equality: max min =
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limn→∞ vn = limλ→0 vλ holds, Sorin (1984, 1985), Mertens (1987). Some-
how Player 1 could, using an optimal strategy of Player 2 in the limit game,
define a map from histories to [0, 1]. Given the behavior of Player 2 at stage
n, this map induces a time t and Player 1 plays an optimal strategy in the limit
game at this time.

Finally recent results along the uniform approach include:

- proof of existence and characterization of max min and min max in absorbing
games with signals, Coulomb (1999, 2001),

- proof of existence of max min and equality with limn→∞ vn and limλ→0 vλ in
recursive games with lack of information on one side, Rosenberg and Vieille
(2000), see point b) above.
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