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Minmax via Differential Inclusion
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The asymptotic behavior of the solution of a differential inclusion provides a simple proof of a minmax
theorem.

1. Introduction

Consider a finite zero-sum game (I, J, A) where I = {1, ..., !} (resp. J = {1, ...,m}) is the
set of pure strategies of player 1 (the maximizer), (resp. of player 2 (the minimizer)) and
A is the !×m payoff matrix. Denote by X and Y the sets of mixed strategies of player
1 and 2 (i.e., X and Y are the unit simplices in IR! and in IRm, respectively). Hence,
if x ∈ X and y ∈ Y are the players’ mixed actions, the payoff is xAy =

∑
ij xiAijyj.

Assume that maxX minY xAy = 0. We prove that minY maxX xAy ≤ 0.

The proof is based on an approximation of a discrete dynamics1 related to Blackwell’s
approachability procedure (Blackwell [3]; Sorin [9]), by a continuous one, in the spirit
of Benaim, Hofbauer and Sorin [2]. The goal of player 2 is to ensure that the payoff
corresponding to any pure strategy of player 1 is less than or equal to zero, or in other
words, that the state (in the vector payoff space IR! – a payoff for each pure strategy of
player 1) will reach the negative orthant. At any time the current error, from player 2’s
point of view, is the difference between the time-average state and its projection on the
negative orthant. As in approachability theory, his strategy is a function of this error and
in particular, the dynamics depends only on the behavior of player 2.

Other dynamical approaches have been used to prove the minmax theorem. Brown and
von Neumann [4] introduced a differential equation for two person symmetric zero-sum
games. The variable is a symmetric mixed strategy that converges to the set of optimal
strategies. Other procedures (e.g., fictitious play, Robinson [7]) exhibit similar properties
for non-symmetric games while the state variable is in the product space of mixed strat-
egy. In these procedures the dynamics of each player’s strategy depends on both players’
strategies. In contrast, our dynamics is autonomous: it is defined over the vector payoff
space of player 2 and does not involve player’s 1 behavior.

1Similar discrete dynamics have been used by Lehrer and Sorin [6] and Lehrer [5].
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2. A discrete dynamics

Consider a sequence {yn} of player 2’s mixed strategies and let ȳn be the average of its n
first elements. Thus,

ȳn+1 − ȳn =
1

n+ 1
(yn+1 − ȳn). (1)

Let gn = Ayn ∈ IR! be the corresponding sequence of vector payoffs, hence its average ḡn
satisfies:

ḡn+1 − ḡn =
1

n+ 1
(gn+1 − ḡn). (2)

For any g ∈ IR! define g+ = (g+1, ..., g+n) by g+k = max(gk, 0). If g+ &= 0, then g+ is
proportional to some x ∈ X, and thus, by assumption, there exists y ∈ Y that satisfies
xAy ≤ 0, which implies 〈g+, Ay〉 ≤ 0.

Define a correspondence N from IR! to Y by:

N(g) = {y ∈ Y ; 〈g+, Ay〉 ≤ 0}.

The values of N are non-empty. Furthermore, N is an upper semi-continuous correspon-
dence with compact convex values.

The discrete dynamics, respectively in the space of player 2’s mixed strategies and in the
space of vector payoffs are defined by

yn+1 ∈ N(Aȳn) and gn+1 ∈ AN(ḡn). (3)

3. The theorem and its proof

We turn now to the formal presentation of the theorem and its proof.

Theorem 3.1. If maxX minY xAy = 0, then there exists a point y∗ ∈ Y such that all the
coordinates of the vector Ay∗ are less than or equal to 0.

Proof. Let D denote the negative orthant, IR!
−, and let C = AY , which is a compact

convex image of Y .

Consider the continuous dynamics in the vector payoffs space defined by the following
differential inclusion (note the similarity to equation (3)):

"g ∈ AN(g)− g. (4)

Since N is an upper semi-continuous correspondence with non-empty compact convex
values, there exists a solution g(t) of (4) (see e.g., Theorem 3, p. 98 in Aubin and Cellina
[1]). When g(t) is on the boundary of C, "g(t) points inside C. Thus, if g(0) ∈ C, then
g(t) ∈ C for all t ≥ 0 (see e.g., Theorem 5.7, p. 129 in Smirnov [8]).

Let Z(g) = ‖g+‖2 be the square of the distance from a point g ∈ IR! to D. Hence,
∇Z(g) = 2g+. Let z(t) = Z(g(t)), then

"z(t) = 〈∇Z(g(t)), "g(t)〉 = 2〈g+(t), "g(t)〉 ≤ −2〈g+(t), g(t)〉
= −2〈g+(t), g+(t)〉 = −2Z(g(t)) = −2z(t),
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where the inequality is due to "g(t) + g(t) ∈ AN(g) and 〈g+, Ay〉 ≤ 0 for any y ∈ N(g).
Thus, z(t) (hence the distance between g(t) and D) decreases exponentially to 0 and if it
reaches 0 it keeps this value.2

Any accumulation point g∗ of g(t) (as t → ∞) satisfies Z(g∗) = 0, which means that
g∗ ∈ D. Since g∗ ∈ C, there exists y∗ with Ay∗ ∈ D, as desired.

Remark. The proof immediately extends to the case where X is a finite dimensional
simplex, Y is a convex compact subset of a topological vector space and the payoff is a
real bilinear function on X × Y , continuous on Y for each x ∈ X.
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2 This is in opposition with the discrete dynamics whose distance to D does not converge monotonically
to D.


