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We consider the Tikhonov-like dynamics −u̇(t) ∈ A(u(t))+ε(t)u(t)
where A is a maximal monotone operator on a Hilbert space
and the parameter function ε(t) tends to 0 as t → ∞ with∫∞
0 ε(t)dt =∞. When A is the subdifferential of a closed proper

convex function f , we establish strong convergence of u(t) towards
the least-norm minimizer of f . In the general case we prove strong
convergence towards the least-norm point in A−1(0) provided
that the function ε(t) has bounded variation, and provide a
counterexample when this property fails.

 2008 Elsevier Inc. All rights reserved.

1. Introduction

We investigate the asymptotic behavior as t→∞ of solutions of the differential inclusion

−u̇(t) ∈ A
(
u(t)

)
+ ε(t)u(t); u(0) = x0, (D)
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where A :H→ 2H is a maximal monotone operator on a Hilbert space H, ε(t) ! 0 is measurable, and
x0 ∈ dom(A). Throughout this paper we assume that (D) admits a (necessarily unique) strong solution,
namely, an absolutely continuous function u : [0,∞)→H such that (D) holds for almost every t ! 0.
Sufficient conditions for this existence may be found, among others, in [4,19,20], and [25].

The differential inclusion (D) is a perturbed version of

−u̇(t) ∈ A
(
u(t)

)
; u(0) = x0. (I)

We denote by S = {x ∈H: 0 ∈ A(x)} the set of rest points of the latter, and we assume that it is
nonempty. The monotonicity of A implies that the dynamics (I) are dissipative, so one might expect
that they converge to a point in S . This is not always the case as seen by considering a π

2 -rotation
in R2. However, if we perturb these dynamics as in (D) with a fixed ε(t)≡ ε > 0, the operator A + ε I
is strongly monotone and we have strong convergence to the unique solution of 0∈ A(x)+ εx. Hence,
by introducing a vanishing parameter ε(t)→ 0+ and under suitable conditions, one may hope to
induce weak or even strong convergence of the solutions of (D) towards a point in S .

Several results are available for different classes of maximal monotone operators. In the unper-
turbed case ε(t)≡ 0, while convergence does not hold in general, weak convergence was established
in the classical paper [14] for the case of demi-positive operators. This class includes the subdiffer-
entials of closed proper convex functions A = ∂ f , as well as operators of the form A = I − T with
T a contraction having fixed points. As shown by the counterexample in [5], even in the case of
subdifferential operators one may not expect this convergence to be strong.

Asymptotic results have also been proved for a variety of dynamics coupling a gradient flow with
different approximation schemes. In the particular setting of (D) the convergence depends on whether
ε(t) is in L1(0,∞) or not. When

∫∞
0 ε(t)dt <∞ the results on asymptotic equivalence described in

[32] (see also [2]) imply that the perturbation (D) preserves the qualitative convergence properties
of (I). For the case

∫∞
0 ε(t)dt =∞ the most general convergence result available goes back to [33]

(based on previous work by [12]) and requires in addition ε(t) to be non-increasing and convergent
to 0 for t→∞. Under these conditions u(t) converges strongly to x∗ , the point of least norm in S .
The main contributions in this paper are in the case

∫∞
0 ε(t)dt =∞ with ε(t)→ 0. In Section 2 we

consider the subdifferential case A = ∂ f and, with no extra assumptions, we prove in Theorem 2 the
strong convergence of u(t) towards x∗ . For general maximal monotone operators we prove in Theo-
rem 9 of Section 3 that the same result holds if in addition the function ε(t) has bounded variation.
Finally, in Section 4 we provide a counterexample showing that convergence may fail without this
bounded variation property.

2. Tikhonov dynamics in convex minimization

Let f :H→R∪ {∞} be closed, proper and convex, and consider the minimization problem

min
x∈H

f (x) (P )

whose optimal solution set S = {x ∈H: 0 ∈ ∂ f (x)} is assumed to be nonempty. The Tikhonov regu-
larization scheme for (P ) is the family of strongly convex problems

min
x∈H

fε(x), (Pε)

where fε(x) = f (x) + ε
2 |x|2. It is well known (e.g. [37]) that the unique solution xε of (Pε) converges

strongly as ε→ 0+ to the least-norm element of S , which we denote by x∗ .
In this setting, the dynamics (D) with A = ∂ f correspond to the coupling of the Tikhonov regular-

ization scheme with a steepest descent dynamics, namely

−u̇(t) ∈ ∂ fε(t)
(
u(t)

)
= ∂ f

(
u(t)

)
+ ε(t)u(t); u(0) = x0. (T )
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Since (T ) is a perturbed steepest descent method for f (·), we expect u(t) to converge towards a point
x∞ ∈ S . The following slight variant of Gronwall’s inequality will be used in the analysis.

Lemma 1. Let θ : [0,∞) → R be absolutely continuous with θ̇(t) + ε(t)θ(t) " ε(t)h(t) for almost all
t ! 0, where h(t) is bounded and ε(t) ! 0 with ε ∈ L1loc(R+). Then the function θ(t) is bounded and if∫∞
0 ε(τ )dτ =∞ we have limsupt→∞ θ(t) " limsupt→∞ h(t).

Proof. Let κs = sup{h(t): t ! s} so that θ̇(t) + ε(t)[θ(t) − κs] " 0 for t ! s. Multiplying by
exp(

∫ t
0 ε(τ )dτ ) and integrating over [s, t] we get

[
θ(t)− κs

]
"

[
θ(s)− κs

]
exp

(

−
t∫

s

ε(τ )dτ

)

. (1)

It follows that θ(t) is bounded and, if
∫∞
0 ε(τ )dτ = ∞, then letting t → ∞ in (1) we get

limsupt→∞ θ(t) " κs , so that s→∞ yields limsupt→∞ θ(t) " limsupt→∞ h(t). !

In this section we improve the known results, showing that the asymptotic convergence of
Tikhonov dynamics holds as soon as ε(t)→ 0+ when t →∞, without any extra assumption (not
even monotonicity of ε(t)).

Theorem 2. Let u : [0,∞)→H be the strong solution of (T ) with ε(t)→ 0+ as t→∞.

(i) If
∫∞
0 ε(t)dt =∞ then u(t)→ x∗ .

(ii) If
∫∞
0 ε(t)dt <∞ then u(t) ⇀ x∞ for some x∞ ∈ S.

Proof. (i) Let θ(t) = 1
2 |u(t)− x∗|2 so that θ̇(t) = 〈u̇(t),u(t)− x∗〉. Using (T ) and the strong convexity

of fε(·) we get

fε(t)
(
u(t)

)
+

〈
−u̇(t), x∗ − u(t)

〉
+ 1

2
ε(t)

∣∣u(t)− x∗
∣∣2 " fε(t)(x∗)

which may be rewritten as

θ̇(t) + ε(t)θ(t) " fε(t)(x∗)− fε(t)
(
u(t)

)
.

Since fε(xε) " fε(u(t)) and f (x∗) " f (xε) we deduce

θ̇(t) + ε(t)θ(t) " 1
2
ε(t)

[
|x∗|2 − |xε(t)|2

]

and since xε → x∗ as ε → 0+ (see for instance [37]), we may use Lemma 1 with h(t) = 1
2 [|x∗|2 −

|xε(t)|2] to conclude limsupt→∞ θ(t) " 0, hence u(t)→ x∗ .
(ii) The proof is based on a result by [10]. Let x̄ ∈ S and set θ(t) = 1

2 |u(t)− x̄|2. Proceeding as in
part (i) we get

θ̇(t) + ε(t)θ(t) " f (x̄)− f
(
u(t)

)
+ 1

2
ε(t)

[
|x̄|2 −

∣∣u(t)
∣∣2] (2)

from which it follows that θ̇(t) " 1
2 |x̄|2ε(t). Thus θ(t)− 1

2 |x̄|2
∫ t
0 ε(τ )dτ is decreasing and hence con-

vergent so that θ(t) has a limit for t →∞. Invoking Opial’s Lemma [30] the proof will follow if
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we show that every weak accumulation point of u(t) belongs to S , for which it suffices to es-
tablish that f (u(t)) → α := infx∈H f (x). To prove the latter we note that (T ) may be written as
−u̇(t) ∈ ∂ f (u(t)) + v(t) with v(t) = ε(t)u(t) ∈ L1(0,∞;H), so that [10, Lemma 3.3] implies that
f (u(t)) is absolutely continuous with

d
dt

[
f
(
u(t)

)]
=−

〈
u̇(t) + ε(t)u(t), u̇(t)

〉
a.e. t ! 0.

The latter may be bounded from above by δ(t) = 1
4ε(t)2|u(t)|2 ∈ L1(0,∞;R), so that d

dt [ f (u(t)) −∫ t
0 δ(τ )dτ ] " 0 implying that f (u(t))−

∫ t
0 δ(τ )dτ is decreasing and hence convergent. It follows that

f (u(t)) converges as well. Now, using (2) we get 0" f (u(t))− f (x̄) "−θ̇(t) + 1
2 |x̄|2ε(t) so that

T∫

0

[
f
(
u(t)

)
− α

]
dt " θ(0)− θ(T ) + 1

2
|x̄|2

T∫

0

ε(t)dt " θ(0) + 1
2
|x̄|2

∞∫

0

ε(t)dt <∞

which allows to conclude that the limit of f (u(t)) is indeed α as claimed. !

Remark. As mentioned in the introduction, when ε(t) is non-increasing, part (i) was proved in [33].
This result went unnoticed and several special cases of it were rediscovered in [3,7,15] as examples of
couplings of the steepest descent method with general approximation schemes. Particular cases of (ii)
were described in [15,17], though we note that this may be deduced from the general results in [20]
or, alternatively, from the results on asymptotic equivalence presented in [32].

Theorem 2 still holds, with essentially the same proof, when the regularizing kernel 1
2 |x|2 is

replaced by any strongly convex term. Moreover, part (i) admits the following straightforward gen-
eralization.

Proposition 3. Let fε(·) be strongly convex with parameter β(ε) > 0, namely, for each x ∈H and y ∈ ∂ fε(x)

fε(x) + 〈y, z− x〉+ 1
2
β(ε)|z− x|2 " fε(z), ∀z ∈H.

Assume that the minimum xε of fε(·) has a strong limit x∗ as ε → 0+ . Suppose further that there is yε ∈
∂ fε(x∗) with |yε | " Mβ(ε) for some M ! 0. If

∫∞
0 β(ε(t))dt =∞ then any solution of−u̇(t) ∈ ∂ fε(t)(u(t))

satisfies u(t)→ x∗ for t→∞.

Proof. Proceeding as in the previous proof we get

θ̇(t) + β
(
ε(t)

)
θ(t) " fε(t)(x∗)− fε(t)(xε(t))

" 〈yε(t), x∗ − xε(t)〉

" Mβ
(
ε(t)

)
|x∗ − xε(t)|

so the conclusion follows again from Lemma 1 since h(t) := M|x∗ − xε(t)|→ 0. !

3. Tikhonov dynamics for maximal monotone maps

Let us consider now the case of a maximal monotone operator A :H→ 2H , and let S = A−1(0)
denote the solution set of the inclusion 0 ∈ A(x). We suppose that S is nonempty and, as before, we
denote x∗ its least-norm element (recall that S is closed and convex). In contrast with the subdiffer-
ential case, the strong solution of (I) need not converge when t→∞ towards a point in S , unless
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some further restriction is imposed on the operator A. On the other hand, for any fixed ε > 0, the
perturbed operator Aε = A + ε I is strongly monotone and the solution of the differential inclusion

−u̇(t) ∈ A
(
u(t)

)
+ εu(t)

converges strongly to xε = A−1
ε (0).

Before analyzing the conditions for convergence in the non-autonomous case ε(t) as in (D), we
recall the following asymptotic property for the trajectory ε +→ xε . This corresponds to Lemma 1 in
[13] and can be traced back to [29]. See also [16] for a recent extension with the identity operator
replaced by a c-uniformly maximal monotone operator V . For the reader’s convenience we include a
short proof.

Lemma 4. If S ,= ∅ then xε → x∗ as ε→ 0+ .

Proof. Monotonicity of A gives 〈−εxε, xε − x∗〉 ! 0 so that |xε| " |x∗| and xε remains bounded as
ε → 0+ . Thus εxε → 0 and since gph(A) is weak–strong sequentially closed, it follows that every
weak cluster point x∞ = w − lim xεk with εk → 0 belongs to S . The inequality |xεk | " |x∗| then gives
|x∞| " |x∗| by weak lower-semicontinuity of the norm, and then x∞ = x∗ so that xε ⇀ x∗ . Since we
also have |xε|→| x∗|, the convergence is strong. !

Let us go back to the Tikhonov dynamics (D) with ε(t) → 0+ as t → ∞. The case when∫∞
0 ε(t)dt < ∞ may be completely analyzed by combining [32, Proposition 7.9] and [32, Proposi-

tion 8.5]: the trajectories of (D) converge (either weakly or strongly) to a point in S if and only if
the corresponding property holds for the unperturbed dynamics (I). Let us then address the question
whether

∫∞
0 ε(t)dt =∞ is enough to ensure the convergence of the trajectories. We shall see that

the answer is negative in general, but under some additional assumptions one can establish strong
convergence to x∗ . For instance, adapting the arguments in [3], we can easily prove the following:

Proposition 5. Suppose ε(t) is decreasing to 0 and let u(t) be the strong solution of (D). Assume∫∞
0 ε(t)dt =∞ and also that either the path ε +→ xε has finite length or the parameter function satisfies

ε̇(t)/ε(t)2→ 0 as t→∞. Then u(t)→ x∗ strongly.

Proof. The proof consists in showing that θ(t) = 1
2 |u(t)− xε(t)|2 tends to 0. We recall that xε = (A +

ε I)−1(0) is absolutely continuous on (0,∞) (see e.g. [3, p. 530]). Differentiating we get

θ̇(t) =
〈
u̇(t)− ε̇(t)

d
dε

xε(t),u(t)− xε(t)

〉

for almost all t ! 0, and then using the strong monotonicity of A + ε I we deduce

θ̇(t) "−2ε(t)θ(t)− ε̇(t)

∣∣∣∣
d
dε

xε(t)

∣∣∣∣
√
2θ(t)

which is the same inequality obtained in [3] so that the arguments in that paper yield θ(t)→ 0 as
required. !

This extension, included here for completeness, was suggested in [28] and it appeared in the recent
thesis [22]. Now, the case ε̇(t)/ε(t)2 → 0 was already studied in [24] and, as a matter of fact, it
may be obtained as a particular case of a more general statement [33, Theorem 1.4] which can be
itself traced back to [12, Theorem 10.12] for a special class of operators (see also [34,35]). These
more general results do not require finite length of ε +→ xε nor ε̇(t)/ε(t)2 → 0, but only ε(t) to
be decreasing. We shall prove that even this monotonicity condition can be relaxed. We begin by
characterizing the strong convergence of the solutions of (D).
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Proposition 6. The strong solution u(t) of (D) is bounded and if
∫∞
0 ε(τ )dτ =∞ then the following proper-

ties are equivalent:

(a) all weak cluster points of u(t) for t→∞ belong to S,
(b) lim inft→∞ |u(t)| ! |x∗|,
(c) u(t)→ x∗ strongly.

Proof. Let θ(t) = 1
2 |u(t)− x∗|2. Differentiating and using the monotonicity of A we get

θ̇(t) =
〈
u̇(t),u(t)− x∗

〉

=
〈
u̇(t) + ε(t)u(t),u(t)− x∗

〉
+ ε(t)

〈
u(t), x∗ − u(t)

〉

" ε(t)
〈
u(t), x∗ − u(t)

〉

= ε(t)
2

[
|x∗|2 −

∣∣u(t)
∣∣2 −

∣∣x∗ − u(t)
∣∣2]

so that setting h(t) = 1
2 [|x∗|2 − |u(t)|2] we obtain

θ̇(t) + ε(t)θ(t) " ε(t)h(t).

Applying Lemma 1 we deduce that θ(t) is bounded and therefore so is u(t). On the other hand,
(a) ⇒ (b) follows from the weak lower-semicontinuity of the norm, while (c)⇒ (a) is straightforward
(both implications hold no matter what the value of

∫∞
0 ε(τ )dτ is). Finally, (b) ⇒ (c) follows from

Lemma 1 provided that
∫∞
0 ε(τ )dτ =∞ since then limsupt→∞ θ(t) " limsupt→∞ h(t) " 0 so that

θ(t)→ 0. !

Remark. The implication (b) ⇒ (c) may fail if
∫∞
0 ε(τ )dτ <∞. To see this, take A = ∂ f given by

Baillon’s counterexample for strong convergence in [5]: the solutions of (D) converge weakly but
not strongly to some element of S , thus they satisfy (a) and (b), but not (c). To see the latter we
invoke the equivalence result in [32] to deduce that the systems with or without ε(t) have the same
asymptotic behavior.

The next lemmas provide tools to check that condition (a) in Proposition 6 holds. From now on
we exploit the fact that the function ε(t) has bounded variation.

Lemma 7. Suppose ε(t)→ 0+ for t→∞ and u̇(t)→ 0 when t→∞, t ∈ D, where D is a dense subset of
[0,∞). Then all weak cluster points of u(t) for t→∞ are in S.

Proof. Let x̄ be a weak cluster point of u(t) and choose tk →∞ with u(tk) ⇀ x̄. Since u(·) is contin-
uous we may find t̃k ∈ D close enough to tk so that |u(t̃k)− u(tk)| " 1

k and therefore u(t̃k) ⇀ x̄. Then
u̇(t̃k)→ 0 and since ε(t)→ 0 and u(t) is bounded it follows that vk :=−u̇(t̃k)− ε(t̃k)u(t̃k)→ 0 with
vk ∈ A(u(t̃k)), from which we conclude 0 ∈ A(x̄) as required. !

Lemma 8. If
∫∞
0 ε(t)dt =∞ and

∫∞
0 |ε̇(t)|dt <∞ then there exists D ⊂ [0,∞) with full measure such that

u̇(t)→ 0 when t→∞, t ∈ D.

Proof. Let θ(t) = 1
2 |u(t + δ)− u(t)|2 with δ > 0 so that

θ̇(t) =
〈
u̇(t + δ)− u̇(t),u(t + δ)− u(t)

〉

" ε(t + δ)
〈
u(t + δ),u(t)− u(t + δ)

〉
+ ε(t)

〈
u(t),u(t + δ)− u(t)

〉
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=−
[
ε(t + δ) + ε(t)

]
θ(t) + 1

2

[
ε(t)− ε(t + δ)

][∣∣u(t + δ)
∣∣2 −

∣∣u(t)
∣∣2].

Multiplying this inequality by exp(Eδ
t ) where Eδ

t =
∫ t
0 [ε(τ + δ)+ ε(τ )]dτ , we may integrate over [s, t]

in order to obtain

exp
(
Eδ
t
)
θ(t) " exp

(
Eδ
s
)
θ(s) + 1

2

t∫

s

exp
(
Eδ
τ

)[
ε(τ )− ε(τ + δ)

][∣∣u(τ + δ)
∣∣2 −

∣∣u(τ )
∣∣2]dτ .

Now u(·) is differentiable on a set D ⊆ [0,∞) of full measure, so that multiplying the previous in-
equality by 2/δ2 and letting δ→ 0+ it follows that for all s, t ∈ D with s " t we have

exp
(
E0
t
)∣∣u̇(t)

∣∣2 " exp
(
E0
s
)∣∣u̇(s)

∣∣2 − 2

t∫

s

exp
(
E0
τ

)
ε̇(τ )

〈
u̇(τ ),u(τ )

〉
dτ

" exp
(
E0
s
)∣∣u̇(s)

∣∣2 +
t∫

s

exp
(
E0
τ

)∣∣ε̇(τ )
∣∣[∣∣u̇(τ )

∣∣2 +
∣∣u(τ )

∣∣2]dτ .

Denoting φ(t) = exp(E0
t )|u̇(t)|2 and R = supτ!0 |u(τ )| we get

φ(t) " φ(s) + R2

t∫

s

exp
(
E0
τ

)∣∣ε̇(τ )
∣∣dτ +

t∫

s

∣∣ε̇(τ )
∣∣φ(τ )dτ

and since the quantity κ(s, t) = φ(s) + R2 ∫ t
s exp(E0

τ )|ε̇(τ )|dτ is non-decreasing in t , we may use
Gronwall’s inequality to deduce

φ(z) " κ(s, t)exp

( z∫

s

∣∣ε̇(τ )
∣∣dτ

)

, ∀z ∈ [s, t].

In particular, for z = t this gives

∣∣u̇(t)
∣∣2 "

[

φ(s)exp
(
−E0

t
)
+ R2

t∫

s

exp
(
E0
τ − E0

t
)∣∣ε̇(τ )

∣∣dτ

]

exp

( t∫

s

∣∣ε̇(τ )
∣∣dτ

)

"
[

φ(s)exp
(
−E0

t
)
+ R2

t∫

s

∣∣ε̇(τ )
∣∣dτ

]

exp

( t∫

s

∣∣ε̇(τ )
∣∣dτ

)

and letting t→∞ with t ∈ D we obtain

limsup
t→∞, t∈D

∣∣u̇(t)
∣∣2 " R2 exp

( ∞∫

s

∣∣ε̇(τ )
∣∣dτ

) ∞∫

s

∣∣ε̇(τ )
∣∣dτ .

Since the right-hand side expression tends to 0 for s→∞, we conclude that u̇(t)→ 0 for t→∞,
t ∈ D . !
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Combining Proposition 6 with Lemmas 7 and 8 we obtain the announced extension of [33, Theo-
rem 1.4].

Theorem 9. Let u(t) be the strong solution of (D) and assume that ε(t)→ 0 as t→∞ with
∫∞
0 ε(t)dt =∞

and
∫∞
0 |ε̇(t)|dt <∞. Then u(t)→ x∗ strongly.

4. Counterexamples

4.1. A non-convergent Tikhonov-like trajectory

In this subsection we give a counterexample showing that Theorem 9 may fail if ε(t) is not of
bounded variation. The idea is as follows. Consider A(x) = (1− x2, x1 − 1) the π

2 -rotation around the
unique rest point p = (1,1). The Tikhonov trajectory is xε = 1

1+ε2
(1− ε,1 + ε) and describes a half-

circle with center at ( 12 , 1
2 ) and radius 1√

2
(see dotted line in Fig. 1). For the dynamics, let us start

from a point x0 on the other half of this circle and let d be its distance to p. Fix ε > 0 and follow
the trajectory of −u̇(t) = Au(t) + εu(t) which spirals towards xε . On a first phase u(t) increases its
distance to p and afterwards it comes closer again (see Fig. 1). Stop exactly when the distance is
again d and shift to ε = 0 in such a way that the trajectory now turns around p until it comes back
to the initial point x0, from where we restart a new cycle with a smaller ε. To make this idea more
precise and to simplify the computations we use complex numbers, identifying R2 with C.

The operator: Since A is the π
2 clockwise rotation in the plane around the point p = 1+ i, Eq. (D) may

be rewritten as

u̇(t) =−i
(
u(t)− p

)
− ε(t)u(t). (3)

The parameter function: Let εn be a sequence of positive real numbers with εn → 0 and
∑

εn =∞.
Take a0 = 0 and let bn = an + τn , an+1 = bn +σn with τn > 0, σn > 0 to be fixed later on, and consider
the step function

ε(t) =
{

εn if an " t < bn,
0 if bn " t < an+1.

Clearly ε(t)→ 0+ and we get
∫∞
0 ε(t)dt =∞ provided τn is bounded away from zero.

Fig. 1. The trajectory u(t) on the interval [an,an+1], starting from 1 and back.
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The dynamics: Let u(an) = 1 ∈C. On the interval [an,bn) the solution of (3) is

u(t) = 1
εn + i

[
i − 1+ (1 + εn)e−(εn+i)(t−an)]. (4)

Let t = bn be the first time after an with |u(t)− p| = 1, so that τn = bn − an may be characterized as
the first positive zero of the function

ψn(s) = (1+ εn)e−2εns + 2εne−εns
[
sin(s)− cos(s)

]
+ εn − 1.

We claim that if εn " 1
2 then τn ∈ [ 14 , 3

2π ]. For the lower bound, since ψn(0) = 0 it suffices to
show that ψ ′n(s) > 0 for all s ∈ (0, 1

4 ). Now, ψ ′n(s) = 2εne−εnsφn(s) with φn(s) = (1 + εn) cos(s) + (1−
εn) sin(s)−(1+εn)e−εns , and since φn(0) = 0 it suffices to check φ′n(s) > 0 for s ∈ (0, 1

4 ), which follows
from

φ′n(s) = (1− εn) cos(s)− (1 + εn) sin(s) + εn(1+ εn)e−εns >
1
2

[
cos(s)− 3sin(s)

]
> 0.

For the upper bound we just prove that ψn(
3
2π) < 0. To this end we set ρ = e−

3
2πεn so that ρ ∈ (0,1)

and therefore

ψn

(
3
2
π

)
= (ρ − 1)

[
1+ ρ + εn(ρ − 1)

]
= (ρ − 1)

[
2ρ + (1− εn)(1− ρ)

]
< 0.

On the interval [bn,an+1) the solution is u(t) = p + (u(bn)− p)e−i(t−bn) , and we may pick σn such
that u(an+1) = 1 in order for the solution to cycle indefinitely. More precisely, let σn be the first
positive solution of eis = i(u(bn)− p). Such a positive solution exists because |u(bn)− p| = 1. On the
interval [bn,an+1), the trajectory u(t) travels from u(bn) to 1 along the circle |z− p| = 1. Now, Eq. (4)
implies that the real part of u(bn) is strictly less than 1. Therefore, the trajectory covers at least the
arc joining (clockwise) the points 1+ 2i and 1 on the circle |z− p| = 1 as t goes from bn to an+1, so
it cannot converge as t→∞.

Remark. The lack of continuity of the function ε(t) is not the problem, nor is it the fact that ε(t)
vanishes in some intervals. In fact, one can find η ∈ C∞(R+;R++) such that η /∈ L1(0,∞) while
ε− η ∈ L1(0,∞). Obviously this η will not be of bounded variation. The arguments in [32] show that
Eq. (4) with η(t) instead of the previous ε(t) has the same asymptotic behavior and therefore it will
not converge.

4.2. A non-convergent discrete trajectory

Given the close connection between evolution equations and the proximal point method [18,19,26,
27,31,32,35], a natural question is whether one may find sequences {λn} and {θn} with

∑
λnθn =∞

and such that the discrete trajectory generated by the (perturbed) proximal point algorithm

xn−1 − xn
λn

∈ Axn + θnxn

does not converge. This is strongly related to [34]. Observe that in the unperturbed case (θn ≡ 0) the
sequence xn converges weakly in average [6]. For A = ∂ f the sequence converges weakly [11], but
the counterexample in [21] (based on that of [5]) shows that this convergence need not be strong;
answering a question posed earlier in [36]. More examples of this kind have appeared recently in
[8,9], based on results of [23].
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Let ε(t) be the function defined in Section 4.1. One can select a non-increasing sequence {λn} in
such a way that the function ε is constant on each interval of the form [Λn,Λn+1), where Λn =∑n

k=1 λk→∞. Define θn = ε(Λn) and observe that

∞∑

n=1

λnθn =
∞∫

0

ε(t)dt =∞.

With these conditions, a corollary of Kobayashi’s inequality (see [26] as well as [21], [1] or [32]) states
that

∣∣u(t)− xn
∣∣ "

∣∣u(s)− xk
∣∣ + |Bxk|

√√√√[
(Λn −Λk)− (t − s)

]2 +
n∑

j=k+1

λ2
j , (5)

where B is any maximal monotone operator, xn = ∏n
j=1(I + λ j B)−1x is a corresponding proximal

sequence, and u satisfies −u̇(t) ∈ Bu(t).
Consider now the indices Jn such that the discontinuities of the function ε(t) lie precisely on the

set {Λ Jn }. We have

Jn+1∑

k= Jn+1

λ2
k " λ Jn+1(Λ Jn+1 −Λ Jn ) " 2Mλ Jn ,

where M is an upper bound for the τn ’s and the σn ’s.
Let U (t, s)x = u(t), where −u̇(t) = Au(t) + ε(t)u(t) and u(s) = x. Define also V (t, s)x =∏ν(t)

k=ν(s)+1[I + λk(A + θk I)]−1x, where ν(t) = max{k ∈ N | Λk " t}. Applying inequality (5) repeatedly
for Bn = A + θn I in the appropriate subintervals one gets

∣∣U (t, s)x− V (t, s)x
∣∣ " K

ν(t)∑

n=ν(s)+1

√
λ Jn

for some constant K , which depends on a bound for the sequence {Axn + ε(Λn)xn}. If
∑∞

k=1
√

λ Jk
is finite, this implies that the trajectories t +→ U (t, s)x converge if and only if the same holds for
t +→ V (t, s)x. Therefore the proximal point algorithm cannot always converge.

Sequences satisfying
∑∞

k=1
√

λ Jk <∞ and not being in 41 are difficult to characterize. However
we can provide a very simple example. First, let m be a positive lower bound for the τn ’s and the
σn ’s. Define {λn} as follows: for 4k−1 < n " 4k set λn = 4−km. We then have

∑
n!0 λn =∞, while∑

n!1
√

λ Jn "m
∑

n!0 2
−n <∞.
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