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This survey is devoted to the asymptotic behavior of solutions of evolution equations generated by
maximal monotone operators in Hilbert spaces. The emphasis is in the comparison of continuous time
trajectories to sequences generated by implicit or explicit discrete time schemes. The analysis covers
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Introduction

Discrete and continuous dynamical systems governed by maximal monotone operators
have a great number of applications in optimization, equilibrium, fixed-point theory,
partial differential equations, among others.

We are specially concerned about the connection between continuous time and discrete
time models. This connection occurs at two levels:

1. On a compact interval, one approximates continuous-time trajectories by interpo-
lation of some sequences computed via discretization. By considering vanishing
step sizes this construction is used to prove existence results and to approximate
the trajectories numerically.

2. Another approximation is in the long term, where we compare asymptotic prop-
erties of a continuous trajectory to similar asymptotic properties of a given path
defined inductively through a sequence of values and step sizes.

It is important to mention that some estimations (e.g. Kobayashi type) can be useful
for both purposes.

The literature on this subject is huge but lot of the arguments turn out to be pretty
much the same. Therefore, we intend to give a concise yet complete compendium of
the results available, with an emphasis on the techniques and the way they enter in
the proofs.
Most of the properties will be established in the framework of Hilbert spaces since
our aim is to underline unity in terms of tools and approach. A lot of results can be
extended but, in most cases, additional specific assumptions are needed. With no aim
for completeness, we have included several references to the corresponding results in
Banach spaces that we think might be useful.

The paper is organized as follows: In Section 1 we recall the basic properties of maximal
monotone operators along with some examples. Section 2 deals with the associated dy-
namic approach. We present the existence results for the differential inclusion "u ∈ −Au
and global properties of implicit and explicit discretizations. Section 3 establishes the
convergence of the value f(u) in the case of an operator of the form A = ∂f . In Section
4 we describe general results on weak convergence: tools, arguments, characterization
of the weak limits. Section 5 is devoted to weak convergence in average and Section 6
is concerned with weak convergence, especially for demipositive operators. In Section
7 we present the, mostly geometric, conditions ensuring that the convergence is strong.
Section 8 deals with asymptotic equivalence and explains some apparently hidden re-
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lationships between certain continuous- and discrete-time dynamical systems. Finally,
Section 9 contains some concluding remarks.

1. Preliminaries

The purpose of this section is to introduce notations and to recall basic results.

1.1. Monotone operators

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. An operator is
a set-valued mapping A : H ⇒ H whose domain

D(A) = {u ∈ H : Au '= ∅}

is nonempty. For convenience of notation, sometimes we will identify A with its graph
by writing [u, u∗] ∈ A for u∗ ∈ Au. The operator A−1 is defined by its graph: [u, u∗] ∈
A−1 if, and only if, [u∗, u] ∈ A.
An operator A : H ⇒ H is monotone if one has

〈x∗ − y∗, x− y〉 ≥ 0 (1)

for all [x, x∗], [y, y∗] ∈ A.
A monotone operator is maximal if its graph is not properly contained in the graph of
any other monotone operator. Observe that ifA is monotone (resp. maximal monotone)
then so are A−1 and λA if λ > 0.

Lemma 1.1. Let A be a maximal monotone operator. A point [x, x∗] ∈ H×H belongs
to the graph of A if, and only if,

〈x∗ − u∗, x− u〉 ≥ 0 for all [u, u∗] ∈ A.

Proof. If [x, x∗] ∈ A the inequality holds by monotonicity. Conversely, if [x, x∗] /∈ A,
then the set A ∪ {[x, x∗]} is the graph of a monotone operator that extends A, which
contradicts maximality. "

An operator A : H ⇒ H is nonexpansive if one has

‖x∗ − y∗‖ ≤ ‖x− y‖ (2)

for all [x, x∗], [y, y∗] ∈ A. Observe that a nonexpansive operator is single-valued on its
domain.

Let I be the identity mapping on H. For λ > 0, the resolvent of A is the operator

JA
λ = (I + λA)−1.

Theorem 1.2. Let A : H ⇒ H. Then

i) A is monotone if, and only if, JA
λ is nonexpansive for each λ > 0.

ii) A monotone operator A is maximal if, and only if, I + λA is surjective for each
λ > 0.
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Proof. i) Let A be monotone, [x, x∗], [y, y∗] ∈ A and λ > 0.
Inequality (1) implies

‖x− y‖ ≤ ‖x− y + λ(x∗ − y∗)‖, ∀λ ≥ 0 (3)

which is the non expansiveness of JA
λ .

Conversely, (3) leads to

2λ〈x∗ − y∗, x− y〉+ λ2‖x∗ − y∗‖2 ≥ 0

hence implies (1) by dividing by λ and letting λ → 0.

ii) It is enough to prove the result for λ = 1. Given z0 ∈ H, we will find x0 ∈ H such
that 〈x∗ − (z0 − x0), x − x0〉 ≥ 0 for all [x, x∗] ∈ A so that maximality of A implies
z0 − x0 ∈ Ax0. For [x, x∗] ∈ A, define the weakly compact set Cx,x∗ by

Cx,x∗ = {x0 ∈ H : 〈x∗ + x0 − z0, x− x0〉 ≥ 0}.

It suffices to show that the family {Cx,x∗}[x,x∗]∈A has the finite intersection property. To
this end take [xi, x∗

i ] ∈ A for i = 1, . . . , n. Let ∆ = {(λ1, . . . , λn) : λi ≥ 0;
∑n

i=1 λi = 1}
denote the n-dimensional simplex and consider the function f : ∆×∆ → R given by

f(λ, µ) =
∑n

i=1 µi〈x∗
i + x(λ)− z0, x(λ)− xi〉

with x(λ)=
∑n

i=1 λixi. Clearly f(·, µ) is convex and continuous while f(λ, ·) is linear.
The Min-Max Theorem (see, for instance, Theorem 1.1 in [19, Brézis]) implies the
existence of λ0∈∆ such that

max
µ∈∆

f(λ0, µ) = max
µ∈∆

min
λ∈∆

f(λ, µ) ≤ max
µ∈∆

f(µ, µ).

Now monotonicity of A implies

f(µ, µ) =
∑n

i=1 µi〈x∗
i , x(µ)− xi〉+ 〈x(µ)− z0, x(µ)− x(µ)〉

=
∑n

i,j=1 µiµj〈x∗
i , xj − xi〉

= 1
2

∑n
i,j=1 µiµj〈x∗

i − x∗
j , xj − xi〉 ≤ 0

so that f(λ0, µ)≤0 for all µ∈∆. Taking for µ the extreme points we get

〈yi + x(λ0)− z0, x(λ0)− xi〉 ≤ 0

for all i, which is x(λ0) ∈
⋂n

i=1 Cxi,x∗

i
.

Conversely, take [u, u∗] ∈ H × H such that 〈u∗ − v∗, u − v〉 ≥ 0 for all [v, v∗] ∈ A.
Since I + A is surjective, there is [v, v∗] ∈ A such that v + v∗ = u + u∗. Then
〈u∗ − v∗, u− v〉 = −‖u− v‖2 ≥ 0 which implies u = v, u∗ = v∗ and [u, u∗] ∈ A. "

Comments. The study of monotone operators started in [47, Minty]. See also [37,
Kato] for part i) in Banach spaces. The if part in ii) holds in Banach spaces, essentially
by the same arguments. The proof presented above for the only if part can be found in
[19, Brézis]. This result does not hold in general Banach spaces (see [36, Hirsch]). #
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1.2. Examples and properties

Example 1.3. Let Γ0(H) denote the set of all proper, lower-semicontinuous convex
functions f : H → R ∪ {+∞}. For f ∈ Γ0(H), the subdifferential of f is the operator
∂f : H ⇒ H defined by

∂f(x) = {x∗ ∈ H : f(z) ≥ f(x) + 〈x∗, z − x〉 for all z ∈ H}.

To see that it is monotone, take x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y). Thus

f(y) ≥ f(x) + 〈x∗, y − x〉,
f(x) ≥ f(y) + 〈y∗, x− y〉

and adding these two inequalities we obtain 〈x∗ − y∗, x− y〉 ≥ 0.
For maximality, according to Theorem 1.2 it suffices to prove that for each y ∈ H and
each λ > 0 there is xλ ∈ D(∂f) such that y ∈ xλ + λ∂f(xλ). Indeed, consider the
Moreau-Yosida approximation of f at y, which is the function fλ defined by

fλ(x) = f(x) +
1

2λ
‖x− y‖2. (4)

It is proper, lower-semicontinuous, strongly convex and coercive (due to the quadratic
term and the fact that f has a affine minorant). Its unique minimizer xλ satisfies

0 ∈ ∂fλ(xλ) = ∂f(xλ) +
1

λ
(xλ − y).

That is, y ∈ xλ + λ∂f(xλ). #

Example 1.4. Let A be monotone, single-valued and continuous on D(A) = H. Then
A is maximal. Indeed, from 〈u − Ay, x − y〉 ≥ 0 for all y ∈ H one deduces, with
y = x− tw, that 〈u−A(x− tw), w〉 ≥ 0, for all t ≥ 0 and all w ∈ H. By letting t → 0
we obtain 〈u− Ax,w〉 ≥ 0 for all w ∈ H, so that u = Ax. #

Example 1.5. Let C be a nonempty subset of H and let T : C → H be nonexpansive,
thus single-valued on C. The operator A = I − T is monotone because

〈Ax− Ay, x− y〉 = ‖x− y‖2 − 〈Tx− Ty, x− y〉

≥ ‖x− y‖
[
‖x− y‖ − ‖Tx− Ty‖

]

≥ 0.

If C = H maximality is given in Example 1.4. Otherwise, T can be extended to a
nonexpansive function defined on all of H, so that A is not maximal. If C is closed
and convex this extension is easily constructed by considering T̃ = T ◦ PC , where PC

denotes the orthogonal projection onto C. Notice that if T : C → C then T̃ has no
fixed points outside of C. Pioneer works in the extension of Lipschitz functions on
general sets are [46, 38, 66, 67] but the interested reader can also consult [31] for an
updated survey on the topic.
It is important to point out that this lack of maximality when C  H is not a serious
drawback, as we shall see later on (see, for instance, Remark 1.8). #
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The set of zeroes of A is

S = A−10 = {x ∈ H; 0 ∈ Ax}.

This set is relevant in optimization and fixed-point theory:

• If A = I−T , where T is a nonexpansive mapping, then S is the set of fixed points
of T .

• If A = ∂f , where f is a proper lower-semicontinuous convex function then S is
the set of minimizers of f .

Let us describe some topological consequences of maximal monotonicity.

Proposition 1.6. Let A be maximal monotone. For each x ∈ H, the set Ax is closed
and convex. In particular, S is closed and convex.

Proof. Lemma 1.1 implies that

Ax = {x∗ ∈ H; 〈x∗ − u∗, x− u〉 ≥ 0 for all [u, u∗] ∈ A}

hence Ax is closed and convex. Since A−1 is maximal monotone and S = A−10, the
set S is closed and convex. "

Proposition 1.7. Let A be a maximal monotone operator. Then A is sequentially
weak-strong and strong-weak closed.

Proof. Take sequences {xn} and {x∗
n} in H such that [xn, x∗

n] ∈ A for each n ∈ N and
suppose that xn → x and x∗

n ⇀ x∗, as n → ∞ (consider A−1 for the other case). To
prove that [x, x∗] ∈ A, recall that by monotonicity, for all [u, u∗] ∈ A and all n ∈ N, we
have 〈x∗

n − u∗, xn − u〉 ≥ 0. Letting n → ∞ the convergence assumptions imply that
〈x∗ − u∗, x− u〉 ≥ 0 for all [u, u∗] ∈ A. Hence [x, x∗] ∈ A by Lemma 1.1. "

Remark 1.8. If C ⊂ H is closed and convex, T : C → C is nonexpansive and
A = I − T , the conclusions in Propositions 1.6 and 1.7 are true, even if A is not
maximal (C  H). #

2. Dynamic approach

The forthcoming sections address, among others, the issue of finding zeroes of a (maxi-
mal) monotone operator A. The strategy is the following: we shall consider some
continuous and discrete dynamical systems whose trajectories may converge, in some
sense and under some conditions, to points in S = A−10. In this section we present
these systems along with some relevant properties.

From now on we assume that A is a maximal monotone operator.

2.1. Differential inclusion

Let us take x ∈ D(A) and consider the following differential inclusion:

{
− "u(t) ∈ Au(t) a.e. on (0,∞)

u(0) = x.
(5)
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A solution of (5) is an absolutely continuous function u from R+ to H satisfying these
two conditions.

Observe that S is precisely the set of rest points of (5).

Monotonicity implies the following dissipative property:

Lemma 2.1. Let u1 and u2 be absolutely continuous functions satisfying "ui(t)∈−Aui(t)
almost everywhere on (0, T ). Then the function t 2→ ‖u1(t) − u2(t)‖ is decreasing on
(0, T ).

Proof. For t ∈ (0, T ) define θ(t) = 1
2‖u1(t) − u2(t)‖2. The hypotheses give "θ(t) =

〈 "u1(t)− "u2(t), u1(t)− u2(t)〉 ≤ 0 for almost every t. "

Immediate consequences are the following:

Corollary 2.2. Let y ∈ S and u be a solution of (5). Then limt→∞ ‖u(t)− y‖ exists.

Corollary 2.3. There is at most one solution of (5).

Another aspect of dissipativity is the next property:

Proposition 2.4. The speed ‖ "u(t)‖ is decreasing.

Proof. Lemma 2.1 implies that for any h > 0 and s < t

‖u(t+ h)− u(t)‖ ≤ ‖u(s+ h)− u(s)‖.

We conclude by dividing by h and taking the limit as h → 0. "

A basic inequality is the following:

Proposition 2.5. Let u satisfy (5) and [v, w] ∈ A, then:

‖u(t)− v‖2 − ‖u(0)− v‖2 ≤ 2

∫ t

0

〈w, v − u(s)〉ds. (6)

Proof. Write

‖u(t)− v‖2 − ‖u(0)− v‖2 = 2

∫ t

0

〈 "u(s), u(s)− v〉ds.

By monotonicity, we have 〈 "u(s), u(s)− v〉 ≤ 〈−w, u(s)− v〉, whence the result. "

This is the idea in the definition of integral solution introduced in [17] (see the proof
of Theorem 2.14).

We shall present two approaches for the existence of a solution of (5). The first one
uses the Yosida approximation and is the best-known in the theory of optimization in
Hilbert spaces. The second one uses proximal sequences to approximate the function
u. It is popular in the field of partial differential equations since it works naturally
in arbitrary Banach spaces. Since it is less known in the optimization community we
present it in detail.
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But before doing so, and assuming for a moment that the differential inclusion (5)
does have a solution, observe that by Lemma 2.1, for each t ≥ 0 the mapping x 2→ u(t)
defines a non expansive function from D(A) to itself that can be continuously extended
to a map St from D(A) to itself. The family {St}t≥0 is the semi-group generated by A
and satisfies:

i) S0 = I and St ◦ Sr = St+r;
ii) ‖Stx− Sty‖ ≤ ‖x− y‖;
iii) limt→0 ‖x− Stx‖ = 0.

Reciprocally, given a continuous semi-group of contractions i.e. satisfying i), ii) and
iii), from a closed convex subset C to itself, there exists a generator, namely a maximal
monotone operator A with C = D(A) such that Stx coincides with u(t) for x ∈ D(A),
see [19, Brézis].

We will use hereafter both notations u(t) and Stx.

2.2. Approach through the Yosida approximation.

2.2.1. The Yosida approximation

Recall that the resolvent is JA
λ . The Yosida approximation of A is the single-valued

maximal monotone operator Aλ, λ > 0, defined by

Aλ =
1

λ
(I − JA

λ ).

Since JA
λ is nonexpansive and everywhere defined, Aλ is monotone (see Example 1.3

above) and maximal (using Lemma 1.1). It is also clear that Aλ is Lipschitz-continuous
with constant 2/λ. Observe that S = A−10 = A−1

λ 0 for all λ > 0.

Recall that PCx denotes the orthogonal projection of a point x ∈ H onto a nonempty
closed convex set C ⊂ H. The minimal section of A is the operator A0 defined by
A0x = PAx0, which is clearly monotone but not necessarily maximal.

The following results summarize the main properties of the resolvent and the Yosida
approximation. They can be found in [19, Brézis] (see also [13, Barbu] for Banach
spaces).

Proposition 2.6. With the notation introduced above we have the following:

1. Aλx ∈ AJA
λ x

2. ‖Aλx‖ ≤ ‖A0x‖, ‖Aλx‖ is nonincreasing in λ and limλ→0 ‖Aλx‖ → ‖A0x‖.
3. limλ→0 JA

λ x = x.
4. If xλ → x and Aλxλ remains bounded as λ → 0, then x ∈ D(A). Moreover, if y

is a cluster point of Aλxλ as λ → 0, then y ∈ Ax.
5. A0 characterizes A in the following sense: If A and B are maximal monotone

with common domain and A0 = B0, then A = B.
6. limλ→0Aλx = A0x and D(A), the (strong) closure of D(A), is convex.

2.2.2. The existence result

The main result is the following:
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Theorem 2.7. There exists a unique absolutely continuous function u : [0,+∞) → H
satisfying (5). Moreover,

1. "u ∈ L∞(0,∞;H) with ‖ "u(t)‖ ≤ ‖A0x‖ almost everywhere.
2. u(t) ∈ D(A) for all t ≥ 0 and ‖A0u(t)‖ decreases.
3. A0u(t) is continuous from the right and u(t) admits a right-hand derivative for

all t ≥ 0; namely "u(t+) = −A0u(t) (lazy behavior).

The problem of finding a trajectory satisfying (5) was first posed and studied in [41,
Komura] and [30, Crandall and Pazy]. The classical proof of Theorem 2.7 above can be
found in [19, Brézis]. The idea is to consider the differential inclusion (5) with A = Aλ,
which has a solution uλ by virtue of the Cauchy-Lipschitz-Picard Theorem. Then one
proves first that, as λ → 0, uλ converges uniformly on compact intervals to some u,
then that u satisfies (5) for the original A. The following estimation plays a crucial
role in the proof and is interesting on its own:

‖uλ(t)− u(t)‖ ≤ 2‖A0x‖
√
λt. (7)

Finally u is proved to have the properties enumerated in Theorem 2.7.

Comments. The same method can be extended to Banach spaces X such that both
X and X∗ are uniformly convex (see [37, Kato]). #

2.3. Approach through proximal sequences.

2.3.1. Proximal sequences

Given {λn} a sequence of positive numbers or step sizes, a sequence {xn} is proximal
if it satisfies 





xn − xn−1

λn
∈ −Axn for all n ≥ 1

x0 ∈ H.
(8)

In other words,
xn = (I + λnA)

−1xn−1 = JA
λnxn−1. (9)

If A is maximal monotone, the existence of such a sequence follows from Theorem 1.2.
Observe that the first inclusion in (8) can be seen as an implicit discretization of the
differential inclusion (5), called also a backward scheme. The velocity at stage n is

yn =
xn − xn−1

λn
. (10)

Comments. The notion of proximal sequences and the term proximal were introduced
in [49, Moreau] for f ∈ Γ0(H) and A = ∂f . In that case, finding xn corresponds to
minimizing the Moreau-Yosida approximation

fλn(x) = f(x) +
1

2λn
‖x− xn−1‖2

of f at xn−1 (see (4)). #
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Monotonicity implies the following properties:

Lemma 2.8. The sequence ‖yn‖ is decreasing.

Proof. The inequality 〈yn − yn−1, xn − xn−1〉 ≤ 0 implies 〈yn − yn−1, yn〉 ≤ 0 and
therefore ‖yn‖ ≤ ‖yn−1‖. "

This is the counterpart of Proposition 2.4, which states that the speed of the continuous-
time trajectory given by (5) decreases.

Proposition 2.9. For any [x, y] ∈ A

‖xn−1 − x‖2 ≥ ‖xn−1 − xn‖2 + ‖xn − x‖2 + 2λn〈y, xn − x〉. (11)

Proof. Simply observe that

‖xn−1 − x‖2 = ‖xn−1 − xn‖2 + ‖xn − x‖2 + 2〈xn−1 − xn, xn − x〉 (12)

and 〈xn−1 − xn, xn − x〉 ≥ 〈λny, xn − x〉 by monotonicity. "

This is the counterpart of (6).

In particular one has:

Lemma 2.10. Let x ∈ S. Then ‖xn − x‖2 + λ2
n‖yn‖2 ≤ ‖xn−1 − x‖2.

An immediate consequence is the following:

Corollary 2.11. Let x ∈ S. The sequence ‖xn − x‖2 is decreasing, thus convergent.

Notice the similarity with Corollary 2.2.

2.3.2. Kobayashi inequality

The following inequality, from [39, Kobayashi], provides an estimation for the distance

between two proximal sequences {xk} and {x̂l}, with step sizes {λk} and {λ̂l}, respec-
tively.

We use the following notation throughout the paper:

σk =
k∑

i=1

λi and τk =
k∑

i=1

λ2
i

(similarily for σ̂l and τ̂l).

Proposition 2.12 (Kobayashi inequality). Let {xk} and {x̂l} be two proximal se-
quences. If u ∈ D(A), then

‖xk − x̂l‖ ≤ ‖x0 − u‖+ ‖x̂0 − u‖+ ‖A0u‖
√
(σk − σ̂l)2 + τk + τ̂l. (13)

We first prove the following auxiliary result:
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Lemma 2.13. Let [u1, v1], [u2, v2] ∈ A and λ, µ > 0, then

(λ+ µ)‖u1 − u2‖ ≤ λ‖u2 + µv2 − u1‖+ µ‖u1 + λv1 − u2‖.

Proof. Write ∆u = u1 − u2. Then

(λ+ µ)‖u1 − u2‖2

= λ〈u2 − u1,−∆u〉+ µ〈u1 − u2,∆u〉
= λ〈u2 + µv2 − u1,−∆u〉+ µ〈u1 + λv1 − u2,∆u〉+ λµ〈v2 − v1, u1 − u2〉

≤
[
λ‖u2 + µv2 − u1‖x+ µ‖u1 + λv1 − u2‖

]
‖u1 − u2‖

by monotonicity. "

Proof of Proposition 2.12. To simplify notation set

ck,l =
√
(σk − σ̂l)2 + τk + τ̂l.

The proof will use induction on the pair (k, l).
First, let us establish inequality (13) for the pair (k, 0) with k ≥ 0. Monotonicity
implies, using (3) that, for any u ∈ H

‖x1 − u‖ ≤ ‖x1 − u+ λ1(−y1 − A0u)‖ = ‖x0 − u− λ1A
0u‖

so that
‖x1 − u‖ ≤ ‖x0 − u‖+ λ1‖A0u‖.

Inductively we obtain
‖xk − u‖ ≤ ‖x0 − u‖+ σk‖A0u‖.

Thus

‖xk − x̂0‖ ≤ ‖xk − u‖+ ‖u− x̂0‖
≤ ‖x0 − u‖+ σk‖A0u‖+ ‖x̂0 − u‖
≤ ‖x0 − u‖+ ‖x̂0 − u‖+ ck,0‖A0u‖

because σk ≤ ck,0. In a similar fashion we prove the inequality for (0, l) with l ≥ 0.

Now suppose (13) holds for (k − 1, l) and (k, l − 1). According to Lemma 2.13,

(λk + λ̂l)‖xk − x̂l‖ ≤ λk‖x̂l + λ̂lŷl − xk‖+ λ̂l‖xk + λkyk − x̂l‖.

Setting αk,l =
λ̂l

λk+λ̂l
and βk,l = 1− αk,l =

λk
λk+λ̂l

we have

‖xk − x̂l‖ ≤ αk,l‖xk−1 − x̂l‖+ βk,l‖x̂l−1 − xk‖
≤ αk,l

[
‖x0 − u‖+ ‖x̂0 − u‖+ ck−1,l‖A0u‖

]

+ βk,l

[
‖x0 − u‖+ ‖x̂0 − u‖+ ck,l−1‖A0u‖

]

= ‖x0 − u‖+ ‖x̂0 − u‖+ [αk,lck−1,l + βk,lck,l−1] ‖A0u‖. (14)
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It only remains to verify that

αk,lck−1,l + βk,lck,l−1 ≤ ck,l. (15)

Cauchy-Schwartz Inequality implies

αk,lck−1,l + βk,lck,l−1 = α1/2
k,l (α

1/2
k,l ck−1,l) + β1/2

k,l (β
1/2
k,l ck,l−1)

≤ (αk,l + βk,l)
1/2(αk,lc

2
k−1,l + βk,lc

2
k,l−1)

1/2

= (αk,lc
2
k−1,l + βk,lc

2
k,l−1)

1/2.

On the other hand, notice that c2k−1,l = c2k,l−2λk(σk−σ̂l), while c2k,l−1 = c2k,l+2λ̂l(σk−σ̂l).
Hence,

(αk,lck−1,l + βk,lck,l−1)
2 ≤ αk,lc

2
k−1,l + βk,lc

2
k,l−1

= αk,lc
2
k,l + βk,lc

2
k,l − 2(αk,lλk − βk,lλ̂l)(σk − σ̂l)

= c2k,l.

Inequalities (14) and (15) give (13). "

Comments. Kobayashi’s original inequality also accounts for possible errors in the
determination of the proximal sequence, see [39, Kobayashi]. Nonautonomous versions
of the inequality can be found in [40, Kobayasi, Kobayashi and Oharu] or [2, Alvarez
and Peypouquet]. #

2.3.3. The existence result

In general Banach spaces, existence and uniqueness of a solution of (5) can also be
derived by the following method from [29, Crandall and Liggett] based on the resolvent.

Set t ∈ [0, T ], m ∈ N and consider a proximal sequence with constant step sizes
λk ≡ t/m. The m-th iteration defines a function

um(t) =

(
I +

t

m
A

)−m

x.

Repeat the procedure for each m to obtain a sequence {um(t)} of functions from [0, T ]
to H.

Theorem 2.14. The sequence {um(t)} defined above converges to some u(t) uniformly
on every compact interval [0, T ]. Moreover, the function t 2→ u(t) satisfies (5).

Proof. Instead of the original proof from [29, Crandall and Liggett] we present an
easier one using Kobayashi’s inequality (13)1. Fix N,M ∈ N and t, s ∈ [0, T ] with

T > 0. Consider two proximal sequences with λk = t/N and λ̂l = s/M for all k, l.
Initialize xk and x̂l both at x. Note that xN = uN(t) and x̂M = uM(s) hence

‖uN(t)− uM(s)‖ ≤ ‖A0x‖
√

(t− s)2 + T 2

N + T 2

M .
1In fact, Kobayashi’s proof is based on a simplification of Crandall and Liggett’s method.
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Thus the sequence {un} converges uniformly on [0, T ] to a function u, which is globally
Lipschitz-continuous with constant ‖A0x‖.
In order to prove that the function u satisfies (5) it suffices to verify that it is an integral
solution in the sense of [17, Bénilan] (see Proposition 2.5), which means that for all
[x, y] ∈ A and t > s ≥ 0 we have

1

2

[
‖u(t)− x‖2 − ‖u(s)− x‖2

]
≤

∫ t

s

〈y, x− u(τ)〉 dτ. (16)

Since u is absolutely continuous and A is maximal monotone, (16) implies "u(t) ∈
−Au(t) almost everywhere on [0, T ].
Monotonicity of A implies that for any proximal sequence {xk}: one has 〈xk−1 − xk −
λky, xk − x〉 ≥ 0. But ‖xk − x‖2 − ‖xk−1 − x‖2 ≤ 2〈xk−1 − xk, x− xk〉 and so

‖xk − x‖2 − ‖xk−1 − x‖2 ≤ 2λk〈y, x− xk〉.

Summing up for k = 1, . . . n we obtain

‖xn − x‖2 − ‖x0 − x‖2 ≤ 2
n∑

k=1

λk〈y, x− xk〉.

Setting x0 = u(s) and passing to the limit appropriately we get (16). Notice that
u(t) ∈ D(A) by maximality. "

A consequence of Proposition 2.12 and Theorem 2.14 is the following:

Corollary 2.15. The following statements hold:

i) For each z ∈ D(A) we have

‖xn − u(t)‖ ≤ ‖x0 − z‖+ ‖u(0)− z‖+ ‖A0z‖
√
(σn − t)2 + τn.

ii) For trajectories u and v we get

‖v(s)− u(t)‖ ≤ ‖v(0)− z‖+ ‖u(0)− z‖+ ‖A0z‖ |s− t|.

iii) The unique function u satisfying (5) is Lipschitz-continuous with

‖u(s)− u(t)‖ ≤ ‖A0u(0)‖ |s− t|.

iv) "u ∈ L∞(0,∞;H) with ‖ "u(t)‖ ≤ ‖A0x‖ almost everywhere.

Proposition 2.12 was used to construct a continuous trajectory by considering finer
and finer discretizations on a compact interval. By controlling the distance between
two discrete schemes it is possible to obtain bounds for the distance between a limit
trajectory and a discrete scheme. As a consequence, one can estimate the distance
between two trajectories as well.
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2.4. Euler sequences

Assume A maps D(A) into itself (this is a strong assumption, so the range of appli-
cations of this discretization method is limited compared to proximal sequences). Let
{λn} be a sequence of numbers in (0, 1] (the step sizes). Define an Euler sequence {zn}
recursively by 





zn − zn−1

λn−1
∈ −Azn−1 for all n ≥ 1

z0 ∈ D(A).
(17)

A remarkable feature of this scheme is that the terms of the sequence can be computed
explicitly (forward scheme).

Observe that if A = I − T with T : C → C nonexpansive and λn ≡ 1 then zn = T nz0.
This particular case has been studied extensively by several authors in the search for
fixed points of T . Some of their results will be presented in the forthcoming sections.

Notice also that in this framework, A = I −T with T nonexpansive, a Kobayashi-type
inequality holds too, namely

‖zk − ẑl‖ ≤ ‖z0 − u‖+ ‖ẑ0 − u‖+ ‖u− T (u)‖
√
(σk − σ̂l)2 + τk + τ̂l, (18)

where u is any point in H. This fact was recently established by [68, Vigeral].

Let us define the velocity at stage n as

wn =
zn+1 − zn

λn
∈ −Azn. (19)

Lemma 2.16. If [u, v] ∈ A then

‖zn+1 − u‖2 ≤ ‖zn − u‖2 + 2λn〈v, u− zn〉+ λ2
n‖wn‖2. (20)

Proof. For any u ∈ H one has

‖zn+1 − u‖2 = ‖zn − u‖2 + 2λn〈wn, zn − u〉+ λ2
n‖wn‖2. (21)

The desired inequality follows from monotonicity since 〈wn, zn − u〉 ≤ 〈v, u − zn〉 for
[u, v] ∈ A. "

This is the couterpart of (6) and (11). In particular one has:

Lemma 2.17. If u ∈ S then ‖zn+1 − u‖2 ≤ ‖zn − u‖2 + λ2
n‖wn‖2.

Observe the similarity and the difference with (5) and (8). The dissipativity condition
in Lemma 2.17 is much weaker than the corresponding ones in Lemmas 2.1 and 2.10.

An immediate consequence is the following:

Corollary 2.18. Assume
∑

‖zn+1− zn‖2 < ∞. For each u ∈ S the sequence ‖zn−u‖
is convergent.

Proof. It suffices to observe from Lemma 2.17 that the sequence‖zn−u‖2+
∑+∞

m=n‖zm+1

−zm‖2 is decreasing. "
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Comments. The hypothesis in the previous result holds if {λn} ∈ )2 and {wn} is
bounded. #

Notice the similarity with Corollaries 2.2 and 2.11.

The main drawback of Euler sequences is that they can be quite unstable. Most
convergence results need regularity assumptions such as {λn} ∈ )2 and the boundedness
of the sequence {wn}, or at least that

∑
‖zn+1 − zn‖2 < ∞.

An important result involving an operator A of the form I−T is the following, see [19,
Brézis]:

Proposition 2.19 (Chernoff’s estimate). Let T be nonexpansive from H to itself
and λ > 0. If v satifies

"v(t) = −1

λ
(I − T )v(t)

with v(0) = v0 then

‖v(t)− T nv0‖ ≤ ‖ "v(0)‖
√

λt+ (nλ− t)2. (22)

Proof. It is enough to consider the case λ = 1.
Define φn(t) = ‖v(t) − T nv0‖ and γn(t) = ‖ "v(0)‖

√
t+ [n− t]2. We shall prove induc-

tively that φn(t) ≤ γn(t). For n = 0 simply observe that

‖v(t)− v0‖ ≤
∫ t

0

‖ "v(s)‖ ds ≤ ‖ "v(0)‖t ≤ γ0(t)

by Proposition 2.4.

Now let us assume φn−1 ≤ γn−1 and prove φn ≤ γn. Multiplying "v(t) + v(t) = Tv(t)
by et and integrating we obtain v(t) = v0e−t +

∫ t

0 e
(s−t)Tv(s) ds so that

φn(t) =

∥∥∥∥e
−t(v0 − T nv0) +

∫ t

0

e(s−t)[Tv(s)− T nv0] ds

∥∥∥∥

≤ e−t‖v0 − T nv0‖+
∫ t

0

e(s−t)φn−1(s) ds.

Noticing that ‖v0−T nv0‖ ≤
∑n

i=1 ‖T i−1v0−T iv0‖ ≤ n‖v0−Tv0‖ = n‖ "v(0)‖ and using
the induction hypothesis we deduce

φn(t) ≤ e−t

[
n‖ "v(0)‖+

∫ t

0

esγn−1(s) ds

]
.

Hence it suffices to establish the inequality

n+

∫ t

0

es
√
s+ [(n− 1)− s]2 ds ≤ et

√
t+ [n− t]2.
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Since this holds trivially for t = 0, it suffices to prove the inequality for the derivatives

et
√
t+ [(n− 1)− t]2 ≤ et

[
√
t+ [n− t]2 +

1− 2[n− t]

2
√

t+ [n− t]2

]

.

This is easily verified by squaring both sides. "

In particular, setting T = JA
λ we get v = uλ as in (7). Combining inequalities (7) and

(22) we deduce that

‖(I + λA)−nx− u(t)‖ ≤ ‖(JA
λ )

nx− uλ(t)‖+ ‖uλ(t)− u(t)‖

≤ ‖A0x‖
(
2
√
λt+

√
λt+ (nλ− t)2

)
. (23)

Taking λ = t/n we obtain the following exponential approximation

∥∥∥∥∥

(
I +

t

n
A

)−n

x− u(t)

∥∥∥∥∥
≤ 3‖A0x‖t√

n
. (24)

Therefore, this discretization also approximates the continuous-time trajectory. More-
over, the approximation is uniform on bounded intervals.

2.5. Further remarks

2.5.1. Discrete to continuous

Given a sequence {xn} in X along with a strictly increasing sequence {σn} of positive
numbers with σ0 = 0 and σn → ∞ as n → ∞, one can construct a “continuous-time&
trajectory x by interpolation: for t ∈ [σn, σn+1], take x(t) anywhere on the segment
[xn, xn+1]. It is easy to see that any trajectory defined this way converges to some x̄ if,
and only if, the sequence {xn} converges to x̄.

Observe that if the interpolation is chosen to be piecewise constant in each subinterval
[σn, σn+1), then

1

t

∫ t

0

x(ξ) dξ =
1

σn

n∑

k=1

λkxk,

where λk = σk − σk−1. The sum on the right-hand side of the previous equality
represents an average of the points {xn} that is weighted by the sequence {λn} and
will be denoted by x̄n. Observe also that the convergence of these weighted averages
is equivalent to the convergence of the continuous-time interpolation.

From now on we will consider only proximal or Euler sequences with step
sizes {λn} /∈ )1.

2.5.2. Asymptotic analysis to be carried out in the following sections

The next sections are devoted to the asymptotic analysis. We start by considering the
sequences of values in the case f ∈ Γ0(H) and A = ∂f in Section 3. The rest deals with
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the behavior of trajectories and sequences themselves. Section 4 presents general tools
related to weak convergence and properties of weak limit points. These last properties
hold under weaker assumptions for the averages, which are studied in Section 5. In
Section 6 we present weak convergence, in particular in the framework of demipositive
operators. Section 7 introduces different geometrical conditions that are sufficient for
strong convergence. Section 8 is devoted to almost orbits and describes equivalence
classes that allow to recover previous results with a new perspective and extend to non
autonomous processes.

3. Convex optimization and convergence of the values

This section is devoted to the case where A = ∂f is the subdifferential of a proper
lower-semicontinuous convex function. We evaluate f on trajectories and discuss on
the behavior of its values.

3.1. Continuous dynamics

When A = ∂f with f ∈ Γ0(H), the differential inclusion (5) is a generalization of the
gradient method, for nondifferentiable functions. In what follows let u : [0,∞) → H
be the solution of the differential inclusion

"u(t) ∈ −∂f(u(t)), (25)

whose existence is given in Theorem 2.7. Let

f ∗ = inf
x∈H

f(x) ∈ R ∪ {−∞}.

The following result and its proof are essentially from [19, Brézis] (see [34, Güler]).

Proposition 3.1. The function t 2→ f(u(t)) is decreasing and limt→∞ f(u(t)) = f ∗.

Proof. The subdifferential inequality is

f(u(t))− f(u(s)) ≤ −〈 "u(t), u(t)− u(s)〉.

Thus

lim sup
s→t−

f(u(t))− f(u(s))

t− s
≤ −‖ "u(t)‖2

and so the function t 2→ f(u(t)) is decreasing.
For each z ∈ H and s ∈ [0, t] the subdifferential inequality then gives

f(z) ≥ f(u(s)) + 〈 "u(s), u(s)− z〉 ≥ f(u(t)) +
1

2

d

ds
‖u(s)− z‖2.

Integrating on [0, t] we obtain that

tf(z) ≥ tf(u(t)) +
1

2
‖u(t)− z‖2 − 1

2
‖u(0)− z‖2

and so

f(u(t)) +
‖u(t)− z‖2

2t
≤ f(z) +

‖u(0)− z‖2

2t
(26)

for every z ∈ H. We conclude by letting t → ∞. "
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Comments. By inequality (26), if S '= ∅ then f(u(t)) converges to f ∗ at a rate of
O(1/t). However, if the trajectory u(t) is known to have a strong limit, then the rate
drops to o(1/t) (see [34, Güler]). #

3.2. Proximal sequences

Let {xn} be a proximal sequence associated to A = ∂f . The following result is due to
[33, Güler]:

Proposition 3.2. The sequence f(xn) is decreasing and limn→∞ f(xn) = f ∗.

Proof. Recall that −yn = −xn−xn−1

λn
∈ ∂f(xn). The subdifferential inequality implies

f(xn−1)− f(xn) ≥ λn‖yn‖2 (27)

so that f(xn) is decreasing. Convergence of f(xn) to f ∗ follows from Lemma 3.3 below
since σn → ∞. "

Lemma 3.3. Let u ∈ domf , then

f(xn)− f(u) ≤ ‖u− x0‖2

2σn
− ‖u− xn‖2

2σn
− σn

2
‖yn‖2.

Proof. The subdifferential inequality gives

f(u)− f(xn) ≥ 〈u− xn,−yn〉 =
〈u− xn, xn−1 − xn〉

λn

for all u in the domain of f . Thus

2λn(f(u)− f(xn)) ≥ ‖u− xn‖2 + λ2
n‖yn‖2 − ‖u− xn−1‖2.

Summation from 1 to n leads to

2σnf(u)− 2
n∑

k=1

λkf(xk) ≥ ‖u− xn‖2 +
n∑

k=1

λ2
k‖yk‖2 − ‖u− x0‖2. (28)

Multiplying (27) by σn−1 and rearranging we get

σn−1f(xn−1)− σnf(xn) + λnf(xn) ≥ λnσn−1‖yn‖2,

from which we derive

−σnf(xn) +
n∑

k=1

λkf(xk) ≥
n∑

k=1

λkσk−1‖yk‖2

by summation. Adding twice this inequality to (28) we obtain

2σn(f(u)− f(xn)) ≥ ‖u− xn‖2 − ‖u− x0‖2 +
n∑

k=1

λ2
k‖yk‖2 + 2

n∑

k=1

λkσk−1‖yk‖2.
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Recall from Lemma 2.8 that ‖yn‖ is decreasing. We get

‖yn‖2σ2
n = ‖yn‖2(σn−1 + λn)

2 = ‖yn‖2(λ2
n + 2λnσn−1 + σ2

n−1)

= ‖yn‖2
n∑

k=1

(λ2
k + 2λkσk−1) ≤

n∑

k=1

(λ2
k + 2λkσk−1)‖yk‖2

and the result follows at once by rearranging the terms. "

Comments. If S '= ∅, Lemma 3.3 gives

‖yn‖ ≤ d(x0,S)
σn

. (29)

A similar estimation had been proved in [20, Brézis and Lions] but the right-hand side
is
√
2 times larger.

The fact that f(xn) → f ∗ had first been proved in [45, Martinet] when f is coercive
and λn ≡ λ.

By Lemma 3.3, if S '= ∅ the rate of convergence of f(xn) to f ∗ can be estimated at
O(1/σn). Moreover, (29) and the subdifferential inequality together give

f(xn)− f ∗ ≤ 〈x∗ − xn,−yn〉 ≤ ‖x∗ − xn‖ ‖yn‖ ≤ d(x0,S)‖x∗ − xn‖
σn

for all x∗ ∈ S. Therefore, if the sequence {xn} is known to converge strongly, then
|f(xn)− f ∗| = o(1/σn). This was proved in [33, Güler] using a clever but unnecessarily
sophisticated argument instead of inequality (29). #

3.3. Euler sequences

Let {zn} be an Euler sequence associated to A = ∂f . In this case the sequence f(zn)
need not be decreasing. However, we have the following:

Lemma 3.4. If either i)
∑

‖zn+1 − zn‖2 < ∞ or ii) limn→∞ λn‖wn‖2 = 0, then
lim infn→∞ f(zn) = f ∗.

Proof. Assume i). Since −wn ∈ ∂f(zn), the subdifferential inequality and (21) to-
gether imply

‖zn+1 − y‖2 ≤ ‖zn − y‖2 + 2λn(f(y)− f(zn)) + λ2
n‖wn‖2 (30)

for each y ∈ H. If
∑

‖zn+1 − zn‖2 < ∞ then

∑
λn(f(zn)− f(y)) < ∞

(possibly −∞). Since {λn} /∈ )1 one must have lim infn→∞ f(zn) ≤ f(y) for each y ∈ H.

Consider now ii). Inequality (30) can be rewritten as

λn

[
2(f(zn)− f(y))− λn‖wn‖2

]
≤ ‖zn − y‖2 − ‖zn+1 − y‖2
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so that ∑
λn

[
2(f(zn)− f(y))− λn‖wn‖2

]
< ∞

and lim infn→∞ f(zn) ≤ f(y) for each y ∈ H. "

Part of the ideas in the proof of the preceding result (under hypothesis ii)) are from
[64, Shor], where we can also find the following:

Proposition 3.5. Let dim(H) < ∞ and assume S is nonempty and compact. If
limn→∞ λn = 0 and the sequence wn is bounded then limn→∞ f(zn) = f ∗.

Proof. By continuity, it suffices to prove that dist(zn,S) = infy∈S ‖zn − y‖ tends to
0 as n → ∞. For γ > f∗ define Lγ = {x : f(x) = γ} and denote Lco

γ its convex hull.
Both sets are compact. Take ε > 0 and define

δ(ε) = dist(S, Lf∗+ε) and d(ε) = max
u∈Lco

f∗+ε

dist(u,S).

Observe that 0 < δ(ε) ≤ d(ε) → 0 as ε → 0. By hypothesis and Lemma 3.4 there
is N ∈ N such that f(zN) ≤ f ∗ + ε and λn‖wn‖ ≤ δ(ε) for all n ≥ N . We shall
prove that dist(zn,S) ≤ 2d(ε) for all n ≥ N . Since ε > 0 is arbitrary this shows that
limn→∞ dist(zn,S) = 0.

Indeed, if f(zn) ≤ f ∗+ε (this holds for n = N) then zn ∈ Lco
f∗+ε and dist(zn,S) ≤ d(ε).

Hence dist(zn+1,S) ≤ d(ε) + δ(ε) ≤ 2d(ε). On the other hand, if f(zn) > f∗ + ε then
dist(zn+1,S) ≤ dist(zn,S). To see this, notice that if y ∈ S then 〈 wn

‖wn‖
, y − zn〉 is the

distance from y to the hyperplane Πn = {x : 〈wn, zn − x〉 = 0}, which is a supporting
hyperplane for the set Lco

f(zn)
at the point zn. Therefore we have

〈wn, y − zn〉 ≥ ‖wn‖dist(S,Πn) ≥ ‖wn‖dist(S, Lf(zn)) ≥ ‖wn‖δ(ε),

where the second inequality follows from convexity and the last one is true whenever
f(zn) > f∗ + ε. Using (21) and recalling that λn‖wn‖ ≤ δ(ε) we deduce that

dist(zn+1,S)2 ≤ dist(zn,S)2 − λn‖wn‖δ(ε),

proving that dist(zn+1,S) ≤ dist(zn,S). "

Observe that this result does not require the stabilizing summability condition but it
is necessary to make a very strong assumption on the set S.

4. General tools for weak convergence

We denote by Ω[u(t)] (resp. Ω[xn]) the set of weak cluster points of a trajectory u(t)
as t → ∞ (resp. of a sequence {xn} as n → ∞).

Given a trajectory u(t) we define

ū(t) =
1

t

∫ t

0

u(ξ) dξ.
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Similarly, given a sequence {xn} in H along with step sizes {λn}, we introduce

x̄n =
1

σn

n∑

k=1

λkxk.

4.1. Existence of the limit

Most of the results on weak convergence that exist in the literature rely on the combi-
nation of two types of properties involving a subset F ⊂ H (in all that follows F will
be closed and convex):

The first one is a kind of “Lyapounov condition& on the sequence or the trajectory like

(a1) ‖xn − u‖ converges to some )(u) for each u ∈ F , or
(a2) PF (xn) converges strongly.

These properties imply that the sequence is somehow “anchored& to the set F .

The second one is a global one, concerning the set of weak cluster points of the sequence
or trajectory:

(b) Ω[xn] ⊂ F .

However, it is sometimes available only for the averages:

(b’) Ω[x̄n] ⊂ F .

The following result is a very useful tool for proving weak convergence of a sequence on
the basis of (a1) and (b) above. It is known, especially in Hilbert spaces, as Opial’s
Lemma [51].

Lemma 4.1 (Opial’s Lemma). Let {xn} be a sequence in H and let F ⊂ H. As-
sume

1. ‖xn − u‖ has a limit as n → ∞ for each u ∈ F ; and
2. Ω[xn] ⊂ F .

Then xn converges weakly to some x∗ ∈ F .

Proof. Since {xn} is bounded it suffices to prove that it has only one weak cluster
point. Let x, y ∈ Ω[xn] ⊂ F so that ‖xn − x‖ converges to )(x) and similarly for y.
From

‖xn − y‖2 = ‖xn − x‖2 + ‖x− y‖2 + 2〈xn − x, x− y〉 (31)

one deduces by choosing appropriate subsequences

)(y)2 = )(x)2 + ‖x− y‖2 (xφ(n) ⇀ x)

and
)(y)2 = )(x)2 − ‖x− y‖2 (xψ(n) ⇀ y)

hence x = y. "

Comments. A Banach space X satisfies Opial’s condition if it is reflexive and

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖ whenever xn ⇀ x '= y. (32)
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Any uniformly convex Banach space having a weakly continuous duality mapping (in
particular, any Hilbert space) satisfies Opial’s condition (see [51, Opial]). Opial’s
Lemma holds in any Banach space satisfying Opial’s condition. #

Following [52, Passty], one obtains a more general result:

Lemma 4.2. Let {xn} be a sequence in H with step sizes {λn} and let F ⊂ H. Assume
(a1): the sequence ‖xn − u‖ has a limit as n → ∞ for each u ∈ F . Then the sets
Ω[xn] ∩ F and Ω[x̄n] ∩ F each contains at most one point. In particular if Ω[xn] ⊂ F
(resp. Ω[x̄n] ⊂ F ), then xn (resp. x̄n) converges weakly as n → ∞. A similar result
holds for trajectories.

Proof. By (31), 〈xn, x − y〉 converges to some m(x, y) for any x, y ∈ F . If u and v
belong to Ω[xn]∩F one obtains 〈u, u−v〉 = 〈v, u−v〉 hence u = v. Similarly 〈x̄n, x−y〉
converges to m(x, y). Thus both Ω[xn] ∩ F and Ω[x̄n] ∩ F contain at most one point.

"

An alternative proof using (a2) and either (b) or (b’) is as follows:

Lemma 4.3. Let {xn} be a bounded sequence in H with step sizes {λn} and let F ⊂ H
be closed and convex. Assume (a2): PFxn → ζ as n → ∞. Then

Ω[xn] ∩ F ⊂ {ζ} and Ω[x̄n] ∩ F ⊂ {ζ}.

In particular, if Ω[xn] ⊂ F (resp. Ω[x̄n] ⊂ F ), then xn (resp. x̄n) converges weakly to
ζ. A similar result is true for trajectories.

Proof. By definition of the projection, for each u ∈ F one has

〈xn − PFxn, u− PFxn〉 ≤ 0.

Since xn is bounded we deduce that

〈xn − ζ, u− ζ〉 ≤ ρn

with limn→∞ ρn = 0. This implies Ω[xn] ∩ F ⊂ {ζ} (if v ∈ Ω[xn] ∩ F , take u = v).
Similarly

〈x̄n − ζ, u− ζ〉 ≤ ρ̄n,

which gives Ω[x̄n] ∩ F ⊂ {ζ}. "

A sligthly more demanding assumption is the Fejer property:

(a3) ‖u(t)− p‖ decreases for each p ∈ F , or
(a3’) There exists {εn} ∈ )1 such that ‖xn+1 − u‖2 ≤ ‖xn − u‖2 + εn for all u ∈ F .

Then one has the following, from [27, Combettes]:

Lemma 4.4. Any trajectory satisfying (a3) also satisfies (a2).
Any sequence satisfying (a3’) also satisfies (a2).
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Proof. Let u(t) satisfy (a3) and let v(t) = PFu(t). Note first that, using the projection
property and (a3)

‖v(t+ h)− u(t+ h)‖2 ≤ ‖v(t)− u(t+ h)‖2 ≤ ‖v(t)− u(t)‖2.

hence ‖v(t)− u(t)‖ decreases, hence converges.
The parallelogram equality gives

‖v(t+ h)− v(t)‖2 + 4
∥∥∥v(t+h)+v(t)

2 − u(t+ h)
∥∥∥
2

= 2‖v(t+ h)− u(t+ h)‖2 + 2‖v(t)− u(t+ h)‖2.

F convex implies
∥∥∥v(t+h)+v(t)

2 − u(t+ h)
∥∥∥ ≥ ‖v(t+ h)− u(t+ h)‖2, hence

‖v(t+ h)− v(t)‖2 ≤ 2
[
‖v(t)− u(t)‖2 − ‖v(t+ h)− u(t+ h)‖2

]

so that v(t) has a strong limit v as t → ∞.

Now let {xn} satisfy (a3’) and write yn = PFxn. As before, one has

‖yn+1 − xn+1‖2 ≤ ‖yn − xn+1‖2 ≤ ‖yn − xn‖2 + εn

so that ‖yn − xn‖2 +
∑+∞

m=n εm is decreasing hence ‖yn − xn‖2 converges as well. "

4.2. Characterization of the limit: the asymptotic center

We show here that moreover the weak limit can be characterized.

Given a bounded sequence {xn} let

G(y) = lim sup
n→∞

‖xn − y‖2

(for a trajectory u(t) define G(y) = lim supt→∞ ‖u(t) − y‖2). The function G(y) is
continuous, strictly convex and coercive. Its unique minimizer is called the asymptotic
center (see [32, Edelstein]) of the sequence (resp. trajectory) and is denoted by AC{xn}
(resp. AC{u(t)}).
Proposition 4.5. Assume (a1). Then Ω[x̄n] ∩ F ⊂ AC{xn}.
A similar property holds for trajectories.

Proof. From (31) one obtains

1

σn

n∑

m=1

λm‖xm − x‖2 = 1

σn

n∑

m=1

λm‖xm − y‖2 + 2〈x̄n − y, y − x〉+ ‖y − x‖2.

Assume x̄nk
⇀ x ∈ F , then )(x) = limn→∞ ‖xn − x‖ exists by (a1). Therefore,

G(x) = )(x)2 ≤ lim sup
k→∞

[
1

σnk

nk∑

m=1

λm‖xm − y‖2
]

− ‖x− y‖2 ≤ G(y)− ‖x− y‖2

for each y ∈ H so that x = AC{xn}. "
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4.3. Characterization of the weak convergence

In this section we use the fact that the trajectories or sequences are generated through
a maximal monotone operator and give conditions which are equivalent to weak con-
vergence and do not involve the limit.

Let us consider first the case A = I − T , where T is non expansive and defined on H.
The following result is in [55, Pazy]:

Proposition 4.6. The sequence T nx converges weakly if, and only if, S '= ∅ and
Ω[T nx] ⊂ S.

Proof. Assume S '= ∅. Given u ∈ S, the sequence ‖T nx − u‖ is decreasing and thus
convergent. In particular, T nx is bounded. By Lemma 4.2, the fact that Ω[T nx] ⊂ S
implies that T nx converges weakly. Conversely, since the sequence {T nx} is bounded,
the next lemma (or the argument in the proof of Theorem 5.8) shows that the weak
limit points of T nx must be in S. "

The following result is interesting in its own right:

Lemma 4.7. Assume the sequence Unx = 1
n(x + Tx + ... + T n−1x) is bounded. Then

∅ '= Ω[Unx] ⊂ S.

Proof. For any y ∈ H one has

0 ≤ ‖T kx− y‖2 − ‖T k+1x− Ty‖2

= ‖T kx− Ty‖2 − ‖T k+1x− Ty‖2 + ‖Ty − y‖2 + 2〈T kx− Ty, Ty − y〉.

By taking the average we obtain

0 ≤ 1

n
‖x− Ty‖2 + ‖Ty − y‖2 + 2〈Unx− Ty, Ty − y〉.

Therefore, if p ∈ Ω[Unx], we deduce as n → ∞ that

0 ≤ ‖Ty − y‖2 + 2〈p− Ty, Ty − y〉.

In particular, taking y = p leads to ‖Tp− p‖2 ≤ 0 and so p ∈ S. "

The preceding result shows that Ω[Unx] ⊂ S which a posteriori implies S '= ∅. If one
assumes that S is nonempty, it is possible to prove that the weak limits of the sequence
must belong to S:
Lemma 4.8. Assume (a1). Then T nx ⇀ p implies p ∈ S.

Proof. For any y ∈ H and u ∈ F

0 ≤ ‖T kx− y‖2 − ‖T k+1x− Ty‖2

= ‖T kx− u‖2 − ‖T k+1x− u‖2 + ‖u− y‖2 − ‖u− Ty‖2

+ 2〈T kx− u, u− y〉 − 2〈T k+1x− u, u− Ty〉.
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Take y = p and let k → ∞. Since limk→∞ ‖T kx− u‖ exists we get

0 ≤ ‖u− p‖2 − ‖u− Tp‖2 + 2〈p− u, u− p〉 − 2〈p− u, u− Tp〉,

which is precisely ‖Tp− p‖2 ≤ 0 and implies p ∈ S. "

Following [56, Pazy], one obtains the continuous counterpart of Proposition 4.6:

Proposition 4.9. The trajectory Stx converges weakly if, and only if, S '= ∅ and
Ω[Stx] ⊂ S.

Proof. Assume S '= ∅. By Corollary 2.2 and Lemma 4.2, Ω[Stx] ⊂ S implies Stx
converges weakly.
It remains to prove that if Stx ⇀ y then y ∈ S. Recall that (6) says that for any
[u,w] ∈ A

‖Stx− u‖2 − ‖x− u‖2 ≤ 2

∫ t

0

〈w, u− Ssx〉 ds.

Since Stx is bounded, it suffices to divide by t and let t → ∞ to obtain

0 ≤ 〈w, u− y〉

so that y ∈ S by maximality. "

Note that the proof uses the generator A (compare to the proof of the previous Propo-
sition 4.6).

A last result, due to [24, Bruck], shows that if S '= ∅, then weak convergence is
equivalent to weak asymptotic regularity. We follow [57, Pazy].

Proposition 4.10. Assume S '= ∅. The trajectory Stx converges weakly if, and only
if,

St+hx− Stx ⇀ 0 as t → ∞
for each h ≥ 0. A similar result holds for the sequence T nx.

Proof. For u ∈ S and t > s we have

2〈Ss+hx− u, Ssx− u〉 − 2〈St+hx− u, Stx− u〉
≤ ‖Ss+hx− u‖2 − ‖St+hx− u‖2 + ‖u− Ssx‖2 − ‖u− Stx‖2.

Let w ∈ Ω[Stx] and hk → ∞ with St+hk
x ⇀ w. Then Ss+hk

x ⇀ w as well by weak
asymptotic regularity. Thus we obtain

2〈w − u, Ssx− Stx〉 ≤ ‖u− Ssx‖2 − ‖u− Stx‖2.

By (a1), 〈w−u, Stx〉 has a limit L(w). In particular w′ ∈ Ω[Stx] implies 〈w−u,w′〉 =
L(w) so that 〈w − u,w′ − w〉 = 0. Hence by symmetry 〈w′ − u,w − w′〉 = 0, thus
w = w′ and Ω[Stx] is reduced to one point. "

5. Weak convergence in average

We now turn to the study of the asymptotic behavior of the averages.
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5.1. Continuous dynamics

Consider x ∈ D(A). Let us use the semigroup notation and introduce

σtx =
1

t

∫ t

0

Ssx ds.2

In order to prove that σtx converges weakly as t → ∞ we follow the ideas in [12, Baillon
and Brézis]. We first prove that the projection PSStx converges strongly to some v
(a2), next that weak cluster points of σtx are in S (b’), and finally use Lemma 4.3 to
conclude that σtx converges weakly to v.

Lemma 5.1. Assume S '= ∅. Then PSStx converges strongly.

Proof. By Lemma 2.1, Stx satifies (a3) for S and we can use Lemma 4.4. "

Lemma 5.2. Ω[σtx] ⊂ S.

Proof. Assume σtkx ⇀ u as k → ∞. Inequality (6) gives

2

∫ tk

0

〈w, v − Stx〉 dt ≥ ‖Stkx− v‖2 − ‖x− v‖2 ≥ −‖x− v‖2

for each [v, w] ∈ A. Divide by tk and let k → ∞. We get 〈w, v−u〉 ≥ 0 so that 0 ∈ Au
by maximality. "

Comments. Lemma 5.2 implies that if S = ∅ then ‖σtx‖ → ∞ for every x ∈ D(A)
as t → ∞. On the other hand, if S '= ∅ then every trajectory Stx is bounded, so σtx
is bounded for all x ∈ D(A). #

Using Lemma 4.3, Lemma 5.1 and Lemma 5.2 we finally obtain

Theorem 5.3. If S '= ∅, then σtx converges weakly to v = limt→∞ PSStx.

As a consequence of Proposition 4.5 and Lemma 5.2 one has

Proposition 5.4. If S '= ∅, the weak limit w-limt→∞ σtx is the asymptotic center
AC{Stx}.

Comments. Weak convergence in average is still true in uniformly convex Banach
space with Fréchet-differentiable norm (see [60, Reich]) or satisfying Opial’s condition
(see [35, Hirano]). #

If A = ∂f with f ∈ Γ0(H), convergence in average guarantees the convergence of the
trajectory (see [22, Bruck]):

Proposition 5.5. If A = ∂f then limt→∞

∥∥∥u(t)− 1
t

∫ t

0 u(s) ds
∥∥∥ = 0.

2More generally σnx =
∫∞

0 Ssx an(s) ds where an is the density of a positive probability measure on

R+, which is assumed to be of bounded variation with
∫∞

0 |dan| → 0. For example an(s) =
1
n
χ[0,n](s).
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Proof. Integration by parts gives u(t) − 1
t

∫ t

0 u(s) ds = 1
t

∫ t

0 s "u(s) ds. ‖ "u(t)‖ being
decreasing by Proposition 2.4, one has

∫ t

t/2

s‖ "u(s)‖2 ds ≥ ‖ "u(t)‖2
∫ t

t/2

s ds =
3

8
t2‖ "u(t))‖2.

But in the case A = ∂f , the function t 2→ t‖ "u(t)‖2 is in L1(0,∞) (see [18, Brézis])
which implies limt→∞ t‖ "u(t)‖ = 0 and the result follows. "

It is known that both the trajectory and the average converge weakly (Theorems 5.3
and 6.3). The preceding result implies, in particular, that the average cannot converge
strongly unless the trajectory itself does.

5.2. Proximal sequences

Consider a proximal sequence {xn} in H along with step sizes {λn}, and recall that
x̄n = 1

σn

∑n
k=1 λkxk.

The next result was presented in [43, Lions]:

Theorem 5.6. Let S '= ∅. Then {xn} converges weakly in average to a point in S.

Proof. Let us check the conditions of Lemma 4.2 with F = S: (a3) follows from
Corollary 2.11, while (b’) follows from Lemma 5.7 below. "

The following is a discrete-time counterpart of Lemma 5.2:

Lemma 5.7. Ω[xn] ⊂ S.

Proof. Take [u, v] ∈ A and use inequality (11) to get

‖x0 − u‖2 ≥ 2
N∑

n=1

λn〈v, xn − u〉.

If xnk
⇀ x, then dividing by σnk

we obtain 〈v, u−x〉 ≥ 0, whence x ∈ S by maximality.
"

As for the continuous trajectory, the weak limit of the sequence {x̄n} is AC{xn}.
Comments. If {λn} /∈ )2 one proves a stronger result: the sequence {xn} converges
weakly (Theorem 6.4). #

The extension to the sum of two operators is in [52, Passty].

5.3. Euler sequences

For nonexpansive mappings, weak convergence in average of the discrete iterates was
established in [7, Baillon]. The proof is again of the form (a3) and (b’) but note that
the property S '= ∅ is not assumed but obtained during the proof.
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Theorem 5.8. Let T be a nonexpansive mapping on a bounded closed convex subset
C of H. For every z ∈ C the sequence zn = T nz converges weakly in average to a fixed
point of T , which is the strong limit of the sequence PST nz.

Proof. Note that for any a and ai, i = 0, ..., n− 1, in H, the quantity

∥∥∥∥∥
a− 1

n

n−1∑

i=0

ai

∥∥∥∥∥

2

− 1

n

n−1∑

i=0

‖a− ai‖2

is independent of a. Hence with Unz = 1
n(z + Tz + ...+ T n−1z) one has

‖TUnz − Unz‖2 =
1

n

n−1∑

i=0

‖TUnz − T iz‖2 − 1

n

n−1∑

i=0

‖Unz − T iz‖2

≤ 1

n

(
‖TUnz − z‖2 − ‖Unz − T n−1z‖2

)

so that

‖TUnz − Unz‖ ≤ 1√
n
‖TUnz − z‖.

Thus TUnz − Unz → 0 and if Unz ⇀ u then Tu = u by Remark 1.8. It follows that
Ω[Unz] ⊂ S, which is (b’) and S '= ∅.
Since ‖T nz − u‖ decreases for u ∈ S, (a3) holds. By Lemma 4.4 the strong limit V of
PS exists and (b’) implies that Ω[Unz] = {V } by Lemma 4.3. "

Comments. The conclusion of Theorem 5.8 holds also if X is uniformly convex with
Fréchet-differentiable norm and λn → 1 or if X is superreflexive ([60, Reich]). #

Following an idea of Konishi (see [11, Baillon]) one can prove that the ergodic theorem
for nonexpansive mappings implies in fact the analogous results for the semi-group:

Proposition 5.9. Theorem 5.8 implies Theorem 5.3.

Proof. Let 0 < h < t and n = [t/h] the integer part of t/h and set Th = Sh and
Uh
nx = 1

n

∑n−1
m=0 T

m
h x. One deduces that

‖tσtx− nhUh
nx‖ ≤ n

∫ h

0

‖Ssx− x‖ds+Mh,

where ‖Ssx‖ ≤ M . Thus

‖σtx− Uh
nx‖ ≤ 1

h

∫ h

0

‖Ssx− x‖ds+ 2M

n
.

But as t → +∞, Uh
nx converges weakly to a fixed point uh of Th by Theorem 5.8.

Let us now prove that uh is a Cauchy net as h → 0. Given 0 < h, h′ < t, n = [t/h], n′ =
[t/h′] one has

‖Uh
nx− Uh′

n′x‖ ≤ 1

h

∫ h

0

‖Ssx− x‖ds+ 2M

n
+

1

h′

∫ h′

0

‖Ssx− x‖ds+ 2M

n′
.
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By the weak lower-semicontinuity of the norm, as t → +∞ we have

‖uh − uh′‖ ≤ 1

h

∫ h

0

‖Ssx− x‖ds+ 1

h′

∫ h′

0

‖Ssx− x‖ds.

Since ‖Ssx − x‖ → 0 as s → 0, uh is a Cauchy net, that converges to some u. But
Smhuh = uh, so that given s and h = s/m, one has Ssuh = uh. As m → +∞ this
implies Ssu = u, thus u ∈ S. Now write, given y ∈ H

|〈σtx− u, y〉| ≤ |〈σtx− Uh
nx, y〉|+ |〈Uh

nx− uh, y〉|+ ‖uh − u‖‖y‖

hence

|〈σtx− u, y〉| ≤
(
1

h

∫ h

0

‖Ssx− x‖ds+ 2M

n

)
‖y‖+ |〈Uh

nx− uh, y〉|+ ‖uh − u‖‖y‖.

It follows that

lim sup
t→+∞

|〈σtx− u, y〉| ≤
(
1

h

∫ h

0

‖Ssx− x‖ds
)
‖y‖+ ‖uh − u‖‖y‖

for all h > 0. Letting h → 0 we obtain σtx ⇀ u. "

Recall that z̄n = 1
σn

∑n
k=1 λkzk, where zn is given in (17). A general result on conver-

gence in average is the following from [23, Bruck]:

Theorem 5.10. Assume
∑

‖zn − zn−1‖2 < ∞. If S '= ∅, then zn converges weakly in
average to ζ = limn→∞ PSzn. Otherwise limn→∞ ‖z̄n‖ = ∞.

Proof. We first prove that Ω[z̄n] ⊂ S, which is (b’). Then we show, if S is non empty,
that the projections ζn = PSzn converge strongly to some ζ ∈ S, which is (a2). Finally
we verify that ζ is the only weak cluster point of the bounded sequence {z̄n}.
First, let [u, v] ∈ A and use (20) to deduce that

‖zn+1 − u‖2 ≤ ‖zn − u‖2 + 2λn〈v, u− zn〉+ λ2
n‖wn‖2.

Summing up, neglecting the positive term of the telescopic sum on the left-hand side
and dividing by σn we get

0 ≤ ‖z1 − u‖2

σn
+

1

σn

n∑

k=1

‖zk+1 − zk‖2 + 2〈v, u− z̄n〉.

Therefore lim infn→∞〈v, u− z̄n〉 ≥ 0 and every weak cluster point of {z̄n} lies in S, by
maximality.
Notice that this is (b’), hence the counterpart of Lemma 5.2 and Lemma 5.7.

Next, take u ∈ S. From equation (20) we get

‖zn+1 − u‖2 ≤ ‖zn − u‖2 + ‖λnwn‖2. (33)

This implies the convergence of ‖zn+1 − u‖2 hence (a1) which ends the proof of con-
vergence in S by using Lemma 4.2.
Note that the sequence zn satifies (a3’), hence (a2) by Lemma 4.4. The last result
now follows from Lemma 4.3. "
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For a similar proof with two operators and forward-backward procedure see [52, Passty].

The following result due to [57, Pazy] of (b’) leads to a unified proof of weak con-
vergence in average for contractions in the discrete (Theorem 5.8) or continuous case
(Theorem 5.3). Note that the first step assumes S '= ∅, then one uses (a1) to achieve
the result but the generator A is not used.

Proposition 5.11. Assume S '= ∅, then Ω[σtx] ⊂ S.

Proof. For t, h ≥ 0 we have, for any y ∈ H

0 ≤ ‖Stx− y‖2 − ‖St+hx− Shy‖2

= ‖Stx− Shy‖2 − ‖St+hx− Shy‖2 + 2〈Stx− Shy, Shy − y〉+ ‖Shy − y‖2.

By taking the average we deduce that

0 ≤ 1

t

∫ t

0

[‖Ssx− Shy‖2 − ‖Ss+hx− Shy‖2]ds+ 2〈σtx− Shy, Shy − y〉+ ‖Shy − y‖2.

Since S '= ∅, ‖Stx − Shy‖ is bounded. Letting t → +∞, it follows that for any
p ∈ Ω[σtx], any h ≥ 0 and any y ∈ H

0 ≤ 2〈p− Shy, Shy − y〉+ ‖Shy − y‖2.

Finally take y = p so that p = Shp, which means p ∈ S. "

Comments. The only use of S '= ∅ is to guarantee the boundedness of Shy (compare
with Lemma 4.7). #

6. Weak convergence

Not all maximal monotone operators generate weakly convergent trajectories.

Example 6.1. Let R : R2 → R2 be the clockwise π/2−rotation and consider the
evolution scheme defined by the differential equation:

"u(t) +R(u(t)) = 0.

Note that S = {0}. The orbit starting at time t = 0 from the point x = r0(cos(θ0),
sin(θ0)) with r0 > 0 is described by u(t) = r0(cos(t+ θ0), sin(t+ θ0)), which is bounded
but does not have a limit as t → ∞. However, the average 1

t

∫ t

0 u(s) ds converges to 0
as t → ∞, by Theorem 5.3.

Now let xn = rn(cos θn, sin θn) satisfy

xn+1 − xn

λn
= R(xn+1).

We have r2n+1 =
∏n

k=1(1 + λ2
k)

−1r0 and θn = θ0 +
∑n

k=1 arctan(λk). The sequence rn is
decreasing. If λn /∈ )2 then limn→∞ xn = 0; otherwise it stays bounded away from zero.
On the other hand, the argument θn is increasing. It converges if λn ∈ )1 and diverges
otherwise. Observe also that xn converges in average to 0 as n → ∞, by Theorem 5.6.
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Finally, let zn = ρn(cosφn, sinφn) satisfy

zn+1 − zn
λn

= R(zn).

Here ρ2n+1 =
∏n

k=1(1+λ2
k)ρ0 and φn = φ0+

∑n
k=1 arctan(λk). In this case the sequence

ρn is increasing. It remains bounded and is convergent if, and only if, λn ∈ )2. The
argument φn is increasing as well. It converges if λn ∈ )1 and diverges otherwise. As
before, zn converges in average to 0 as n → ∞ by Theorem 5.10. To see this simply
observe that wn = zn+1−zn

λn
= R(zn) is bounded and λn ∈ )2, so that

∑
‖zn+1 − zn‖2 <

∞. #

Tools

Assuming S non empty and using Lemma 4.2, by virtue of Corollary 2.2 (resp. Corollary
2.11 and Corollary 2.18), in order to prove weak convergence of u(t) (resp. xn, zn), it
suffices to verify that its set of weak cluster points lie in S (condition (b)). The key
tool is the concept of demipositivity, first developed in [22, Bruck].

A maximal monotone operator A is demipositive if there exists w ∈ S such that for
every sequence {un} ∈ D(A) converging weakly to u and every bounded sequence {vn}
such that vn ∈ Aun

〈vn, un − w〉 → 0 implies u ∈ S. (34)

The following gathers examples from [22, Bruck] and [54, Pazy] (not the last two, which
are trivial):

Proposition 6.2. Each of the following conditions is sufficient for a maximal mono-
tone operator A to be demipositive:

1. A = ∂φ, where φ is a proper lower-semicontinuous convex function having mini-
mizers (S '= ∅).

2. A = I − T , where T is nonexpansive and has a fixed point (S '= ∅).
3. The set S has nonempty interior.
4. A is odd and firmly positive, which means that there is w ∈ S such that v ∈ Au

and 〈v, u− w〉 = 0 together imply 0 ∈ Au.
5. A is firmly positive and sequentially weakly closed (its graph is sequentially weak

/weak closed).
6. S '= ∅ and A is 3-monotone, which means that

∑3
n=1〈yn, xn−xn−1〉 ≥ 0 for every

set {[xn, yn] | 1 ≤ n ≤ 3} ⊂ A (x0 ≡ xN).
7. A is strongly monotone: 〈x∗ − y∗, x − y〉 ≥ α‖x − y‖2 for all [x, x∗], [y, y∗] ∈ A

and some α > 0.
8. S '= ∅ and A is cocoercive: 〈x∗−y∗, x−y〉 ≥ µ‖x∗−y∗‖2 for all [x, x∗], [y, y∗] ∈ A

and some µ > 0.

For demipositivity in Banach spaces see [26, Bruck and Reich].

Comments. We just mention another assumption that guarantees that the weak clus-
ter points will lie in S. Let S the semi-group generated by A. A satisfies condition (L)
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if

lim
t→∞

‖A0Stx‖ ≤ lim
t→∞

(
1

h
‖St+hx− Stx‖

)

for every h > 0 and x ∈ D(A). The interested reader may find this definition and
related results in [54, Pazy].
An equivalent formulation is the following: Denote by a0 the element of minimal norm
in R(A). Then A satisfies condition (L) if, and only if, for every x ∈ D(A) one has

lim
t→∞

A0Stx = a0.

Unlike demipositivity, this does not impose a priori that S '= ∅. For instance, if A = ∂f
with f ∈ Γ0(H) or if A = I − T with T nonexpansive, then A satisfies condition (L)
but is not demipositive unless S '= ∅.
Condition (L) is essentially used in [54, Pazy] to prove that the weak cluster points of the
trajectory Stx lie in S. If S = ∅ one immediately deduces that limt→∞ ‖Stx‖ = ∞. #

6.1. Continuous dynamics

The following classical result of weak convergence for demipositive operators was proved
in [22, Bruck].

Theorem 6.3. If A is demipositive then u(t) converges weakly as t → ∞ to an element
of S.

Proof. By Corollary 2.2 and Opial’s Lemma it suffices to prove Ω[u(t)] ⊂ S, which is
(b). Let w ∈ S satisfy (34) and let u(tn) ⇀ u as n → ∞.

Set θ(t) = 1
2‖u(t) − w‖2, so that "θ(t) = 〈 "u(t), u(t) − w〉. Notice that θ is bounded

by Corollary 2.2. Whence "θ ∈ L1 and "u is bounded by Theorem 2.7. By considering
the intervals [tn − 1/n, tn + 1/n] one deduces that there is a sequence snk

such that
"θ(snk

) → 0 as k → ∞ and u(snk
) ⇀ u. So u ∈ S by demipositivity. "

Comments. Theorem 6.3 was extended in [53, Passty] to the class of ϕ-demipositive
operators. #

6.2. Proximal sequences

A first detailed study of the asymptotic behavior of the proximal sequence {xn} was
performed in [62, Rockafellar], when the step sizes are bounded away from zero. The
author also considers an inexact version of the algorithm. The next convergence results
under more general hypotheses are investigated in [20, Brézis and Lions].

Recall that σn =
∑

m≤n λm and τn =
∑

m≤n λ
2
m.

Theorem 6.4. Assume S '= ∅. If {λn} /∈ )2 then xn converges weakly to some x∗ ∈ S.
Moreover, ‖yn‖ ≤ d(x0,S)τ−1/2

n .

Proof. By Lemmas 2.8 and 2.10, we have for any x ∈ S

‖yn‖2τn ≤
∑

k≤n

λ2
k‖yk‖2 ≤ ‖x0 − x‖2.
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τn → ∞ implies ‖yn‖ → 0. Since −yn ∈ Axn, we deduce that Ω[xn] ⊂ S, which is (b),
by Proposition 1.7. We conclude by Corollary 2.11 and Opial’s Lemma 4.1. "

The following result, adding the demipositivity hypothesis, is also from [20, Brézis and
Lions]:

Theorem 6.5. If A is demipositive then xn converges weakly to some x∗ ∈ S.

Proof. As above, using Corollary 2.11 the result follows from Opial’s Lemma 4.1 if
Ω[xn] ⊂ S, which is (b). Let xnk

⇀ x and w be the element in S used in the definition
of demipositivity (34). Using Lemma 6.6 below we construct another subsequence
{xmk

} such that both ‖xmk
− xnk

‖ and 〈xmk
− w, ymk

〉 tend to 0 as k → ∞. Since
xmk

⇀ x and A is demipositive, x must belong to S. "

Lemma 6.6. Let {xn} be a proximal sequence and w ∈ S. For each ε > 0, there is N
such that: for any n ≥ N , there exists m ∈ N satisfying N ≤ m ≤ n, ‖xm − xn‖ ≤ ε
and 〈−ym, xm − w〉 ≤ ε.

Proof. For each w ∈ S, (12) implies that ‖xk−1−w‖2 ≥ ‖xk−w‖2+2λk〈−yk, xk−w〉
and so ∑

k

λk〈yk, w − xk〉 < ∞ (35)

where all terms are nonnegative by monotonicity. Given ε > 0, define P = {k ∈
N | 〈yk, w − xk〉 ≥ ε} so that

∑
k∈P λk < ∞. Since ‖xk−1 − xk‖ = λk‖yk‖, Lemma 2.8

implies
∑

k∈P ‖xk−1 − xk‖ < ∞.
Let N1 so that

∑
k∈P,k≥N1

‖xk−1 − xk‖ < ε. By virtue of (35), since {λn} /∈ )1 there is
N ≥ N1 with 〈yN , w−xN〉 ≤ ε. Consider n ≥ N : if n /∈ P we choose m = n. If n ∈ P ,
let m = max{k < n | k /∈ P}. Since m ≥ N1 and all integers between m and n are in
P , we have ‖xm − xn‖ ≤

∑
m<k≤n ‖xk−1 − xk‖ ≤ ε. "

Comments.

1. If A = ∂f then the result follows from Corollary 2.11 and Proposition 3.2.
2. Theorem 6.5 is still true if the sequence satisfies ‖xn − (I + λnA)−1xn−1‖ ≤ εn

with
∑

εn < ∞. This is proved in [20, Brézis and Lions] and can also be derived
using asymptotic equivalence results in Section 8 (see [2, 3]).

3. In uniformly convex Banach spaces with Fréchet differentiable norm there is weak
convergence in the following cases (see [61, Reich]):
(a) {λn} does not converge to zero, or
(b) The modulus of convexity of the space satisfies δ(ε) ≥ Kεp for some K > 0

and p ≥ 2 and
∑

λp
n = ∞.

4. Demipositive can be replaced by ϕ-demipositive (see [53, Passty]). #

6.3. Euler sequences

As in Theorems 6.3 and 6.5, for Euler sequences we have the following:

Theorem 6.7. Let A be demipositive and assume {λn} ∈ )2 and {wn} bounded. Then
zn converges weakly to some z ∈ S.
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Proof. If y ∈ S, Corollary 2.18 shows that the sequence ‖zn − y‖ is convergent. On
the other hand, equality (21) and the hypothesis implies

∑
n≥1 λn〈wn, y − zn〉 < ∞

which plays the role of (35). One concludes as in Theorem 6.5 proving an analogue of
Lemma 6.6 (and using the fact that wn is bounded). "

Comments. The previous result from [26, Bruck and Reich] works for demipositive
operators in “a few& Banach spaces, namely X = L2m, m ∈ N or X = )p, p ∈ (1,∞).

#

A related result from [61, Reich] is the following (and holds in uniformly convex Banach
spaces with Fréchet-differentiable norm):

Proposition 6.8. Let T be nonexpansive, A = I − T and {λn} satisfying 0 ≤ λn ≤ 1
and

∑
λn(1− λn) = ∞. If S '= ∅ then {zn} converges weakly to a point in S.

If A = ∂f with f ∈ Γ0(H) and dim(H) < ∞ one can circumvent the difficulties of
Lemma 6.6 and provide a simpler proof of Theorem 6.7.

Theorem 6.9. Assume A = ∂f with f ∈ Γ0(H), S '= ∅ and dim(H) < ∞. If∑
‖zn − zn−1‖2 < ∞ then zn converges to a minimizer of f .

Proof. Lemma 3.4 gives lim infn→∞ f(zn) = f ∗. Since {zn} is bounded and the space
is finite dimensional, there is a subsequence {znk

} such that limk→∞ f(znk
) = f ∗ and

limk→∞ ‖znk
− z‖ = 0 for some z ∈ H. Since z must be in S by lower-semicontinuity,

Corollary 2.18 implies limn→∞ ‖zn − z‖ = 0, which means zn converges to z. "

The preceeding result from [63, Shepilov] was pointed out to the authors by R. Comi-
netti.

7. Strong convergence

Even if A = ∂f with f ∈ Γ0(H) having minimizers, the trajectory u(t) need not
converge strongly as t → ∞. This is shown by Baillon’s example in [10, Baillon]: the
author defines a function f ∈ Γ0()2) having minimizers and proves that the trajectories
converge weakly but not strongly.

This is also true for the proximal point algorithm. Even if A = ∂f with f ∈ Γ0(H)
having minimizers, a sequence satisfying (8) need not converge strongly. This was
proved in [33, Güler] using Baillon’s example and the equivalence techniques from [53,
Passty]. A different example of this type can be found in [14, Bauschke et al.] and
can be retranslated to provide a new counterexample for strong convergence of the
continuous trajectory, different from that of Baillon.

Conditions

We introduce here a series of conditions, mainly of geometric nature, that will be used
to obtain strong convergence of the process in the continuous or discrete set-up.
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Strong monotonicity. Let α > 0. An operator A is α-strongly monotone if for all
[x, x∗], [y, y∗] ∈ A one has

〈x∗ − y∗, x− y〉 ≥ α‖x− y‖2.

Observe that if A is strongly monotone and Ax∩Ay '= ∅, then x = y. If A is α-strongly
monotone then JA

1/α is a strict contraction. Therefore it has a fixed point p and only

one, say S = {p}. Strongly monotone operators are demipositive.

Clearly, if A is monotone, then A + αI is α-strongly monotone. Also, subdifferentials
of proper, lower-semicontinuous strongly convex functions are strongly monotone.

A weaker notion of strong monotonicity, found for instance in [54, Pazy], is the follow-
ing: A is α-strongly monotone if S '= ∅ and

〈A0x, x− PSx〉 ≥ α‖x− PSx‖2

for every x ∈ D(A). In this case the set S need not be a singleton. Proposition 7.1
below also holds if A is strongly monotone in this sense but the proof is more involved.

Solution set S with nonempty interior. If p ∈ intS then there is r > 0 such that
the ball B(p, r) of radius r centered at p is contained in S. Then 〈u∗, u− p+ rh〉 ≥ 0
for all [u, u∗] ∈ A and all h ∈ H with ‖h‖ ≤ 1. Therefore 〈u∗, u− p〉 ≥ r〈u∗,−h〉 and

r‖u∗‖ = r sup
‖h‖≤1

〈u∗,−h〉 ≤ 〈u∗, u− p〉. (36)

The NR convergence condition. A maximal monotone operator A on H satisfies
the NR convergence condition if S '= ∅ and for every bounded sequence [xn, yn] ∈ A
one has

lim inf
n→∞

〈yn, xn − PSxn〉 = 0 implies lim inf
n→∞

‖xn − PSxn‖ = 0.

Strongly monotone operators satisfy this condition. So do operators having compact
resolvent (see below) and those satisfying 〈y, x− PSx〉 > 0 for all [x, y] ∈ A such that
x /∈ S.
The NR convergence condition can be easily stated in a Banach space X by means
of the duality mapping. The results below hold when both X and X∗ are uniformly
convex. The interested reader can consult [50, Nevanlinna and Reich] and [26, Bruck
and Reich].

Strong precompactness. The strong ω-limit set of a trajectory u : [0,∞) → H is
the set ω[u(t)] =

⋂
t>0 {u(s) : s ≥ t}. For a sequence {xn} it is defined by ω[xn] =

⋂
n∈N {xk : k ≥ n}.

In the setting of Lemma 4.2 the sets ω[u(t)] ∩ S and ω[xn] ∩ S contain, at most, one
element.

If S '= ∅ and JA
1 is a compact operator (maps bounded sets to relatively compact sets)

then ω[u(t)] '= ∅ for every trajectory u satisfying (5) (see Theorem 11.8 in [54, Pazy])
and ω[xn] '= ∅ for every sequence {xn} satisfying (8).
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For instance, if A = ∂f and the set {u ∈ H | f(u) + ‖u‖2 ≤ M} is compact for each
M ≥ 0, then JA

1 is compact. This case was first studied in [19, Brézis].

Symmetry. An operator A is odd if D(A) = −D(A) and A(−x) = −Ax for all
x ∈ D(A).3 This is the case, for instance, if A = ∂f and f is even. If A is odd, the
semigroup generated is odd as well (see, for instance, [54, Pazy]). On the other hand,
it is easy to see that JA

λ is odd for each λ > 0 if A is odd.

Notice also that if A is odd then S '= ∅. Moreover, 0 ∈ S. To see this, take x ∈ D(A)
and let [x, y], [−x,−y] ∈ A. We have

4〈y − 0, x− 0〉 = 〈y + y, x+ x〉
= 〈y − (−y), x− (−x)〉
≥ 0.

Then 0 ∈ A0 by Lemma 1.1.

Asymptotic regularity. A trajectory u is asymptotically regular if limt→∞ ‖u(t+h)−
u(t)‖ = 0 for each h ≥ 0. A sequence {xn} is asymptotically regular if limn→∞ ‖xn+m−
xn‖ = 0 for each m ∈ N.

Comments. Recall that the notion of weak asymptotic regularity was mentioned in
Proposition 4.10 as a characterization of weak convergence of the trajectories satisfying
(5). #

7.1. Continuous dynamics

Strong monotonicity.

Proposition 7.1. If A is α-strongly monotone for some α > 0 then u(t) converges
strongly to the unique p ∈ S as t → ∞.

Proof. Strong monotonicity implies

1

2

d

dt
‖u(t)− p‖2 = 〈 "u(t), u(t)− p〉 ≤ −α‖u(t)− p‖2

and so ‖u(t)− p‖ ≤ e−2αt‖x− p‖. "

Comments. The previous result can be extended in the following way: Let X be a
Banach space such that X and X∗ are uniformly convex. In [50, Nevanlinna and Reich]
the authors prove that if A satisfies NR convergence condition then u(t) converges
strongly to a point in S as t → ∞. If only X∗ is uniformly convex, the result remains
true provided Ax is proximinal and convex for every x (see [26, Bruck and Reich]).
If neither X nor X∗ is uniformly convex, the result is still true if the semigroup is
differentiable (see [50, Nevanlinna and Reich]). #

3A weaker notion is that A0(−x) = −A0x. The results below still hold but the proofs become more
technical.
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Solution set with nonempty interior.

Proposition 7.2. Assume int S '= ∅. Then u(t) converges strongly as t → ∞ to a
point in S.

Proof. If B(p, r) ⊂ S, inequality (36) implies

r‖u(t)− u(s)‖ ≤ r

∫ t

s

‖ "u(τ)‖ dτ

≤ −
∫ t

s

〈 "u(τ), u(τ)− p〉 dτ

=
1

2
‖u(s)− p‖2 − 1

2
‖u(t)− p‖2.

Since ‖u(t)− p‖ is convergent by Corollary 2.2, u(t) has the Cauchy property. "

Comments. Theorem 4 in [50, Nevanlinna and Reich] shows that this result remains
true if X and X∗ are uniformly convex. In the same paper, the authors give a coun-
terexample in C([0, 1];R). See also [26, Bruck and Reich]. #

Strong precompactness.

Proposition 7.3. If ω[u(t)] ∩ S '= ∅ then u(t) converges strongly to some p ∈ S.

Proof. If p ∈ ω[u(t)] ∩ S then ‖u(t)− p‖ is decreasing and lim inft→∞ ‖u(t)− p‖ = 0.
Hence u(t) → p as t → ∞. "

Comments. If S has nonempty interior then (see [54, Pazy]) A is demipositive and
ω[u(t)] '= ∅ for every trajectory u satisfying (5). Every strong cluster point is also a
weak cluster point, that must lie in S by demipositivity. Hence ω[u(t)] ∩ S '= ∅ and
Proposition 7.2 can also be deduced from Proposition 7.3. #

Symmetry.

Proposition 7.4. If A = ∂f and f ∈ Γ0(H) is even then u(t) converges strongly as
t → ∞ to a point in S.

Proof. Take s > 0 and define γ(t) = ‖u(t)‖2−‖u(s)‖2− 1
2‖u(t)−u(s)‖2. For t ∈ [0, s]

one has

"γ(t) = 〈 "u(t), u(t) + u(s)〉 ≤ f(−u(s))− f(u(t)) = f(u(s))− f(u(t)) ≤ 0.

Therefore, γ(t) ≥ γ(s) = 0 and so

1

2
‖u(t)− u(s)‖2 ≤ ‖u(t)‖2 − ‖u(s)‖2.

Since 0 ∈ Argmin f , ‖u(t)‖ converges as t → ∞ so u(t) has the Cauchy property. "

For general A one has to assume additional hypotheses on the trajectory:
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Proposition 7.5. Let A be odd. If u is asymptotically regular then u(t) converges
strongly to some p ∈ S as t → ∞.

Proof. Let us use the semigroup notation u(t) = Stx. If A is odd then 0 ∈ S and

‖St+h+sx+ St+sx‖ = ‖St+h+sx− St+s(−x)‖
≤ ‖St+hx− St(−x)‖
= ‖St+hx+ Stx‖

for each h ≥ 0 so that

lim
t→∞

‖Stx+ St+hx‖ ≤ ‖Stx+ St+hx‖. (37)

Since 0 ∈ S the limit d = limt→∞ ‖Stx‖ exists. Moreover, the fact that ‖2Stx‖ ≤
‖Stx+ St+hx‖+ ‖Stx− St+hx‖ implies

2d ≤ lim
t→∞

‖Stx+ St+hx‖ ≤ ‖Stx+ St+hx‖

for each t, h by asymptotic regularity and inequality (37). Finally,

‖St+hx− Stx‖2 = 2‖Stx‖2 + 2‖St+hx‖2 − ‖St+hx+ Stx‖2

≤ 4‖Stx‖2 − 4d2

and so {Stx} has the Cauchy property. Its limit p clearly belongs to S. "

Comments. Without the asymptotic regularity assumption, strong convergence still
holds for the averages when A is odd (see [8, Baillon]). #

7.2. Proximal sequences

Strong monotonicity.

Proposition 7.6. If A is α-strongly monotone for some α > 0 then xn converges
strongly to the unique p ∈ S as n → ∞.

Proof. Strong monotonicity implies

αλn‖xn − p‖2 ≤ 〈xn−1 − xn, xn − p〉
= 〈xn−1 − p, xn − p〉 − ‖xn − p‖2

≤ ‖xn − p‖ (‖xn−1 − p‖ − ‖xn − p‖)

so that

α
∞∑

n=1

λn‖xn − p‖ ≤ ‖x0 − p‖ < ∞.

Since the sequence ‖xn − p‖ is decreasing this implies limn→∞ ‖xn − p‖ = 0. "
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Solution set with nonempty interior.

Proposition 7.7. Let A be maximal monotone with int S '= ∅. Then xn converges
strongly as n → ∞.

Proof. If B(p, r) ⊂ S inequality (36) gives r‖xk−1 − xk‖ ≤ 〈xk−1 − xk, xk − p〉 and so

r‖xk−1 − xk‖ ≤ 〈xk−1 − p, xk − p〉 − ‖xk − p‖2

≤ ‖x0 − p‖ (‖xk−1 − p‖ − ‖xk − p‖)

by Corollary 2.11. Hence

r ‖xn − xm‖ ≤ r
m∑

k=n+1

‖xk−1 − xk‖

≤ ‖x0 − p‖ (‖xn − p‖ − ‖xm − p‖) .

Since ‖xn − p‖ is convergent, xn is a Cauchy sequence. "

The NR convergence condition.

A fairly general result is the following, from [50, Nevanlinna and Reich]:

Theorem 7.8. If A satisfies the NR convergence condition then xn converges strongly
as n → ∞.

Proof. Setting jn = xn − PSxn we have

‖jn‖2 + λn〈yn, jn〉 = 〈xn−1 − PSxn, jn〉
= 〈jn−1, jn〉+ 〈PSxn−1 − PSxn, xn − PSxn〉
≤ ‖jn−1‖ ‖jn‖

≤ 1

2

[
‖jn−1‖2 + ‖jn‖2

]
.

Thus ‖jn‖2 + 2λn〈yn, jn〉 ≤ ‖jn−1‖2 and
∑∞

n=1 λn〈yn, jn〉 < ∞. Since 〈yn, jn〉 ≥ 0 one
must have lim infn→∞〈yn, jn〉 = 0. The sequences {xn} and {yn} are bounded, and
the convergence condition implies lim infn→∞ ‖xn − PSxn‖ = 0. Since ‖xn − PSxn‖
is nonincreasing, it must converge to 0. On the other hand, the sequence ‖xn − p‖
is nonincreasing for each p ∈ S. In particular, ‖xn+m − PSxn‖ ≤ ‖xn − PSxn‖ and
therefore ‖xn+m − xn‖ ≤ 2‖xn − PSxn‖. We conclude that xn converges strongly to
some p ∈ S as n → ∞. "

Strong precompactness.

Proposition 7.9. If ω[xn] ∩ S '= ∅ then xn converges strongly to some p ∈ S.

Proof. If p ∈ ω[xn] ∩ S then ‖xn − p‖ is decreasing and lim infn→∞ ‖xn − p‖ = 0. "

Symmetry.

For even functions we have the following result from [20, Brézis and Lions]:
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Proposition 7.10. If A is the subdifferential of an even function in f ∈ Γ0(H) then
xn converges strongly as n → ∞.

Proof. Recall that 2λn(f(u) − f(xn)) ≥ ‖u − xn‖2 − ‖u − xn−1‖2. Let m ≥ n and
take u = −xm. Since n 2→ f(xn) is decreasing we have ‖xm + xn‖ ≤ ‖xm + xn−1‖ and
the function n 2→ ‖xm + xn‖ is decreasing. In particular ‖xm + xm‖ ≤ ‖xm + xn‖,
thus 4‖xm‖2 ≤ ‖xm + xn‖2. We have 2‖xn‖2 + 2‖xm‖2 = ‖xm + xn‖2 + ‖xm − xn‖2 ≥
4‖xm‖2 + ‖xm − xn‖2, so that ‖xm − xn‖2 ≤ 2‖xn‖2 − 2‖xm‖2. Since ‖xn‖ converges
as n → ∞ this proves that xn is a Cauchy sequence. "

As before, asymptotic regularity is required for a general A:

Proposition 7.11. Let A be odd. If {xn} is asymptotically regular then xn converges
strongly to some p ∈ S as n → ∞.

Proof. We already proved that 0 ∈ S when A is odd. Next, one easily verifies that
the sequence ‖xn+k + xn‖ is decreasing for each k ∈ N and concludes as in the proof
of Proposition 7.5. "

Comments. Without asymptotic regularity on can still prove strong convergence of
the averages (see [43, Lions]) for odd operators. This was first proved in [9, Baillon] in
the case λn ≡ λ. #

7.3. Euler sequences

Strong monotonicity.

Proposition 7.12. Let A be α-strongly monotone. If
∑

‖zn − zn−1‖2 < ∞ then zn
converges strongly to the unique p ∈ S as n → ∞.

Proof. The strong monotonicity and (21) together imply

2αλn‖zn − p‖2 + ‖zn+1 − p‖2 ≤ ‖zn − p‖2 + λ2
n‖wn‖2.

Therefore

2α
∞∑

n=1

λn‖zn − p‖2 ≤ ‖z0 − p‖2 +
∑

λ2
n‖wn‖2 < ∞

and so lim infn→∞ ‖zn − p‖ = 0. But ‖zn − p‖ converges by Corollary 2.18. "

Solution set with nonempty interior.

Proposition 7.13. Assume int S '= ∅. If
∑

‖zn − zn−1‖2 < ∞ then zn converges
strongly as n → ∞.

Proof. If B(p, r) ⊂ S inequalities (36) and (20) together give

2rλn‖wn‖+ ‖zn+1 − p‖2 ≤ ‖zn − p‖2 + λ2
n‖wn‖2.

This implies that the sequence λn‖wn‖ = ‖zn+1 − zn‖ is in )1 and so zn converges. "
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The NR convergence condition.

Theorem 7.14. Assume
∑

‖zn+1 − zn‖2 < ∞ and wn is bounded. If A satisfies the
NR convergence condition then {zn} converges strongly as n → ∞.

Proof. To simplify notation write jn = zn − PSzn. We have

‖jn+1‖2 ≤ ‖zn+1 − PSzn‖2 = ‖jn + λnwn‖2 = ‖jn‖2 − 2λn〈−wn, jn〉+ λ2
n‖wn‖2.

By hypothesis and Corollary 2.18 the sequence [zn,−wn] is bounded. Moreover,

∞∑

n=1

λn〈−wn, jn〉 < ∞.

But 〈−wn, jn〉 ≥ 0 and so lim infn→∞〈wn, jn〉 = 0 and the convergence condition implies
lim infn→∞ ‖jn‖ = 0. This sequence being convergent we have limn→∞ jn = 0. Finally,
‖zn+m − zn‖ ≤ 2‖jn‖ and so zn converges as n → ∞. "

Comments. The previous result holds if X and X∗ are uniformly convex (see [50,
Nevanlinna and Reich]).

According to [26, Bruck and Reich], the convergence condition can be replaced by
int S '= ∅. In that case, if X is not uniformly convex it suffices that Ax be proximinal
and convex for each x. On the other hand, according to [50, Nevanlinna and Reich],
the conclusion of Theorem 7.14 is still true, even if X and X∗ are not uniformly convex,
provided S is proximinal and A is accretive in the sense of Browder. #

Strong precompactness.

Proposition 7.15. Assume that
∑

‖zn+1 − zn‖2 < ∞ and ω[zn] ∩ S '= ∅. Then zn
converges strongly to some p ∈ S.

Proof. The argument is the same as in Proposition 7.3 by virtue of Corollary 2.18."

Symmetry.

The following result uses the same ideas as in Propositions 7.5 and 7.11 but is appar-
ently new:

Proposition 7.16. Let T be nonexpansive, A = I − T and λn ≡ 1 so that zn = T nz0.
If T is odd and

∑
‖zn+1 − zn‖2 < ∞ then {zn} is strongly convergent.

Proof. Since T is odd one easily deduces that the sequence ‖zn+k + zn‖ is decreasing
for each k. From the fact that

∑
‖zn+1 − zn‖2 < ∞ we can draw two conclusions: In

the first place, Corollary 2.18 implies d = limn→∞ ‖zn‖ exists because 0 ∈ S. On the
other hand, the sequence zn is asymptotically regular, so limn→∞ ‖zn− zn+k‖ exists for
each k. As a consequence, 2d ≤ ‖zn+k + zn‖ for each n and k. One concludes as in the
proof of Proposition 7.5. "

Comments. Without any further assumptions, the sequence T nz converges strongly
in average if T is odd (see [9, Baillon]). #
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8. Asymptotic equivalence

In this section we explain how to deduce qualitative information on the asymptotic
behavior of the systems defined by (5), (8) and (17). We provide a comparison tool
that guarantees that two evolution systems share certain asymptotic properties. For
the complete abstract theory see [3, Alvarez and Peypouquet].

8.1. Evolution systems

Let C be a convex subset of a Banach space X and let I denote the identity operator
in X. An evolution system (ES) on C is a family {V (t, s) : t ≥ s ≥ 0 } of maps from
C into itself satisfying:

i) V (t, t) = I; and
ii) V (t, s)V (s, r) = V (t, r).

Let L > 0. An evolution system is L-Lipschitz if it satisfies

iii) ‖V (t, s)x− V (t, s)y‖ ≤ L‖x− y‖
and is contracting (CES) if it is 1-Lipschitz.

Example 8.1. Let F be a (possibly multivalued) function from [t0,∞) × C to C.
Suppose that for every s ≥ t0 and x ∈ C the differential inclusion u′(t) ∈ F (t, u(t)),
with initial condition u(s) = x, has a unique solution us,x : [s,∞) 2→ C. The family
U defined by U(t, s)x = us,x(t) is an evolution system on C. If X is Hilbert space
and F (t, x) = −Atx, where {At} is a family of maximal monotone operators, then the
corresponding U is a CES. #

Example 8.2. Take a strictly increasing unbounded sequence {σn} of positive num-
bers and set ν(t) = max{n ∈ N | σn ≤ t}. Consider a family {Fn} of functions from

C into C and define U(t, s) =
∏ν(t)

n=ν(s)+1 Fn, the product representing composition of

functions. Then U is an ES. If each Fn is Mn-Lipschitz and the product
∏∞

n=1 Mn is
bounded from above by M , then U is an M-LES. For instance, if Fn = (I + An)−1,
where {An} is a family of m-accretive operators on C, then the piecewise constant
interpolation of infinite products of resolvents defines a CES. #

8.2. Almost-orbits and asymptotic equivalence

Let V be an evolution system on C. A locally bounded trajectory of the form t 2→
V (t, s)x for s and x fixed is an orbit of V . A locally bounded function u : R+ → C is
an almost-orbit of V if

lim
t→∞

‖u(t+ h)− V (t+ h, t)u(t)‖ = 0 uniformly in h ≥ 0. (38)

Orbits and almost-orbits have, essentially, the same asymptotic behavior.
Note the relation and difference with the notion of asymptotic pseudotrajectories where
the convergence is uniform on compact time intervals ([15, Benäım and Hirsch], [16,
Benäım, Hofbauer and Sorin]). The current concept is more demanding but will allow
for more precise results (convergence rather than properties on the set of limit points).
The following result is from [3, Alvarez and Peypouquet] (see also [58, Peypouquet]):
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Theorem 8.3. Let V be an evolution system. For the weak topology assume either that
V is Lipschitz or X is weakly complete (weak Cauchy nets are weakly convergent4). If
every orbit of V converges weakly (resp. strongly), then so does every almost-orbit.

Proof. For the strong topology, let u be an almost-orbit of V and let ε > 0. By
definition, there is S > 0 such that

‖u(t+ h)− V (t+ h, t)u(t)‖ < ε/4

for all h ≥ 0 and t ≥ S. Define ζ(S) = limt→∞ V (t, S)u(S) and choose T > S such
that ‖V (t, S)u(S)− ζ(S)‖ < ε/4 for all t ≥ T . Then

‖u(t+ h)− ζ(S)‖ ≤ ‖u(t+ h)− V (t+ h, S)u(S)‖+ ‖V (t+ h, S)u(S)− ζ(S)‖ < ε/2

for all t ≥ T and all h ≥ 0. Thus ‖u(t′) − u(t)‖ < ε for all t, t′ ≥ T so that u(t) is
Cauchy and converges.
It is clear that this argument is valid for the weak topology if X is weakly complete.

If it is not the case but V is L-Lipschitz, one defines ζ(s) = τ − limt→∞ V (t, s)u(s)
(where τ is weak or strong) and verifies that

sup
p≥0

‖ζ(s+ p)− ζ(s)‖ ≤ L sup
p≥0

‖u(s+ p)− V (s+ p, s)u(s)‖,

which tends to zero as s → ∞ showing that ζ(s) converges strongly to some ζ. De-
compose now, for t ≥ s

u(t)− ζ = [u(t)− V (t, s)u(s)] + [V (t, s)u(s)− ζ(s)] + [ζ(s)− ζ].

The last two terms converge to 0 in norm as s → ∞ (uniformly in t) and the first one
τ -converges to 0 as t → ∞ for each s. Hence u(t) τ converges to ζ as t → ∞. "

A special case of Theorem 8.3 was proved in [53, Passty], when V is defined by a semi-
group of contractions or if the almost-orbits are orbits of a semigroup of contractions.

Theorem 8.4. Under the hypotheses of Theorem 8.3, the conclusion remains valid if
the word converges is replaced by converges in average.

The proof of this result can be found in [3, Alvarez and Peypouquet].

Comments. Under the hypotheses of Theorem 8.3, the conclusion is also true for
almost-convergence (see [3, Alvarez and Peypouquet]), a concept developed in [44,
Lorentz] that is stronger than convergence in average. This result had been proved
earlier in [48, Miyadera and Kobayasi] under supplementary assumptions: i) V is
defined by a strongly continuous semigroup of contractions; ii) S '= ∅; and iii) for the
weak topology, X is weakly complete. #

Lemma 8.5. Let U and V be evolution systems and assume that for each r > 0

lim
t→∞

sup
h≥0

sup
‖z‖≤r

‖U(t+ h, t)z − V (t+ h, t)z‖ = 0

then every bounded orbit of V is an almost-orbit of U and viceversa.
4The spaces #1 and L1, as well as all reflexive Banach spaces, have this property. It is not the case if
X contains c0, though (see p. 88 in [42, Li and Queffélec]).
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Proof. Let v be an orbit of V such that ‖v(t)‖ ≤ r for all t. Then

‖v(t+ h)− U(t+ h, t)v(t)‖ = ‖V (t+ h, t)v(t)− U(t+ h, t)v(t)‖
≤ sup

‖z‖≤r
‖U(t+ h, t)z − V (t+ h, t)z‖

and so v is an almost-orbit of U . "

8.3. Continuous dynamics and discretizations

The following results explain why in most cases the systems defined in the preceding
sections converge under the same hypotheses. The proofs are considerably simplified if
one assumes boundedness of the almost-orbits by virtue of Lemma 8.5. We provide the
proofs in this case. For the general setting the reader can consult the original reference.
The next proposition gathers results from [65, Sugimoto and Koizumi] and [33, Güler].

Proposition 8.6. Let A be a maximal monotone operator on H and let U and V be the
evolution systems defined by the differential inclusion (5) and the proximal algorithm
(8), respectively. Assume one of the following conditions holds:

i) {λn} ∈ )2 \ )1; or
ii) A = ∂f and {λn} /∈ )1.

Then every orbit of U is an almost-orbit of V and viceversa.

Proof. Define ν(t) as in Example 8.2. If {λn} ∈ )2 \ )1, part i) in Corollary 2.15 gives

‖U(t+ s, t)z − V (t+ s, t)z‖2 ≤ 3‖A0z‖2
∞∑

n=ν(t)

λ2
n

and we conclude using Lemma 8.5. For unbounded almost-orbits, see [65, Sugimoto
and Koizumi]. If A = ∂f and {λn} /∈ )1 the proof is highly technical and can be found
in [33, Güler]. It also relies on part i) in Corollary 2.15 but sharper estimations on
‖A0xn‖ and ‖A0u(t)‖ are needed. "

The following result is from [4, Alvarez and Peypouquet] (see also [58, Peypouquet]):

Proposition 8.7. Let T be nonexpansive, set A = I − T and let U and W be the
evolution systems defined by the differential inclusion (5) and Euler’s discretization
(17), respectively. Assume {λn} ∈ )2 \ )1. Then every orbit of U is an almost-orbit of
W and viceversa.

Proof. The argument in the proof of part i) in Proposition 8.6 can be applied here as
well, by virtue of inequality (18). "

These properties allow for a better understanding of similar asymptotic behavior of the
continuous and discrete processes: in general for weak convergence in average (Section
4), for weak convergence in the case of demi-positive operators (Section 5) and for
strong convergence under additional geometrical hypotheses (Section 6).
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8.4. Quasi-autonomous systems

One of the advantages of this approach through almost-orbits is that it extends to
nonautonomous systems, which arise naturally in the presence of perturbations.

8.4.1. Continuous dynamics

Recall that the solutions of the differential inclusion (5) define an evolution system U
as in Example 8.1. Let us consider quasi-autonomous versions of (5), namely

− "v(t) ∈ Av(t) + ϕ(t) (39)

and
− "v(t) ∈ Av(t) + ε(t)v(t). (40)

The following result is from [4, Alvarez and Peypouquet] (see also [58, Peypouquet]):

Proposition 8.8.

i) If ϕ ∈ L1(0,∞;X), then every function v satisfying (39) is an almost-orbit of U .
ii) The same holds for every function satisfying (40) provided ε ∈ L1(0,∞;R).

Proof. For the first part we follow [48, Miyadera and Kobayasi]. If v satisfies (39) and
t ≥ 0 we have, with V (t+ s) = U(t+ s, t)v(t)

‖v(t+ s)− U(t+ s, t)v(t)‖2 = ‖v(t+ s)− V (t+ s)‖2

= 2

∫ s

0

〈 "v(t+ τ)− "V (t+ τ), v(t+ τ)− V (t+ τ)〉dτ

≤ 2

∫ s

0

〈−ϕ(t+ τ), v(t+ τ)− V (t+ τ)〉dτ

≤ 2

∫ s

0

‖ϕ(t+ τ)‖‖v(t+ τ)− V (t+ τ)‖dτ

= 2

∫ s

0

‖ϕ(t+ τ)‖‖v(t+ τ)− U(t+ τ, t)v(t)‖dτ

and so

‖v(t+ s)− U(t+ s, t)v(t)‖ ≤
∫ s

0

‖ϕ(t+ τ)‖dτ ≤
∫ ∞

t

‖ϕ(τ)‖dτ.

For ii), let v satisfy (40). Fix t and consider as above ψ(s) = 1
2‖U(t+ s, t)v(t)− v(t+

s)‖2 = 1
2‖V (t+ s)− v(t+ s)‖2. Hence for almost every s > 0,

"ψ(s) ≤ ε(t+ s)〈v(t+ s), V (t+ s)− v(t+ s)〉 ≤ 1

4
|ε(t+ s)|‖U(t+ s, t)v(t)‖2

(using 〈ζ, ξ − ζ〉 ≤ 1
4‖ξ‖

2 for all ζ, ξ ∈ H). Integrating from 0 to s and observing that
ψ(0) = 0 we obtain

‖U(t+ s, t)v(t)− v(t+ s)‖2 ≤ 1

4

∫ s

0

|ε(t+ τ)| ‖U(t+ τ, t)v(t)‖2 dτ ≤ M

4

∫ ∞

t

|ε(τ)| dτ

if v is bounded. "
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Comments. In [1, Alvarez], the author studies the problem

u′′(t) + γu′(t) +∇Φ(u(t)) = 0, (41)

where Φ is a C1 convex function. He proves that if Argmin(Φ) '= ∅, then each solution
u(t) converges weakly to a minimizer of Φ as t → ∞ and gives conditions for strong
convergence. Later, in [6, Attouch and Czarnecki] the authors establish, among other
results, that if ε ∈ L1 the solutions of

u′′(t) + γu′(t) +∇Φ(u(t)) + ε(t)u(t) = 0. (42)

also converge weakly to minimizers of Φ. It turns out (see [4, Alvarez and Peypou-
quet] or [58, Peypouquet]) that under this condition (ε ∈ L1) the solutions of (42)
are almost-orbits of the evolution system defined by (41). This is an alternative way
to prove the cited result from [6, Attouch and Czarnecki] and it shows that these
tools building on almost-orbits to classify the asymptotic behavior through equiva-
lence classes (continuous trajectories, proximal or Euler approximations, Tykhonov
regularization, perturbations) can be applied to second-order systems as well. More-
over, if u′′ is integrable, the results for quasi-autonomous systems imply that the orbits
of (41) are almost-orbits of the corresponding first-order evolution system. #

8.4.2. Proximal sequences

In a similar fashion one can prove any interpolation of a sequence {yn} satisfying

yn−1 − yn ∈ λnAyn + φn (43)

or
yn−1 − yn ∈ λnAyn + εnyn (44)

is an almost-orbit of the evolution system U defined by the proximal scheme (8) as in
Example 8.2 provided {φn} ∈ )1(N;X) and {εn} ∈ )1(N;R+), respectively.

For additional applications and examples see [4, Alvarez and Peypouquet] (or [58,
Peypouquet]).

9. Concluding remarks

It is useful to observe that there are two aspects related to the ideas of asymptotic
equivalence discussed in the last section. In the first place, one can obtain sufficient
conditions for a perturbed, regularized or discretized system to have the same asymp-
totic properties as the original one. The issue here is in terms of stability, regularity or
computational purposes. On the other hand, if a given dynamics does not have some
desirable asymptotic behavior, one can introduce pertubation in order to generate or-
bits having better properties. In this case, the tools of asymptotic equivalence give
necessary conditions for a perturbation to be effective.

Recall that the trajectories defined by (5) only converge weakly in average. Even in
the case where A = ∂f , convergence is still weak and the limit depends on the initial
point. One can get a better asymptotic behavior by forcing the system to stabilize, for
instance, in the direction of the origin. More precisely, consider a piecewise absolutely
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continuous function ε : R+ → R+ such that limt→∞ ε(t) = 0. If ε ∈ L1(0,∞;R+) the
system defined by (40) will have the same asymptotic behavior as (5) by Proposition
8.8. If we expect the regularized system to have better properties we must consider
ε /∈ L1(0,∞;R+). The following result is from [28, Cominetti, Peypouquet and Sorin]:

Proposition 9.1. Suppose v : R+ → H satisfies

− "v(t) ∈ Av(t) + ε(t)v(t).

with ε /∈ L1(0,∞;R+). Assume further that A = ∂f or
∫∞

0 | "ε(t)| dt < ∞ (finite total
variation). Then limt→∞ v(t) = PS0.

Special cases of the preceding result had been proved earlier in [21, Browder], [59,
Reich] and [5, Attouch and Cominetti]. A similar result for the second order appears
in [6, Attouch and Czarnecki].

Similarly if one applies the proximal point algorithm with step sizes λn ∈ )2 to the
continuous dynamics (5), by Proposition 8.6 the corresponding system will have the
same asymptotic properties, hence need not be weakly convergent. In other words,
the approximation is too good: “the discrete approximation mirrors the behavior of
the differential equation too well& [25, Bruck, p. 29]. If one wishes to get a better (or
different) behavior, it is necessary to consider λn /∈ )2. This turns out to be fruitful
because, in that case Theorem 6.4 guarantees weak convergence even when the operator
is not demipositive (see also Example 3 in Section 6).
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groupes non linéaires, Houston J. Math. 2 (1976) 5–7.

[13] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces, Noord-
hoff, Leyden (1976).

[14] H. H. Bauschke, J. V. Burke, F. R. Deutsch, H. S. Hundal, J. D. Vanderwerff: A new
proximal point iteration that converges weakly but not in norm, Proc. Amer. Math. Soc.
133 (2005) 1829–1835.
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