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A two-person game has common interests if there is a single payoff pair z that 
strongly Pareto dominates all other payoff pairs. Suppose such a game is repeated 
many times, and that each player attaches a small but positive probability to the 
other playing some fixed strategy with bounded recall, rather than playing to 
maximize his payoff. Then the resulting supergame has an equilibrium in pure 
strategies, and the payoffs to all such equilibria are close to optimal (i.e., to z). 
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1. INTRODUCTION 

Is cooperation rational? Can the principle of cooperation be derived 
from basic principles of rational behavior on the part of individuals, such 
as strategic (‘ ‘Nash”) equilibrium? 
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FIGURE 1 

Without further qualification, this question must be answered in the 
negative. Nothing seems more obvious than that in the game of Fig. 1, 
rational, self-seeking players should play for (2,2). Yet the strategy pair 
yielding (1,l) is a perfectly good equilibrium. 

Call an outcome of a strategic (“normal form”) game cooperative if it is 
efficient (“Pareto optimal”) in the set of all feasible outcomes. The folk 
theorem tells us that in a repeated game, cooperation is possible in equi- 
librium; that the cooperative outcomes are among the equilibrium out- 
comes. But equilibrium does not assure cooperation, even in a repeated 
game; in almost all cases there are also equilibrium outcomes that are not 
efficient. Figure 1 shows that even in games with common payoffs- 
defined as games in which all players get the same payoff at each out- 
come-there are equilibrium outcomes that are not cooperative; and this 
remains so when the game is repeated. Thus when the game of Fig. 1 is 
repeated, (1,l) remains an equilibrium payoff. 

It is the purpose of the research reported here to identify a model in 
which all equilibrium outcomes are efficient, in which utility-maximizing 
behavior on the part of each separate individual necessarily leads to coop- 
eration. 

2. VERBAL DESCRIPTION OF THE MAIN RESULT 

We start with a two-person game with common interests, defined as a 
game in which there is one payoff pair that strongly Pareto dominates all 
other payoff pairs. The games with common payoffs to which we referred 
above have common interests, but they are not the only ones. For exam- 
ple, the game of Fig. 2 has common interests but not common payoffs. 

Let G” be a repetition of G, which may be either a long finite repetition 

FIGURE 2 
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with average payoff or an infinite repetition where the payoff is the nor- 
malized present value of the slightly discounted stage payoffs. A pure 
strategy of Player i in the repetition may be viewed as a function from 
strings of actions’ of the other player in stages up to the present, to 
present actions of i. For a given positive integer 4, we say that such a 
strategy has recall at most e if this function depends only on the last 42 
moves of the other player. 

Consider now a perturbation of the repetition G” by the strategies of 
recall 92. By this we mean a situation where each player in G” is fairly 
convinced that he is facing a rational, utility-maximizing player on the 
other side; but he ascribes a small positive probability to the possibility 
that the player on the other side is an irrational automaton who plays 
according to some fixed strategy. In that case, it is assumed that the fixed 
strategy of the other player has recall 54’; also, that there is considerable 
uncertainty about which fixed strategy it is: specifically, that the strategies 
assigned positive probability include at least all those of recall zero.2 

Our main result says that this perturbation of the repeated game pos- 
sesses pure strategy equilibria, and all such equilibria are close (in pay- 

off) to the unique cooperative outcome. (By an outcome we mean a pair 
of payoffs.) 

3. DISCUSSION 

It is worthwhile to recapitulate the conditions under which this result 
holds: 

(i) The original game must be a two-person game with common 
interests. 

(ii) The game must be repeated. 
(iii) The repeated game must be perturbed. 
(iv) The perturbation must consist only of strategies with uniformly 

bounded recall. 
(v) All strategies of recall zero must occur with positive probability 

in the perturbation. 
(vi) The equilibria must be pure. 

Each of these conditions is essential. We discuss them one by one. 

I Pure strategies in G are called acrions (see Section 6). 
* These strategies prescribe the same action at each period. 
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(i) It is conceivable that the result can be extended to more than two 
players, but before this is done, there are many obstacles to overcome, of 
both a conceptual and a technical nature. But the condition that the game 
have common interests is indispensable; if there are several efficient out- 
comes, there will in general be no pure strategy equilibria at all. 

Intuitively, if the interests are not common, the players have a conflict 
of interest in agreeing on which efficient outcome to reach. In a game with 
common interests, there is no such conflict of interest; there is a unique 
point-the single efficient outcome- that is best for all. Nevertheless, 
even in those games, with no conflict of interest at all, the conditions that 
necessarily lead to cooperation are quite circumscribed. In a game with- 
out common interests, one might prefer to call an efficient point a “com- 
promise. ’ ’ But in a game with common interests there is no issue of 
compromise, it presents the quest for cooperation in its purest form; and 
even there, doubts and mistrust and suspicion get in the way and make 
cooperation difficult to achieve. Indeed, this may happen even when the 
preferences are common- when the payoffs are identical at each square 
of the payoff matrix. 

(ii) The example of Fig. 1 shows that without repetition there is no hope 
of getting the kind of result we are looking for. Repetition represents 
interacting, teaching, learning. Under the right conditions, people may 
perhaps learn to cooperate; but they cannot be expected to do so in a one- 
time, static situation, 

(iii) In the Introduction, we discussed the fact that repetition by itself 
will not ensure cooperation either, even in a game with common payoffs. 
To achieve cooperation, a certain amount of irrationality must be built 
into the system, in the form of a perturbation. 

Perturbations have played a very important role in game theory, start- 
ing with Selten’s trembling hand perfect equilibria (1975).3 In a sense, full 
rationality cannot feed on itself only; it must have a broader base. Perfec- 
tion, however, does not lead to cooperation, as the “perfect folk theo- 
remr’4 shows. One needs to perturb more selectively. 

(iv) At first, it was conjectured that it might be sufficient to perturb with 
strategies that can be played by automata of bounded complexity. This, 
however, is not correct; bounded recall is essential. People must be will- 
ing to forget past grievances; remembering the distant past is not a good 
means for fostering cooperation. More accurately, in a culture in which 
irrational people have long memories, rational people are less likely to 
cooperate. 

3 See, for example, Myerson (1978), Kreps and Wilson (1982), Kalai and Samet (1984), 
and Kohlberg and Mertens (1986) for alternative formulations of the idea of perfection in 
equilibrium (what has come to be known as “refining” Nash equilibrium). All these detini- 
tions, which are playing an increasingly important role in the applications, are based on 
some kind of perturbation from pure rationality. 

4 As in Rubinstein (1979). 
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(v) The result is false unless the set of possible automata is sufficiently 
rich, in that it contains at least all the recall zero strategies. In particular, 
this is the case if each player’s onZy solid information about the other’s 
irrational type is that it cannot remember more than a specified time back; 
i.e., if subject to that caveat, nothing can be completely ruled out. This is 
to be contrasted with the assumptions of the “gang of four,” which we 
discuss below. 

(vi) Even when all the above conditions are met, and indeed the game G 
even has common payoffs, the result is still false when the equilibria are 
mixed rather than pure. Counterexamples are the rule rather than the 
exception; a game as simple as that of Fig. 3 is a counterexample. Mixed 
strategy equilibria imply that each player is uncertain about what the 
other will do; the uncertainty breeds mistrust and suspicion-which is, in 
the event, justified!-and stands in the way of cooperation. 

On the other hand, perturbed repeated games with common interests 
always do possess pure strategy equilibria, indicating that these games 
have a certain innate stability, which may be an important factor in 
achieving cooperation. 

4. HISTORICAL BACKGROUND 

The first hint that bounded recall might have something to do with 
cooperation came in the summer of 1978. Aumann and Kurz, with the 
help of Jonathan Cave (see Aumann, 1981), worked out a version of the 
infinitely repeated Prisoner’s Dilemma with memory one; this means that 
each player can base his action only on what his opponent did at the 
previous stage-he has “forgotten” everything else. This results in an 8 
x 8 bimatrix game; iterated removal of weakly dominated strategies 
yields a unique strategy pair, in which both players start by playing 
“friendly” and continue with “tit-for-tat” thereafter. The outcome is 
cooperative, both players always playing “friendly.“5 The result was 

5 We prefer “friendly” to describe what is sometimes called the “cooperative” action in 
the one-shot Prisoner’s Dilemma, and “greedy” for what is sometimes called “defect” or 
“double-cross.” The term “cooperative” has other meanings in game theory; the fact that 
they are related-but not identical-to the one under discussion only makes matters worse. 
“Defect” and “double-cross” have the connotation of a person who has agreed to some- 
thing and then reneges, which need not at all be the case in the Prisoner’s Dilemma. 
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purely computational-there was no discernible theoretical explanation. 
However, domination arguments are often associated with trembling 
hand perfection; this suggested that perhaps some kind of perturbation is 
at work (see Section 3(iii) above). 

At the same time that this bounded recall model-leading to the coop- 
erative tit-for-tat outcome-was being investigated, a remarkable parallel 
development was taking place on a completely different front. Robert 
Axelrod (1984) conducted an experiment in which he asked scientists in 
various fields to write computer programs that would play the Prisoner’s 
Dilemma. He then matched the programs against each other, and tit-for- 
tat turned out to be the most successful. 

Suppose one had a reproducing population whose members were play- 
ing the Prisoner’s Dilemma against each other, survival depended on the 
size of one’s payoff, and different strategies were represented by different 
genes. Axelrod’s experiment suggests that once introduced, the gene for 
tit-for-tat might be rather successful, gradually replacing other genes (i.e., 
strategies). This might explain the “evolution of cooperation”-which is 
the title of Axelrod’s book. 

Yet a theoretical model that would account for Axelrod’s experimental 
result, and for the Aumann-Kurz-Cave computational observation, re- 
mained missing. 

The first real step toward such a theoretical explanation was made by 
the “gang of four” (Kreps, Milgrom, Roberts, and Wilson, 1982). They 
showed that if one perturbs the finitely repeated Prisoner’s Dilemma by 
assuming that with an arbitrarily small but positive exogenous probability, 
one of the players-say P l- is playing tit-for-tat rather than maximizing, 
then with a sufficiently long repetition, all sequential equilibrium out- 
comes are close to cooperative. The idea of the ingenious proof is that P 1 
(Player 1) may then pretend that he is actually in the perturbed mode that 
plays tit-for-tat in any case. Since there is a positive exogenous probabil- 
ity that in fact he is, P2 will gradually become convinced that this is the 
case. But then it is worthwhile for P2 to play “friendly” herself, and this 
leads to the cooperative outcome.6 

6 This oversimplifies their argument considerably. (Indeed, since it is asserted that “pre- 
tending” to be in the perturbed mode is an equilibrium strategy, it must be presumed that P2 
knows this fact and therefore will not conclude that Pl is actually in the perturbed mode.) 
More accurately, the argument is by contradiction. If the equilibrium outcome is not near 
the friendly one, then Pl’s “main” strategy (i.e., without the perturbation) cannot be close 
to tit-for-tat; because if it were, P2 would be motivated to play friendly herself, and this 
would lead to an outcome that is, after all, close to friendly. Since Pl’s main strategy is not 
anything like tit-for-tat, P2 can easily distinguish between it and the perturbation; and 
against the perturbation, she will be motivated to play “friendly.” But then Pl could, after 
all, pretend that he is in the perturbed mode, and this would elicit a friendly response from 
P2. 
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Important as it is, the Kreps-Milgrom-Roberts-Wilson result is con- 
ceptually not quite as strong as one might have liked. Rather than perturb- 
ing the game by a mixture of all possible strategies, as in the definition of 
trembling hand perfection, the gang of four perturbs it with tit-for-tat only. 
In a sense, therefore, tit-for-tat is the input to the theorem as well as the 
output. It is put in with small probability, and comes out with probability 
1; gets sown as a tiny seed, and grows to a mature plant. While the result 
is very suggestive and important, one would have liked a stronger result, 
in which one is led to a cooperative outcome entirely endogenously. For 
example, this would be the case if the perturbation were a mixture of all 
alternative strategies, and one could then prove that the equilibrium strat- 
egy must be close to tit-for-tat; that tit-for-tat is, so to speak, endoge- 
nously picked out from all possible strategies, that it is the seed that 
sprouts from among all those that were sown. 

Several years ago, the notion of a general finite automaton was intro- 
duced into the study of repeated games. Perhaps the most relevant here is 
the work of A. Neyman (1983, who investigated what happens when fully 
rational players are replaced by automata in finitely repeated games. It is 
well known that the folk theorem does not always apply in the case of 
finite repetitions; in the Prisoner’s Dilemma, for example, the only equi- 
librium outcome in any finite repetition, no matter how long, is for both 
players always to play “greedy.” Neyman showed that when one re- 
stricts the players to finite automata, even though they may be large 
compared with the number of repetitions (e.g., l,OOO,OOO states for 100 
repetitions), there are equilibria with payoffs that are on average close to 
the friendly payoff. This means that automata enable cooperation, when it 
is impossible with full rationality; but it still does not achieve our aim of a 
model that forces the players into cooperation. 

5. ABOUTTHE PROOF 

To prove that every perturbed repeated game with common interests 
has a pure strategy equilibrium, let us call a pair of actions cooperative if 
it leads to the unique cooperative outcome. The underlying idea is to 
choose some specific cooperative action pair and have the players always 
play that. This is all right if there is only one cooperative action pair. But 
if there is more than one, a player might be motivated in certain circum- 
stances to use a deviant strategy, because it (the deviant strategy) might 
do as well against the “main” strategy of the other player, and better 
against the perturbation. The existence proof is directed at resolving this 
issue. 

The proof of optimality of the equilibrium takes off from the basic idea 
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of the “gang of four” proof. If the equilibrium were not optimal, one of 
the players, say Pl, could deviate from his equilibrium strategy and pre- 
tend to be an irrational automaton who always plays P l’s component s1 of 
some cooperative action pair s = (si, 9). Because of the deviation, P2 
would think that Pl is an irrational automaton; she would then seek to 
identify that automaton, in order to be able to maximize against it. Since 
PI is pretending to be a “benevolent” automaton who always plays 9, 
and s leads to the maximum possible payoff for each player, it follows that 
P2, in turn, would be motivated always to play 9, and this would lead to 
the cooperative outcome. But this is a contradiction, and we conclude 
that the assumption of a nonoptimal equilibrium was untenable. 

In this proof it is necessary to assume bounded recall for the following 
reason. For the proof to work, P2 must be willing to “explore,” in order 
to identify which automaton Pl is. If the automata in the perturbation of 
Pl are not limited to being of bounded recall, the automaton that actually 
occurs might, for all P2 knows, be very vindictive; “exploration” by P2 
might lead this automaton to “punish” P2 forever (see Section 1 I(ii)). 
Therefore P2 might not dare to explore, with the result that she is cowed 
into maintaining her suboptimal strategy forever. 

The above gives only a rough idea of the basic issues in the proofs of 
existence and optimality. 

6. THEFORMALMODEL 

Let G be a two-person strategic game with finite pure strategy spaces 
Si, S*, and payoff function J Set S := S’ x S*. We will consider two 
kinds of supergames: O-discounted supergames Get and k-stage super- 
games Gk. Each play of each of these supergames consists of an infinite 
sequence of plays of G, called stages. After each stage, each player is 
informed of what the other did at the previous stage, and he remembers 
what he himself did and what he knew at previous stages. In the case of 
Ge, the payoff is 

wheref, denotes the mth stage payoff. In the case of Gk, it is 
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Intuitively, Gk has k stages only, and the payoff is the average; but for- 
mally, it is convenient that Ge and Gk have the same strategic structure 
(“extensive game form”) and differ in their payoff only. 

In the sequel it will be convenient to have a uniform notation for all 
these supergames. Abusing our notation somewhat, we write G” to de- 
note either kind, where (Y stands for either k or l/(1 - 19), as the case may 
be. We call (Y the effective length of the supergame G*. It is the coefficient 
sum before normalization: the total payoff, or its present value, when all 
stage payoffs are 1 (not the per-period figure). Henceforth every state- 
ment about G” refers to both the discounted and the finite-stage super- 
games. 

Pure strategies in G are called actions or moues, to distinguish them 
from pure strategies in G”. Mixed strategies in G are called mixed actions. 
If i is one of the players (i = 1,2), denote the other one by j (i.e., set 
j := 3 - i). 

,If & is a pure strategy for i in G*, then each finite sequence (S ‘i, . . . , 
s”,) of actions of the other player determines an action of i at stage n + 1. 
Denote this action a’(~‘, , . . . , s’,). We say that ui has recall 9 if 

ui(sj,, . . . ) sj,, = crqtjl, . . . ) tj,) 

whenever m, n 2 C and (sjnmp+r, . . . , s{> = (tj,-e+i, . . . , rj,)-in 
words, if i’s choice depends only on the last 4 choices of the other player. 

For each i, let pi be a mixed strategy in G* whose support is included in 
the set BRi(t’) of all pure strategies of recall re and includes BR’(0) (which 
consists of those strategies that prescribe the same action si at each stage, 
no matter what j does). That is, pi assigns probability 1 to BRi(t), and 
positive probability to each strategy in BR’(0). Let or. := (CL’, p2). 

Let E := (&I, s2) be a pair of positive real numbers that are 51. Define 
the (E, p)-perturbation c$G~, denoted G&, as the following game: First, 
each player i chooses a pure strategy 4 in G*, unbeknownst to the other 
player. Then with probability 1 - ai, player i actually plays oi in G”, 
whereas with probability .$, nature chooses a pure strategy 5’ in accor- 
dance with the distribution pi and forces i to play 5’ in G”. The other 
player, j, is never directly informed as to which of these alternatives 
occurred, though he may eventually be able to deduce this information 
from what happens during the course of play. 

The (E, p)-perturbation is related to the “trembling hand” concept; 
intuitively, each player i wishes to play 4, but with probability z$, he will, 
unvolitionally, play pi instead. 

Denote by iV(G&) the set of pure strategy Nash equilibrium outcomes 
of the perturbed supergame G&. Call G a game with common interests if 
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there is an outcome (i.e., payoff pair) z E f(S) that strictly Pareto domi- 
nates all other outcomes, i.e., such that 

2’ > w’ and 22 > w2 (6.1) 

for all other w inf(S). Clearly, z is unique in such games. 
We come now to our result. 

MAIN THEOREM. Let G be a game with common interests, and let z 
denote its unique Pareto optimal outcome. Then for each 4 and p, 

NG:,,) + {zl (6.2) 

(in the Hausdorfj metric’), as E + 0 and (Y + 03. 

The content of (6.2) is that for F sufficiently small, and (Y sufficiently 
large, G& has an equilibrium payoff, and every equilibrium payoff is 
close to z. Thus the theorem has two components: existence and optimal- 
ity. Existence says that every sufficiently small perturbation of a suffi- 
ciently long (or sufficiently slightly discounted) supergame has a pure 
strategy Nash equilibrium. Optimality says that every such equilibrium is 
nearly Pareto optimal. (As usual, E + 0 means a* + 0 and a2 * 0.) 

Note that there is no requirement for the maximum recall 4 to go to a; it 
can be any fixed finite number, even 0. 

7. TERMINOLOGY AND NOTATION FOR THE PROOFS AND EXAMPLES 

A smiley (Q) indicates the end of a proof. 
It is convenient to assume that the action spaces S’ and S2 are disjoint. 

This simplifies the notation because it enables one to identify a player i by 
his actions t’. 

Pairs (T = (Al, (TV) of strategies are, by a slight abuse of notation, 
sometimes denoted (a’, a~). Also, if cri and (+j have been separately 
defined, cr denotes the pair whose components are & and uj. Similar 
notations are used for action pairs, etc. 

The universal quantifier is to be understood for variables that are not 
explicitly quantified. For example, the statement that ui is a best reply to 

’ The Hausdorff distance d(A, B) between two sets A and B is the supremum of the 
numbers d such that for each a in A there is a point in B whose distance from a is at most d, 
and for each b in B there is a point in A whose distance from b is at most d. Thus (6.2) says 
that for each 6 there are Ed and a,, such that d(iV(G3, {z}) 5 6 whenever 0 < s’ 5 Q, 0 < .+ 5 
Q, and (Y z a,,. 
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&, with i unquantified, means that each of (pi and u* is a best reply to the 
other-in brief, that cr is an equilibrium. 

Assume w.1.o.g. (without loss of generality) that all the payoffs are 
positive. Set 

p = min{z’ - f’(s): S E S, f(S) f Z, i = 1,2}; (7.1) 

p is a lower bound on the losses of any player if the payoff is not the 
unique Pareto optimal outcome z; it is the least that any player can suffer 
in that case. 

Denote by a, the coefficient of the mth stage payoff in the expression 
that defines the payoff to Ga; that is, 

p-1 
7 if G” is the B-discounted supergame; 

a, = 1, if G” is the k-stage supergame and m I k; (7.21) 

0, if Ga is the k-stage supergame and m > k; 

note that 

m 

a = C a,. 
lTl=l 

(7.22) 

Denote byf,(a) the outcome for the mth stage of G” when the strategy 
pair (T is used, and set 

(7.23) 

Thus cp(cr) (= (cpl(u), (p*(u)) is the average (per stage) payoff when the 
strategy pair u is used in the unperturbed supergame G”. 

The term “strategy” is henceforth reserved for pure strategies in Ga; 
when discussing mixed strategies, we say so explicitly. Denote by 2; the 
space of i’s strategies in G*; note that Xi, unlike cp’, is independent of the 
coefficients a, (i.e., whether G* is finite stage or discounted, and what the 
value of (Y is). On Z’ we impose the smallest (coarsest, with fewest open 
sets) topology such that for each finite action sequence (s’, , . . . , sj,) of 
j, the function ui-, ui(s’i, . . . , s’,) from Ci to Si is continuous, where Si 
is endowed with the discrete topology (all sets open). In this topology, Ci 
is compact, and (o is continuous on Xi x Z*. Note that Zi and its topology 
are independent of (Y and of whether G” is discounted or finite stage. Note 
also that the players’ strategy spaces in Gf,, are the same as in Ga. 
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If p is a mixed strategy pair, define (o(p) as the expectation of (p(t) 
when the strategy pair 5 is distributed according to p. 

When no confusion can result, we sometimes abbreviate G& by I’. The 
payoff in I is denoted Q, (= (@I, a2)) and is given by 

@(a) = cp((l - E’)U1 + &l/J’, (1 - &2)d + &2/42). (7.31) 

When we wish to be more explicit, we use @‘&, a:, or QE for @. 
Now define 

(P;(T) := (o;(+, (1 - d)d + djd). (7.32) 

In words, (O:(T) is the expected payoff to i when r is played in I, given that 
i is “rational” (actually plays 7i, rather than one of the strategies compris- 
ing the perturbation vu’). It follows that 

(T is an equilibrium of I if and only if 

(piE(ti, crj) I (p:(o) for all strategies 5’ of i (7.33) 

(i.e., when (Pi is substituted for 0, as the payoff function in I). Formally, 
(7.33) follows from noting that the expected payoff to i when T is played in 
r is given by 

@‘i(T) = (1 - E?&(7) + qj, 

where qj is independent of +. 
Form=0,1,2,. . . , ~4, define a history h, as a sequence of m action 

pairs. Call h, infinite or$nite according as m = ~0 or m < 03. Intuitively, a 
history describes the sequence of actions used in a specific play of the 
supergame. If h, = (s,, s2, . . .), write hi : = (s{, s:, . . .>; call it i’s part 
ofh,.Ifn~m,writeh,:=(si,s2,. . . , s,), and call h, an extension of h, 
(in any one context, use of the notations h, and h, for finite histories of 
different lengths will mean that they coincide on their overlap). 

A strategy pair u is said to generate (or induce) a history h, = (~1, ~2, 
. . .), if cG(hj,) = si+, whenever 0 I II < m. This terminology is used also 
for the perturbed game I; that is, when we say that cr “generates” a 
certain history, we take into account only the history that is generated 
when both players play their “main” strategies &, ignoring the perturba- 
tions pi. 

If c is a pair of strategies and h, a finite history, then a(h,) denotes 
(c’(hf,J, a2(h$). Thus cr(h,) is the action pair played at stage m + 1 if the 
players are playing according to cr and the history up to stage m was h,. 
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Call a strategy ~9 in C’ history-independent if cr’(hj,) is independent of 
h’, for all II. Thus, a history-independent strategy calls for i to play the 
same sequence st, sl, . . . , no matter what j does. Note that 

every pure strategy oj has a history-independent best reply. (7.4) 

Indeed, that oj has some best reply oi follows from the compactness of 
the strategy space and the continuity of the payoff function; together, vi 
and ,j generate a sequence s;, s& . . . of actions on the part of i, which 
define a history-independent strategy 8’ that yields the same history, and 
therefore the same payoff, as &. Therefore, also ei is a best reply to rj. 

Next, suppose the finite history h = h, = (~1, SZ, . . . , s,) has oc- 
curred. We need some notation for what then happens starting with stage 
n + l-how the remaining supergame appears, and how specific pure and 
mixed strategies appear when viewed as applying to this remainder only. 

Consider first the remainder G”lh of the supergame GO. Though the 
history h may well affect how this remainder is played, the remainder 
itself technically depends at most on n: for the k-stage supergame Gk it is 
Gkmn, and for the &discounted supergame Ge it is simply Ge itself. Thus 
G*lh is defined as G*lh, where alh = alh, is defined as k - n for the k- 
stage supergame and as CY for the discounted supergame. 

Suppose next that oi is a pure strategy for i in G”. We say that oi is 
compatible* with h if there exists a strategy o-j for j such that (&, uj) 
generates h. If oi is compatible,with h, define the strategy &lh of i in G”lh 
by (c+‘lh)(t:, . . . , tj,) := a’(~‘,, si, . . . , si, t{, . . . , tjp); in words, if i 
plays (+ in G”, and the history h takes place, then a’lh is the induced 
strategy in the remaining game. If oi is not compatible with h, then vi/h is 
not defined. 

We come now to mixed strategies vi in G*, restricting ourselves to 
those with denumerable support. Write v’(h) for the total probability that 
vi assigns to pure strategies ui that are compatible with h; in words, vi(h) 
is the probability under vi that h will occur, ifj plays his part of it.9 Call vi 
compatible with h if v’(h) > 0; in that case, write v’lh for the conditional 
probability distribution of crjh when oi is distributed according to vi, 
given that ui is compatible with h. In words, if at the beginning of the 
supergame G”, player-j thinks that i’s pure strategy is distributed accord- 
ing to vi, and if the first m stages resulted in the history h, then for the 

8 The reverse terminology-that the history is compatible with the strategy-will be used 
to mean the same thing. 

9 Note that if vi happens to be pure, then v’(h) = 1 if Y’ is compatible with h, and = 0 if not. 
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remaining supergame Galh, player j will think that i’s pure strategy is 
distributed according to vi/h. If vi(h) = 0, then vi/h is not defined. 

Note that as far as the definition of the perturbed supergame Gz,, is 
concerned, there is nothing to prevent either or both of the 12 from vanish- 
ing; we required this in Section 6 only because the optimality part of the 
main theorem is false without it. As we shall see in the next section, either 
or both of the ci may indeed vanish in the existence theorem. To prevent 
confusion, we will henceforth call the vector E = (E’, $) positive if both 
its components are positive, nonnegative if both its components are non- 
negative; if nothing is said, positivity is to be understood. In either case, 
set 11~11 := max{Ei, E*}. Note that if .& = 0, then GE,, is independent of pi. 

Now define 

where &p(h) := (elp*(h), c*p*(h)) and plh := (p’lh, p*jh). Intuitively, rlh 
: = G&I h is the remainder of the perturbed supergame I, after the history 
h has taken place. By the last sentence of the previous paragraph, this 
definition remains meaningful even if one or both of the p’(h) vanish. 

We end this section with a discussion of what happens when a player 
using a strategy oi in I changes his mind if a certain history h = h, 
happens, and continues with a different strategy. For convenience, use 
primes (‘) for objects related to the game r/h remaining after h has oc- 
curred; thus I’ := Tlh, V’ := vlh, (Y’ : = a(h, stage m of I corresponds to 
stage m’ := m - n of I’, the coefficient of the payoff in stage m’ of I’ is 
denoted ah, (and given by 

I 
a,+lad = Giz), (7.51) 

and cp’ is the payoff function in the remaining unperturbed supergame G*‘. 
Suppose now that q’i is a strategy in I’. Define a strategy ui 4 r]” as 

follows: oi 4 r)” coincides with oi unless the history h has occurred.10 If h 
occurs, define oi q qri from then on to coincide with 77” in I’; that is, if h, 
is an extension of h, define hh-,, by h, = (h, hL), and (ui 4 T’l)(hjm) := 
q’i(hi-,). Then” 

CX~(U~ a 7p, pj) - CZ+~, pj> 
= ui(h)CLj(h)a,+,(cr’(p’(~li, p’j) - (Y’~‘(u’~, p’j)), (7.6) 

Indeed, since ui 4 7’; differs from ui only when h has occurred, the 

lo That is (ui Q q’Qj,J = u’(g’,) when gjm is not an extension of h’,. 
‘I Regarding the meaning of r’(h), see footnote 9. 
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difference between the total expected payoffs is the same as the differ- 
ence after h has occurred (in which case vi 4 nfi coincides with n’i), 
multiplied by the probability that h occurs. 

8. THE EXISTENCE PROOF 

In this section we prove the existence component of the main theorem, 
in the following formulation: 

EXISTENCE THEOREM. Let G be a game with common interests. Then 
for each 4?, there is a positive number ~0, such thatfor all E with 0 5 [[E[~S 

Ed, all cx, and all p, each of the perturbed supergames G&, has a pure 
strategy equilibrium. 

This is stronger than needed for the main theorem, in four (related) 
respects: First, E may be nonnegative here, whereas in the main theorem 
it is restricted to be positive. Second, there is no requirement here that the 
support of ,ui contain any particular set (though it still must be contained 
in HP(e)). Third, e. is independent of p in the current formulation, 
whereas in the main theorem, it implicitly depends on k. (In the optimal- 
ity part of the main theorem, proved in Section 9, strong use will be made 
of the dependence offs on p.) Fourth, the current formulation makes no 
requirement on the effective length (Y, whereas in the main theorem, the 
existence is only asserted for all sufficiently large (Y. 

The basic idea of the proof is to pick an action pair s* yielding the 
unique cooperative outcome z and have each player i play si at each 
stage, no matter what the other did previously. If the players were ra- 
tional with probability 1, nothing more would have to be said, as neither 
player can do better than at z. The difficulty is that they are not; the 
simplistic strategies just described ignore the fact that with a small but 
positive probability, the players are irrational automata. Two implications 
of this are as follows: 

(i) If i observes thatj has deviated from s*, then he should conclude that 
j is in fact an irrational automaton, and should therefore maximize against 
his estimate of what this automaton might be doing, rather than continu- 
ing to play sf . 

(ii) Even if i does not observe any deviations on the part ofj, he himself 
may wish to deviate. For example, this could happen if s: is not the only 
best reply to si -if the unique cooperative payoff pair z occurs more than 
once in the prescribed row or column of G. In that case, the possibility 
arises that though the prescribed strategy for i is a best reply to the 
prescribed strategy ofj, it need not be a best reply to i’s conception of 
whatj is really doing, because it ignores the small but positive probability 
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thatj is an irrational automation. Such an automaton might conform with 
the prescribed strategy at all stages previous to some given stage, and at 
that given stage might deviate. If s$ is the onZy best reply to si, then for 
sufficiently small sj, it is also a best reply to (1 - &)si + E&j, where xj is 
the mixed action ofj induced by &; the possibility thatj is an irrational 
automaton creates only a second-order effect, which i may in this case 
safely ignore. But if there are other best replies to si, then si need no 
longer be a best reply to (1 - sj)Si + .sjxj. Thus i can no longer ignore the 
second-order effect; he must consider what j would do if he were an 
irrational automaton, and this might dictate something other than of. This 
is especially true in view of the fact that the prescribed strategy for j does 
not provide for any reprisals in the case of deviations by i, so that 
i may maximize on a stage-by-stage basis, without worrying about the 
future. 

These difficulties necessitate a somewhat roundabout proof, which we 
now outline. Let cp’, denote i’s expected payoff in the perturbed su- 
pergame I = G& when he plays rationally, but is not sure whether j is 
playing rationally or is an irrational automaton (see (7.32)). Let CT be a 
strategy pair in I that maximizes p:(a) + C&((T); we claim that (T is then an 
equilibrium of I. If not, then there is a strategy, say r’ of Pl, that does 
better in I against u2 than (T’ does. This implies that it yields a higher 
value for the function cp: (which differs from Pl’s payoff in I only by a 
term that does not depend on Pl’s “main” strategy; see (7.33)). Since u 
maximizes cp: + cpz, it follows that (Q-I, 02) must yield a lower value than o 
for c+$. Now cpz is composed of two terms, reflecting P2’s payoff against a 
rational and an irrational Pl, respectively. The second term is not 
changed when (+ ’ is replaced by r I, so it cannot account for cp; getting 
smaller thereby. So it must be the first term that gets smaller. Hence the 
stream of outcomes that (Al, (r2) yields cannot consist of z’s only, since 
these are the best possible outcomes. So there must be a stage at which 
the “main” strategies T’ and u2 (as distinguished from the perturbations 
pi) yield less than z to both players. 

Starting with the first such stage, which we dub n + 1, suppose that 
both players switch from (T’, (r2) to another strategy pair Y)’ that does 
yield a constant stream of z’s (when both players are rational); there is no 
difficulty in finding such a pair. If either player i deviates, the other player 
j responds by assuming that i is an irrational automaton of recall 9, and 
embarks on a systematic exploration to identify precisely which automa- 
ton. During the exploration, i may be playing in a suboptimal manner; but 
after a fixed finite number of stages, he will indeed have identified pre- 
cisely which automaton j is. From then on, he can play to optimize against 
the automaton that he now knows j to be. Therefore his “losses’‘-the 
amount by which his totall payoff is less than what it might have been had 

I2 Not per-stage average! 
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he known all along how j is playing-do not exceed some fixed constant 
C; that is, their order of magnitude is at most that of the payoff to one play 
(Lemma 8.2). 

Denote by 5 the overall result of this maneuver (replacing the continua- 
tion of (r’, (TV) after n by r)‘), and suppose the players play 5. If both are 
rational, then 1 will make a considerable one-time gain vis-a-vis (T’, (TV), 
since, at least once, he will be getting the maximal payoff z’ rather than a 
smaller amount. If P2 is irrational, then Pl may suffer a loss by going to 
4’; but this loss is bounded by C, and since the probability of irrationality 
is small, there will be a net gain for Pl vis-a-vis (T’, u*), whose order of 
magnitude is that of the payoff to one stage.13 By assumption, (Al, (r2) 
yields Pl more than c, so we conclude that cp&) > cpA((~). 

As for P2, since 5 yields a constant stream of z’s, it must, when both 
players are rational, lead to a payoff for P2 that is 2 that yielded by U. 
When Pl is irrational, then {2 can lead to a smaller total payoff for P2 than 
u2; but it cannot be smaller by more than C. Since the probability of 
irrationality is small, this effect will be smaller than the difference be- 
tween the total payoffs a(p&) and acpi(a), whose order of magnitude is at 
least that of the payoff to one stage, as we just saw. Thus (p:(c) + (p:(c) 
exceeds q:(a) + &a), contrary to c maximizing (o: + cpi. 

So much for the outlinei4; we proceed now to the formal proof. 

For each strategy fj ofj, define y’([j) as the payoff to i of a best reply to 
[j; in symbols, 

y’([j) := max{&‘, [j): 4’ E Zi}. (8.1) 

As usual, y’(pj) is defined as the expectation of #(t-j) when 4j is distrib- 
uted according to ,uj. 

LEMMA 8.2. For each game G and length e of recall, there is a posi- 
tive number C, such that for each supergame G” of G, there is a strategy 
pair 7 with (o(q) = z and 

p’(?+, pj) 2 y’(pj) - C/a. (8.21) 

I3 There is a subtlety here that should be noted. In the discounted case, Pl’s net gain from 
the switch must be discounted, since it occurs only at stage n + 1, rather than at stage 1. 
Formally, its order of magnitude is a,, rather than 1. However, the losses are also f&r,,), 
since they, too, start only at stage n + 1; so since they are multiplied by E, they are more 
than offset by the gain. Thus the phrase “payoff to one stage” in the text means “payoff to 
stage n.” 

I4 This proof uses Lemma 8.2 on the remainder I’ of I that starts at stage n + 1. In the 
finite-stage case, there is a simpler proof, which uses Lemma 8.2 directly on all of I. In the 
discounted case the simpler proof does not work, since if n is large, the discounted gain may 
fail to offset the cost (even when multiplied by E) of an earlier exploration. 
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Remark. The positive number C depends only on the game G and the 
length 4’ of recall; it is independent of the parameters of G” (whether it is 
discounted or finite stage, and the numerical value of a) and of the pertur- 
bation p. The strategy pair 7 does depend on the parameters of G*; but it, 
too, is independent of k. 

Proof. The lemma implies that the players can do almost as well in I 
as if each were informed before the beginning of play whether the other is 
rational or a bounded recall automaton, and if the latter, precisely which 
one. Explicitly, r)’ yields the best possible result zi against j’s “main” 
strategy qj, and against the perturbation pj, it comes within the order of 
magnitude of the payoff to one stage (or equivalently, a finite number of 
stages) of the optimum ri(pj). 

Let S, be an action pair withf(s,) = z. The idea of the proof is that ifj 
sticks to si, then i can obtain the maximum possible payoff z’ simply by 
playing of . If j deviates from s $, the bounded recall enables i to play so 
that for all practical purposes, he finds out within a bounded number of 
stages exactly which automaton he is facing, and then maximizes against 
that automaton. I5 

To make this precise, we distinguish between the “transient” and the 
“steady-state” behavior of a strategy for j with recall bounded by 4Y. By 
the steady-state behavior of such a strategy we mean its behavior starting 
with stage e + 1. This is determined if we know which one-move response 
the strategy prescribes for each sequence of 4 moves that i can make. The 
steady-state behavior of such a strategy may therefore be considered a 
function from e-move sequences of i to single moves of j. It will be 
convenient to use the term steady-state strategy for the steady-state be- 
havior of a pure bounded recall strategy; it is defined only for fixed 4. 
Thus if i knows only that j is playing some strategy in BRj(e), and if he 
observes j’s actions as he (that is, i) goes through all e-move sequences 
one by one, then he can identify j’s steady-state strategy exactly. There 
are altogether I,Sile such sequences, each of length e; thusj’s last response 
to the last of these sequences occurs at stage Mi := elSile + 1, which 
implies that i can identifyj’s steady-state strategy in a period that does not 
exceedI Mi stages. 

Now let qi be the following strategy: Play S$ for the first e + 1 stages. If 
j plays si at all these stages, play sf forever. If j deviates from s$ in one of 
them, then starting at stage e + 2, play all C-move sequences, one by one; 

I5 Bounded recall is required for the maximization as well as for the exploration. Even if 
all automata have a bounded number of states, and i finds out exactly which such automaton 
he is facing, he may be unable to maximize if the automaton is not of bounded recall. That is 
because the exploration itself may have put the automaton into a permanently vindictive 
frame of mind that no action of i can change. 

I6 If he takes account of overlapping sequences, he can reduce this period considerably. 
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this takes Mi - 1 stages. At stage e + 1 + M’, do something arbitrary (this 
is needed for i to observej’s response to i’s previous actions). The play of 
j during these M’ stages is either (i) consistent with aunique steady-state 
strategy &or (ii) consistent with none. In case (i), let 5J be one of the pure 
strategies in BR j(t) whose steady-state behavior is OJ~. Supposej deviated 
from si at stage IZ. Let ii be a pure history-independent best reply to $j in 
G* (see (7.4)), prescribing the actions (t;, t:, . . .). Define 7’ to prescribe 
(t’, t;, . . .) for stages e + 1 + Mi + 1, e + 1 + Mi + 2, . . . , no matter 
whatj does. In case (ii), pick an arbitrary strategy for the remainder of the 
game, and play in accordance with it.17 

In words, ifj does not deviate during the first e + 1 stages, then i knows 
either that j is not an automaton, or that he is, and so will always respond 
with si to an &string of si’s (since he responded in this way at stage e + 1 
and has recall bounded by e). If j does deviate, vi assumes that j is an 
automaton, and identifies the steady-state behavior of that automaton. It 
then ignores what the automaton is actually doing, and responds in a way 
that would have been optimal if the supergame were only now beginning 
and j were only now starting to play in accordance with some automaton 
that has the identified steady-state behavior. 

That cp($ = z follows from its construction. 
To prove (8.21), suppose that j uses a strategy ,$ distributed according 

to pj. If i knew [j, he could play an optimal response 4’ immediately; the 
result would be r’(tj), which is the first term on the right of (8.21). But in 
fact, i starts responding to 5’ only after e + 1 + Mi stages; and even then 
his response ii is not necessarily optimal against ,$j, but it is optimal 
against a strategy ij whose steady-state behavior is the same as that of ,$j. 
We now show that these departures from optimality against 5’ do not 
affect the total payoff by more than a constant C, and therefore the 
average payoff by more than C/CY, which is the second term on the right of 
(8.21). 

Assume w.1.o.g. that 4’ is history-independent (see (7.4)). Since rj and 
ij have the same steady-state behavior, we deduce 

fm(Z) = MC?, 5’) = Me’, ij>, whenever m > e. 

Similarly, since li is by definition history-independent, 

fm@, 59 = fm& ‘9) = h?(i) whenever m > C. 

(8.22) 

(8.23) 

I7 When j plays qj or $, as we assume here, then (ii) is impossible. But a formal definition 
of qi must cover all eventualities, even those that are impossible when it is played against a 
particular strategy (such as (1 - Ej)vj + EJ~J). 
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Since g’is a best reply to @(and so at least as good as .$‘), (7.22), 0 I.& 5 
z’, 0 I (I,,, I 1 (see (7.21)), and (8.22) yield 

m=e+l 
(8.24) 

m=l l?l=l 

Set n := ni := e + 1 + Mi + +? + 1 and C := max{(e + n’)zl, (e + n2)z2}. 
Then (7.22), 0 I a,,, 5 1, 0 5 fb 5 z’, the definition of #, (8.23), the 
monotonicity of a, in m, and (8.24) yield 

m&r)‘, 5-9 = 2 a,fl(~‘, 5-9 2 i: = i LZ,f&-,+e+l(i’, gQ) 
m=l nl=tl m=n 

2 2 G-n+e+ifL+e+i(!?i, ij> - f$ (a,--,+e+i - 4X 
Ill=” ??I=?! 

= i: a,f# - 2 a,zi m=e+l m=e+i 

2 i a,fh(& - i: a,zi - 2 a,z’ WI=1 m=l m=e+I 

Z a&) - (n - 1)~’ 2 a(~‘([) - ezi - nizi 

2 a(pi(ti, (j) - c = &(p) - C. 

Since 5’ is distributed according to $, (8.21) follows. 

Proceeding with the existence proof, define 

44-d := J1,w := (p:(T) + &), (8.31) 

where qE is as in (7.32). Since the strategy spaces Ci are compact, so is C’ 
x C*. Since the payoff function (o is continuous on 2’ x X2, so are qE and 
I,!I, and therefore the maximum of I,IJ over Cl x C* is attained; let (+ (= m,) 
be a strategy pair that attains this maximum. Choose &o so that 

Eo < p&p + w, (8.32) 
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where p is as in (7.1) and C is as in Lemma 8.2, and let E i ~0. We will 
show that then 

g is an equilibrium of I. (8.4) 

Suppose not. Then by (7.33) we may assume that Pl, say, has a strat- 
egy r1 with 

If (o(#, u2) = z, then 

q&l, u2) = $((I - &‘)T’ + &I/l’, d) = (1 - E’)Z2 + &‘$&‘, c9) 
2 (1 - &‘)&a) + E’Gp2(/A’, u2) = $((l - &‘)a’ + &‘/A’, (r2) 

= d(u); 

hence by (8.5) and (8.31), $( T’, c2) > $(u), contrary to (T maximizing $. 
Hence (p(#, a2) # z, so there must be a stage m with a, > 0 at which ($, 
u2> does not yield z. Let y1 + 1 be the first such stage, h := h, the history 
generated by (T’, 02) during the first n stages, and I’ := rlh (see 7.5)). 
Since (G-‘, u2) does not yield z at stage n + 1 of I, it follows that (G-‘l, ur2) 
does not yield z at stage 1 of I’. Using (7.1) and that the coefficient of the 
first stage payoff is 1, this yields 

(Y’(o’+“, (7’2) I (Y’zi - p. (8.61) 

Then Lemma 8.2, applied to I’ (rather than I), yields a strategy pair q’ 
with (~‘(7’) = z and 

cp’i(qfi, p”‘j) L r’i(p’j) - C/a ‘, (8.62) 

where y’ is defined as in (8. l), with cp’ instead of cp. Now define 5 1 : = r’ Q 
7” and i2 : = u* 4 q’*, where Q is as in (7.6). Since 5 differs from (7’. u*) 
only after stage n, (7.51) yields 

w’(5) - ap’(+, u2) = un+,(a’cp”(q’) - (Y’(P”(T”, uf2)) 2 an+~p. (8.71) 

Since 5 generates z at each stage, which yields the largest possible payoff 
for both players, we have 

afP2K) = (Yz2 2 qL?(u). (8.72) 
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Using (7.6), (8.62), 0 I cr2(h)p1(h) 5 1, and @Xl), we get 

W2(P’, t2) - W2(P’, u2) 
= u2(h)~‘(h)u,+,((Y’(p’2(~“, $2) - a’$d2(p”, d2)) 
2 u2(h)~‘(h)a,+,(a’r’2(~“) - c - a’f2(p”)) 2 -a,+,C. (8.81) 

Similarly, using i = 1 in (7.6), and substituting r1 for cri, 

q45’, p2) - a(p’V, p2) 2 -a,+,C. (8.82) 

Now (8.5), (7.32), (8.71), and (8.82) yield 

w&3 - q&d > w:(5) - d(+, (r2) 
= (1 - &2)(qcJ’(g - ap’(7’, u2)) 

+ ~2hP1(51, /-a - WY+, p2N 
2 (1 - E2)Un+,P - E2G+1C 2 G+l(P - Ilell(p + Cl). 

(8.91) 

Moreover, (7.32), (8.72), and (8.81) yield 

q&5) - q&d = (1 - &‘k(P2(5> - w2(u)) 
+ E1(W2(P1, t2) - acp’(p’, (T2>) 

L 0 - &‘Un+,C L -un+,(l&(JC. (8.92) 

Combining (8.31), (8.91), (8.92), ][E][ I co, and (8.32), we obtain 

which contradicts the definition of u as a maximizer of I/J. Thus (8.4) is 
proved, and with it the existence theorem. 00 

9. THE OPTIMALITY PROOF 

In this section we prove the optimality component of the main theorem, 
in the following formulation: 
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OPTIMALITY THEOREM. Keep p fied, let {G:} := {G:,,} be a se- 
quence’8 of perturbed supergames with E + (0,O) and (Y + w, and let 
7: be an equilibrium of Gt. Then @:(~a += z. 

An equivalent formulation of this is as follows: For each 6 > 0 there are 
EO and (~0 such that if0 < 11~11 - -E co, CY 1 (Ye, and 7 is an equilibrium of GZ, 
then [@Z(T) - ZI 5 6. Together with the existence theorem proved in the 
previous section, this proves the main theorem. Henceforth in this sec- 
tion, we assume given a sequence as in the statement of the optimality 
theorem; statements involving limits or symbols like + or O(1) refer to 
this sequence. 

W.1.o.g. we assume that @Z(T~) converges. Indeed, the theorem as 
stated follows from its truth for all convergent subsequences. 

Let s, be an action pair in G whose payoff is z, and let ef be the history- 
independent strategy of i that prescribes of at each stage. Intuitively, we 
wish to show that when E is small and CY large, then (a:(~:> is close to z. 
This is clear if 7 := 7: yields s.+ at all stages. If not, there is a first stage 
(say n) at which Q- dictates something other than s* for one of the players 
(say P2). Suppose now that P2 plays s’, at each stage-that is, plays [“, 
rather than r*. Then P 1 will, immediately after stage n, deduce that P2 is a 
bounded recall automaton. One of his options is then to explore which 
automaton she (P2) is. Lemma 8.2 implies that he can find this out pre- 
cisely at a cost that is “bounded” (on the order of magnitude of the payoff 
to one stage; see (9.2)i9). Since T is an equilibrium, 8 must yield a result at 
least as good as that of any option he has. Therefore, once PI has con- 
cluded that P2 is an automaton, 7’ must yield him an expected payoff 
“close” to (i.e., within a bounded amount of) what he could get if he 
knew which automaton she is (see 9.3)). This implies that against any 
automaton of P2 to which p* ascribes positive probability, T’ must yield 
an actual (not just expected!) payoff close to the payoff that a best possi- 
ble response yields. In particular, that is the case for C’,, which is assigned 
positive probability by p*, since it is in BR *(O). A best possible response to 
[‘, yields z1 (on average) to P 1, so we conclude that against t’,, the 
strategy 7’ must yield PI a payoff close to z’ (see (9.4)). That is the case 
starting with stage n + 1; up to stage n + 1, the strategy 7’ yields s, 
against S’,, so Pl again*O gets zl. All in all, therefore, if (T’, [‘,) is played, 
Pl must get close to z’. But since z strictly Pareto dominates all other 
outcomes, it follows that P2, too, must get close to z* (see (9.6)). There- 

I* That is, a sequence GE:,@, G&, . . . with ei -+ (0,O) and ai -+ 30. 
I9 Footnote 13 applies here as well. 
2o Near the end of section 1 l(i) we discuss a simplification based on strategies that deviate 

at stage 1 rather than n. 
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fore also in the perturbed game, S”, must bring P2 close to z* against 7’. 
But since T is an equilibrium of the perturbed game, it follows that $ is at 
least as good as S’, against T*, so T must bring P2 close to z*. Again using 
the strict Pareto domination of z, we conclude that 7 also gets Pl close to 
Z’. 

Proceeding to the formal proof, 21 if, for all but finitely many Gf, the 
strategy pair 7: generates a constant stream of action pairs s*, then it 
follows immediately that @XT:) --, z. So assume that there is a subse- 
quence of the GF-w.l.o.g.22 the whole sequence-for each member of 
which there is a stage at which 7 : = 7: generates an action pair other than 
s,; let II := n: be the first such stage. Let h,-i be the (n - l)-stage history 
consisting only of 3,‘s. By the definition of n, either ri(hi-J # s!+ or 

T2(hjI-,) f s2*; 

w.l.o.g., the latter. Let h := h, denote the n-stage history generated by 
(ri, S’,), and let I’ := rJh (see (7.5)). Applying Lemma 8.2 to I’ yields a 
strategy r) ‘I of P 1 such that 

p”(T)‘l, /A’*) 2 y”(p’*) - C/a’. (9.2) 

We now assert that 

cp”(T”, /.A’*) z y”(j.L’2) - C/a’. (9.3) 

Indeed, define 5’ : = Q-* Q ?‘I; thus t1 coincides with TI unless h has 
occurred, and if it has, 5’ coincides with 7”. If both players play T, then h 
does not occur, so 

P’(51, Q-*1 = (pw (9.31) 

Since r is an equilibrium of I, 

(9.32) 

(see (7.33)), and so (7.32), (9.31), and (7.6) yield 

0 2 a(o’((1, p2) - (Y(p’(T’, p2) 

= 7’(h)~*(h)an+,(Y’((p’(77’l, /A’*) - (o’(~‘l, /.L’*)). (9.33) 

21 Remarks similar to those in footnote 14 apply here. 
** Since @F(T~) converges, it is enough to prove that some subsequence has limit z. 
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Since h is the n-stage history generated by (T’, t:), it is compatible with 
both r1 and S’,, so r’(h) > 0 and &z) 2 $(t$ > 0. Using a,+’ > 0 
(whence also CX’ > 0), (9.33) yields (p’(r”, pf2) 2 (p’(7)“, P’~), so (9.3) 
follows from (9.2). 0 

Denote by ~~(4~) the probability that I,L~ assigns to t2. The definition 
(8.1) of y1 yields (p’l(~‘l, pf2) 5 y’l(~‘~), and together with (9.3), this yields 

C/a’ 2 f’(p’2) - (O’yT”, p’2) = q.L’2(p)(y”(p) - (p”(T”, 9)) 2 0, 

where the summation extends over all t2 in BR2(tf). The definition (8.1) of 
y1 implies that rr1(t2) 2 (P’~(T’~, t2) for all t2, so each term in the summa- 
tion is nonnegative, so the summation is 2 each of its terms, in particular 
that corresponding to .$‘,. Hence 

Ch 2 /..d2(42,)(r”@2,) - (P”(7”, s’,>> 
2 p+$)(z’ - (p”(T”, (‘,>> 2 0. (9.4) 

The coefficient p2(t$, unlike E,L’~(~:), depends only on the fixed, constant 
CL, not on (Y or on E; and because S’, E BR2(0), it is positive. Hence (9.4) 
and a,,+’ c: 1 yield23 

un+‘cdp”(T”, t’,) = un+,a’zl + O(1). (9.5) 

By the definition of h, the strategy pair (r”, S’,) generates z up to stage 
n - 1. Hence noting that by (7.51) and m’ = m - n, 

i: a, = 2 a, = 2 a,+lah, = an+,a’, 
m=n+l m’=l f?l’=l 

we obtain from (9.5) that 

since the nth stage payofff,(rl, S’,) remains bounded. Hence 

23 (Y and E are implicit in the expression (of’@“, S@, as 7 = 7~. 
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for otherwise lim (p(+, S’,> is a “feasible payoff”-a point in the convex 
hull of the pure outcomes to G-whose first coordinate is z’ but whose 
second coordinate is < z?, which contradicts (6.1). Since Q- is an equilib- 
rium of I’, (9.6) and E 4 0 yield 

thus Q2(7) + z2. Hence (as in the proof of (9.6)), <PI(T) * zr, since lim Q(T) 
is a feasible payoff. @@ 

10. VARYING ORDIFFERENTDISCOUNT FACTORS 

Both the existence and the optimality theorems-and therefore also the 
main theorem-continue to hold when the discount factor 13 is allowed to 
vary from stage to stage, as long as it never exceeds 1 or falls below 0. 
That is, the coefficients a, of the mth stage payoffs in (7.23) may be any 
nonincreasing sequence of nonnegative numbers, normalized so that al = 
1. All three theorems remain literally true, word for word, as they stand. 
Thus e. in the existence theorem is a fixed constant that works for all such 
sequences of coefficients; and in the optimality theorem, {G&} may be 
any sequence of perturbed supergames, as long as E + (0,O) and Q! + m, 
where (Y is the effective length of the supergame (defined by (7.22)). The 
proofs, too, are literally unchanged, word for word. 

One may also ask what happens when the discount factors are different 
for the two players, whether or not they vary from stage to stage. In that 
case the optimality theorem appears to go through without difficulty. The 
existence theorem is more delicate; but it, too, appears to go through, 
though with a longer proof, and perhaps with some modification. We 
have, however, not checked out these matters in detail and hope to treat 
them in a subsequent paper. 

11. COUNTEREXAMPLES,CONJECTURES,FURTHER DISCUSSION 

(i) Noncommon interests. The existence theorem fails for games G in 
which the interests are not common; that is, the perturbed repetitions r of 
such games may fail to have pure strategy equilibria. This can happen in 
several ways. For example, if G is “matching pennies” (Fig. 4), then for 
each pure strategy 72 of P2 (the column player) there is a pure strategy 7’ 
of P 1 that yields him 1 (and so - 1 to P2) in the unperturbed repeated 
game Ga, and similarly for each 7’ there is a r2 with (P(T) = (-1,l). This 
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1,-l -I,1 tid -1,l 1,--l 

FIGURE 4 

implies that Ga has no equilibrium, and since the payoff in I is close to 
that in G*, there is no equilibrium in I either. 

This is clearly due to G not having an equilibrium. But even when G 
does have an equilibrium, I may not. Indeed, if G is the battle of the sexes 
(Fig, 5), e 2 1, and pi assigns positive probability to each strategy with 
recall 51 (and as always, probability 1 to all of BRj(t)), then for all 
sufficiently large a! and small E, the perturbed repeated game G; := G:,, 
has no pure strategy equilibrium. 

The proof is based on the idea behind the optimality theorem; we con- 
tent ourselves with an outline. Briefly, each player, by pretending to be an 
automaton that in the steady-state always plays the same action (top for 
Pl and right for P2), can “force” the other to the equilibrium that is more 
favorable to him, and this is a contradiction. 

More precisely, if the assertion is false, there exists a sequence of 
perturbed supergames GF with E * (0,O) and (Y + w, each of which has a 
pure strategy equilibrium r := 7:. Statements involving convergence, 
limits, or symbols like + or O(1) refer to this sequence, as do the phrases 
“all” or “almost all” (all but finitely many) Gz. W.1.o.g.) the payoffs Q’(r) 
converge, where @ : = @F; denote the limit by y. Since E + (O,O), we have 
lim cp(r) = lim a’(r) = y; hence y’ + y2 5 3, so w.1.o.g. y2 < 2. 

Let t: be the action prescribed by 72 for the first stage, and let S’, be the 
history-independent strategy of P2 prescribing the other action (that is, 
not t:) for the first stage, and thereafter “right,” no matter what Pl has 
previously done. W.1.o.g. @(Al, f’,) converges; denote the limit by X. 
Then x2 5 y2 < 2; otherwise, r would not be an equilibrium, since P2 
could gain by switching from 72 to S’,. From E + (0,O) it follows that 
lim q(~i, S’,) = lim Q(r2, f’,) = x. The definition of .$‘, implies that 
x = lim (p(&, S”,) is a convex combination of (2,l) and (0,O). Since 
x2 < 2, it follows that xi < 1. 

Suppose now that P2 plays S’, rather than r2. Since S’, differs from r1 
already at the first stage, Pl may conclude immediately after the first 
stage that she (P2) is a bounded recall automaton. One of his options is 

2,l 0,o H-l 0,o 1,2 

FIGURE 5 
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then to explore which automaton she is. Lemma 8.2 implies that he can 
find this out precisely at a cost that is bounded (in units of total payoff). 
Since r is an equilibrium, T’ must yield a result at least as good as that of 
any option that Pl has. Therefore, once P 1 has concluded that P2 is an 
automaton, Al must yield him an expected payoff “close” to (i.e., within 
O(1) of) what he could get if he knew which automaton she is. This 
implies that against any automaton of P2 to which p’ ascribes positive 
probability, 7’ must yield an actual (not expected!) payoff close to the 
payoff that a best possible response yields. In particular, this is true of l’,, 
which has recall 1, and so is assigned positive probability by p*. Thus the 
total payoff a(pi(r’, S’,) = ar-y’([2*) + O(1) = (Y . 1 + O(l), since ~‘(52,) = I 
+ 0( l/a) by the definition of S’,. Hence x1 = lim (o’(T’ , S’,) = 1, contrary 
to the conclusion of xi < 1 reached above. @ 

The reader will have noticed that this proof is based on a direct applica- 
tion of Lemma 8.2 to all of I, rather than to the remainder I’ starting with 
stage II + 1. This was made possible by assuming that all strategies with 
recall bounded by 1 have positive probability, which enabled the use of a 
strategy that deviates from the main strategy already at the first stage, and 
thereafter continues with any desired action (in this case, the one that is 
more favorable to P2). Another way of achieving the same purpose is to 
use a 4 x 4 version of the battle of the sexes, with each row and column 
occurring in two identical copies. Similar simplifications would work in 
the proof of the optimality theorem; but in a theorem, as opposed to an 
example, it is desirable to avoid unnecessary assumptions. We mention 
for the record that for the 2 x 2 version of the battle of the sexes, I has no 
equilibrium even when e = 0, but the proof is more complicated. 

Though the above proof depends in several places on specific features 
of the battle of the sexes, nevertheless the underlying idea is quite gen- 
eral. Thus it appears that for games without common interests, the exis- 
tence theorem neuer holds. More precisely, we venture the following 
conjecturez4: Suppose that there is no outcome z in G that weakly Pareto 
dominates all other outcomes y (i.e., for all z there is an outcome y and a 
player i such that y’ > z’). Then there are e and e’ with e’ 5 4 such that if 
BRi(t’) C Support pi C BRi(t), then for all sufficiently large (Y and small E, 
the perturbed repeated game Gz : = GE,, has no pure strategy equilibrium. 

The intermediate case, in which there is an outcome that Pareto domi- 
nates all other outcomes weakly but not strongly, is covered neither by 
the existence theorem nor by this conjecture. 

(ii) Nonbounded recall. The optimality theorem fails if the perturba- 
tions do not consist of bounded recall automata only; that is, the pure 
strategy equilibria of I may then be far from optimal (but see (vi) below). 

24 With some trepidation, as we have not examined it carefully. 
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3,3 1,l 0,o Fn l,l 2,2 0,o 

0,o 0,o 0,o 

FIGURE 6 

For example, let G be the game of Fig. 6, and let .$T be the following 
strategy of PI (the row player): At the first stage, play Top. Thereafter, if 
P2 has ever played Left, play Bottom; otherwise, play Top. Let [‘, be the 
symmetrically defined strategy of P2. Suppose p”’ assigns positive proba- 
bility to each strategy in HZ’(O) U {Si}, and only to those. Consider now 
the pair (T of history-independent strategies that calls for both Pl and P2 
always to play Middle. Pl might consider deviating to the history-inde- 
pendent strategy .$ k in BR’(0) that prescribes always playing Top, hoping 
that P2 will respond with Left from stage 2 on. But if CL’ assigns a suffi- 
ciently high probability to 5 5, then P2 will be afraid to respond in this 
way, for fear that Pl is actually playing t i, in which case she (P2) will end 
up with 0. Therefore P 1 will not even attempt 5 k, since it will decrease his 
payoff from 2 to 1. Therefore (T, which yields the nonoptimal payoff (2,2), 
is an equilibrium. 

Note that the strategies [L, while not of bounded recall, may be consid- 
ered finite-state automata (see, e.g., Neyman [1985] or Rubinstein (19861). 

As for existence, while the proof of the existence theorem depends 
strongly on the bounded recall, we do not have a counterexample to it 
when the perturbations consist, say, of finite-state automata with a 
bounded number of states. 

(iii) Mixed strategies. The optimality theorem fails for mixed strategies; 
that is, there are I satisfying all the requirements of Section 6, with mixed 
strategy equilibria whose payoffs are far from optimal. For example, if G 
is the game of Fig. 3, and ~~ assigns probability 1 to each strategy in 
BR’(O), then for all large even k and small (scalar) E, the perturbed k-stage 
repetition I : = GtE,Ej,CL has a mixed strategy equilibrium with payoff close 
to 5, defined as follows: 

At stage 1, P 1 picks T (Top) and B (Bottom) with probabilities 8 - 6 and 
4 + 6, respectively, where 6 is a small number to be specified later; 
similarly, P2 plays (f - 6)L + (t + 6)R (with the usual notation), using the 
same 6. 

If TL or BR was played at stage 1, then forever afterward, P 1 plays T, 
and P2 plays L, whether or not the other deviates. 

If TR was played at stage 1, then on the equilibrium path, PI keeps 
playing T forever; whereas P2 plays R up to stage k/2, and after that, L 
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k k/2 It k/2 k - 1 

FIGURE 7 

until the end. Pl punishes deviations of P2 by playing B until the end; but 
P2 ignores deviations of P 1. 

If BL was played at stage 1, the description is symmetric to that for TR. 
This completes the description of the equilibrium. 

Let E’ := &/((l - E)($ - 6) + 4s) be the conditional probability that Pl 
is an automaton, given Tat stage 1. Note that if 6 and E are small, then so 
is E’. After TR at stage 1, the equilibrium strategy yields k/2 to the rational 
type of P2; whereas by taking her chances on Pl being an automaton who 
always plays T-i.e., by deviating to L-she would get an expectation of 
only (1 - e’)l + E’k, which for small E’ and large k, is much smaller. 

Figure 7 gives the total payoff when both players are rational and play 
the equilibrium strategies, the rows and columns representing the stage 1 
choices. If P2 takes into account the possibility that Pl may be an autom- 
aton, the expected payoffs to her rational type are given in Fig. 8, where 
the rows and columns represent the stage 1 choices of the players’ ru- 
tional types. The number 6 must be specified so that she is indifferent 
between L and R, i.e., 

where urL, etc., represent the entries in Fig. 8. For Pl, we get the same 
equation. Solving for 6, we find 6 -+ 0+ as E + 0 and k -+ m. Thus total 
payoff is -(Q)k, so average payoff 4. 0 

The reasoning is very robust; it works also for odd k, for discounted 
games, general perturbations (E’, Ed), general EL” (with support BR’(O)), 
and so on. Much the same construction shows that there are equilibrium 
payoffs close to (O,O), and indeed that the set of mixed strategy equilib- 
rium payoffs of GZ,, converges (in the sense of Hausdorff) to the entire 
interval from (0,O) to (1 ,l) (where E is now again a vector (E’, e2)). 

FlGURE 8 
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(iv) Recalling one’s own actions. The definition of bounded recall refers 
to each player’s recall of the other player’s actions, not of his own. That is 
because a strategy of i is defined as a function from the past actions ofj 
only-not of i’s own past actions-to i’s current actions; i’s past actions 
are determined by i’s strategy and by j’s past actions, and so would be 
redundant as separate independent variables. 

But sometimes-like for the definition of perfect equilibrium-it is con- 
venient that a strategy allow explicitly for deviations from what that strat- 
egy itself prescribed at previous stages. In that case, the strategy must 
prescribe a player’s current actions as a function of the entire past his- 
tory, including his own actions. Adopting this viewpoint, we say that a 
strategy has recall 54 in the wide Sense if it calls for the same action after 
two histories that coincide on the last 4 stages. 

This is substantively different from the definition used in this paper. 
Indeed, a wide sense bounded recall strategy is essentially the same as a 
finite-state automaton, since a player can use his own actions to store 
information he wishes to remember. Holding a grudge is easy with such a 
strategy; with ordinary bounded recall, it is impossible. Thus the situation 
for wide sense bounded recall is like at (ii) above: the optimality theorem 
fails; the existence theorem probably fails, but we do not have a coun- 
terexample . 

(v) Three or more players. This is similar to wide sense bounded recall, 
because any two players can, in effect, use each other’s actions as a 
memory device to “hold a grudge” against a third. Specifically, the exam- 
ple at (ii) can be modified to yield a counterexample here as well. We omit 
details. 

(vi) Impurities in the perturbations. It seems likely that for the proofs to 
work, the perturbations pi need not assign probability 1 to bounded recall 
automata, but only a sufficiently high probability. But we have not 
checked this out, and in particular the required probability might depend 
on the effective length cx of I. 

12. RELATED RECENT LITERATURE 

That the “gang of four” result (see Section 4) cannot be viewed as a 
truly endogenous derivation of cooperation is underscored by the work of 
Fudenberg and Maskin (1986), who showed that by perturbing with an- 
other strategy rather than tit-for-tat, one can support any feasible individ- 
ually rational outcome in a finitely repeated game.*’ 

As far as we know, the first to find such a derivation-i.e., conditions 
that necessarily lead to Pareto optimality in a noncooperative frame- 

25 Though not necessarily as the unique equilibrium outcome. 
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work-were Kalai and Samet (1985). Their result deals with unanimity 
games,26 defined as games in which the action space is the same for all 
players, and the payoffs vanish unless all choose the same action (i.e., 
choose a diagonal action n-tuple). The game is played (the authors say 
“attempted”) k times, with the payoff to the k-attempt game defined as 
that of the first attempt at which agreement is reached, i.e., a diagonal 
element is chosen; if this never happens, the payoff is zero to all. The 
authors show that if k is large enough,27 then in the k-stage game, all 
persistent equilibria (Kalai and Samet, 1984) satisfying a certain natural 
symmetry condition are Pareto optimal. 

More recently, Ben Porath and Dekel(1987p) have considered games of 
mutual interest, defined as games with a unique Pareto optimal action 
pair.28 They showed that under certain conditions, if a player may “burn” 
utility (i.e., unilaterally lower his payoff), then only the Pareto optimal 
outcome survives iterated deletion of weakly dominated strategies.29 
Note that this result involves only one stage, so there is no learning, even 
implicitly. The burning rights must be asymmetric; either only one player 
may burn (in two-person games) or they must do their burning in a speci- 
fied order (nonsimultaneous). 

Both the foregoing results, unlike ours, apply (or can be extended) to n 
players, not just two. 

Yet another approach, due to Matsui (1989), uses the idea of “informa- 
tion leakage.” In Matsui’s model, before play starts, each player chooses 
a strategy for the infinitely repeated game; then with a small probability, 
i’s strategy is revealed toj (without i finding this out); j may then change 
his strategy at a small cost. If the leakage is one-sided-only P2, say, may 
discover Pl’s strategy, but P 1 cannot discover P2’s-and if the one-shot 
game has “strictly individually rational”3o payoffs, then subgame perfect 
pure equilibria exist in the repeated game, and all such equilibria have 
Pareto optimal payoffs. If the leakage is two-sided, an optimality theorem 
is proved, but not an existence theorem. 

Among recent results, perhaps the most closely related to ours is that of 
Fudenberg and Levine (1989). They consider a repeated two-person game 
in which one of the two players is replaced by a succession of “tempo- 

*6 Often called games of coordination in the literature. 
27 For example, larger than the number of actions. 
28 As distinguished from games with common interests, in which there is a unique Pareto 

optimal payoff, which may result from different action n-tuples. In games of mutual interest, 
the unique Pareto optimal action n-tuple provides a sort of focal point in the sense of 
Schelling (1960). 

29 In particular, all stable equilibria (Kohlberg and Mertens, 1986) are Pareto optimal. 
3O Yielding each player more than his minmax over pure actions. In a game with common 

interests, the unique Pareto optimal payoff is always strictly individually rational (unless it is 
the only payoff). 
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rary” players with identical characteristics, each of whom observes the 
outcome of all previous plays, but herself plays-and is paid-in one 
stage only. The “permanent” player is perturbed by a class of automata 
that is arbitrary except that it must assign positive probability to each 
constant strategy3’; for example, that is so if all finite automata, or all 
Turing machines, are considered possible. The conclusion is that in equi- 
librium, the permanent player must get the outcome that is best possible 
for him, subject to each temporary player getting at least her maxmin. 
Bounded recall is irrelevant in this context because the temporary player 
does not have to worry about being “punished” for a deviation in the 
future, since she has no future. 

A feature tying the perturbation literature together is that the players 
tend to mimic the perturbation. As a result, the perturbation “takes 
over,” the main strategies become indistinguishable from it; the rational 
take on the protective coloring of the irrational. The distinguishing feature 
of the later literature of this genre32 is an endogenous mechanism that 
selects “cooperative” strategies from among a relatively large and amor- 
phous class of “unbiased” strategies comprising the perturbation. 

Finally, we mention Gilboa and Samet (1987~). In their work, which 
does not use perturbations, Pl (the “weak” player) is restricted to using a 
certain kind of automaton (e.g., bounded recall automata), while P2 is 
unrestricted. When the game is repeated infinitely often, P2 has strategies 
that weakly dominate all others; if she uses such a strategy, and PI 
maximizes against it, then the outcome is best possible for the weak 
player. (That is, he gets the outcome that is best possible for him, subject 
to P2 getting at least her maxmin; note the similarity of this conclusion to 
Fudenberg and Levine’s.) As in the work of Ben Porath and Dekel, Fu- 
denberg and Levine, and Matsui, the asymmetry between the players 
plays an important role here. 

13. CONCLUSION 

The work on equilibrium refinements since Selten’s “trembling hand” 
(1975) indicates that rationality in games depends critically on irrational- 
ity. In one way or another, all refinements work by assuming that irratio- 
nality cannot be ruled out, that the players ascribe irrationality to each 

31 History-independent strategy that always prescribes the same action. 
32 Fudenberg and Levine (1989), Matsui (1989), and this paper, as distinguished from 

Kreps, Milgrom, Roberts, and Wilson (1982), and Fudenberg and Maskin (1986). Although 
Matsui does not use perturbations explicitly, the oppotiunity that one of the players may 
have to change his strategy may perhaps be viewed as a kind of endogenous perturbation. 



38 AUMANNANDSORIN 

other with a small probability. True rationality needs a “noisy,” irrational 
environment; it cannot grow in sterile soil, cannot feed on itself only. 

In most of the previous literature on refinements, the issue is the man- 
ner in which rational agents process the irrationality in the environment. 
In contrast, here we examine the effect of the composition ofthe enuiron- 
ment; we look at the soil, not the plant. 

Our conclusion is that when the environment is forgetful-when peo- 
ple, in general, do not bear grudges-then there is ground to hope that 
rational agents will cooperate. 

And since the equilibrium strategies mimic the perturbation, the effect 
reinforces itself: The more people play like bounded recall automata, the 
more probability a rational agent will attach to the perturbation having 
bounded recall, so the more likely he will be to play like this.33 The 
rational agent comes to resemble his irrational environment. We are what 
we eat; the plant becomes what it drinks from the soil, and then enriches 
the soil with more of the same. 
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