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"Big Match" with Lack of Information on one Side (Part 1) 

By S. Sorin, Paris i ) 

Abstract: For a special class of two-person zcro-sum infinitely repeated stochastic games with in- 
complete information, we prove the existence of the maxmin, minmax and lira v n. However the 
value may not exist and moreover maxmin and lira v n may be transcendental functions. 

1. Introduction 

Blackwell/Ferguson have introduced a specific stochastic game called "the Big 
Match". 

Here we are concerned with a similar class of  repeated zero-sum stochastic games, 
but with lack of information on one side. Recall that stochastic games are games in 
which the payoff function at each stage depends on the state reached at this time. 
The transition probabilities on the state space are functions of the moves of the 
players and the current state as well as these transition probabilities are common know- 
ledge. 

Games with incomplete information are also games in which the payoff function 
depends on some state. However, in this case the state is not known by all the players 
but is constant along the play. More precisely the state is chosen at random once for 
ever, according to some probability which is itself common knowledge and the players 
have some information about this choice. 

The study of  infinitely repeated games can be done along two ways. The first one 
is to consider the game as the limit of  the finitely repeated games and to study the 
existence of the limit of  their values (called the asymptotic value). On the other hand, 
one can directly define a concept of  value (called the infinite value) for the infinitely 
repeated game and look for the existence of  this value. 

It was proved by Aumann/Maschler [ 1966] that games with lack of  information on 
one side do have an infinite value (hence the asymptotic value also exists). Blackwell/ 
Ferguson proved the existence of  the infinite value for the Big Match and Kohlberg 
extended this result to games with absorbing states. Later Bewley/Kohlberg showed 
the existence of  the asymptotic value for stochastic games and recently Mertens/ 
Neyman succeed in proving the existence of the infinite value for such games. 
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Here we show that these results do not extend to stochastic games with incomplete 
information on one side. More precisely the infinite value may not exist. 

However we prove for the class of games under consideration the existence of the 
asymptotic value and the existence of maxmin" and minmax for the infinite game. 

2. The Model 

Let =[ a~ 
A [a21 

a~ 

a22 

andB = [ b*~ b~'2 

b21 b22 

be two payoff matrices of a zero-sum game, where the star (*) denotes an absorbing 
payoff [Blackwell/Ferguson; Kohlberg]. We denote by I = {Top, Bottom) = {T, Bo) 
(resp. J = {Left, Right) = {L, R) )  the set of moves of player I (resp. player II). Player 
I is the row player and the maximizer. 

For p E [0, 1 ], n = 1,2 . . . . .  we consider the n-stage repeated game G n (p), 
defined as follows: 

- at stage 0, C which is one of the two payoff matrices is chosen once and for all by 
the referee (with probability p for A), and this is told to player I; 

- at stage 1, player 1 (PI) chooses il GI ,  player II (PII) chooses/l  E J  and the couple 
(il,  ]i  ) is told to both players; 

- at stage m, m --- 2 . . . .  , PI (resp. PII) knowing the previous history up to this stage 
namely the sequence of moves h m. 1 = (ii,  /1 . . . . .  i ra . l , / re . i ) ,  chooses i m ~ I  
(resp./m E J) and (i m , /m  ) is announced to both players; 

- after stage n, PI receives from PII the following amount: 

tl m - I  Chin 

where 

= if  t < m and " absorbing Chin cht cit/t Is 

 9 . otherwise. = ClmIr n 

The whole description of the game including this sentence is common knowledge 
[Aumann, 1974]. 

We denote by v n (p) the value of G n (p). G (p) is the infinitely repeated game. 
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Since the game under consideration is a game with perfect recall we can assume 
[Kuhn;Aumann,  1964] that both players actually use behavioral strategies. Hence a 
strategy for PI in G** (p) is defined by a couple o = (o ̀ 4, oB): o A is a sequence 

( ~ ,  . . . ,  sAm,..., ) where for each m = 1,2, " ' "  sam is a function from the set of 

previous histories, Hm.  1 = (I • j )m-1  into the set of  "one stage mixed strategies", 

namely the set of  probabilities over I (denoted by I*), and similarly for o B. For PII a 
strategy in G Ip) is given by r = (tl . . . . .  t m . . . .  ) where t m is a function from 
arm-1 into the set of probabilities over J (denoted by J*),  since it is enough to define 
t m on/k = B e ,  k = 1 . . . . .  m -  I. 

Obviously the strategies of  both players in G n (p) are the restriction to the n first 

stage of the strategies in G (p) and are denoted by cr n, ~'n" For each m = 1, 2 . . . . .  o, 

r and p induce a probability on H m X {.4, B} and we define "Tn (o, r) to be the expec- 

ted payoff in G n (p) and 7m (o, r) to be the expected payoff at stage m. Hence: 

')'m (IT, 7") = Ep,o, r Chm 

 9 ~,, (a, ~-) = G , o  ,, % (h.) 

and 

1 n 
= - -  Z 3' m. ~'n n m=l 

In order to study G** (p) we use the following definitions [Mertens/Zamir, 1980]: 

v (p) is the maxmin of G** (p) if 

(i) V e > O ,  3 o a n d 3 N E N s u c h t h a t ,  f o r a l l r a n d a l l n > ~ N  

q, (o, r)  >_v (p) - e; 

(ii) Ve' .>O,  V o ,  3 r a n d 3 N E N s u c h t h a t n > N i m p l i e s  

q,, (o, G < v (p) + e. 

We shall refer to these conditions by saying that P[ can guarantee ._v (p), (i); and that he 
cannot guarantee more, (ii). The minmax  ~ (p) is defined in a dual way. G** (p) has a 
value iff ff (p) = __v (/7). 

The paper is organized as follows: 

In Part 1II we prove the existence of  the minmax. Part IV and V are independent of 
III. In Part IV we construct an auxiliary game to prove the existence of lira v n. Part 
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V is devoted to the study of the maxmin: v exists and equals lira v n . In Part VI several 
examples are given. After some remarks in Part VII we show in Part VIII that some 
games with signalling matrices can be reduced to the class of games studiedhere. 

In the proofs the following notation will be used: Let H ** be the product a-field 
on H** and H n be the o-field induced on H,, by the sets h n X H**, h n E H  n. We def'me the 

(Hn)~* stopping time m as: 

m (h**) = min [(m;i m = T} U {+ ~}]. 

L = max ( c i / [ i E I , / E J ,  C E  (.4, B}). 
A 

l fx  E [0, 1] thenx denotes 1 - -x .  
Given x E 1* and y E J* then x Cy stands for 1Zxjci/x i y]. 

3. Minmax 

Proposition 1: ~ (p) exists and P (p) = vt (p) on [0, 1]. 
(Recall fhat vl is the value of the one-stage game.) The proposition will follow from 
the next two lemmas. 

Lemma 2: Pll can guarantee vl fp). 

Proof: Let t~ = t E l  ~ be an optimal strategy for PII in G~ (p) and define r by t m - t 

for all m t> 1. (Hence PII is using a sequence of independent identically distributed 
(i.i.d.) one-stage mixed strategies.) 

Now for each o we introduce the distribution of the stopping time m: 

ZC(m)=Pr~  c {m~<m} C = A , B  
~ ,T  

and if x c (m) denotes the vector (z c (m), Zc (m)) it will follow that 

"r m (o, 1") = p x 4 (re)At  + ~'Xll (m)Bt ,  

Actually we have: 

7,,, (o, r) = Ep,o,~ chin 

(I) 

= p E A,r P' E B  ~ ahm + bh m" 
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Now 

m 
E A (ah m)  = Z Prob A {m = 1} [all E A (t I (L) I m = I) 

o ,r l=l o .r o ,r 

+ aj2 E a (t t (R) l m = /')] 
O' , ' r  

+Prob  A { m > m } [ a 2 ,  E A  (t m ( L )  l m > m )  
O ,F 0 ,T  

+ a : 2 E A  (t m ( R )  l m > m ) ] .  
a , T  

Since r is i.i,d, we get 

E A 
0 pT 

m 

(ah m) = [/~1 Pr~ {m = 1}] (art t (L) +a l z  t (R)) 

+Prob  A { m > l } ( a 2 1 t ( L ) + a 2 2 t ( R ) )  
a , T  

and similarly f o r e  a (bhm),  hence (1). 
U ~T 

The choice of t then implies 

"r m (0, r)  < v~ 60) 

hence we have 

"~n (o, r) < vl (p) for all n 1> 1 and all e. 

205 

Q.E.D. 

Remarks:  

- The above proof also implies that v n (p) <~ vt (p) for all n ~> 1. 
- The result holds as soon as there exists an optimal strategy t for PII in GI (p) 

such that i f J  (t) denotes the support of  t then for all i ~ 1 and all C the payoffs 
(ci/;] E J  (t)) are either all absorbing or all non absorbing. 

Lemma 3: PII cannot guarantee less than v~ (p). 

Proof: Let r be a strategy of  PII in G**, and let us define, for all m/> 1, t m = E  r (tin), 
hence 7 m E J*. Now given an optimal strategy st = s for PI in Gt (p), let us introduce~ 
for each t E J*: 
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f (s, t) = p s A (T) (all t (L ) +a12 t (R )) + ~' sB (T) (bn t (L ) + b12 t (R )), 

g (s, t) = p gA (T) (a2t t (L) + a22 t (R)) + /7  ~/~ (7) (b:l t (L) + b22 t (R)). 

f i s  the absorbing part of the payoffin G~ (iv) given s and t, andg is the non absorbing 
part 9 

Given e > 0 let n/> 1 be such that 
- 

f (s ,  t'n)~>sup f (s ,  tm ) - -~  9  (2) 
m 

We can now define a strategy o for PI as follows: 

- Play (Bo, Bo) up to stage n - 1 included 

(i.e ,s c (hm.l)(T) = 0 V m ,  1 <.m <.n, V hm. 1 E H  m 1' V CE (A,B}).  
 9 m 

- Play s at stage n 

(i.e., Sn C (hn.l) = s C, V hn. 1 @Hn.1). 

- At each following stage play Bo 

( i . e . ,  sCm (hm- 1 ) = B o ,  V m > n ,  'q' h re.l, q C~ 

Given o and r the expected payoff at stage m, m/> n, will be 

"~,n (o, r) = f (s, -[n) + g (s, Fro). 

It follows by (2) that 

7, n (o,r)>~f(s,  7m)+g(s ,  ~n ) e 3 

hence by the choice ofs  

C 
7m (a, r) >~ v i (P) -- ~ for all m ~> n. 

Thus we get, for m >/n 

,m (o, r) >~ - (  n - l l L  +( m - n + l 

so that m >~N = (3L (n - 1))/e implies 

"Y,n (o, r) >~ vx (p) - e. Q.E.D. 
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Remark: We use explicitly in the definition of r the fact that there is only one and the 
same line non absorbing in both payoff  matrices. 

It follows then from the previous remark that for all games satisfying this condition 
we do have 

~fp)=v~ (p). 

4. Lim o. 

In this part we prove that lim v n exists and give an explicit formula for it. 

Lemma 4 (Recursive formula.): For each n > 0 and each p 6 [0, 1 ] the following holds: 

(n+ l)Vn+l (p) = max min O ( x , y , t )  (3) 
O~x~l O~t<l 
0~y~ l  

with D (x, y, t ) =  (n + 1) (px (t alj + [an)  + [~ y (t bx~ + "t b~2)) 

+pSc(ta2z + ~ t a n ) + ~ ( t b 2 z  + tb2a) 

) +n(pYc +bi,) . (p~ +hi, 
and 

vo - 0  on [0, 1]. 

Proof: Given g and r strategies of  both players in Gn+ 1 (P)' we introduce the following 
simpler notations which correspond to the moves of the players at the first stage: 

x =s A (T ) , y=s~  (T ) , t= t l  (L). 

We first prove 

V a, 3 7" such that (n + 1) 7n+l (g, r) < rain D (x, y, t). (4) 
0~ t~ l  

Let us compute the expected payoff  in Gn+ 1 (p) given o and ~-: 

%+i  (a, z) =Ep,a, r (?/n+l [m = 1) .  Probp,a, r (m = 1) (5) 

+Ep ,a ,  r (tTn+ I [m > 1)-  Probp,a, T (m > 1). 
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But we have 

Ep,o,, (qn+l I m = 1) =Ep,a, r (ql I m = 1) 

and 

Ep,~,, (q, i m = 1) .  Probp,o,, (m = 1) =px (tall  + ta12) +PY (t bit 4. tb12). 

Write (n + 1) qn+l = ql + n q'n where ?l' n is the average 

_, 1 n+l 
qn = -- .~ Chr n. n m=2 

Now 

Ep,o, r (qt I m > 1) .  Probp,o, r (m > 1) = pJ (t a21 + ta22) + P.F (tb21 + tb22) 

and 

Probp, o, r ( m >  1) = p J  +/3~, 

tlence it remains to majorize E , a , r  (q'n I m > 1). But knowing e, PII can compute 
the new posterior on {.4, B} given (m > 1 ) which is equal to 

Prob (C =A I m > l ) =  PX =P l  
P~  + t ~  

and then by playing optimally in G n (p~), PII can guarantee a payoffless than 
v n (P l ) for the last n stages, hence 

Ep,o,r (q'n I r a >  1) <~v n (PL). 

Now, replacing in (5) gives (4). Using the minmax theorem (4) implies 

3 r s u c h t h a t V o  ( n + l ) ? n +  l(o,r)-<< max min D ( x , y , t ) .  
0~xr  0<t~;l 

On the other hand, by playing according to Xo, Yo at the first stage, where 
D (Xo, Yo, t) >~ max min D (x, y, t) for all t, and then playing optimally in 

O~;x~ 1 o a t ~ l  
0~y~l  

G [  P~Co n ~ p Sco ~ P  Yo ) Pl ~ at least D (x~ y~ t)' hence the result f~176 Q.E.D. 

Corollary 5: PI has an optimal strategy in G n (p ) which is independent o f  the histories. 
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Proof: Using (3) recursively it is easy to see that PI can compute an optimal strategy 
which can be chosen independently of the history since the posterior probability does 
not depend of  the moves of PIl and appears only if P1 plays Be before. 

Q.E.D. 

Corollary 6: The value o f  G n remains the same i f  both players, strategy sets are 
restricted to be independent o f  the histories. 

Proof: Assume on to be such that 

SCm (hm-1) = gCm, v m, 1 <~m <~n, V hm.l,  V C 

It is now enough to prove that for any r n there exists r* independent of  the histories 
such that 

~. (on, r.)= ~. (%, r~*). 
It is clear that r*n defined by t*m =Er n (tin)' 1 ~<m ~<n satisfies this condition. 

Q.E.D. 

a c .  Hence we shall now consider strategies o n = (o A , OBn ) and r n where m IS a sequence 

C m = 1, , n in I*  and r n is a sequence tin, m = 1, , n in J*. (Note that o n S/n~ . . . . . .  

defines the law of the stopping time m.) 
In order to study the asymptotic behaviour let us think of  the game G n (p) as being 

played between time 0 and 1, the m-th stage being at time (m - l)/n. As n ~ ~,' we 
have a continuous time of  play and a couple of strategies defined by 

Pc (x) = Prob (PI plays T at some time y, y ~< x I C) C = A, B 

f ( x )  = Prob (PII plays L at time x). 

Given these strategies let us compute the expected payoff, if C = A for example. With 
probability d PA (x) the payoff will be absorbing for the first time at time x and its 

total contribution with the remaining time will be (1 - x )  (all [ (X) + a t2 i(X)). On 
the other hand, the payoff will be non absorbing at time x, with probability (1 - p ~  (x)) 

and equal to a21 f ( x )  + a22 f ( x ) .  Integrating on [0, 1 ] and adding the similar part for 
B gives the expected payoff. 

We are thus led to introduce the following sets: 

F =  ~, ' f :  [0, 1] ~ [0, 1], Betel measurable} 

Q = ~ ; p  positive Borel measure on [0, 1] with p ([0, I]) ~< 1) 

and given p E Q we shall write p (t) for p ([0, t]). 
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Definition 7 (The auxiliary game): 
For fEF,  PA and PB in Q we define 

l 
CA (f' p) = : (1 --x) (all f (x) + a12 f (x))d p (x) 

0 
1 

+ f (a2, f ( x )  + a22 i (x ) )  (1 - p (x)) ax 
o 

similarly for ~o~ ~ P), and finally 

% if' Pa, PB) =P~A if' 'A) +b~B ff, P~). 
Now let P (p) be the two-person zero-sum game where the strategy sets are Q x Q 
for PI and F for PII and the payoff function for PI (the maximizer) is Cp. 

Then we have: 

Theorem 8: F (p) has a value v (p), lim v n (p) exists, and lim v n (p) = v (p) on [0, 1]. 
n ..-~ oo 

Proof: We first denote by X (resp. 10 the infsup (resp. supinf) of F, namely 

X f p ) = i n f  sup r (f'PA'PB ) 
fEF PA eQ 

pB~Q 

Y (t9) = PA eQsup .f~Finf Cp (f" PA' PB )" 

pBeQ 

The proof will be divided into three steps. (p is any fixed point in [0, 1] and we write 
for Cp.) 

Step I: 

Lemma 9: F (p) has a value. 

Proof: We denote by Fo the set of continuous functions in F and by Yo the correspond- 
ing supinf, namely 

Yo (P) = sup inf ~a (f, PA' PB )" 
pA~Q fEFo 
pB~Q 

Given e > 0, choose PA and Pa such that 

~o(fo,PA,PB) >~ Yo (p)--e foraUfoEFo.  
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But for each f E F  there exists, by Lusin's theorem, a sequence (fn) in Fo which 
converges tofa .e ,  with respect to PA' PB and l (Lebesgue measure). By Lebesgue's 
dominated convergence theorem it follows that 

r pA,pB)= lim ~ffn,pa,ps) .> Yo (p ) -e .  

Hence Yo (P) = Y (P). 
NOw for the weak topology, Q is compact and the mapping (PA' PB) -* r (f' 0,4' PB) 

is continuous for eachfEFo. Since moreover ~o (f,. ,. ) and ~o (. ,  PA' PB ) are affine 
for all f EFo, PA E Q, PB E Q, the minmax theorem 3.5 in Sion implies that 

QX Q inf ~p (f, pA ,PB) = infFo ~uxPQ ~~ (f" PA 'PB) 

so that we have 

Y(p)=  sup inf~o= sup inf~o=inf  sup r sup ~o=X(p). 
QXQ F Q• Fo Fo QXQ F Q• 

Since the reverse inequality always holds we get 

Y (p) = X (p). Q.E.D. 

Step2: lim Vn (P)<X(p).  

The idea of the proof is the following. Given f"opt imal"  for X (p) we shall define 
a strategy v n of PII in Gn; on the other hand from any o n of Pl we shall construct a 
strategy (PA' Pa) in V. These choices will be done in such a way that the payoff in 
G n induced by On, z n will be approximated by the payoff corresponding ro land  
(PA' PB ) in F. By the property of f this will prove the claim. 

Let e > 0 be given. By the proof of Lemma 9 we can choose f i n  Fo, el2 optimal 
for X (p), i.e. such that 

~o~PA,PB)<~X(p)+-~ forallPA,PBinQ. 

Let now r n be such that: 

t m (L) = f  m -- 1 (~--)m=l . . . . .  n. 

Given On, the strategy of PI, we introduce (using Corollary 6) 

z c(m)=Prob c(m<~m)  m = l  . . . . .  n, C = A , B  
a n 
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add we define PC in Q by 

Pc (X) = ZC (m) on l t~-- I 

and Pc (1) = z c (n). 

S. Sorin 

m[ 
- -  m =  l , . . . , n  

' n ' 

Let us now compute GA' the expected payoffin G n (p) given an, r n and C=A.  
In order to simplify the notation we put 

g, (x)=aH f ( x ) + a n i ( x ) .  

g~ (x) = a2~ f (x)  + ~= ~(x). 

Thus (m) nG A =ngl (O)z A (1 )+ . . .  + ( n - m ) g l  n (zA (m+ l)--zA ( m ) ) + , . .  

1 
+gl ( 1 - - n ) ( Z  A (n)--zA (n-- l)) 

(o) + g ~ ( o ) O - z  A ( O ) + . . . + g ,  ~- ( l - z  A ( r e + O ) + . . .  

Recall that 

~0 q;, PA,PB) =P ~ A ~ PA) + P ' ~  ~ 0  B) 

hence it is enough to compare GA and ~o A (f, PA )' but we have 

~oA(f, OA)=m~=O 1 m m ( Z A ( m + I ) _ z A ( m ) )  

n-I 1)) (m + Z (1 - - zA(m+ } l ) /ng2(x)dx  withzA(O)=O 
nt = 0 m/n 

since g2 is continuous. 
Now f E  Fo implies that there existsN such that n >~N gives 

( ) (m+,)/n 
m mf/n f(x)dx <~L fo rm=O,  ,n - -1 .  f ,7 - "  " ' "  
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It follows that for n ~>N we have 

by defining similary (Ta a n d  

I Ga - ~ a  (/;' oa )1<c- 
2 "  

Hence for n ~> N 

~n (~ +~' ~'a <P~A ( t ;PA)+ i '~e( t ; 'Pa)+5 2 

6 
< r  g PA' Pa) + -~ < X (p) + e. 

So we get the result: V e, 3 N such that for n ~>N there exists r n strategy of PII 
satisfying ~/n (On' rn) ~<X (p) + r for all o n. 

Step 3: lim v. (p) >~ Y (p). 
n . - -~  o o  

Let us choose #.4 and PB in Q optimal (by compactness) for Y (p). Like in step 2 
we shall use p to define a strategy o n of  PI and construct from any T n of PII a func- 
t i on f in  Fsuch  that 7 n (%,  rn) will be near r (f, PA' PB )" 

Lot us define the strategy o n of PI such that 

(m) 
Pc = Prob c 

a n 
m =  l . . . . .  n 

Pc (m/n) -pc  ((m - 1)/,,) 
i.e., SmC (2") - 1 - P C  ((m - 1 ) I n )  

as long as PC ( ~ - ~ - ~ )  < 1. 

For each I" n , we introduce (using Corollary 6 ) / i n  F defined by 

and let 

m = 2 , . . . , n  

Ul ( m ) = a u  t m ( L ) + a l 2  t m (R),u2 (m)=a21 t m (L)+a22 t m (R), 

m - ~  ] , . . .  , n .  
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If  follows that 
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IgA --~'A (t;, oa) I < ~  
() ( / m)-.A 1)) [ u l ( 1 ) l  1 ~ [ u l ( m ) [  

m=2 n 

((m) 
+ 1  ~ l u 2 ( m )  l PA n - P A  

n m = l  

<2Z. 
n 

Obviously we have a similar result for_G a and ~/~ (f, pB), hence n ~> N = 2___L_L implies 
f 

Pga +bgB >P~A ~ PA) +PcB E PB ) - e  =:tf, VA,pB)--e> Y(p)--e. 
This proves that 

V e > 0 3 N such that for all n ~>N there exists o n satisfying 

7n (On' rn ) ~ Y (P) - e for all r n . 

This achieves Step 3 and the proof of the theorem. Q.E.D. 

We conclude this Part IV by showing that a result similar to Theorem 9 holds for 
the discounted game [see also Mertens/Zamir,  1971 / 1972; Bewley/Kohlberg].  

More precisely, given 0 < ), ~< 1, let G x (p) be the infinitely repeated game with payoff 

function 7x (o, r) = ~ ~ (1 -- )k) m'l  7m (a, r), and denote its value by vx (P)" 
m=l 

Then we have: 

Proposition 10: lira vx (P) exists and equals v (p) on [0, I ]. 
h--,O 

Proof: The idea is exactly the same as in Theorem 9, Steps 2 and 3. The modifications 
are as follows: Define x m = 1 - (1 - ~)m. To prove that lim" v'x ~<X we introduce: 

.tm = f (X m. 1 ) and PC (x) = z C (m)  on [Xm.1, x m [ 

and to prove that li__~_m va ~> Y we define o such that 

PC (Xm) = Prob C (m ~<m) andf (x )  = t n on ]Xm. 1 , Xrn ]. 
o 

The corresponding computations are similar to the previous one and hence 
omitted. Q.E.D. 
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5.  Maxmin  

The main purpose of this part is to prove the following 

Theorem 11: v_ (p) exists and v_ (p) = v (p) on [0, 1]. 
This part is divided into 5 sections. In the first one we exhibit properties of opti- 

mal strategies for PII in F (p) (Proposition 13). Using this result one can prove in sec- 
tion 2 that PI cannot guarantee more than v (p) (Proposition 20), and also derive in 
section 3 some characterizations of Pl's optimal strategies in P (p). This will enable 
us to construct in section 4 a strategy for PI in G., (p) which guarantees v (p) 
(Proposition 26). In the last section a new formula for v (p) will be obtained. 

Let us first recall that, i fu  n (p) denotes the value of the n-stage "non-revealing" 
game (i.e. with complete information and payoff matrix pA + [~B), Kohlberg proved 
that 

u o . ( p ) e x i s t s a n d u o . ( p ) = U n ( P ) ( = u l  ( p ) ) V n > / 1 ,  V p E [ 0 , 1 ]  (6) 

and we shall denote this common value by u (p). 
Now we may and shall assume without loss of generality that u (0) = u (1) = 0 by 

subtracting from all the payoffs the constant p u (1) +/3 u (0). 

5.1 Study of the Optimal Strategies of PII in [' (p) 

Recall that from Theorem 9 we have 

v (p) = inf sup 9 (f, PA' PB )" 
F 0 QXQ 

Hence by taking the extreme points in Q, namely the Dirac mass at point x,  denoted 
by fix' x ~ [0, 1], and the measure 0, we obtain: 

v ( p ) = i n f  {p max M.  ~ x ) + / 3  max M a ( f , x ) }  
F o O<x<l A 0<x~; 1 

with 
x 

M c if, x)  = ~o c if, f x )  = (1 - x )  c~ i f (x))  + Yo e2 ( f(y))  ay 

where for any y in R we define c i (y) = e l l  y + el2 f) ,  and write c i for  Cil - -  Ci2, 
i =  1,2, C = A , B .  
This led us to introduce the differential equation 

(Ec) (1 - - x )  (cn - c t ~ ) f '  (x) - A (C) f ( x )  + c22 - czl = 0 

where A (C) = c t t  + c22 - -  c i2  - -  C21, C ~ - - -  A,  B.  Hence it is clear that if f satisfies 
(EC) atxo then 

d 
~ x M c  (f, xo)  = 0. 
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We denote by T (C) the set of  PII's optimal strategies in the game C, C = A, B. We 
shall often write t for the strategy (t, t), no confusion will result. 

Finally we define F1 to be the set of  functions f i n  F satisfying one of the 3 follow- 
ing properties: 

O) f ( x ) = t  V x E [ O ,  1 ] w i t h t E T ( A ) U T ( B )  

0i) f(x) =fA (x)on [0,x~] 
=fA (xB)~ [xB' 11 

with fA a solution o f ( E  A) on [0, x B ] and fA (x) " (a~ -- a ~ )  >t 0 on [0, x B ] 

(iii) the dual statement with fB and EB" 

Proposition 13: V p E [0, 1 ], PII has an optimal strategy for I ~ (p) in F1. 
Note that this proposition implies the existence of optimal strategies for PII. 
The proof goes from lemma 14 to lemma 19. We will first eliminate trivial cases. 

Lemma 14: l f  T (A) r T (B) ~: O, then V t E T(A)  n T (B ) , f  (x) = t on [0, 1] is 
optimal (and vl (p) = v {p] = 0 V p E [0, 1 ]). 

Proof: PII can guarantee the vector payoff (0, 0) by playing t i.i.d, with 
t E T (A) n T (B) (i.e., his payoff in both games will be less than 0, for all o). On the 
other hand, by (6), PI can obviously obtain 0 for all p, hence the result. 

Q.E.D. 

We shall now assume T ( A )  n T(B)  = O. Let t A be a closest point to T(B)  in 
T (.4) and symmetrically for t B. We denote by (t A, tB) the closed mtervai between 

t A and t B. 

Now we introduce the following sub-intervals of  (t A, tB); 

T T =  ( tE ( tA ,  tB);a I (t)>~a2 ( t) ,bl  (t)>~b2 (t)) 

1 T =  { t E ( t  A, tB);a , ( t ) > a 2  (t),b~ ( t ) > b 2  (t)}. 

Note that if PII plays t E TT (resp./~T) a best reply (resp.; the only best reply) of  PI 
O O O 

is to play T in both games. TB, TB, BT, BT, BB, BB are define similarly. 
Obviously the extreme points of these intervals belong to {t A , t B, YA' YB } where 

YC satisfies cl O' c)  = e2 0'C), C = A, B. Finally let L C (/') = max Mr, ~ x) be the 
0<x~ l  

maximum payoffPI  can obtain against f i n  F (p), if Cis the true game; we shall 
write L c (t) fo rL  c (f) where f ( x )  = t on [0, 1]. To prove Proposition 13 we shall 
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show that for any g E Fo and any p E [0, 1 ] there exists f i n  Fl such that: 

P~'A Of) +bLB Of) < P  LA ~)  +bLB r 

In order to do this we shall first compare L C (g) to L C (t) with t in (t A, tB). 

Lemma 15: I l L  c, (g) >~ L c, ( t c ) fOr some C = A orB and {C, C'} = {,4, B} then 

f (x) = t c on [0, 1], dominates g. 

Proof: By definition of t c we have L c ( tc)  = 0. Moreover PI can always guarantee 0 
in both games (by (6)), hence L C (g) >1 Lr  (to). Q.E.D. 

Since L C (.) is continuous on (tA, tB) , we can now assume tha tL c (g) ~ (Lr (t); 

t E (t 4, tB)}. 

Lemma 16: I l L  c (g) E Lr  (12T U B~ some C = A orB, then V p, 3 t E 

(tA' tn' YA' YB } such that f ( x )  = t on [0, 1] dominatesg. 

Proof: Assume for example that L A (g) E L A (72/") and let TT = [t, 7] with t < 7. 
O 

Remark first that by definition of t A and t B, I7" #: ~ implies al  9 bl < 0. 
Hence there exists PT @ ]0, 1[ such that 

PTal l  + P T b t l  =PTaa2 +PTb t2 .  

It follows that PI can guarantee this quantitiy at PT and that he cannot get more if 
PII plays t in TT, thus 

vi (PT) = u (PT) 

which gives (Lemma 2) 

v (PT) = u (Pr)" (7) 

Suppose now that L A (!_) <<. L A (g) <~ L A (t-). Then L and tbeing optimal at PT and 
L c being monotonic implies by (7) that L B (-{) <~ L B (g). Hence again by (7) we obtain 
thatg  is dominated by Ton [0,PT ] and by t on [PT' I]. Q.E.D. 

Lemma 17: There is no optimal g such that 

L A (g) E L A (I~T) and L B fg) E L B (TgB). 
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Proof: Assume that 
O o 

L A (g) = L A (t) and L B (g) = L a (t') with t E B T  and t' E Ta. (8) 

Suppose that t '  > t, hence there exists to E TT o BB such that t' > to > t. 
Remark that since B~ and fib are not empty this implies that a~  9 b~ and a2  9 b2 

are strictly negative, hence, as in I_emma 16, there exists Po E ]0, 1[ such that 

v (po )  = u ~po) 

and to is optimal at Po. 
Now if L A ( t ' )>  L A ( to )> L A ( t )=  L A (g)then we have 

L O (g) > L B (to) > L B (t') 

which contradicts (8), and otherwise 

L A ( t ) > L  A ( t o ) > L  A (t ') 

implies L B (t ') > L B (to) > L B (t), hence to dominates g. Q.E.D. 

Thus we are left with the case where 

L A (g) E L A (TB) (or symmetrically). (9) 

We shall now introduce a class of  functions (fg) in F~ such that, for each g satisfying 
(9), there will exist some K with 

L A ( fK) :LA (g)andZ e (fK)<<-Lo (g). 

First we may and shall assume that aa i> 0. Le tN  C (f) = {0 <-<x <~ 1;M C (f, x)  = LC (f)} 
and write TB = [~, 13]. Then we have: 

Lemma 18: V K E [cz, ~], 3 fK E Fa such that 

O) fK (0) = K a n d f  K is non decreasing 

(ii) N A (Jr)  = [O, xol  
(~i), fK (x) - ~ on ]x o,  11. 

Proof: 
1) I fa l  = 0, then TB C ( t A, to) implies TB = (y A }. Thus let f ( x )  = Y A - 
2) If al > 0, we introduce the following: 
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- -  i f A ( A ) =  a n  + a n - a 1 2 - - a 2 t  :#0 

fK (x) =YA + (K --yA)  (I - -x)  "(A(A)/(alt'at2) 

- -  i fA (A) = 0 

7/((x) = a n  -- a2__.____._L Log (1 - x )  + K 
all -- a12 

andfK (x) = min (J7 K (x),/3). 
Now it is easy to see that ]K (x) is increasing and satisfies (E A). Letting 

x B = min (1, ( x ; f  K (x) t>/3)) it follows that i fx  B < 1, then at i f (x))  >a2  (f(x))  on 
]x B, 1] which gives (ii). Q.E.D. 

Thus given g satisfying (9), let K be such that 

L A (g)= L A (K) 

and choose fK according to the previous lemma. It follows from (i) and (ii) that 

L A ( fK)=MA (fK, X) V x E N  A (10 

hence 

CA (fK) = MA (fK' O) = M A (K, O) = L A (K) = L A (g). 

Thus it remains to prove the following: 

Lemma 19: L B (fK) <~L B (g). 

Proof: (During this proof we shall write f for fK ") 
1) If at = 0 (recall that in this case TB = {YA ))' then we can assume a2 > 0, 

hence b2 < 0. 1 
Now L A (g) ~ L A (f) implies f g (x) dx <YA'  but then 

0 

1. B 09 = M  B if, 1 ) ~ M  B (g, 1)--<LB (g). 

2) Assume now al > 0. If b2 ~> 0, then again TB = {yB) and bl < 0. 
Now L A (g) <~ L A (f) implies g (0) <~ YB' but then 

L a (f) = M B (f, O) <<. M B (g, O) <~ L B (g). 

3) There remains the case where a~ > 0 and b2 < 0. Let us first prove the following. 
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Claim: Ira2 < O, theng (x) < f ( x )  on [O, XB]. 
In fact let Xo = inf {x; g (x) > f  (x)} and assume Xo < x B. On 

[Xo, xo + e] C [O, xB], g (x) - - f (x)  takes its maximum at some .~. Recall that 

M A (if, x ) < L  A (g)=L A O0=MA (f, .~) 

which gives 

(1  - -  X) (all - -  a t 2 )  (g  ( -~)  - - f ( x ) )  < fo (a22 --a2~ ) (g (x) - f ( x ) )  dx. 

Thus, a fortiori, by tile choice ofxo and 

(1 - -  X) (all - -a  12 ) (,g" (X~) - - f  (X~)) ~< e (a22 --a21 ) (g (X) - - f  (X')) 

hence a contradiction as e goes to zero. 

We now split the study into four subcases: 

3.1) a 2 < 0 ,  bl>~0.  

Obviously we h a v e n  B (f) c [XB, 1]. (Recall that the range of f is in TB.) 
Moreover, since a2 ~< 0, ~ = YB or/~ = 1. 

 9 if/~ = 1, it follows from 3) thatg < f e n  [0, 1]. ttence 

M B (g, 1)>~M B (f, 1 ) = L  B (f). 

 9 ifB =YB' thenNB (f) = [XB' 1]. 

Now either g-<<f on [0, 1 ] and we conclude as above, or there exists some 
s E [xa, 1] such that f ( x )  ~>g (x) on [0,.~] and f ( s  = g  (X). But this implies 

M s (~, ~) < M  B (f, ~) = Z, BOO. 

3.2) a 2 < 0 ,  bl < 0 .  

I fN  B (f) N [0,XB] :/: 0, choose some.~ inside. Now by 3) we get 

M B (g, ~ ) -<M B (t;, ~ ) = L  B 60. 

Otherwise we conclude as in 3.1). 

3.3) a 2 > 0 ,  b l > 0 .  

221 

Q.E.D. 
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As in 3.1) we have N o (f) C [xo, 1]. Now either f (xB) < g  (xB) but 

M A (g, x o)<~L A (g )=L  a ([')=M A ( f ,x  B) 

x B x B 
impliesf f ( x ) d x  > f g(x )dx ,hence  

0 0 

M R (g, xB)>~M B (t',x O) =L  B (f). 

Or let [_x, g] be a maximal interval such that x__ -K< x B ~ ~ and f (x) > g (x) on [x_., ~]. 

It follows that f f ( x )  dx >1 f g (x) dx and 
0 0 

M B (g,*) >:M s (t;, *) = L o (f). 

3.4) a s > 0 ,  b l < 0 .  

 9 if 0 E N B (D, M A (g, O) <<. L a (f) implies g (0) <~ f (0) hence LI~ (g) >t L o (f). 

 9 i fNo ff) n [x~, II 4= O. 

First of  all let us prove that x B <~ 1 implies 13 --/=YB" 

Otherwise x B E N B (I), but al ( f  (xB)) - a2 (f  (xB)) > 0 and b l ( f  (xB)) = 
= b~ (t ' (xo)) .  

Now since f satisfies (E A ) on [0, xB] we obtain 

(10) 

thus (d/dx)M O (f, Xo) < 0, a contradiction. 
Hence we can assume that 1 E N B (D and it remains to show that 

1 1 
f f ( x ) d x  >~ f g ( x )dx .  
0 0 

l fg  ~< f on [0, x O ] the inequality follows. 
Otherwise let~ = sup {0 <<-x ~ x B ; g  (x) > f ( x ) ) ,  andM A (g, ~)  <~L A (g) = 

= L A (t') = M A ff, 2) implies fOf (x) dx >~ y g (x) dx hence the required inequality. 
0 

 9 Finally there remains the case where N B (f) C ]0, xB[. 
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Obviously this implies the function (10) to be increasing, hence 

(bll -- bl2) (a~l --a22) < (au --a12) (b22 - b21 ). (11) 

Let now .2 E N  B (f). Since .2 E N  A (/) we have 

(a2, -- a22) f ( f (x)  - - g  (x)) dx >t (1 --.2) (a,, -- a,2 ) (g (.2) - - f  (.2)) 

hence i fg  (.2) ~> f (.2) (11) implies: 

M s (s, .2) ~>M B (t;, .2). (12) 

On the other hand i fg  (.2) <f( .2) ,  let x be such that [x, .2] is a maximal interval on 
2 

which g < f .  Since x E N A (D tiffs implies f f (y ) dy >! f g (y ) dy , hence (12) by the 
- 0 0 

choise o fx .  - Q.E.D. 

This completes the proof of Proposition 13. 

5.2 PI Cannot Guarantee more than v 07) 

From Proposition 13 we can already deduce 

Proposition 20: PI cannot guarantee more than v (19) 

The proof will follow from Corollary 21 and Lemma 23. 
Let us first introduce on Q X {(tl, t2); 1 >/t2 ~> t l />  0} 

t2 
~bC(U, tl, t2)=cl  ( t l ) l s ( t l )+  f cl (y)dl~(y)+c2 (t2)(1 --U (t2)), C = A , B  

t+ (13) 
Now let 

~+ (p, t~ A , la B, t , ,  t :  ) = p '~A (laA' t , ,  t2 ) + ~ r +B (laB' t , ,  t2 ) 

inf ~k+ (p, tlA,#B, ti, t2). Z+ (p, I~A,bt B, t l )  = l~t2~tl 

(14) 

(15) 

Z + (p) = inf sup Z + (p,/a4,1~1t, t). 
O<t<l ~A~Q 

I~B~Q 

Lemma 21: PI cannot guarantee more than Z + (p). 

(16) 
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Proof: The idea of the proof is as follows. Assume that PII plays t l  iLd: ~Knowing o :~i:~ 
he can compute the probability tar ( t t)  that PI will eventually play Top in game C. 

He then uses tl a long enough time to reach this probability and then increases his 
frequency by now playing tt + e i.i.d. Doing the same computation at this new level he 
obtains a new absorbing payoff; then he increases again and so on up to some t2 
where he plays i.i.d, from this time on. He then gets at t2 a non absorbing payoff, with 
probability 1 -- gr  (t2) in game C hence 4 + by computing the total payoff. 

So first choose R large in N and for any tl ~ [0, 1] let re E N, 0 ~< re < R  such that 

+ 1 (17) R<<-tl <r~ R 

Given e > 0 and a strategy o of Pl, we define inductively three sequences of  strategies 
for PII, numbers, and probabilities as follows: 

(;o// 
re : play \ R  ' \ R  ]] i&d. 

PC (0) = Prob C (m < **) C = A, B. 
0 , TO 

Now no and PC (0), C = A, B, are such that 

PC (0) = Pr~ C ( m < n o ) > f f c ( O ) - e "  
O , T O 

Given rr. 1 , nr.l,O<.r - 1 < R  - r e , l e t  

 r0+r rr: play rr. 1 up to stage nr. 1 and then ~ ,  (18) 

/~C (r)=Pr~ C (m< oo) C=A,B (19) 
O , Tu  

and n r, PC (r) such that 

nr>>'nr-I andPc(r)=Pr~ C (m<~nr)>ffc(r)--e C = A , B .  (20) 
0 , T r 

Let us majorize ~n A (o, rr), the average expected payoff for the first n stages given 
o, r r and A, with n > n r . Note that the payoff is absorbing with probability PA (0) 
before no, with value a l (re/R), then absorbing with probability PA (1) --PA (0) 
between no and nl with value al (re + I[R) and so on. 
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Hence we have 

n eA (o) 

+(e A ( r ) - e  A ( r -  1))a~ + 2 C ~ ( e  A ( r ) - e  A ( r -  l)) 

+ (~A e)-eA (~)). z 

+ (1 - PA (r)) a~ + 21; T (1 - PA (r)) 

+ (~A e)-eA (~))" L. 
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Thus for n ~ N r = (nr[e) we obtain by (20) 

-A 7 n (o, rr)<~S A ( r ) + 4 e L  

with 

(21) 

-B (o, and similarly for 7 n r r). 
Def'me now ~C E Q by 

( z c ( t ) = P c ( l ) f o r r o ~ l < t < r o  +I+R 1 

ro = 0  f o r t < - ~ , C = A , B .  

But then 

Sc(r) ro/R cj fy)du0')+c2 l - # c  ' C=A,B ,  
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By (15) and (17) it is easy to see that there exists r*, r* + ro < R  such that 

2L I Z+ (P' #A' #B' t t ) - - (p  S A (r*) +/3 Sa(r*))[ ~ - ~ .  

Hence R ~ (I/e) and n >>-N r. imply by (21) that 

~/n (~ rr') <'Z+ (P' fa4' laB' t~) + 6eL 

which means that 

V fi > 0, V o,V t ~ [0, 1], 3 laA and PB in Q, 3 r, 3 Nsueh that forn  >>-N, (22) 

qn (~ r) <<'Z+ (P" laA ' laB' 0 + 5 "  

This prove that PI cannot guarantee more than 

Z + ~ )  = inf sup Z + (p, #,4' laB' t) 
Oc ta l  #A~Q 

IaB E Q Q.E.D. 

Obviously starting from tx, PII can also decrease his frequency, hence it is natural 
to introduce: 

t2 
~bC (la, tl ,  t2) = c l  ( i t )  la ( t , )  +f+ ct (~) dla (y) +c2 (i2) (1 --la(t2)), 

II 
C = A , B  

qJ- (p, laA,laB, ta, t2 )=p  ~b- A ~A,  tx, t2) + ~ qJ-O Oas, tl, t2) 

Z-  (p, laA,laB, t l )=  inf ~-(p ,  laA,laB, tx, t2). 
l~t2~tl  

Z - ( p ) =  inf sup Z- (p , / a  A,laB,t) 
0,~t~ 1 UAEQ 

t~ BEQ 

and to define 

Z (p) = min (Z + (p), Z -  (p)). 

As an immediate consequence of the previous lemma we now obtain: 

Corollary 21 : PI cannot guarantee more than Z (p). 
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Lemma 22: Y 5 > O, ~ f E Fo 5-optimal for PII in F (p) satisfying either 

O) f is strictly increasing on [0, 1 ] or 
(ii) / i s  strictly decreasing on [0, 1 ]. 
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Proof: By Proposition 13 there ex i s t s fEF1  optimal in F (p) and monotonic (since 
the solutions of  (EC) are monotonic).  Moreoverfis strictly monotonic on [0, x0 ] 

and then constant. Assume f increasing. I f f ( x )  = 1 on [xo, 1] letfe (x) = 

min (.f(x),gl (x)) with gl (x) = (1 - e) + ex on [0, 1]. Otherwise define: 

X --Xol 
g2 (x) = f ( x o )  + e, % 1--L-~o / on [Xo, 11 

= 0  on [0,Xo] with el = min (e, 1 - f (Xo) )  

and let fe (x) = max (f(x),g2 (x)). 

In both cases it follows that: 

x 
IM A (f, x ) - M  A (fo, ~ ) l < O  --x)L Z;(x)--;~ (x) l+ L f I ; ( y ) -L  (y) t ay 

hence i f x  < 1 - e, since I f ( v )  - f ~  (y) I < e on [0, 1 - e] we have 

IM a (f ,x)-M A (L,x) l<l.  

and i fx  > 1 --  e, 

IM A ( . f , x ) - M  A (fe, x ) l < 3 L e  

so thatfe is/i-optimal for e < / i / 3 L .  Q.E.D. 

Lemma 23: Z (p) <~ v (p). 

Proof: Let 5 > 0. By Lemma 22 there is f i n  F 6-optimal for PII in F (p) that is strictly 
monotonic.  Assume t h a t f i s  a one to one increasing function from [0, 1 ] to [L 7]. 
N o w w e  shall prove that i f Z  + (p, t )  = sup Z + (p, ~uA, P B , t )  then 

u A ~Q 
pBEQ 

z+fp, t )<v  ~) +/i. 
Given t E [s 7] let us def'me G t (y) = 1 ] t, I I 0 ' ) .  For any increasing function G 

from [0, 1 ] to [0, 1 ] we introduce 
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1 
W (G) = p [ai ~ la A tf~) + fax  (y) dla A (y) (1 - G (y)) 

t § 

+ 1 
f a~ 0 ' )  (1 -- U A fy)) d G 0')1 t 

1 
+ P [ b x  t(L)P. B t(L) + f bl O') d la a ( y ) ( 1 - G ( y ) )  

t + 

+ 1 
f b2 0 ' )  (1 --/a B 0'))  a a (y)]. t 

It follows that for any PA'/aa in Q we have by (15) 

Z+ (P' /~A'/aa '  t_) = inf W (Gt). 
t<t<l 

But now G defined by 

G (0 = 0 on [0, t ]  

= f -  l (t) on ~ t-] 

= 1 on [L  11 

is in the closed convex hull of {Gt; t ~ [t_, 1]}. Hence (23) implies 

z+ (p, UA , US, t_3 < W (C). 

Let us define PC ~ Q by 

PC ([0, t]) = PC ([0 , f ( t ) ] )  V t E [0, 11, V C =A,  B. 

The change of variable x = G (y) now gives in W (G) 
I 

W (G) = p a t r  (0)) PA (0) + f a i (/'(x)) (1 -- x)  dp A (x) 
0 + 
1 

+ f aa ( f (x ) ) (1 - -PA (x))dx  o 

1 +b b~ (t'(O)) p a (0) + f  
0 + 

b, ff(x)) (1 - x ) a p  a (x) 

(23) 

(24) 

(25) 
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1 
+ f b2 ~(x)) (1 -PB (x)) dx 

0 
= ~ 0";, P4 ,PB)  

hence, sincefis/~.optimal in P (p), (24) and (25) imply 

z+(P, ~A, t'B, }-) < v ~) +8 

which achieves the proof. 
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Q.E.D. 

5.3 Other Results on P (p) 

In this section we state some coroUafies which follow from the proof of  Proposi- 
tion 13 and which will be needed for the construction of  an optimal strategy of  Pl 
in the next section. 

We first prove that for some optimal strategies of  both players in F (p) the payoff  
during the play is constant from time 0 to time 1. 

Corollary 24: Let g (x) be the payoff "at t imex ' in  P (p), hence 

X 
z (x) = p [/0 a, ( f (y ) )  a P,4 (Y) + a2 (t'(x)) (1 - P,t (x))] 

X 
+ ~' [o f b~ (fO')) ap~ (y) + b~ if(x)) (1 - P a  (x))]. 

Then there exists f i n  F1 and p optimal strategies in P (p) such that 

g ( x ) = v ( p )  V xE[O, 1]. 

Proof: I f  f -  = t, then for each p optimal we must have: 

- i f a l  ( t ) > a 2  (t),p A (0)= 1, 
- ira1 (t) < a2 (t), PA ([0, 1D = 0 (hence we can choose PA = 0). 

Now ifa~ (t) = a2 (t), the payoffin game A is independent ofo A . The similar 
result for B proves that g (x) is constant, hence equals v (p), V x E [0, 1 ]. 

Assume now that fsat isfy (ii) and is strictly increasing on [0, xB]. Using (10) 
we obtain that: 

e i the rNB(f )C  {O}U[x B, 1], or 

i f x E N B ( f ) N ] O ,  XB[thenfsatisfies(EB)atx. 

(26) 
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Integrating by parts, write 

X 
g(x)=g(o)  + f p t(az q'O,))-a~ (t'~)))ap A O0 

0 + 

+ (as, - a 2 2 ) f '  (y)(1 - P A  (y)) dy] 

+b [(0, (t'(y))-t,2 q'(y)))ct, n (y) 

+ (b2, - b22)/' 0')(I  - o  B (3'))dy]. (27) 

Thus, using the fact that/'satisfies E A on {0, x/~ [ and (26) we obtain, replacing in (27) 

with 

g (x) = g (01 + ] /`' 0,) am 0,) (28) 
0 + 

dm(x )=p[ (1 -x ) (an  -a,~)dp A (x)+(a2~ -a22)  (1 --p,~ (x))axJ (29) 

+ b [(1 -- x)  (bn - b n )  da B (x) + (b2x - b22) (1 - Pe (x)) d.x]. 

On the other hand, since by definition 8 

1 1 
(f' PA' PB ) = y f ( x )  clm (x) + f p ((1 - -x  / a,z d~  A (x) + a~ 2 (1 - PA (x)) d.x) 

o o 

+ b ((I - x )  6,2 dP s (x) + b2~ ( i  -- Ps (x))ax)  

the fact tha t f i s  a best reply to Px and o/t implies 

m -~ 0 on {x; 1 > / ( x )  > o} (30) 

m positive on {x; f  (x) = 0} 

m negative on {x ; f ( x )  --- 1}. 

In particular m is zero on ]O,x B [ hence by (28) 

g (x) = g  (0) on [0,xB[. (311 

I f x  a < I then f i s  constant on Ix O, I ], hence g (x) is also constant. 
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Hence it remains to prove the continuity o f g  at x B, but either D a (f,, xB) = 0 and 

we use (27) to get the result, or Pit and PB are absolutely continuous at x B and the 
result follows from continuity. Q.E.D. 

We now use the fact that an optimal strategy for PI is a best response to any opti- 
mal strategy for PII to obtain the following. 

Corollary 25: There exist land  p optimal strategies in F (p) satisfying Corollary 24 
such that either 

p (a11 - a 1 2 ) d p  a (x) + ~ (bn -- bl2) d PB (x) is positive as long as 

f ( x ) <  1 (32) 

p (a21 - -  a22  ) ( I  - -  PA (X)) +/3 (b21 - -  b22 ) (1 - -  PB (X)) <~ 0 

on [0, x B [ (33) 

P (a21 --a22) (1 --PA (1)) + t3 (b21 - b22) (1 --PB (1)) = 0 i f f (xB)  < 1, and 

<~ 0 i f f (xB)  = I (34) 

or the dual statements hold. 

Proof: I f  f -  t is optimal with t q:Yc for some C, then PC (0) = 1 or PC (1) = 0 is 
the only best response and it follows easily, using (29), that the above statement holds. 

Now i fy  A =YB' either al  9 bx > 0 or a2  9 b2 > 0 and the result follows, or again 
PC (0) = 1 or p c (1) = 0 for some C. 

Finally assume that f i n  Fx satisfies (ii) and is increasing on [0,XB]. If  
N B (.f) D [0,xB] this implies thaty A =YB as  above. Otherwise PB is atomic on 
[0, x B ]. Hence by (29) for all x in the support of  PB such that f (x) < 1, we have 

p (al, --a12)P A ({x}).>/3 (bll - -b l : )P  B ((x)) 

which gives (32) since aa > 0. 
Using again (2.9) this gives 

p (a2i  - -  a22)  ( I  - -  PA (x)) +/3 (b~i -- b22 ) (1 - -  PB (x)) <~ 0 V x s u c h  that  

f ( x ) <  1. 
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Now assume t ha t f (Xs )  < 1, then using (29) it follows that as x goes to 1 

p (a2~ - a22) ( l  - PA (x)) + b (b21 -- b 22 ) (1 -- PS (x)) goes to 0. 

It remains to see that i f f ( X s )  = I, either YB = 1 and the same result holds, or 
p (1) = p (Xs) thus using (33), (34) holds true. 

Q.E.D. 

5.5 PI can Guarantee ~ (p) 

Using the previous results we are now in position to construct a strategy for PI 
in G** (p) proving the following. 

Proposition 26: PI can guarantee v (p) in G ** (p), V p E [0, 1]. 

Proof: Let l a n d  p satisfy Corollaries 24 and 25, and assume that (32), (33) and (34) 
holds. A sketch of the proof is as follows. 

We first use f to construct measures/a c on [0, 1 ] (considered as PII's move space in 
G** (p)) starting from the measures PC on [0, 1] (time space in P (p)). It will follow 
(l.emma 27) that if PII increases his frequency from 0 to some t, and if PI plays Top 
with probability did c (s) when PII plays s, the payoff in G** (p) will majorize the 
payoff induced by P/l '  a s  and f from time 0 to x = f - I  (t) in r (p). By Corollary 24 
the last one is v (p). We shall then introduce a mixture of "Big Match" strategies (see 
Proposition 29) to show that PI can in fact "block" at level s with probability 
d/a c (s). Finally we shall prove, using Corollary 25, that PII cannot do better than 
using the above "monotonic" strategy. 

Let us denote by [3, t'] the range o f f  and define/a A , #s in Q by: 

~c (0) = Pc (0), ~c if(x)) = Pc (x) on ]o, xs[ ,  (35) 

l a c ( t ) = l a C ( F ) = P c ( 1 )  for t>~ ' t=f (xB) .  

Lemma 27: Let w = W Oa A , ItS) be defined by 

then 

t 
w (t) = p [foal (y) did A (Y) + a2 (t) (1 - / a  A (t))] 

t 
+P [re b, 0 , ) d ~  B 0,) + b2 (t)(1 - u s  (t))] 

(36) 

*+ (p, laA,laB, h , t ) > ~ w ( t ) > ~ v ( p )  V t ~ t l  >~O. (37) 
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Proof: First if t > 0, then by (29)p a l 0')/a/l (0) +/3 b l (y)/a/~ (0) is independent 
o f y  and p a2 (y) (1 -/aA (0)) + ~ b2 (.v) (1 --/aB (0)) is decreasing with respect to 
y.  Hence 
- if t <  t 

w(t)>~p [al (L)/a A (t) + a2 (.L)(1--/aA (-g-))] 

+ p [ b l  CO/a/i CO+b2  ( t ) ( l  - /aB (L))] 

- ift~L 

t 
w ( t ) = p [ a l  (s (t_)+ f al (Y)d/a A (y)+a2 ( t ) ( l - / a A  (t))] (38) 

t § 

t 
+/3 [bl (L)/a B (L)+f bl (y)d/a  B 0') + b2 (t)(1 --/a B (t))]. 

t + 

Moreover if 7-< 1, since/an (7") = PA (1) and/aB (7") = PB (1), we use (34) to conclude 
that 

w ( t ) = w  (7-),for t > 7. 

Hence it is enough to minorize w (t) on [L, 7-]. 
But on [~ 7-[ the change of variable x = f - a  (t) in (38) gives w (t) = g (x). Finally, 

if 7-=YB' then bl (7-) = b2 (7-) and otherwise PB (1) = PB (XB) hence in both cases 
w (7) = g (1). Thus Corollary 24 gives w ( t ) )  v (p). 

Moreover by (29) 

t l  
pal  (tl)/a A (tl)  + b bl (tl)/a o (t~)>>. f pal  (y)d  /a A (Y) + ~3 hi (y)d/a o (Y) 

hence 

~+ (p,/aA,/aB, tl, t)>~w(t) V t>~h >10 Q.E.D. 

In order to get later a uniform majorization we need a discrete approximation of 
/ac" 

Lemma 28: V 71 > 0 there exists ~A and ~!1 in Q with common finite support such 
that i f  ff~ = Ir (ftA , ~B) (see (36)) then 

Iw(t)-ff,(t)l<n v t~ [0 ,  1]. 
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Proof: We first define xo = 0, and inductively (xi), such that 

PA (Xi+ l ) - t~A (xi) ~ a n d / ~ A  (xi'+l)-t~A (xi) < ~-L 

and similarly (yi), for PB" 
Let now (zr), r E R, be a common finite refinement of (xi) and (Yi) such that 

moreover 

I z ,+  l ~ z  r I < ~L . 

We introduce now ft c, C = A, B, with support included in (Zr), r E/~, defined by 

/]c(Zr)=PC(Zr) V z r, VC=A,B. 

It follows that if t E [g r' Zr+ 1 [ 

r-1 Zi+l 
Iw(t)-w(-Dl<~P[iZ=o Y++ la~ (y)-a~ (z /+ l ) ld .  A f.v) 

z i 
t 

+/+ I a, (y) I d/~A (y) + l a2 (t) I (/a A (t) --/~A (Zr))] 
r 

r-1 Zi+l 
+ i b [ ~  f ]bl ( y ) - -b l  (Zi+l)ldlaB(Y) 

i=0 z+ 

t 
+ f+ Ibx (y)Idta a (.v)+ Ib2 (t) I(U B ( t ) - /a  a (zr))] 

Z T 

hence 

Q.e.D. 

Note that by the definition of/z c and/3 c, using (32), (33) and (34) we have the 
following 

p (all --al2) 0~ A (Zr+ 1) --/2 A (Zr)) +/3 (btl - b , 2 )  (J~B (Zr+l) --/~B (Zr)) ~> 0, 
(39) 

p (a21 -- a22) (1 --  fa A (Zr)) + ~ (b21 - b22) (1 - / 2  B (Zr)) < 0. (40) 
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Before introducing the strategy PI we need the following result. 
Let P+ be the zero-sum infinitely repeated game with payoff  matrix 

(The "Big Match" of Blackwell/Ferguson is + r l / 2 . )  
z and the average We define as in part II the stopping time m, the payoffa t  stage n, qn 

- Z  payoff up to stage n, qn" 
Given the strategy r for PII let 

7 n = l  # { m ; ] m = L ,  l < m < n }  

be the frequency of Left up to stage n. Then we have 

Proposition 29: [Blackwell/Ferguson;Kohlberg].V e > 0, V 5 > 0, 3 N  z and 3 o z strat- 
egy of  PI in F~ such that for any r 

Prob%, r (m -<< n) E (qZ I m < n)/> - e V n = 1, 2 . . . . .  and (41) 

P r o b % , r ( m < n l T n > z + 5 ) > ~ l - e  V n > N  z. (42) 

Proof: (41) follows from the existence of v** for Pz + (with v** = 0 V z E [0, 1 ]) and 
the existence of e-optimal strategies for PI [see Blackwell/Ferguson; Kohlberg, or more 
generaUyMertens/Neyman]. If  (41) is not satisfied, then 3 re, 3 Co, 3 no such that 

Prob%,ro (m < no) E (qno I m <~ no) < -- Co. 

Hence if PII use re up to stage no and plays after (z, 1 - z) i.i.d, the payoff will 
satisfy for n large enough 

~[n (~ z' r) = PrOboz,r (m ~< no ) E ((t z I m <~ no) 

+ PrOboz,r (m > no)E ((1 n I m > no) < - e__q.o2 

contradicting the existence of  v**. 
As for (43), it follows from the existence of e-optimal strategy of the following 

kind: 

Sz, n (73 = ~ ~y~) 
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where 9 is strictly positive and decreasing and y~ = n [ -  (1 - z )  ~n + z (1 -- t'n)] 
is the non absorbing cumulative payoff up to stage n. Thus yn z < 0 infinitely often 
implies Prob (m < oo) = 1 and (42) follows. Q.E.D. 

Note that we may and shall assume that Oo is always Top and el is always Bottom. 

Coming back to the proof of Proposition 26 we now introduce the strategy for PI. 
Given eo > 0, let PA and #B satisfy Lemma 28 with )7 = (eo)/8 and denote their 

finite support.by zr; r E R = {0 . . . . .  R } with zo = 0 and z R = 1. Let  IZ c ,  C = A ,  B be 

the probabilities on (zr)i~ ~ induced by/~C and the additional mass 1 - gC (1) on 
Z R = 1 .  

For each z r let OZr (denoted by Or) and Nzr  satisfying (41), (42) with 
e = (eo /8LR)  and 8 = (eo/4L). Let N = max Nzr. P1 chooses r~ E/~ according 
t o ~  0 C = A , B .  

Let me be the stopping time given Oo and z (here me = 1) and define inductively 
m r, r ~./~ in the following way: 

Given mr, use Or+ 1 in the game starting at stage m r + 1 to realize mr+ 1 . 
r 

Let I r = k~0 mk' then if C, PI plays Bottom up to stage lr~ - 1 and plays Top 

at stage lr~. 

Since we want to minorize the payoff of PI given o we shall assume that PII is 
using a pure strategy, i.e., a sequence of L and R. 

Let us now compute 7n (e, z). We introduce the following notations: 

t m (R)  = t m m/> 1 describes the strategy ~" for PII. 

Xo = 1 Yo = 0 

xi = rain (n, ml)  Yl = xl 

x2 = rain (n - Y l ,  m: )  Y2 = x2 + Yl 
 9  9  9 

X r = rain (n -- Yr-l' mr) Yr = Xr + Yr-I 
, i ) 

x R = n - - Y R . 1  YR -=n 

Note that from stage Yr + 1 to Yr+l the payoff is absorbing in game C i f f r ~  <.r. 
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Hence we have 
R-1 

n ?.  (a, r) =~'  Z 
r=O 

r 
[Xr+l (~.~=0 p ~I~A (Zi)--/1A (Zi-l)] al (tyl+t) (43) 

+P t/1a (z? -/1B (z~-l)l ~'~ (ty:l)) 

s + I 
+p (1 -u~ (~,))m~. +1_, a~ (t m) 

Yr+ I 
+~ 0 -/1B (z,)) z b~ (tm)]. 

m=Yr+l 

Now by (43), since PI is using or+ 1 from Yr + 1 to Yr+t we have 

~.f  Y~+I (tm))<N+(zr+l +t~)E(Xr+l)+e n 
m =yr + 1 

(44) 

by taking first the conditional expectation given Yr + 1 and then integrating with re- 
s~ct  to Yr + 1. 

Since, by the consti-uction of/~ c, Zr+ 1 <z r + (~/L), using (40), it follows from 
(43) and (44) that 

R-1 
n f: n ( o , r ) ~  Z E(xr+I)(~r-*?-SL)--NLR--enLR + A  

r=O 

where 

(4S) 

r 
% -- ~ZoP (~A %) -/1A %-1)) al %) + b (#B %) -/1B (z~.~)) b, (z~) 

+p( l - - /14  (~r))a2 (Zr) 4-h(1--/1B %))b2 %)  

hence by definition (36) 

(46) 
and 

R-l 
i=0 0~, -a,~) (u A %)-#A (zi-1)) (47) 

+b (bl~ -b,~) (/in (zi) -/1~ (zi.~))] a/ 
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with 
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R - z , )  ~, x,]. (48) ~ i=E[ ( tYi§   9 ,=i+1 

From (46) we deduce using Lemma 28 and (37) that 

I~ r I> V (p) -- Z/. (49) 

Now it remains to minorize A, but by (39) it is enough to minorize u r Note that 
R 
I; " x r = n - -  Yi and that t - z i = t (1 - zi)  - -  z i (1 - t). Hence ~i is the expectation 

r=i+ 1 
of the sum of the absorbing payoffs in r+i, using o i. Thus by (41) we obtain 

~i >~ - en (50) 

and replacing in (47) we get 

A > ~ - e L n .  (51) 

R-I  
Since E Z Xr+ 1 = n, using (49) and (51) it follows from (45) that 

r=0 

n qn (o, z) >1 n (~ (p)  - 2~  - -  8 L )  - - N L R  --  e L R n  --  e L n .  (52) 

Finally, the by choise of ~, e and 8, n >1 ( 4 N L R  )/eo implies 

~n (o, ~) >1 v ( p )  - Co .  

This completes the proof of Proposition 26. Q.E.D. 

R e m a r k :  Note that if the dual statements hold in CoroUary 25, in particular if f is 
decreasing, we use the optimal strategies in F~, z E [0, 1] with payoff matrix 

5.5 A New Formula for v (p) 

Recall that 

Z + ( p ) = i n f  sup inf ~+ ( p , # A , I Z B ,  t l ,  t2)  
tl  p A . P B  t2 
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and let 

Ir + (p) = sup inf inf 4 + (p, tan' laz' tl ,  t2). 
taA,t~ B tl t2 

Z -  and W- are defined similarly. 

Proposition 30: I f  (32), (3J), (34) hold, then 

v (p)  = z (p)  = z + 60) = w + fp) .  

Proof: By l_emma 27 we have W + (p) > v (t7) but then using Lemma 23, Z + (p) ~< v (p). 
Hence by l.emma 21 ,Z  (p) = Z + (p), since v (p) = _v (p). 

Finally the fact that we always have Z + (p)/> W + (p) implies the result. 
Q.E.D. 

Now for each tl E [0, I] define F tl to be the convex hull of  (Ft; t ~ [q ,  1] with 
F t 0')  = 1 It, +** I (y)" Hence F tl is the set of  left continuous increasing functions F in 
[0, 1] with F ( q  ) = 0 and F (I +) = 1. For F i n  F tl let 

1 
X+ (p, taA, taB, .h ,F)=p[al  (tl)ta A ( t l ) +  f ( 1 - - F ( y ) ) a l  O')dta A (5') 

1 
+f 

tl 
a~ (y) (1 --taA (y ) )dFfy) ]  

1 
+P [bl (tl)ta B ( t i )  + f 4- 

t l  
(1 -- F (y)) b, (y) d laB (y) 

1 
+f 

tl 
b2 0 ')  (1 --/~B 0'))  dF(y) ]  

then we have the following result: 

Lemma 31: Z + (p) = inf inf sup X + (p, taA' taB' tl, F). 
tl Ftl QXQ 

Proof: By definition r (p, taA' taB' tl, t2) = X + (p, taA' taB' tl, Ft2) hence 

Z + ( p ) = i n f  sup inf X +. 
tl QXQ Ft I 
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For a fixed t~ we shall prove that 

sup inf X + = i n f  sup • 
Q• ~tl Ftl Q• 

(53) 

Remark first that 

sup x + = p sup G a (F, ~) + ~, sup G n (F, ~) 
Q• ~ 6 

where Q are the extreme points of Q and 

1 
G A (F,p)=al (tl)/a(tl) +f (I--F(y))al (y)dlafy) 

! 
+f az (y) (1- - la  A (y))dF(y). 

tl 
Now i fg  ~-/i t we have: 

G A(F,/J)=al (t l)  f o r t < t x , a n d  

t ~  
G A (F,/z) = (1 -F( t ) )a l  (t) +f  az (y)dF(y) 

tl 
a n d i f t t - 0  

1 
G A (/7, ~) = f a~ fy) aR fy). 

tl 

for t ~ Its, 1] 

Let QNA (t~) = ~ E Q I/a is non-atomic on ] t~, 1 ]). Then since F is left continuous 
it follows from the above formulas that 

supaA (F, ~) = su Qt~'.~) CA(F'")= su Q Q~ap~0) c A (r, ~). 

We can now apply Sion's minmax Theorem to X + on F t~ and QNA (0) • QNA (0). 
In fact F q is convex and weakly compact and QNA (0) is convex. 

Moreover X + is affme in each variable and • ( , ,  #A'/aB) is continuous with respect 
to F. 

This last statement follows from the fact that since # E QNA (0), 1 -- PA (y) is 
continuous, hence 

1 
f a~ ~ ) ( 1 - ~ A  0 ' ) )aF0 ' )  
1' 1 
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is continuous for the weak topology on F tl and similarly for 

1 
f (2 - -F(3 ' ) )aa  ~)d~tO0 

+ 
t l  

since/~ has no mass at the discontinuity points o fF .  Hence 

inf su su inf F.t~ Q s1~'~(~ X+ = X+ QN~(O)2 F tl 

241 

which implies (53). Q.E.D. 

Thus we obtain: 

Corollary 32: I fv  (p) = I4/+ (p), then 

sup X +. 
O 2 

v (p) = v (/9) = su inf inf X + = inf sup inf X + = inf inf 
- Q~ tl Ftl tl Q2 Ftl tj Ftl  

6. Examples 

For each example we shall give Vt (t9) = I~ (p), V (p) = V (p), Cavu (p) and describe 
the optimal strategies p and f i n  r (t7) and the measure/a which induces an optimal 
strategy for PI in the maxmin. 

. [1. :.] [o. o.] 
A= B= 

0 0 1 

(This was the example studied in Sorin [1980].) 

Cavu (0) = p  (2 - p )  

v~ (p) = min (p, I - p )  

v @) = (1 - p )  (2 - exp ( - p / ( 1  - p ) ) )  

k 
f(x) = ~ on [0, I -- k] 

= 1 on [1 --k, 1]withk=exp(--p/(1 --p)) 
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P/l (x) = - & L o g o  - x )  on [0, 1 - k ]  
P 

= 1 on [1 - -k ,  1] 

PB (x) = 0 on [0, 1] 

~,4 (t) = 0 on [0, k] 

= 1 + ~ Log t on [k, 1 ] 
P 

/l B (t) = 0 on [0, 1]. 

1 
7 

_1 
4 

0 

v, 

1 P 

If we define p (t) to be the probability of  {C = A)  given the fact that the payoff  is 
non-absorbing when PII plays (t, 1 -- t) i.i.d, we obtain 

p (t) = p on [0, k] 

- L o g t  
p (t) = _ Log t + 1 on [k, 1] 

which is independent o f p  on the range o f f .  
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1 f ( x ) = - ~ [ 1 - ( x - 1 )  2 ] oq[0,1] i f p E [ 4 , 1 ]  

= 1 1 2 - - ( x - 1 )  s] on[0,1] ifp~[0,74-- } 

7p -- 4 on [0, 1 ] 
Pa (x)= 3p i f p ~ [ 4 ,  X] 

ps (~) = o on [0, i] 

PA (x) = 0 on [0, 1] 

4 -- 7p 
PB (x) = 4 --  4p on [0, 1 ] 

if  [o41 

and g is th.e same as p. 
PI is playing a mixture of always Top, always Bottom such that the posterior given 

Top is 1 (ifp >i 4/7) or 0 (ifp < 4/7) and given Bottom is 4/7. 
Note that PII cannot obtain Car u 07) in P 07) by playing a strategy i.i.d. 

3A [: :*1 1-1o :] 
Car u 07) and vj 07) are obviously the same as in Example 2. We shall give the results 
forp E [4/7, 1], the analysis is similar on [0, 4/7]. 

LetKo E [0, 2/3] satisfying 2/3 + 2" ((3Ko)/2) 413 = 1 +Ko andpo E [4/7, 11 
such that ((3Ko)[2) 1/3 = (2po - 1)[07o). 

- ifp 1> Po: 
2 _x).3/4 (~.K_) 1/3 = 2 p - 1  

f ( x )  = "~ - K  (1 on [0,XK] with P 
4 

o 

PA (x) = 0 on [0, 1] 

1 - 2 p (  I - ( 1  - x )  "1/4) on [0 ,xK]  PB (x) = 1 - p  

and 
=1 

p + 1_ 2_ (2p - 1)* 
07) P 3 3 pZ 

on [xx ,  1] 
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- ifp <Po: 

2 X)-3/4 .r(x) = ~ - K o  (1 - on [0, XKo ] 

and 

= 0 on [Xxo, 1] 

PA (x) = 1 -- 7P -- 4 po _, p 7po -- 4 on [0, 1 ] 

_ ~ { 2 p o - - 1  / __x).l/4 P B ( x ) = I  7 ~ .  po ~ (1 b 7po -- 4 7po -- 4 ~ -T-L--p-/ on [0, XKo ] 

= 1 on [Xxo, 1] 

l + 2 p +  v(p)=  3 _ ( 4 p - 7 )  Ko. 

As for the maxmin we have (note that f i s  decreasing hence ta c (t) = laC [1, t]) 

- ifp ~>po: 

and 

laa (t) - 0 on [0, 1] 

laB(t ,= --ll--pP+lP--~-(I-- ~ 3 t ) l / 3 o n [ 2 ( 1 - ( - - ~ )  3 ) , 0 ]  

p (t) = 
2 -- (1 --(3/2) t) I/3 

- and ifp <Po : 

laA ( t )= 1 - - 7 p -  4 
P 

7p --4 
lab ( t )=  1 --(I --p) 

and 

[ 3} 2 (2 o-1) Po4 ~ 1 7 6 1 7 6  l - - \ ~ j  7po -- 

" 7 p o - - 4  --P 7 p o _ 4 ~ - ~ +  1-- t 
on [to, 0] 

4) p (to) =Po (and Prob ( C = A  I PI plays Top at to) = -~ 

1 
p (t) -- on [to, o] 

2 - (I - (3/2) 0 I/3 
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4. 

P 

1 

0 

t -  

t, 

A= [3"2 

Cav u (p) = p 

i'] B=[  -1.0 

oo[0,11 
= 2 on ,1 

vt (p) = min (p,/3) on [0, II 

_:'] 

0 
2 3 



"Big Match" with Lack of Information 

v(p)=p 

I .f(x) = ~- on [0, 1] 

OA (x) = O B (x) = 1 -- (1 - -x)  1/(13p)  on [0, 1] 

/a A (t)=/a B (t)= 81/2 (t) (i.e., PI plays o I/2 optimal in B). 
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[1 2] - i fpE ~ , ~  : 

v 0~) = 9 (4 - 3p) 

f ( x ) = 2  9 ( I - x )  2 on o, 

o on[~ ~1 
PA (x) = ~- ~ on [0, 11 

~x ,~[~  + , ~ , x ,  ohio1 ] 

1(2 ~6 
la A (t) = p~-~--p} 5/18 (t) 

~B ( , ) = o  o n [ 1 , ~ [  

= l [ p + ~ _ _ 3  l x / ] . _ _ c ~ l  2 (3p - - l ) /  o n I 5 , 0  ] 

p(t)=x/1--2t [ 5 , 0 1  
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1 t! t~g(l _x ) OA (x) =- -~  P 
= 1  

p n (x) = ~ l-9X (x) 

and for the maxmin 

7 p - -  1 + ~ Lo- [ 9 t - - 3 ]  ta A ( t ) =  6 p  2p s 

= 1  

/l B ( t ) =  ~4/9 (t). 

Hence the posterior is given by 

1 -- 3 Log (9t - 3) 
p (t) = 7 - - 3  L o g ( 9 t - 3 )  

(Note that p (4/9) = 1/7.) 

S. Sorin 

on [0, 1 - - 9 K [  

on [1 - 9 K ,  1] 

i K4[ 
o n  [~-+ 

1 4 

7. Concluding Remarks 

Tile relation between this study and the previous results can be summarized as 
follows: 

1. For games with lack of information on one side and for stochastic games the 
asymptotic value, the minmax and the maxmin do exist. We proved that it  is 
also the case for the class of games under consideration. 

2. Similarly it was shown that lim v n = lim F x which is also true for stochastic games 
and holds up to now for all games with incomplete information where the exis- 
tence of lim v n has been proved. 

3. Nevertheless the infinite value which always exists, either for stochastic games or 
for games with lack of information on one side, may not exist in this case (i.e., the 
maxmin and the minmax are different, see examples). 

4. Note that the asymptotic value may be a transcendental function (see example 1) 
which cannot be the case neither for games with lack of  information on one side where 
v = Car u und u is algebraic, nor for stochastic games, by the result of  Bewley/  
Kohlberg. 

5. Moreover the maxmin itself (which equals the asymptotic value in the games 
studied here) may be transcendental. This cannot happen for games with lack of  
information on one side, and even with lack of information on both sides 
[Mertens/Zamir]. 
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6. Finally we found that the maxmin was equal to the asymptotic value. It  is conjec- 
tured that this will be the case for stochastic games with lack of information on 
one side. 

7. In Sorin [ 1982] games with the first column absorbing are considered and results 
corresponding to 1, 2, 3 and 6 are proved. In this class the minmax may be a 
transcendental function. 
Nevertheless the tools used are rather different, the main difficulty being for the 
(minmax) strategy of I'll. 

8. Appendix: Relation with Games with Signalling Matrices 

Aumann/Maschler [1968] have introduced a more general class of  games with 
incomplete information described as follows. In addition to the initial probability on 
the state spaces and to the payoff matrices, we are given two families of  "signalling 
matrices", H/k and H/k/, with entries in some alphabet. After each stage, if the state is 
k and the moves of the players are (i,/'), PI (resp. PII) is told Hff (i, ]) (resp. H k 

_ k (i, ])). The case where H/k (i, 1) - H ~  (i, ]) = (i,/), V k, i,/" is called standard signalling. 
It is clear that such games may be similar to games with incomplete information and 

absorbing states. For example 

I I I :l 

[ b21 b22 

Kohlberg/Zamir used this fact to prove the existence of the infinite value in the 
"symmetric case": both players have the same information about the state's choice 
and the same signalling matrices, which satisfies V k, k ', 11 k (i, D ~ Hk' (i', ]') as 
soon as i :~ i' o r / ~ / " .  

Another class was studied byMertens/Zamir [1976] [see also ICaternaux] where they 
proved the existence of the maxmin and of the minmax. These games can be desribed 
as follows: 
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The example below shows that special kind of  games with incomplete information and 
signalling matrices are similar to file games studied here. 

Le tJ  (p) be described as follows: There are six payoff matrices (Ai) i = 1, 2, 3; 

(Bi) i = 1,2, 3 and Prob (C = Ai) = (p/3); Prob (C = Bi) ~ (/3/3). PI knows whether 

C E {Ai;i = 1, 2, 3 } or not. PII knows only tAh.e initiff, probabilities. The signalling 
matrices are the same for both players and H t = H t = Hi . The explicit data are 

1 1 1 

2 - 2  - 0 
p p ~ A l  = A 2 = A3 = 

- 4  - 4  4 0 

B l  B2 = B3 = 
3 0 I 2 - 2  

Hi = H2 = H3 = 
7 ~ 7 ~ 7 

We claim that this game is similar to the following G (p): 

[: 1:] standard signalling 

which belongs to the class under consideration in this paper. 
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In fact if the moves are Bottom Left or Bottom Right, the signalling matrices do 
not reveal anything about the state and the payoff is the average payoff, i.e., (0, 0) 
i f C E  {Ai;i = 1, 2, 3} and (0, 2) otherwise. 

Now if TL is played, then either a or,~' is told. 

- Given a both players now play the game 

~ 
standard signalling 

where PII can guarantee at each step the vector payoff (2, 0) by playing R,  and PI 
can guarantee similarly (2, 0) by playing TT. 
- Given a '  the situation is the following 

:<Ii  4 1 

1 

1 1 

2:]i: o] 
0 

I :1 
where PII can guarantee (2, 0) by playing L and similarly for PI by playing BT (note 
that if TR the true game will be revealed but 1/2 (v (B2) + v (Ba)) = 0). Finally if 
TR is played we obtain 
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- Given 

8 

1 

2 

- 4  

0 ~ 
7 8 3: 

1 
2 

2 

8 

where PII can guarantee (0, 1) by playingR and the same for PI by playing BB. 
-- Given/3' 

where PII can still guarantee (0, 1) by playing L and the same for PI by using TT. 
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