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"Big Match" with Lack of  Information 

on One Side (Part II) 

By Sylvain Sorin, Strasbourg I 

Abstract: This is the second paper on a class of stochastic games with incomplete information. As 

in Sorin [1984] we prove the existence of the asymptotic value (lim v n) of the maxim and of the 

minmax although the infinite value may not exist. Nevertheless the results and the tools used are 
rather different from the previous case. 

1 Introduction 

As in the previous paper [Sorin, 1984] we consider a two-person zero-sum infini- 

tely repeated game with incomplete information and absorbing states. 

We are given two states of  nature, hence two payoff  matrices 

A = and B = 

L a~l a22 J b~l b22 

with the left column absorbing (i.e. once any entry with a star (*) is reached, all 

payoffs in the future will be equal to that entry. See Blackwell/Ferguson, and Kohl- 

berg). Now one of  these two matrices is chosen once and for all by the referee (with 

probabi l i ty  p for A)  and this choice is told to player I. The game is then played in sta- 

ges. After  each stage n the players are told the previous moves ~ '/'n by  the referee, but  

the current payof fqn  is not  stated. The description of  the game, including this sen- 

tence, is common knowledge. A player 's  (behavioral) strategy is the choice of  a proba- 

bil i ty over his set of  moves, at each stage, conditional on his information on the state 

and on the history (i.e. the sequence of  moves) up to that  stage. 

We shall denote by  H m the set of  m-stage histories. Given the state such a history 
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determines a payoff at stage m, qm' and an average payoff qm which is the Cesaro 

mean of the payoffs up to stage m. Its expectation with respect to p, o and r (strate- 

gies of the players) is denoted by ~m " 7m is the expected payoff at stage m. 

v n (p) is the value of the n repeated game G n (p) with payoff ~n" 

In order to study G (p) we recall the following definitions [Mertens/Zamir]. 

_v (p) is the maxmin of G (t7) if 

i) V e > 0, 3 a and 3 N such that 

~n (a, r)/> _v (p) -- e for all r and all n ~> N 

ii) V e > 0 ,  V o, 3 rand  3Nwi th  

~n (o, r) ~< _v (p) + e as soon as n ~> N. 

We shall refer to these conditions by saying that player I (P/) can guarantee v,  (i), and 

that he cannot expect more, (ii). 

The minmax 7 is def'med in a dual way. G (p) has a value v iff ~ (p) = _v (/7). 

The "Big Match" of Blackwell and Ferguson is G (0), and they proved the existence 

of/2. 

In Sorin [ 1984] the payoff matrices have the first row absorbing and the existence 

of lim Vn, 7 and _v is proved. Nevertheless there are games without a value. For the pre- 

sent class we obtain similar results, but the tools used are rather different. The main 

difficulty being for the minmax where PII faces a "stochastic game with vector pay- 

offs" [Blackwell]. 

2 Maxmin 

IfA n (p), n E N U (+  oo), is the repeated game where none of the players is infor- 

med, we recall [Kohlberg] that its value u n (p) exists and is constant w.r.t.n. This va- 

lue will be denoted by u. 

/q n is the o-field induced by H n on H and Pn is the posterior induced by g, i.e. 

Pn = Pr~ (A l• n-1 )" 

If f is a real function on [0, 1], Cavfis the smallest concave function greater than 

f o n  [0, 1]. 

Finally we introduce some notations. 

L is the maximum absolute value of the payoff entries. If a is a probability distri- 

bution on the moves, ~ denotes the associated strategy identically independently 

distributed. I fx  E [0, 1 ], J denotes 1 - x .  
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P r o p o s i t i o n  1 

v (p) exists and v (p) = Cav u (p) on [0, 1]. 

P r o o f  

1) Let us first prove that PI can guarantee Car u (p). A general result for games with in- 

complete information states that i fPI can guarantee some payoff f (p) in G (p) he 

can also guarantee Cavf (p) [see e.g. Sorin, 1979, 2.17]. Since PI can guarantee u (p) 

by playing non separating, i.e., by ignoring his information, the result follows. 

2) It remains to show that P! cannot expect more. The idea of the proof is now stan- 

dard [see e.g. Mertens/Zamir, p. 205]' given PI's strategy, PII can compute the poste- 

riors Pn and, using the convergence of this martingale, can determine a stage N after 

which PI is essentially playing without using his information. From this stage on, PII 

can obtain u (PN) as a payoff, hence his expected average payoff will be at most 

Cav u (p). 

So let o be a strategy for PI and denote by R the strategy of PII defined by always 

playing Right. Given ~ and R, the sequence (Pn } is a martingale in [0, 1], hence its 

quadratic variation is bounded. It follows that, given e > 0, we can define N such that 

~v )2 

.=1 (P.+I -P.)= .__z 1 + e  (1) 

Let us define 

gn ( e ' R ) = E ( q n  [ H n _ l ) a n d a = E ( O l H n . 1 ) .  

Then we have [e.g. see Sorin [1979], 2.11] 

Ig n ( o , R ) - - g n  (K'R)  [~< 2 L Ea,R (IPn+I--Pn [jH n-l)" (2) 

Moreover since o is non separating, there exists a pure strategy r* of PII such that 

gn (~, r*)<. U (pn) (3) 

We can now describe the strategy 7- for PII in Goo : 

- play according to R up to stage N; 

- from stage N + 1 on, play according to r*. 

In order to compute the payoff induced by e and r, we first define the stopping 
time X by: 

N + X =  min [ (m;] m = Left) U (+oo)] andX k = X A k. 
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Note that Xk: is 9 N+k-1 -- measurable. 

It follows then from (2) and (3) that 

x n 

(N + n) 7N+n (O, 7") ~ NL + Ecr,z [ rn~= 1 u (PN + m ) + (n -- X n ) tt (PN +Xn )] (4) 

x. 

+ 2LE~,,c [ m~=l fPN~.m+l --PN+m ~+(:n--Xn)IPN+Xn+l --PN+X n I], 

But we have 

x~ x. 

Ea,.r[ Z u(PN+m)+(n--Xn)u(PN§ )]<~Ec~.c[m~l Cavu(PN+m) 
m=l 

+ ( n - x . )  Cavu fP~+x.)] 

~(,~=~ P.~+~ + (n-x,,)pN+x, ) 

LE x. < n C a v u  n ~ ' r (m~l  

(by Jensen's inequality), 

PN+m + (n --Xn)PN+xn) l 

x~ 

Write 

E~,. Y. =E~,~ (Ix. <~ rn)+E~, ~ (lx-_ ~ r.). 

(5) 

But on X n < n, X n = Xn. 1, hence Yn = Yn-1' so that 

Ea, ~ ( l X . < .  r . ) = E o , ~  (lx, ,< . r~.l) .  (6) 
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Furthermore on X n = n, we have X n.1 = n -- 1, hence (with E r = E)  

E (1Xn=n Yn) =E(E1Xn=n Yn IH N+n-1) 

n-1 

= E [1Xn=n (m~l PN+m + E (Pn+N I H N+n-1))] 

n - I  

= e [1Xn=n (rn~l PN+m + PN+n-1 )] 

Xn- 1 

=E [lXn=n (m~=l PU+m +PN+Xn.I)] 

= E (1 x =n Yn-1)" 

It follows from (6) and (7) that 

E ( Y  n) = E ( Y n .  1) = E ( Y 1 )  =E(nPN+ 1) = np. 

As for the last term in the right member of  (4) we obtain 

x 
?l 

m=Ea,r  (m~=l [PN+m+I--PN+m] +(n-Xn) lpn+Xn+ 1-pN+X hI) 

(7) 

(8) 

n 

=Ea,z(rn~=l [PN+m+I --PN+m ]Zrn) 

with Z m = 

0 i fm  > X  n 

n+ l - - X  n i fm  = X  n 

1 i fm  < X  n. 

. n  

We obviously have Z Z m = n. 
m=l 

Now, note that the laws of  the Z m are the same under r and R since ~- and R coin- 

cide up to stage X -  1, and moreover the posteriors PN+m and PN+m+I are the same 

under r and R on Z m ~ O. It follows that 

n 

M=Ea,R (m~=l [PN+m+I--PN+m ]Zm)" 
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Using the Cauchy-Schwartz inequality and (1) we now obtain 

n (m~l M < E a , R  [(m~=I(PN+m+I--PN+m )2 = Z2m)) 1/2] 

" n 2 ] 1 / 2  

< [ea,  mE=l (VN+m+I--PN+m) 2 eo,  mE=l zm 

< v 7 . . .  

From (4), (5), (8) and (9) we finally get 

(n + N )  7n+N (a, r) ~< NL + n Cav u (p).+ 2 Ln 

Thus n t> ~ implies 
V e  

7n+N (0, r) <<- Cav u (p) + 4 L x~- 

(9) 

Q.E.D. 

Remark 1 

It is easy to see that the above proof remains true for any finite sets K,/,  J, as long 

as all of the matrices A k, k E K, are of the following type: the first column is absor- 

bing and there is no other absorbing payoffs. The only modification is in the def'mition 

of R. Let T = (r I Vm, V h m.1, r (h m.1 ) is supported by J -  (1) ). Then choose ~ and 

N such that 
N 

sup Ea, z ~ (Pn+l --Pn)2 <<.Ea,~.nE=l (Pn+l --Pn)2 + e. 
r E T  n = l  

3 l~m v n 

Proposition 2 

lim v n (t7) exists and equals Car u (p) on [0, 1]. 

Proof 

1) We know that v n (p) >~ u n (p) = u (p) and that v n is concave, hence we have 

v n (p) >1 Car u (p) for all n. 

2) Let a be a strategy for P1. 

n 

Since Ea,~ (mE= 1 (Pro + 1 -- Pm) 2 ) is bounded by some M (uniformly in a and n) 
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there are at most n 3/4 stages m with 

M 

Ea ,R  (Pm+l --Pm)2 n3/4 
(10) 

We denote by R (n) the set of such stages, and define S (n) = ( 1 , . . . ,  n } \ R (n). 

Given m E S (n), it follows that the probability of the set/-/m-1 of histories h m.1 

such that 

M (11) 
Ea,R ((Pm+l --Pro )2 I hm-1)> nl/2 

is less than n- 1/4 

We can now describe the strategy r of PII: 

- play R i fm E R (n), or ifhm. 1 E H' m-1 with m E S (n); 

- play according to r* otherwise, where as m the previous proof r* is a pure stra- 

tegy satisfying (3). 

We introduce the following stopping time 

X =  rain ( {m;] m = L, 1 <.m <<.n} U {n)). 

It follows then, using (2), (10) and (11) that 

n 7  n (o,r)<.2n 3/4 L + 2n  9 n'l/4 L 

x 
+ E a , r [  Z u ( P m ) + ( n - X ) U ( P x )  ] 

rn=l 
(12) 

X 

4- 2 L Ea, r [m~=l ]Pm+l --Pro I + (n --X) I pX+l --Px L] 

First, as in the previous proof, it is easy to see that 

X 

Ea,  z (m~l u (Pro) 4- (n -- X) u ( p x ) )  < Car u (p). 

As for the last term in the right member of (12) we can take the expectation with res- 

pect to a,/~ since r and/~ coincide up to stage X--  l,  and then majorize by 

Ea'R ( ~ IPm+I --Pm [ ) + nEa'~(IpX+I - p X  
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But we have 

by Cauchy Schwartz inequality and 

E~r,~(IPx+I - p x I I H  X_l)~< Z~,/~ (px+l - p x )  2 [H x.1 )1/2 

~<x/M- i f X < n ,  by ( l l ) .  
ni/4 

Coming back to (12) we obtain 

n 7n (a, r)<, 2L n 3/4 + 2L n 3/4 + n Cavu (p) + 2LVr-'Mn 1/2 + 2Lx/--Mn 3/4 

hence there exists some K ~ R + such that 

1 (  

7n (o, r) ~< Cav u (p) + ~ for all n 
n / 

Q.E.D. 

Remark 2 

The previous proof still holds for the games described in Remark 1. But now R has 

to be replaced by a "stage by stage" best reply in T to ~. 

Remark 3 

Ifv x (p) is the value of the game G~, (p) with payoff ~ k (1 -- ~.)m-i 3,m, 
m=l  

it is easy to see that lira v x (/9) --- Cav u (p). The first part of the proof is exactly 
k--*0 

like that in Proposition 2. The second half uses the same kind of strategy, defining 

M 
first N = X "3/4 and a set of exceptional stages where E (Pro + 1 -- Pm) 2 >1 N-" Now for 

each "regular" stage rn the probability of exceptional histories, i.e. such that 

M thanN1/3 E ((Pm+l --Pm )2 1 hm_ 1 ) >~ - ~  is less . We thus obtain a majorization 

of the payoff by some Cav u (p) + 0 (1). (t -- (1 - x)N+I + N-1/3 + (1/N2/3 ) 1/2 

+ Xl/2), hence Cavu (p) + 0 (~1/4). 

4 Minmax 

In this section we shall prove the following 
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Theorem 3 

-v (p) exists. 

In order to get this result we shall first assume 

v ( A )  = v ( B ) =  0 

by subtracting p v (A) + ~ v (B) from alt the payoffs. 

We shall split the games into several cases for each of which optimal minmax stra- 

tegies for PII and best responses for PI wilt be constructed and an explicit formula for 

(p) will be given. 

First ease 

(at l - a 2 1  ) (bl l  - b21 ) />  0. 

By changing the name of the lines if necessary, we can assume 

a21 ~all and b~l ~>bll (13) 

Let us introduce the following notations and definitions. 

x + = max (x, 0) forx E R. 

c~ ( t ) = e l i  t + c2/ F,]= 1, 2, e=a,  b f o r t e  [0, 1]. 

Q = {p; p positive Borel measure on [0, 1] with total mass ~< 1 ). 

p (x) = p ([0, x]) .  

X 

w ( p ) =  inf sup [P f al ( t ) d p ( t ) + ( l - - p ( x ) ) a 2  (x) + 
p~Q x~[0,1] 0 

yE[0,1] 

Then we have 

Proposition 4 

+/3 ! bl (t) d p (t) + (1 - p (y)) b2 (y)+]. 

If(13) holds, V (p) exists and equals w (lo). 

The proof of this proposition will follow from the two next lemmas. 

Lemma 5 

PII cannot expect less than w (iv). 

(14) 
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Proof 

The idea of the proof is the same as in Sorin [1984], Lemma 21. Knowing "c, PI 
starts by playing Bottom until he reaches the maximum of the probability of getting 

an absorbing payoff at this level. From this time on he increases his frequency slowly 

(i.e. he will use (e, 1 - e)) until the maximum of the "absorbing" probability is reached 

and so on up to some level x. Then he will get c2 (x) if he stays at ~ or 0 by playing 

optimally. This strategy obviously induces a probability d p (t) of getting an absor- 

bing payoffcl (t), and it follows by (14) that the payoff will be at least w (p). 

First let m be the stopping time min (m; ]m = L} tD (+ oo) and choose a large N 

in N. 

Given e > 0 and z a strategy for PII, define 

a0 = Bottom 

P* (0) = Probao ,r (m < + ~) 

then no and P (0) such that 

P (0) = Probao,r (m ~< no) > P *  (0) - e. 

Given ar.1, nr.1, define inductively 

(r ( r ) )  
e r : play according to er. 1 up to stage nr. 1 , then ~-, ~- 

P* (r) = Prob%, r (m < + ~) 

then n r >~ n r_ 1 and P (r) with 

P (r) = Prob%, r (m ~ nr) > P *  (r) - e. 

A 

NowifPIuseseruptostagenringameA, andthenplays(~(~)), if 

a2 (r/N) >1 0, or optimally in game A otherwise, the expected payoff in game A for 

n >~ n r will satisfy 

7A(or, r)>~P(O) Ial (O)--2L-~ ] 
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I (1) nl l + (P (1) - P (O)) a~ - 2 L - -  
n 

+ . . .  

+ (1--P(r) )  a 2 - - 2 L  --r-r 
n 

- 2 (P* (r) - e (r)) L. 

If/~ E Q is the atomic measure with massP (~) - P  (J~ - 1) at point f~/N, then for n 

large enough we obtain 

4- yN ( ( r )  
7A(Or, T )~  a l . ( t ) d la ( t )+  1--U ~ a2 - 4 e L .  

o 

Now there exists r* E N, 0 < r* ~< N which realizes the supremum over all reals 

2L 
r E [0, N] of the right member within ~--. 

A similar construction for game B induces a strategy a for P1 such that for n large 

enough 

X 

~7. (~, T)/>p sup f 
O<~x~<l 0 

al (t) d/a (t) + (1 - / ~  (x)) a2 (x) + 

y 
+ p sup f 

O < y < l  0 

b 1 (t) d/~ (t) + (1 -- p (y)) b2 (y)+ 

2L  
- - 4 e L - -  - -  

N 

hence the result is obtained by choosing N large enough. Q.E.D. 

In order to prove that Pll  can guarantee w (p) we shall use "Big Match" strategies, 

hence we need the following definitions and results. Let Is + be the zero sum two per- 

son infinitely repeated game with payoff matrix 

--(1 --S)* (1 - -S)]  

$* - - S  
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(The "Big Match" of Blackwell/Fergusson is precisely P~/2 ') As above we define the 

stopping time m and the payof fq  s at stage. 

1 # {m; i m = T, 1 <-Km <.n} which is the frequency of We also introduce 7.n = 

Top up to stage n. 

Then we have: 

Proposition 6 

[ Blackwell/Fergusson, Kohlberg]. 

V e > O, V 8 > O, 3 N s and r s strategy o f  PII  in P + such that for any a 
S 

Prob ~ (m ~< n ) E  ,rs ( qS  I m<~ n)<~ e V n  (15) 

P r o b e , r s ( m < n [ t n > ~ S + a ) > ~ l - e  V n > N  s (16) 

Using this result we shall prove 

Lemma 7 

PII can guarantee w (p). 

Proof 

The idea of the proof there is also similar to Sorin [1984], Propositon 26. 

Let p be e-optimal in (14). Then PII uses r s with probability d p (s). It follows from 

(13) that a best response of P1 is to increase his frequency, starting from 0, in order to 

achieve the greatest absorbing payoff, and then to decrease it if necessary, which gives 

(14). 

Let us start with p', 0/2 optimal in (14) and choose p to be a discrete "0 / 2 approxi- 

mation" of  ff as in Sorin [1984], Lemma 28, i.e. such that 

X 

p [ Y al ( t ) d p ( O + ( 1 - p ( x ) ) a 2  (x) + ] + (17) 
0 

y 
+ p [ f bl ( t ) d p ( t ) + ( 1 - - p ( y ) ) b 2  (y)+] ~ < w ( p ) +  0 

0 

for all x, y in [0, 1]. 

Let {s r : r = 0 . . . . .  R } be the finite support of p. We can assume by selecting a 

refinement if necessary that So = 0, s R = 1, and s r -- Sr. 1 < r/, where R is bounded by 

some R (0, ~7) uniformly in ft. 

We shall use the following notations. 

r 

TSr = 7r' P ({Sr}) = dPr'  GO P ({Sr}) = Pr'gsr =Nr" 
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Also let N = max N r. 

The strategy for PII is as follows: First choose r* E R according to the distribu- 

tion defined by Prob (r* = r) = dPr ,r  = 0 . . . . .  R -- 1 and Prob (r* = R )  = 1 -- 

- -  P R  -1" If  r* = 0, play Left at the first stage and define ]1o = 1. If  0 < r* < R play 

Right until stage Yr * -- 1, and Left at stage Yr *' where the stopping times Yr are defi- 

ned inductively by 

Y1 = min (m : ]m  = L } is induced by a and 71 ; 

Y2 = min {m :ira = L} is induced by (r and r l  up to stage Y1 -- i 

and then ~'2 ; 

Yr is induced by ~ 71 up to stage I11 - 1 . . . . .  Zr_ 1 up to stage Yr-1 - 1 

and then 7 r. 

Finally if r* = R ,  always play Right (i.e. YR =- + o~). 

We shall prove that V eo > 0 the average payoff  in game A for n large enough will 

be majorized uniformly for any strategy o A by a + eo where 

X 

a =  sup a ( x )  a n d a ( x ) = f  a l ( t ) d p ( t ) + ( 1 - - p ( x ) ) a 2 ( x )  +. (18) 
O ~ x < l  0 

Given n, o A and z we define 

Z r = m i n ( Y r ,  n +  l ) , r  = O , . . . , R  

and 

Xo =O, X r =  Zr- -Zr . l ,hence  Y~ X r = n  
r 

- 1 

t r = 1 {iZr = r} '  tr = ~r # {ira = T; Zr. 1 <~ m < Zr}. 

Now since the strategy of PII is independent of r*, up to stage Yr* we obtain 

R 

-A (o, r) = E (Z 1 X r [ d P o a l  ( t o ) +  . . + d P r _  l a ,  ( t r . 1 ) +  n T  n 

+ (1 --Pr-1 ~ (~)1)" 

(19) 



186 S. Sorin 

Let us first consider the term with a2 ( ' ) .  

i) Ifa22 > a , 2  witha2: >O, t h e n v ( A ) = O i m p l i e s a 2 1  <<,O, h e n c e n ~ A ( o , r )  

~< a (0) = a21 d P0 + (1 -- Po ) a22 by (13), and the result follows. 

i.i) Ira22 >a12 witha2: = 0, thena2 ( t r)~<0 =a2  (st.1)+ V r  

iii) If a22 ~< a12 we majorize the coefficient of a12 --a22 : 

E(X r ~r)=E (IXr<NX r -it)+ E (IXr>~NX r #).  

For the second term, since during these X r stages from Zr. 1 up to Z r - 1, PII  is using 

o r , it follows from (16) that 

E ( X  r " [ r ) < N + E ( X r ) ( S  r + 5 + e ) < . N + E ( X r ) ( S r _  1 + 6 + vl)+ en .  

Coming back to (19) and using (13) we obtain in cases ii) and iii) 

R 
n g ~ ( a , r ) < E ( Z  X r ,~ ( s , . _ I ) )+R .NL  + n L ( ~  + 7 7 ) + R L e n + L Z ~  

1 

(20) 

with 

R 

A = E [ ~  X r (d Po (So -- to) + . . .  + d Pr-1 (Sr-1 -- tr-1))]" 

Hence 

R R 

A<~ ~ d P r . l E  [ Y~ X~(Sr . l - - t r_ l ) ] .  
i=1 ~=r 

Note that Sr_ 1 - tr. 1 = - (1 - -  S r.1) t r. 1 + S r. 1 (1 -- t r.1) is the absorbing payoff in  

R y + 
Fsr.1 and Z X~ = (n + 1 -- r) is the number of stages during which at_ 1 induces 

s  

such an absorbing payoff. It follows then from (1 5) that 

R 

E ( ~, X~ (Sr_l -- tr-1)) <~ e n. 
s 

Substituting in (20) we obtain 

n ~ A ( a , r ) < n  a + R N L  + n L  (6 + rl) + R L  e n  + L  on.  

Obviously, a same result holds for 3' n.-B 
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e o eo 

Given Co, we take 0 = ~--. Then ~7 = ~-~--, which determines some R (0, ~). We de- 

e e~ This defines N s, hence N. It follows fine r s according to 6 = ~ and e = 8 L (R + 1)" 

then that n ~> 8 R N___~L implies "~n (t~, ~') ~< W 09) q- e o . Q.E.D. 
eo 

This completes the proof in the first case. 

For the other cases it is more convenient to work in the space of vector payoffs 

induced by A and B, and to determine the sets that PII can approach [see Blackwell, 

1956]. Some definitions follow. 

PII can approach (x, y) E R 2 if, V'e > 0, 3 r and 3 N such that, V o, V n >~ N, 

+ e  

(o, < y  + e 

where ~-A is the average expected payoff in game A. 

DII is the set of vector payoffs thatPII can approach, and note that DII is closed, 

convex, and DII = DII + (R+) 2 . 

Given an half space D (p, a) = (x, y ;p x + p '  y >~ a}, p E [0, 1], o~ E R, we say 

that P! can force D (p, a) if 

V T, V e, 3 aand ~Nsuch thatforalln>~ N p~n (a,r) + b TB( a , r ) > ~ a - - e .  

Note that if P! can force D (p, f (p)), he can also force D (p, Cavf(p)). 

e 
In fact, le tp t  andp2 be such that Cavf (p) ~< X f ( p l )  + (1 -- X)f(p~) +~-  and 

Xpl + (1  - X ) p 2  = 1. 

Given r and ~-note ~1 for o P l,  f (P2), r, as defined above and likewise for a2. 

Let cr A be @ with probability ~----, @ otherwise, and let o B, be o B with probability 

Xpl oB otherwise. Then a forces D (p, Cavf(p)).  b '  

Denote by D I the intersection of the sets D (p, a) that PI can force. The existence 

of v is now equivalent to the fact that D I = DH, denoted by D, and then 

~ ( p ) =  min { p x + ( 1 - - p ) y } .  
(x,y)eD 
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Redefining the games if  necessary we can assume 

(I) aal >a2a  a n d b l l  <b21 

(and since v (A) = v (B) = 0 we have all  ~> 0 and b21 ~> 0). 

We introduce some notation 

T* = (a, , ,  b,1), B* = (a l, b l) 

+ + 

X = (a+2,0), Y = (0, b+:), Z = (a=2,615). 

If  P1 and P2 are two points in R 2 on a line p x + (1 -- p)  y = ~, p E [0, 1 ], then 

/ 4 ( e l , P : )  isD (p, 

Finally, H x = { (x, y ) :  x ~> 0 } and similarly for Hy. 

Second ease 

We now assume 

a22, max (b12 b22, 0) = b+2 (II) max (a ,~ ,a22,0)  = + 

(III) ZEH(T*,B*).  

Lemma 8 

PI can force H (T*, Y),H (B*,X)and H (B*, T*). 

Proof 

1) We show first that PI can force H (T*, Y) (hence H (B*, X') by symmetry).  Given r, 

let 1"--- 1"op and defme 

0 = Prob T,~ (m < + =).  

By playing always T, or by switching after a large number of  stages to an optimal stra- 

tegy in the corresponding game, PI will reach 

0 a l ,  + (1 - 0) max (a,2, v (A)) in game A 

0 b~a + (1 - 0) max (b12, v (B)) in game B. 

and this vector payoff  dominates weakly 0 T* + (1 -- 0) X 

2) Now let us introduce oo and No such that 

Pr~ (m ~< No) ~> sup Probo, ~ (m < + = )  -- e. 
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Then P1 uses o0 up to stage No, and then plays Bottom or optimally in game A (and 

symmetrically for B). It follows that for large enough n that the vector payoff will be 

at least some 

0 I f * + ( 1 - - 0 ) Z + 3 e L  

where I4'* is an absorbing payoff on the segment [B*, T*]. Now (III) implies the re- 

sult. Q.E.D. 

We are now in position to state 

Proposition 9 

I f  (I), (II), (III) hold, then 

D I = DII = D = I-I x ~ Hy ~ H ( B * ,  r * )  71H(T*,  Y') (~H(B* ,  X).  

Proof 

Since v (A) = v (B) = 0, we obviously have D I C H x ~H y ,  hence D I C D by 

Lemma 9. 

Hence it remains to prove D C DII , and for this it is sufficient to show that the ex- 

treme points of the (strict) Pareto boundary D of D belongs to DII. 

Let us denote by.~ = 0 S, 0) and Y = (0,y-) the points on the axes of/) ,  and let us 

first prove that PII can approach X and Y. 

Let r B an r~ B-optimal strategy for PII in the infinitely repeated game with payoff 

matrix B satisfying 

n/>  N B -B  (o, 7 n 7" B) ~< r/B (21) 

V n ProbrB (m = n) ~</3 (22) 

where/3 is a parameter to be specified later. 

We shall exhibit a strategy for PI1 which approachesX. It is enough to consider the 

case where Pluses  a pure strategy, hence a sequence of moves { i l , . . . ,  i n , . . .  ). We 

shall still write h n for the n-stage history corresponding to these moves. (Note that 

here h n does not include the moves of Pll.) 

We now introduce 

p~ = PrObrB (m < n I H, n) 

t* = E r ( t  m Im<~n, Hn)with  tg = 1 (ik=Yop}. 
n ~ 
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Hence Pn is the "absorbing" probability up to stage n and t n is the corresponding 

"absorbing" frequency. 

The strategy r is as follows. 

First Plluses r (.~) which is: 

play r B at stage n + 1 if either 

*~< 
Pn 13 (*) 

o r  

(**) bl (tn~) >~ -- ill, 
d 

-- ff (*) and (**) fail, play Left with probability t3 if 

(t*) + (1 - p ~ )  37> 0. (***) p bl . 

If at some stage 01 + 1, (*), (**) and (***) fail, PIIuses r (~r) in the game starting 

at that stage, which is defined symmetrically (starting with rA, with parameters r? A 

and fl). 

Let us denote by 01,0a + 0 2 , . . . ,  the "reversing times" deffmed by 

on (1 . . . .  ,01} 

on (01 + 1 . . . . .  01 + 0 2 )  

on (01 + 0 2 + 1  . . . .  , 0 1 + 0 2 + 0 3 }  

PII plays r (3f) 

PII plays r (Y) 

PII plays r (.X), and so on, 

and let K1, K 2 , . . . ,  be the corresponding blocks of stages. 

On each block K i we define the exceptional stages to be such that (*) and (**) fail 

and (***) holds. It follows then from the definitions, that there is at most a finite num- 

ber N (o0 or N (fl) of such stages. 

Given e > 0, we want to show that PI1 can approach X within e. We obviously can 

assume ~ > 0 otherwise PII will approach x + ~- within , and similarly .v > 0. 

Now this implies that for (***) and (**) to fail the absorbing probability has to be 

greater than some PB > 0 (resp. P.4)" It follows that after a finite number of "rever- 

sing times", the total absorbing probability M (e) will be greater than 1 --3-~ hence the 

e 

remaining payoff will be bounded by 3" 
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Thus we denote by M the f'mite number of blocks, and r will approach)( within 

2e  
Let 

3" 

6 e 6 

rlA = r T B = ~ , ( 3 = ~ P B ,  a = ~ p A  

No = max (N (~), N ((3)), N1 = max (N A , N B) and N = No + NI . 

For each block of small length (i.e. less than N) we majorize the payoff per stage by L. 

For each other block K i we majorize the payoffs corresponding to the exceptional 

stage, and we denote by Pi the average vector payoff of the ~. other stages (i.e. where 

PIIis using z A or rB)" 

Then we obtain 

n ~ n ( a , r ) < . M N L +  ~ Xip i (23) 
i ~ M  

where ~n is the vector payoff (~ A , 7Bn) andM.NL is written f o r M N L  (1, 1). Since 

X i +MN>~ n it is enough to prove 

Oi <. ~ + e__ (24) 
3 

and from (23) we obtain for large enough n 

(o, 
3 '  

Now we write, with pi , i , =Po.andt  =to. 
! l 

(a l  ( t l )~ --pi-2)pi- lIaa ( t i ' l )1  
Pi =P 1 ba ( t i ) ] + . . . + ( 1 - - p I ) ( 1 - - p 2 ) . . . ( 1  \ b l  (ti-1)] 

+ (1 - - p ' ) . . . ( 1  - - p i ' l ) g  i 

where the first terms correspond to the absorbing payoffs obtained during the prece- 

ding blocks, and ~ is the new average payoff on block K i during the regular stages. 

Assume i odd. Then we shall first prove 

e 
~.~< ~ ' + ~  (25) 
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and then that (25) implies 

(ti-1) I+ e 

hence (24) by induction. 

Let us now majorize gi' 

Since PII is using r B and the number of stages is greater than N B, the payoff in 

game B is at most 

e 

g~< n8 = ~- 

As for the payoff in game A, we have at the last regular stage: either 

(*) p* <~ (3, hence 

~A ~< (30 L + (1 -- (30) max (a12, a~_:) for some (30 ~< (3 

~< x + (3 L (using III) 

~< Y +/3 L by definition of X 

< ~ +  e__ 
6 

o r  

~L 
(**) bl ( t * ) ) - - - f -  andthen : 

~<<.p* (xo + ~L) + (1 -p*)x 

where (xo, O) is on [T*, B*], hence by definition of)~ 

~ < ~ + ~ / ~ < ~ +  e_ 
6 

This proves (25). 

As for (26), first note that (***) implies, by definition of Oi. 1 , that 

pi-1 al (t i l )  + (1 _pi-1) ~ <~ O. 

(26) 
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Hence it remains to majorize the second component. Denoting the stage Oi. 1 -- 1 by k, 

there are three cases: 

-- i fp~  ~< a, then p i-1 ~< 2 a, thus p i-1 b 1 (ti 'l) <~ 2 ~ L 

-- ifaa (tfc) t> -- ~ ,  then bl (tfc) ~<Y0 + a L  

where (O,yo) is on the line B* X. It follows that pi-1 bl (t i '1) <Yo + 2 aL. 

-- finally, ifp/~ a l (t*)k + (1 -- p/~) Y > O, this implies p/~ b l (t~) < Yo 

hencep i-1 bl (ti'l)<~ yo + ~L. 

In both cases we obtain 

e < y +  e pi'l  bl ( t i ' l )+(1--pi ' l ) f fBi  <~Y+ 2 a L  + ( 1 - - P A ) -  ff -~ 

which gives (26) and achieves the proof that PII can approach J~ (or Y). 

It remains to show the following 

Lernma 10 

Assume that PII can approach U and V with 

(i) Uand V~H( B* ,  T*),ul <vl ,  u2 >v2. 

(ii) UEH(B*,  V), VEH(T* ,  U). 

Then PII can approach W which is the intersection o f  V B* and U T*. 

Proof 

Since DII is closed and convex, we can define U (Xl) and v (X2) where 

U ()t) = )t T* + (1 -- )t) U 

g() t )  = )tB* + (1 -- )t) g 

and )tl = max {)t; U(X) EDII}; )t2 = max ()t; V (X) EDII  ). If W ~iDII we can rede- 

fine U t o  be U() t l )  and V to  be V()t2), and i), ii) still hold. 

Introduce )to such that ul  ()to) = va ()to), and note that )to > O. 

PII uses the following strategy r: play Left with probability )to at stage 1 ; from stage 

2 on play according to r v (resp. rg) if il = Top (resp. Bottom), where r v (resp. r v )  

approach U (resp. l O. The vector payoff  that r approaches is now: 
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if i l = Top, ~o T* + (1 -- Xo) U = U (ko) 

f f i l  = Bottom, Xo B* + (1 -- Xo) V =  V(~o). 

But by the choice of ~-o, U (~o) dominates V (~-o) or reciprocally, hence PII can appro- 

ach either U (~o) or V (Xo), contradicting the definition of U or V. Q.E.D. 

It follows that Pl i  can approach the extreme points o f /~  and this finishes the proof  

of Proposition 9. Q.E.D. 

Third case 

Here we assume (I), (II) and (III ') :  Z EtH (T*, B*). 

We first remark that PII can approach Z by l~laying Right and (see Lemma 8) that 

PI can force a payoff 0 W* + (1 -- 0) Z with Ir E [B*, T*]. It follows that i f Z  = 

= (0, 0) thenD!  = D I I  = (R+) 2 and obviously ~-= 0. 

Hence we can assume z~ > 0. Thus z~ = a22 and we shall determine the points 

(k, r (k)), k E [0, a22 ] that PII can approach. (Obviously the analysis is similar if 

z2 > 0, for the points (~ (k), k), k E [0, b12 ].) Given k E [a ~2, a22], let t k E [0, 1] be 

such that a2 (tk) = k and defineS k = t k T* + (1 - tk)B*.  

Let us now introduce r on [a+2, a22 ] such that, if C k = (k, ~ (k)), the line S k Ckis 

tangent to the graph g (~0) of ~0 at C k and ~ (a22) = b ~'2 (i.e. Z E g (~o)). Formally we 

obtain for the line S k C k 

- ( k )  = X ( k )  ( x l  - k ) .  

Thus 

( k )  = ( k )  

which gives 

bll  a2~ - b 2 1  a12 bll  - b 2 1  
(k) = + k + K k 

a 2 2  - -  a 12 a l l  - -  a 2 1  

a 2 2  - -  a 12 

a l l  - l - a 2 2 - - a 1 2 - - a 2 1  

withK such that ~o (a~2) = b+2. 

Now if a12 > 0, then al l  = 0, a~d we define g (r on [0, a12] to be the segment T* 

Ca l . 

We first prove the following 

Lemma 11 

PII can approach (k, ~o (k)), V k E [0, a22]. 
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Proof 

Let us assume k ~ [a~2, a22 ]. 

The idea of the proof is the foUowing: we shall define a f'mite sequence of vector 

payoffs on g (~), C (r), r = 0 , . . . ,  R, starting from C (0) = C k and reaching C (R) = Z. 

The strategy for PI1 will be such that if the absorbing probability is small the non 

absorbing payoff approaches C (0). If not, the absorbing payoff will be such that from 

some stage n, it will be enough for PI1 to approach C (1), and so on. Since PII can ap- 

proach C (R) = Z, the induction will be complete. 

Given R large in N we introduce 

r 

k r = k +  ~(a22 - k ) , r =  0 , . . .  ,R  

and we denote t k by x r, S k by S (r), and C k by C (r). 
r r r 

Let ~'r be an a-optimal strategy forPII in the game 

(1 - -Xr)*- - (1  --Xr) ] 

J _ * X r X r 

with Proba,rr (m = n) ~< or, V o, V n; and l e tN r be such that 

Eo,rr(~ n Im>~n)<~ct, Yn>~Nr,  Vo.  

We also def'me, as in the second case, 

Pn* = Prob (m ~< n) and t* = E [i m [ m <. n]. 

Now PII starts by playing r0 as long as 

[ (  1/] , 
t * - -  - - ~ L + ( 1  Pn)Cl (1 )>k .  (*) p.* a l  . 

ff (*) fails for the first time after stage 01, PII uses r l  in order to approach C (1), in 

the game starting at stage 01 + 1, conditionally on m > Oa. Hence he will play r l  as 

long as 

I (  1)] . Pn * aa t n *--  --czL + ( 1 - - P n ) C l  ( 2 ) > k l .  

and so on until occasionally reaching OR, and then PII will play Right and approach Z. 
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Thus it is enough to prove thatPII approaches C (0) within e on the first block (i.e. 

from stage 1 to 0t), if 01 is large enough, and that, if PII approaches C (1)within e on 

the second block conditionally on m > 01, its total vector payoff on this block will be 

C (0) within e. 

Assume then that (*) holds. Since PII is using to, its average payoff in game A is at 

most k + L a. 

As for the absorbing payoff we have 

p* (t* --Xo) <<- a 
n ~ l , l  

hence 

1) 
Pn 1 t n --aL-.~pn sl (1). 

Since C (0) E H  (S (I)  C (1)) (*) implies 

m , gr 

Pn s2 ( 1 ) + (1  Pn)C2 (1)~<~(k). 

Now the non absorbing payoffin game B is at most z2 ~< c2 (1), thus 

L 
7nB<P~bl (tn*) + (1 --p~)c2 (1)~<~(k)+ a L D  + -~. 

Assume now that PII approaches'C (1) within e, in the second block, conditionally on 

m > 01. Let p = p~ and define S to be the absorbing vector payoff corresponding to 
~i / 1 \  

t~ l=t .  N o w i f M i s o n [ B * T * ] w i t h p m l = p a l  I t - - ~ ) - a L t h e n l p r n l  + 

+ (1 - p ) c  1 - -k  [<  a L. Now p m 1 < P s l (1) implies as above [p m 2 + (1 - p ) c 2  - 

- ~: (k) [ < o~ L d. It follows that 

L 
ps~ +(1  --p)(cl + e ) < k  + 2 a L  +p ~ + ( 1  - -p)e  

L + (1 - p )  e. PS2 +(1  --p)(c~ +e)<~o(k)+ 2 a L d + p  -~ 

Thus given e we first choose R > 2__.L This gives a minorant q for the Pn* where (*) 
e 

fails (for all r) and we take a < e q 
4 L d "  

If k E [0, aa2 ] with a 12 > 0, then PII will play ~, where a is small, in order to reach 

an absorbing payoff S*on [B* T*] satisfying 

Pn sl + (1 --Pn)a12 --k  I < a L  

and then he will approach C a 12 as above. Q.E.D. 
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Let A = { (x, y )  I (x, y)  ~ M  + (R+)2 for some M E g  (~o) u g (~)}. 

Thus it remains to prove 

Lemma 12 

D I = A. 
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Proof  

We shall prove that PI can force H (S h Ch) , ~1 C h E g  (~). (A similar proof works 

fo rg  (~))  and we define p,  a to be such tha tD (p, a) = H  (S h Ch). 

Given z, e and R large in N, we define inductively, as in the first case 

ao = Top 

P* (0) = Prob ao ,z (m < + oo) 

and no and P (0) with 

P (0) = Probao,7 (m < no) > P *  (0) -- e. 

Now given (ar.1, nr. 1) we introduce 

e r = play according to or_ 1 up to stage nr.1, and then 1 - - ~ ,  _~ 

P* (r) = Prob%, r (m < + oo) 

and finally n r >~ nr. 1 and P (r) such that 

P (r) = Prob e r ( m  <<. n ) > P *  (r) - e. 
r ~  ~ r 

Introducing # E Q with 

it follows, as in the first case, that P I  can obtain for n large enough 

X ^ 

CA (O, x) = f al  (t) d P (t) + (1 -- P (x)) a2 (x), where a i (t) = a i (t) 
0 

in game A, up to e, by playing the relevant a r. 

(27) 
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Note also that by playing o R up to some large stage and then as in Lemma 8.2,P/ 

can obtain, up tosome e, a vector payoff 

where 

W=p(1)U+(1--p  (1)) V 

f al ( t )dp(t  

p(1)  U =  

b l (t) d o ( t ) l  

and 

(28) 

VEAo = { a Z +  (1 - - cOS;aE(O,  1],SE[T*B*]). 

Hence P/can  force the following 

inf [ p m a x {  sup r + ( 1 - - p ( 1 ) ) V l )  
o~Q O<x<l 

+ / 3 ' m a x (  sup r 
0<y<l  

Note first that W E A o. Hence if wl ~> z l ,  then W E D (p, a). So it is enough to prove 

that for any k E [0, a22] 

~o A (,o,x)<k V x E [ 0 , 1 ]  (29) 

and 

O(1)ul  + ( 1 - - p l ) v l < - k  (30) 

which implies 

p (1)u2 + ( 1 - - p l ) V 2  ~> ~; (k). (31) 

i) Assume k E [a ~2, a22 ]. 

We shall introduce a distribution p (and a corresponding 1r satisfying ~2 = ~0 (k), 

and we shall show first when V = Z, and then for V :/: Z, that w2 >/if2, hence the re- 

sult will follow. 

So let a12 -- a11 

-fi (t)= l + K ( t + all + a22al~ --all--a12 --a~l ) a11+ a 22 --a12 --a~l 



"Big Match" with Lack of Information on One Side 199 

where K is such that p ( tk )  = 0. It is now easy to see that 

tpA(-P,x)=k Vx E [;k, 1 ] (32) 

tp A ('p,x)<<,k V x E [ 0 , 1 ]  

p (1) ~2 + (1 --p (1))z2 = ~p (k). 

Let us prove that ~ is the best that PII can do. 

Assume first that V = Z : 

- i fp  (1) ~> p(1), then W belongs t o l l  (d) (by (III')), where ~r is the parallel to 

B* T* through W. Now (30) and (32) imply that w2 >/w2. 

- if p (1) < ~ (1), (29) and (32) imply then that p (x) >/~ (x) for x in some neigh- 

bourhood of tk" (Note that the non absorbing payoff is greater than k i fx > tk') 

Let Xo be the last point where 

p (x) = p (x) with p > p on [0, x]. 

By (29) and (32) we obtain 

X0 ^ 

f al (t) (dp (t) -- d p (t)) ~< 0. 
0 

Thus integrating by parts 

X o  

(all--a12) f 
0 

(p (t) - ~ (t) d t) ~< 0 

which is a contradiction if p ~ p. 

Next assume V r Z. 

Using (29), we can assume v~ > z l  (otherwise v2 ~> z2). We add some mass to p at 

point 1 in order to get ~ with 

(1) ~'~ + ~ (1) -- fi (1)) a2~ + (1 -- ,~ (1)) v~ = k. 

By (32) it follows that the first component of ~ (1) B* + (1 -- ~ (1)) g is smaller than 

the first component of ~ (1) B* + (1 -- ~ (1)) Z. Since VE A0, we have the reverse 

the order on the second component, hence (~, Z) is better than (~', 1I) forPIL 
We now compare ~" and p. 
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On the first component we have 

~'(1) u'l + (1 -- ~'(1)) vl =k>~p (1 )u l  + (1 - - p  (1)) vl 

and we shall prove that ~ (1) ~< p (1), hence as above w~ t> ~;2. Otherwise we have 

~ (1) ~', >p (1)ul 

but 

~ (1 ) f f ,  = p ( 1 ) u ,  § ~ ( 1 ) - -  p ( 1 ) ) a 2 ,  

< ,o (1) u'l + (P ( 1 ) -  .o (1))a2, ~< P ( 1 ) u ,  

since as above p ~> ~ and al (.) is decreasing. 

This completes the proof for case i). 

ii) Assume a12 > O a n d k E [ O ,  a12]. 

Let ~. be such that (1 - ?,)a 12 = k. Then Pk is defined to be ~. ~ o + (1 - ?0 Pa 12' 

5 o being the Dirac mass at 0 and Pal2 corresponding to the p defined in i) for k = a12. 

It is straightforward to check that the analogue to (32) holds, and the proof  is simi- 

lar to i). Q.E.D. 

Fourth ease 

It remains to study the games for which (I) holds and (II) fails. Note that 

a12 > 0 and b22 > 0 imply all  = 0 and b21 = 0 

hence PI1 can approach (0, 0) by playing Left and F = 0. Thus we can restrict ourselves 

to the following games. 

all = 0 > a21,a12 > a +2 

b21 > b ~l,b12 >>- b~2. 

The analysis is roughly the same as in the third case, the role of Z now being played 

by a point U on the x-axis. 

Let t =  max ( t  I bl (t) > 0)/~ 1 (hence t =  1 i fb l l  > 0) and let U =  (a2 (t), 0). 

Lemma 13 

1>11 can approach U and cannot expect less. 
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Proof 

I fP I I  desires a payoff 0 within 6 2 in game B, then the absorbing probability when 

PI plays ( t  -- c) has to be less than someM e. Hence the payoff in game A will be at 

least a~ (t)  within Ke where K depends on the ai/, bi/. 

Now i fPI I  uses an e-optimal strategy in game B blocking at 7, his non absorbing 

payoff in game A will be at most as (7) + e L and his absorbing payoff is negative, 

hence the result follows. Q.E.D. 

Now for k E [a~:, aa (7)] we define t k with a2 (t k)  = k and S k to be the correspon- 

ding absorbing payoff. As in the third case ~ (k) is defined such that if C k = (k, ~ (k)) 

then S k C k is tangent at C k to be graph of ~. It is then easy to see that we have the 

analogue of Lemmas 11 and 12. 

Finally for k ~ [0, a+2 ] it follows, like in case three that, denoting the point (a22, 

(a22)) by C, if a22 > 0, the graph of ~ is the line B* C This determines completely 

the Pareto boundary of D, hence 7. 

It is straightforward to check that, due to the symmetry of the games, these four ca- 

ses exhaust all the possibilities. Hence this complete the proof of Theorem 3. 

Q.E.D. 

5 Examples 

[1,:1 1) A =  8 =  

O* 

0* 0 

0* 1 

This game was studied in Sorin [1980], and 

v_ (p) = lim v n (p) = Cav u (p) = u (p) = p (1 --p).  

As for the minmax we have (see the first case) 

~ ( p ) =  inf sup 
peQ te [0,1] 

1 
(p f ( 1 - s ) d p ( s ) + ( 1 - - p ) t ( 1 - - p ( t ) ) }  

0 

= p (1 -- exp (1 -- (1 -- p) / p)). 

2) A =  8 =  

0* 1 

This is in the second case. 

o, iI 
1" 
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The extreme points of D on its Pareto boundary are 

Y = (1/2, 1) (play optimally in gameA) 

X = (1, 1/2) (play optimally in game B) 

U = ( 2 ,  2 )  intersection of B*Xand T* Y 

PIIplays(1, 2) once and thenapproachesX(resp. Y)ifi~ = B (resp. T). Inthisex- 

1 
ample, it can be shown, for p = 2 '  that by using only a "mixture of Big Match strate- 

gies" as in the first case, PII cannot expect less than x/)--- 1. 

[ 1" 0 

3) A = |  

/ 0* 1 

0 ~ 

B =  

1" 

3 

(second case) 

0 

3 1 3 

The strategy for PII to approach U can be described by the following diagram 

(12/13) 

(I/13) L 

R 

T 
.approach X 

~ 1 / 6 )  L 

(5/6) R ~  T 

~ ~approach X 

~ ( 3 / 1 0 )  L (7/10) :~ 
approach X 

approach y 

Abb. 
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[ 8* - 2  3* 2 

4) A = B = (case 3) 

- 4 *  1 6* - 4  

3 1 k l / 5  
For k E [0, 1 ] , C k = ( k , ~ o ( k ) ) w i t h r  ~ . 

4 1 X 
For h E [0, 2], C x = (t~ (X), X) with ~' (X) = 4 -- -~ X-- -~ -~ 
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5) A =  

0* 1 

- 1 "  0 i 
- l *  1 1 B = (case 4) 

1" - I  

k-1/2 1 
For k E [0, -~ ,, C k = (k, ~o (k)) with ~o (k) = - 1 - 2 k + 2 e 

6) A =  

I 0* 2 

- 1 "  1 

B =  

1" 0 

2* 0 

k 

For k E [0, 2], C~ = (k, ~o (k)) with ~o (k) = (1 -- k) + e 2 

and r is linear on [0," 1] with C k on [B*, C1 ]. 

on [1, 2] 

6 Concluding Remarks 

1) We proved the existence of lim v n , _.v and ~- for the class of games under conside- 

ration. This results also hold for games with a lack of information, stochastic games, 

and the class studied in Sorin [ t984]. 

2) However s and v-may be different (see example 1), hence G may have no va- 

lue, which is neither the case for stochastic games nor for games with a lack of infor- 

mation on one side. 

3) Moreover v-may be a transcendental function (i.e. given a game with parameters 

in Q (or algebraic) v(p)  may be a transcendental number) which is not the case for 

stochastic games or games with a lack of information. 

4) Note that if the results are similar to those in Sorin [ 1984] the tools used seem to 

be necessarily rather different. See Example 2. 

5) As a consequence of Remark 3, Part 3 we know that lim v n and lirn v x exist and 

are equal. This is the case for all zero-sum games where lim v n is known to exist. An open 
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problem is to check whether this equality can be obtained directly. 

6) As in Sorin [ 1984] we proved here that lim v n is equal to the Maxrnin. It is  con- 

jectured that  this proper ty  holds for all stochastic games with lack of  information on 

one side. (This would be, in particular, a consequence of the extension of  Mertens- 

Neyman's Theorem [1981] to games with compact  state spaces.) 

7) In a forthcoming paper [Sorin, 1984] we show how the tools introduced here can 

be used to compute the minmax and the maxmin of  a game with lack of  information 

on both sides, and state dependent  signalling matrices. 
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