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“Big Match” with Lack of Information
on One Side (Part II)

By Sylvain Sorin, Strasbourg'

Abstract: This is the second paper on a class of stochastic games with incomplete information. As
in Sorin [1984] we prove the existence of the asymptotic value (lim vn) of the maxim and of the

minmax although the infinite value may not exist. Nevertheless the results and the tools used are
rather different from the previous case.

1 Introduction
As in the previous paper [Sorin, 1984] we consider a two-person zero-sum infini-

tely repeated game with incomplete information and absorbing states.
We are given two states of nature, hence two payoff matrices

at;, ay, bfi  bn
A= and B =
ax  da,, b% by,

with the left column absorbing (i.e. once any entry with a star (*) is reached, all
payoffs in the future will be equal to that entry. See Blackwell/Ferguson, and Kohi-
berg). Now one of these two matrices is chosen once and for all by the referee (with
probability p for A) and this choice is told to player I. The game is then played in sta-
ges. After each stage n the players are told the previous moves i,,], by the referee, but

the current payoff q,, is not stated. The description of the game, including this sen-

tence, is common knowledge. A player’s (behavioral) strategy is the choice of a proba-
bility over his set of moves, at each stage, conditional on his information on the state
and on the history (i.e. the sequence of moves) up to that stage.

We shall denote by H, the set of m-stage histories. Given the state such a history
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determines a payoff at stage m, 4,,, and an average payoff Jm which is the Cesaro
mean of the payoffs up to stage m. Its expectation with respect to p, o and 7 (strate-
gies of the players) is denoted by ';m .Y,y is the expected payoff at stage m.

v, (p) is the value of the 7 repeated game G, (p) with payoff v "

In order to study G, (p) we recall the following definitions [Mertens/Zamir].

2 (p) is the maxmin of G (p) if
i) Vve>0,3 gand 3 N such that

‘7,, (06,)=2y(p)—eforallTandalln >N

ii) ve>0,v 0,3 7and IN with

'Yn (0, 7)<y () +eassoonasn=N,

We shall refer to these conditions by saying that player / (PI) can guarantee v, (i), and
that he cannot expect more, (ii).
The minmax  is defined in a dual way. G_ (p) has a value v_ iff 7 (p) = ¥ (p).

The “Big Match” of Blackwell and Ferguson is G_ (0), and they proved the existence
ofv_.

In Sorin [1984] the payoff matrices have the first row absorbing and the existence
of limv,, v and v is proved. Nevertheless there are games without a value. For the pre-

sent class we obtain similar results, but the tools used are rather different. The main
difficulty being for the minmax where PII faces a “‘stochastic game with vector pay-
offs” [Blackwell].

2 Maxmin
IfA, (p),n € NU {+ o}, is the repeated game where none of the players is infor-
med, we recall [Kohlberg] that its value u,, (p) exists and is constant w.r.t. n. This va-

lue will be denoted by u.

H ,, is the o-field induced by H, on H_, and p, is the posterior induced by o, i..
p, =Prob_(4 {H, ;)

If f is a real function on {0, 1], Cav f is the smallest concave function greater than
fon[0,1].

Finally we introduce some notations.

L is the maximum absolute value of the payoff entries. If « is a probability distri-

bution on the moves, & denotes the associated strategy identically independently
distributed. If x € [0, 1], x denotes 1 —x.
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Proposition 1
v(p)existsand vy (p) = Cavu (p) on [0, 1].

Proof

1) Let us first prove that PI can guarantee Cav u (p). A general result for games with in-
complete information states that if P/ can guarantee some payoff f (p) in G_ (p) he
can also guarantee Cav f (p) [see e.g. Sorin, 1979, 2.17}. Since PI can guarantee u (p)
by playing non separating, i.e., by ignoring his information, the result follows.

2) It remains to show that Pl cannot expect more. The idea of the proof is now stan-
dard [see e.g. Mertens/Zamir, p. 205]: given PI's strategy, PII can compute the poste-
riors p, and, using the convergence of this martingale, can determine a stage V after

which PI is essentially playing without using his information. From this stage on, PIT
can obtain u (p,,) as a payoff, hence his expected average payoff will be at most

Cavu (p). N
So let o be a strategy for PI and denote by R the strategy of PII defined by always

playing Right. Given ¢ and R , the sequence {p, } is a martingale in [0, 1], hence its

quadratic variation is bounded. It follows that, given € > 0, we can define NV such that

8

N
Eo,ﬁ z (pn+1_pn)2<E0,§ nEl (pn+1—pn)2+e (1)

Let us define
g, (0,R)=E (g, |H, dand 5=E(a|H ).

Then we have [e.g. see Sorin [1979], 2.11]

|8, @, R) =8, G, R)I<2LE, (1D, =5, I, ). )
Moreover since o is non separating, there exists a pure strategy 7* of PII such that

8, (0,7*)<u(p,) 3

We can now describe the strategy 7 for P/ in G__ :

— play according to R up to stage V;

— from stage N + 1 on, play according to 7*.

In order to compute the payoff induced by o and 7, we first define the stopping
time X by:

N+X=min[{m;j, = Left} VU {+}] and X; =X Ak
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Note that X, isH . | — measurable.

It follows then from (2) and (3) that
X

N+ Yyp, 0, <NL +E""’{mz«1 U@y )T =X DUy, x )]{
= S

Xn

+ zé‘gxr,'r { m%'l §1§N*§m+i mpNi'm | +(R“Xa}§p}f+xn+1 fp}%*-?-xn i}‘

But we have
er Xﬂ
E [mzl “(l’N+m)+("'Xn)”(prXn)}QEa,r {m=21 Cavii Prry )

o7

+(n—X,)Cavu (pN+Xn)}

X?‘l!

1
<nE, Caovu| o Z Pyim T O X)Pyig)

X

1 n
LaCavu ;E"*T(mgi pN+m+(”“Xn)pN+Xﬂ) (5)

(by Jensen’s inequality).
3
Define, for 1 <k <n, ¥, = mi:} Pyam T U””Xk)pszk'

Write

Eo,r er :EG’,'Y <1‘X’" <w Yn}+Es,r (31’" =p Yn}'

Buton X, <n, X, = X, 4, hence Y, =Y, 1s%0 that

Ea,r (1'}(“ <n Yn) ::Eaﬂ (IXn <n Yn~1 } ®
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Furthermore on X, =n, we have X, =n— 1, hence (with EU’T =E)

EQly p¥,) =EGEly o, Y, 1H )

n-1
E g (2, Pam * E @y | H 1)

n-1

=F [l'Xn=n (mz:l Pyim +pN+n-1 )]

Xn-l
=FE[l,_ (% D0
[ X =n (m=1 Prem pN*Xn.l)]

=E(ly _, Vpp): (7

1t follows from (6) and (7) that
E(Y)=E(Y, )=EX1)=E@Mmpy,,)=np. (8)
As for the last term in the right member of (4) we obtain

X

n

M=E,, (m§1 Pyim+1 “Pyem! T (0= X)) ’Pn+xn+1 T P+x, D

n
=Ec,r(mz=;1 Dysm+1 "Prsm | Zm)

0 ifm >Xn
wichm= n+1—Xn ifm =Xn
1 ifm <X .

n
We obviously have 21 zZ, =n
m=

Now, note that the laws of the Z n 4T€ the same under 7 and R since 7 and R coin-
cide up to stage X — 1, and moreover the posteriors p Ni+m A4 Dy, 4 are the same
under 7and R on Z m T 0. It follows that

n
M=Ea’§( z

m=1 |pN+m+1 T Pynim lZm)
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Using the Cauchy—Schwartz inequality and (1) we now obtain

M<E, % [( 2 ~Dyen) ( Z Z2)L2
= O',R [(m=1(pN+m+1 pN+m) (m=1 m)) ]

n
~ . 2 ~
<I|E; R mzl ®ynem+1 " Pyem)” Eg R

< e n. &)
From (4), (5), (8) and (9) we finally get

(n+N)Y, (0, )< NL+nCavu (p)+2Ln+/e.

Thus n > N implies

Ve

Ypan (0, 1)< Cavu (p) + 4 L+/e. Q.E.D.

Remark 1
It is easy to see that the above proof remains true for any finite sets X, 7, J, as long

as all of the matrices A, k € K, are of the following type: the first column is absor-
bing and there is no other absorbing payoffs. The only modification is in the definition

of R.LetT= {7|Vm,Vh 7(h,,.; ) is supported by J — {1} }. Then choose 7 and

m-1°
N such that
o0 N
Sup Ea 4 ? (pn+1 —pn)z <Ecr ;' ? (pn+1 _—pn)2 te
reT ' op=1 ? n=1
3 Lim v,

Proposition 2
im v, (p)exists and equals Cavu (p) on [0, 1].

n—oo

Proof
1) We know thatv, (p) > u, (p) =u (p) and that v, is concave, hence we have
v, ()= Cavu (p) forall n.

2) Let o be a strategy for PI.
n
Since EU,E (m2=21 ®,,41 —p,, )?) is bounded by some M (uniformly in o and n)
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3/4

there are at most n°/" stages m with
M
~ _ 2
E; R Pms1 ~Pp) >n3/4' (10)

We denote by R (n) the set of such stages, and define S (n)= {1,...,n}\ R (n).
Given m € S (n), it follows that the probability of the set H, , of histories &, |

such that

M
Ea,ﬁ (@41 —pm)2 1) > ;m (1)

is less than n"1/4.

We can now describe the strategy 7 of PII:
—play RifmE€R (n), orif h,, ; € H, | withm € 5 (n);

— play according to 7* otherwise, where as in the previous proof 7* is a pure stra-
tegy satisfying (3).
We introduce the following stopping time

X =min ({m;j, =L 1<m<n}U {n}).
It follows then, using (2), (10) and (11) that
nvy, (o,1)<2n3*L+2n-nt4y
X
+E, [ 2 4@,)+ (- Duy)] (2)

X
FULE, [ 2 1Py ~ Py [+ (0= X) gy —Px ]

First, as in the previous proof, it is easy to see that

X
EU,T (m§1 u@,,)+m—Xupy))<Cavu(p).

As for the last term in the right member of (12) we can take the expectation with res-
pect to o, R since 7 and R coincide up to stage X — 1, and then majorize by

n
Ecr,;z <m§1 Ipm+1 “Pm l)+nE°y§ (’pX+1 ~Px |1X<n)'
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But we have

E, % (mrél |Ppe1 — P, I)<\/M—r?
by Cauchy Schwartz inequality and

E, R Py =Py 1IH y ) )SE, g Py —Py)" IH )

VM
<~ if X <n, by (11).
n1/4

Coming back to (12) we obtain
ny, @nN<2Ln3*+2Ln3* 4 nCavu (p) + 2L Mnl/? + 2L /N34

hence there exists some K € R* such that

—~ K
<
7, (0,7) < Cavu (p) + 1

forall» . Q.E.D.

Remark 2

The previous proof still holds for the games described in Remark 1. But now R has
to be replaced by a “stage by stage” best reply in T to 0.

Remark 3
If v, (p)is the value of the game G, (p) with payoff m2=31 A1 =7l Yo

it is easy to see that lim v, (p) = Cavu (p). The first part of the proof is exactly
A—
like that in Proposition 2. The second half uses the same kind of strategy, defining

first N = X3/ and a set of exceptional stages where £ (p,, ,; — p,, )2 > jﬂvl Now for
each “regular” stage m the probability of exceptional histories, i.e. such that

E ((pm+1 P )? hm_1)> ]_VA{E is less than N2/3. We thus obtain a majorization

of the payoff by some Cavu (p) + 0(1). (1 — (1 — \)V*L + 173 4 (1/N2/3)1/2
+ )\1/2), hence Cavu (p) + 0 (?\1/4).

4 Minmax

In this section we shall prove the following
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Theorem 3

v (p) exists.
In order to get this result we shall first assume

v(A)=v(B)=0

by subtracting p v (4) + p v (B) from all the payoffs.

We shall split the games into several cases for each of which optimal minmax stra-
tegies for PII and best responses for P/ will be constructed and an explicit formula for
v (p) will be given.

First case

(@11 —a31) (b1 — b2 )>0.
By changing the name of the lines if necessary, we can assume

a3y 2 ayy and by = by (13)
Let us introdﬁce the following notations and definitions.

x¥ = max (x, 0) forx € R.
cj(t)acli.t-Fczj f,j=1,2,c=a,bfort€[0,1].

@ = {p; p positive Borel measure on [0, 1] with total mass < 1}.
o (x)=p ([0,x]).

wp)= inf sup [p ? a; dp O+ (1 —p)a, x)° (14)
peQ x[0,1] 0
yel0,1]

+ﬁz by (B)d p () + (1 —p () by ()],
Then we have

Proposition 4
If (13) holds, v (p) exists and equals w (p).

The proof of this proposition will follow from the two next lemmas.

Lemma 5
PII cannot expect less than w (p).
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Proof
The idea of the proof is the same as in Sorin [1984], Lemma 21. Knowing 7, PI

starts by playing Bottom until he reaches the maximum of the probability of getting
an absorbing payoff at this level. From this time on he increases his frequency slowly
(i.e. he will use (€, 1 — €)) until the maximum of the “absorbing” probability is reached
and so on up to some level x. Then he will get ¢, (x) if he stays at X or O by playing
optimally. This strategy obviously induces a probability d p (¢) of getting an absor-
bing payoff ¢, (¢), and it follows by (14) that the payoff will be at least w (p).

First let m be the stopping time min {m;j, = L} U {+ 0} and choose a large NV
inN.

Given € > 0 and 7 a strategy for PII, define

0y = Bottom

P*(0)= Probao , (m<+ )

then ny and P (0) such that

PQ)= Probao ,m< no) >P* (0) —e.

Given 0, ;,n, , define inductively TN

20>
N

0, : play according to 0, ; up to stage n, ; ,then (11\’_’(

P*(r)=Prob, _(m<+ =)
r

thenn, >n_ ; and P (r) with

P(r)=Prob, (m<n,)>P*(r)—e.
v~ T~

A
Now if P uses 0, up to stage n, in game A, and then plays ( er’ ( 1—(,—)) if
a, (*/N) = 0, or optimally in game 4 otherwise, the expected payoff in game 4 for

n=>n, will satisfy

74 (0, 1) =P (0) [al (0)—2L%}
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+(P(1)—P(0))[a1(jlv> —21 ’;—‘J

+...

+(P(r)—P(r—1)){ o (ﬁ) —2L—'ZL}

n

+(1—P() [a2 (1’—\,-) +—2L%-’—]
=2@*(r)—P()) L

If u € Q is the atomic measure with mass P (£) — P (8 — 1) at point /N, then for n
large enough we obtain

¥4 (0, 1> %/N a1.(t)du(t)+(1—#(1rv) 2 (}fv) delL

Now there exists 7* €N, 0 <7* < N which realizes the supremum over all reals
r €[0, V] of the right member within if—L

A similar construction for game B induces a strategy o for PI such that for » large

enough

TW@nZp wp é 6 (O du @)+ —p ) as ()

+p sup fb O du@®+(1~p@) b, »)*

O<y<10

2L
4el v

hence the result is obtained by choosing N large enough. Q.E.D.
In order to prove that PII can guarantee w (p) we shall use “Big Match” strategies,

hence we need the following definitions and results. Let F+ be the zero sum two per-
son infinitely repeated game with payoff matrix

—(1—9)* (1—5)

§* —s
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(The “Big Match” of Blackwell|Fergusson is precisely Ff ) .) As above we define the
stopping time . and the payoff ¢} at stage.
. ~ 1 . Lo
We also introduce t, = o # {m; = T, 1 <m<n} which is the frequency of

Top up to stage n.
Then we have:

Proposition 6
[Blackwell[Fergusson, Kohlberg].
Ve>0,v 8>0, 3N, and 7 strategy of PII in T such that for any o

Prob G’Ts(lﬂ<n)EU’Ts(qfn Im<n)<e vn (15)
Prob, _ (m<nlt >s+8)>1—e  Vn>N, (16)
,S ~

Using this result we shall prove

Lemma 7
PII can guarantee w (p).

Proof

The idea of the proof there is also similar to Sorin [1984], Propositon 26.

Let p be e-optimal in (14). Then PII uses 7, with probability d p (s). It follows from
(13) that a best response of P[ is to increase his frequency, starting from 0, in order to
achieve the greatest absorbing payoff, and then to decrease it if necessary, which gives
(14).

Let us start with p, 8/2 optimal in (14) and choose p to be a discrete “0 / 2 approxi-
mation” of p as in Sorin [1984], Lemma 28, i.e. such that

ol (f) 0y () dp B+ (1 —p () a, 6)*] + a7

.y yg by B)dp () +(1—p )by ()] <w @)+

forallx, y in [0, 1].
Let {s,:r=0,... , R} be the finite support of p. We can assume by selecting a
refinement if necessary that sq = 0, Sp = 1,and S, 78,1 < m, where R is bounded by

some R (6, 1) uniformly in p.
We shall use the following notations.

,
T =T ({s,D=dp, % p({s,3) =0, Ny =N,
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Also let N = max N,.

The strategy for PII is as follows: First choose 7* € R according to the distribu-
tion defined by Prob (r* =r)=dp,,r=0,... ,R—1 and Prob (r*=R)=1—

—pg.y- I r* =0, play Left at the first stage and define Y, = 1. If 0<r* <R play
Right until stage Y, . — 1, and Left at stage Y, ., where the stopping times ¥, are defi-
ned inductively by

Y, =min {m:j, = L}isinduced by oand 7;;
Y, =min {m Tom = L} is induced by 0 and 7 up to stage ¥; — 1

and then 7,;

Yr isinduced by o 7; up tostage ¥; —1,..., 7,4 Up to stage Yr_1 —1
and then T,

Finally if 7* = R, always play Right (i.e. Y, =+ ).
We shall prove that V €, > O the average payoff in game A for # large enough will
be majorized uniformly for any strategy oA by @+ €, where

a= sup afx) andﬂl(x)zjg01(l)a’p(z‘)%‘(l—p(x))az(x)"*. (18)
0<x<1 0

Givenn, o A and 7 we define
Z =min(Y,,n+1),r =0,...,R

and

Xo=0,X,=2Z—Z

r_l,hence:ZXr=n

l'r-'—'l{z
v

-=_ 1 ..
-rp L= X—T #{,=TZ_,<m<Z}
Now since the strategy of PII is independent of 7*, up to stage Y, we obtain

- R
nyd(o,71) =E(211 X, [dpoas (to)+...+dp, ar(t, )+ (19)

+(1—p,, a; ))).
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Let us first consider the term with a, (¢).
i) Ifaz >a,, witha,, >0, thenv (4) = 0 implies 25, <0, hence n 7)7;1 (0, 7)
<a(0)=ay dpg + (1 —po)ay by (13), and the result follows.

i) Ifas >aq,; withay, =0, thena, (t_r) <0=ua, (sr_l)+ vr

iii) Ifa, <ay, we majorize the coefficient of 215 — a5, :

E(X,t)=E (1 X t)+EQ X, 1)

Xr<N Xr>N rr

For the second term, since during these X, stages from Z,_ 1uptoZ, — 1, PII is using
g,, it follows from (16) that

EX, t)SN+EQX)(s,+6+e)<N+EX)(s,,+6+n)+en

Coming back to (19) and using (13) we obtain in cases ii) and iii)

R
n?‘:(o,r)<E(§ Xra(sr_l))+RNL+nL(6+n)+RLen+LA (20)
with
R
A =E[% X, (@dpo(so—to)T...+dp, (s, —t, D]
Hence

R R
A< T dp E[2 X, (5,4~ 1))

Note thats, ; —1, ; =—(1—s,,) 1, ; T, (1 —1,)is the absorbing payoff in

R
I and 2 X, =(n+1— Yr)+ is the number of stages during which o, ; induces
r-1 L=r

such an absorbing payoff. It follows then from (15) that
R
E (inr X (s, —t ) <en.
Substituting in (20) we obtain

n'?‘;zl(o,r)<na+RNL+nL(6 +n)+RLen+Len.

Obviously, a same result holds for '75 .
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€
Given €p, we take 8 = ;—0. Thenn = 8%’ which determines some R (8, 7). We de-

: - £ —— € qp
fine 7 according to & 3L and € SL(RT1) This defines N, hence V. It follows

L implies v, (0, 7) <w (p) + €o. Q.E.D.

then that n > 8RN

This completes the proof in the first case.

For the other cases it is more convenient to work in the space of vector payoffs
induced by 4 and B, and to determine the sets that PII can approach [see Blackwell,

1956]. Some definitions follow.
PII can approach (x, ) €R? if, V'€ >0, 3 7 and 3 N such that, V 0, Vn >N,

'7;1 (o,7)<x+e
7’1 (0’ T) Sy +e

where 7;11 is the average expected payoff in game 4.

Dy, is the set of vector payoffs that PII can approach, and note that D 18 closed,
convex, and D;; =D, + (R™)?.

Given an half space D (p, @) = {x, y;px +p 'y >a},p €[0, 1], €R, we say
that PJ can force D (p, ) if

V7,Ve,doand I Nsuch thatforalln = N py‘:(o,r)+ﬁyf(o,r)>a—e.

Note that if PI can force D (p, f (p)), he can also force D (p, Cav f (p)).

In fact, let p; and p, be such that Cav f (0) <A f(p;) + (1 — N) £ (p2) +2i and
Api+(1—=Np, =1

Given 7 and %note o, foro (pl Jf(P1),7, %) as defined above and likewise for 0.

~~

Ap
Let o be 0’14 with probability p—l, 051 otherwise, and let oZ.be 0{3 with probability

A
fpl-, af otherwise. Then ¢ forces D (p, Cav f (p)).
p

Denote by D, the intersection of the sets D (p, a) that PI can force. The existence
of v is now equivalent to the fact that D, =Dy, denoted by D, and then

v(p)= (xmi)r;D px+(1-p)y}

’
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Redefining the games if necessary we can assume
(I) @y >y and by <by

(and since v (4) =v (B) = 0 we have a,; > 0 and b,, = 0).
We introduce some notation

T*=(a11,bu), B* = (31, b2)

X= (a;—2, 0)5 Y= (O’ b1+2): Z= (a;25 b1+2)

If P, and P, are two points in R? on aline px + (1 —p)y = p €[0, 1], then
H(Pl,PQ) iSD(p, a).
Finally, Hx = {(x, ¥) : x = 0} and similarly for Hy.

Second case

We now assume
(I) max (212,02, 0) =a;2,max (b12,02,,0)= brz
(Ill) Z€EH (T*,B*).

Lemma 8
PI can force H (T*, Y), H(B*, X)and H (B*, T*).

Proof
1) We show first that PI can force H (T*, Y) (hence H (B*, X) by symmetry). Given 7,
let T= fop and define

6 =Proby . (m<+ ).

By playing always i", or by switching after a large number of stages to an optimal stra-
tegy in the corresponding game, P/ will reach

Bay; +(1—0)max (@;,,v (4)) in game A
8 by + (1 —0)max (b1,,v (B)) in game B.

and this vector payoff dominates weakly 0 T* + (1 —0) Y.

2) Now let us introduce 0o and Ny such that

Probao’_r (m<No)=> sup Prob, . (m<+e)—e
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Then PI uses gq up to stage Ny, and then plays Bottom or optimally in game 4 (and
symmetrically for B). It follows that for large enough » that the vector payoff will be
at least some

OW*+(1—6)Z+3el

where W* is an absorbing payoff on the segment [B*, T*]. Now (III) implies the re-
sult. Q.E.D.
We are now in position to state

Proposition 9
If (1), (), (II1) hold, then

D;=D;=D=H NH, NHB* T* NH(T* Y) N H(B* X).

Proof
Since v (4) = v (B) = 0, we obviously have D, C H ﬁHy, hence D, C D by

Lemma 9.
Hence it remains to prove D C D, and for this it is sufficient to show that the ex-

treme points of the (strict) Pareto boundary D of D belongs to D e
Let us denote by X= (x,0) and Y= _(0, ») the points on the axes of 5, and let us

first prove that PII can approach X and Y.
Let 7, an np-optimal strategy for PII in the infinitely repeated game with payoff

matrix B satisfying
n>Ny=¥8(0,15)<n, (21)

vn ProbTB (rzl =n)<p (22)

where 8 is a parameter to be specified later.

We shall exhibit a strategy for PII which approaches X. Itis enough to consider the
case where PI uses a pure strategy, hence a sequence of moves {iy,...,i S 1. We

shall still write #, for the n-stage history corresponding to these moves. (Note that
here i, does not include the moves of PII.)
We now introduce

py=Prob_ (m<nl|H.)
B~

t;;‘ =E‘r (tm |r~n<n, Hn)with tk =1 {ik=TOp}'
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Hence p is the “‘absorbing” probability up to stage # and t* is the corresponding
“absorbing” frequency.
The strategy 7 is as follows.
First PIT uses 7 (A_’ ) which is:
- play 75 at stage n + 1 if either

) pr<8B
or
OINGESE S

withd = max()\, 15\-) where — A is the slope of the line 7* B*.
- if (*) and (**) fail, play Left with probability § if
(**%) ppby (1) + (1 =B 7>0.

If at some stage 8 + 1, (*), (**) and (***) fail, PIT uses 7 (I—/) in the game starting
at that stage, which is defined symmetrically (starting with 7 "4 » With parameters 1,

and f).

Let us denote by 84,6, + 04, .. ., the “reversing times” defined by
on {1,...,04} PIIplayS'r()?)
on {6,+1,...,08,+60,} PIIplaysr(I?)

on {#,+6,+1,...,0,+8,+85} PIIplaysr()?),andsoon,

and let Ky, K, . .., be the corresponding blocks of stages.

On each block K; we define the exceptional stages to be such that (*) and (**) fail

and (***) holds. It follows then from the definitions, that there is at most a finite num-
ber N (&) or N (B) of such stages. _
Given € > 0, we want to show that PII can approach X within e. We obviously can

assume x > O otherwise PII will approach x + 52- within %—) , and similarly y > 0.

Now this implies that for (***) and (**) to fail the absorbing probability has to be
greater than some pp > 0 (resp.p A)' It follows that after a finite number of “rever-

sing times”, the total absorbing probability M (€) will be greater than 1 —56—1: hence the
remaining payoff will be bounded by ;—
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Thus we denote by M the finite number of blocks, and 7 will approachz{’ within

2€
—3—.Let

Ng =max(N(a),N(ﬁ)),N1 =max(NA,NB)andN=No +N1

For each block of small length (i.e. less than V) we majorize the payoff per stage by L.
For each other block K; we majorize the payoffs corresponding to the exceptional

stage, and we denote by E the average vector payoff of the A; other stages (i.e. where
Pllis using 7, or 7p).

Then we obtain

n:y'n(o,r)<MNL+ieEM A0 (23)

where 7, is the vector payoff (’_y"i, ?ﬁ) and M N L is written for M N L (1, 1). Since
Z A;+ M N> nitis enough to prove

— _ T €

<Xty (24)
and from (23) we obtain for large enough n

7, 0. <X+EE
Now we write, with p’ =py and = t

i i
—_ a, (¢') I PR
=p! 1 2 -2y -1 41
p; =p +...+A=-pYa—p*...0~ i ]
i by (tY) ) 1-p")p by (l‘"l)

+1-p")...(0—p" g

where the first terms correspond to the absorbing payoffs obtained during the prece-
ding blocks, and g; is the new average payoff on block K; during the regular stages.

Assume i odd. Then we shall first prove

— o €
g<X+3 (25)
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and then that (25) implies

i-1 2, (tl-l)

L+ -phg <y +
by (¢ (1-p")g;

€
3 (26)

hence (24) by induction.
Let us now majorize g;.

Since PII is using 7, and the number of stages is greater than Vp, the payoff in
game B is at most
=B =£
g&/Sng =g

As for the payoff in game A, we have at the last regular stage: either
(*) p*<p, hence

E?QBO L+ (1 —8¢)max (ays, a,) for some By <

<x+pL (using IIT)

<X+BL by definition of X

- €
<x+g
or

**) b, t¥)=— {;_L and then :

gA<p* (xo +BL) + (1 —pHx
where (xg, 0) is on [T%, B*], hence by definition of X

gASX+BL<X+

o

This proves (25).

As for (26), first note that (***) implies, by definition of §, ;, that

pila, ¢"H+ (1 -ptH x<o.
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Hence it remains to majorize the second component. Denoting the stage 6, ; — 1 by &,

there are three cases:
— ifp} <, thenp’™ <20, thusp™ by (") <2al

BL

- ifal (t;:)>— d°

then b, (¢)<}’o +al

where (0, y,) is on the line B* X. It follows that pi'1 b,y (t’"l) <ye+2al.

— finally, if pf ay (¢f) + (1 —pj) x >0, this implies p} by (t}) <yo

hence p™! b, (*"1)<yo +alL.
In both cases we obtain

Plb N+ —p Y EE<F+2al+(1-p ) E<F+ 5
i A 3

which gives (26) and achieves the proof that PIJ can approach X (or )7)
It remains to show the following

Lemma 10
Assume that PII can approach U and V with
(i) Uand VEHB* T*),u, <vy,uy >v,.
(i) UEH®B* V), VEH(T* U).
Then PII can approach W which is the intersection of V B* and U T*.

Proof

Since Dy is closed and convex, we can define U (A;) and v (A;) where
UM =AT*+(1—-N)U
VI=AB*+(1—NV

and A, =max {\; U(N) EDH}; A =max { V(N EDH}. If WEEDH we can rede-

fine U to be U (A;) and ¥ to be ¥ (A;), and 1), ii) still hold.

Introduce Aq such thatu; (Ag) = v; (Ag), and note that A4 > 0.

PIT uses the following strategy 7: play Left with probability A, at stage 1; from stage
2 on play according to 7, (resp. 7;,) if {; = Top (resp. Bottom), where 7y (resp. 74,)

approach U (resp. V). The vector payoff that 7 approaches is now:
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lfil =T0p, Ao T*+(1—)\0)U=U(>\o)
ifi1 = Bottom, }\0 B*+(1_)\0) V= V()\o).

But by the choice of Ay, U (A\g) dominates ¥ (Xo) or reciprocally, hence PII can appro-

ach either U (A¢) or ¥V (Xg), contradicting the definition of U or V. Q.E.D.

It follows that PII can approach the extreme points of D and this finishes the proof
of Proposition 9. Q.E.D.
Third case

Here we assume (1), (I) and (IIT") : Z € H (T*, B*).
We first remark that PIT can approach Z by playing Right and (see Lemma 8) that
PI can force a payoff § W* + (1 — 0) Z with W* € [B¥, T*]. It follows that if Z =

=(0,0) then D, =D, = (R,)* and obviously v = 0.
Hence we can assume z; > 0. Thus z; = a4, and we shall determine the points
(k, ¢ (k)), k €[0, a,;] that PII can approach. (Obviously the analysis is similar if
z, >0, for the points (¥ (k), k), k €[0, b1,].) Given k €[a73;,a], let 7, €[0, 1] be
such thata, (t,) =k and define S, =1, T*+ (1 —1,) B*

Let us now introduce ¢ on [a};, a5, | such that, if C = (k, ¢ (k)), the line S, Cpis
tangent to the graph g (¢) of g at C; and ¢ (a22) = b, (1 e.Z€g () Formally we

obtain for the line § & C &

—¢ (k)=N(k)(x1 —k).

Thus
AEY=¢' (®)
which gives
a3 —Aajg
by @y — by a by —b Ay tap—ay,—a
tp(k)= 11 &22 21 12+ 11 21 k+Kk 11 22 12 21

Ay —ai ayy —day

with K such that ¢ (@52) =b1,.
Now if a4, >0, thena;; = 0, ahd we define g () on [0, a1, ] to be the segment T*
C

a1’
We first prove the following

Lemma 11
PII can approach (k, ¢ (k)), V k €[0,a,,].
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Proof

Let us assume k € [a},,22]
The idea of the proof is the following: we shall define a finite sequence of vector
payoffs on g (9), C (#),r =0, ..., R, starting from C (0) = C, and reaching C R)=7Z

The strategy for PII will be such that if the absorbing probability is small the non
absorbing payoff approaches C (0). If not, the absorbing payoff will be such that from
some stage n, it will be enough for PII to approach C (1), and so on. Since PII can ap-
proach C (R) = Z, the induction will be complete.

Given R large in N we introduce
r
kr=k+§(a22 —k),r=0,. .. ,R

and we denote tkr by x,, Skr by S (), and Ckr by C (7).
Let 7, be an a-optimal strategy for PII in the game
A=x)*—(1-—x,)

* x

X r

with Prob  _ (m=n)<a,Vo,Vn;andletN, be such that
£l r ~
Eo,Tr (q, I@?n)<a,Vn>Nr, Vao.

We also define, as in the second case,

p:=Prob(rlz<n)andz‘;;=E[im [Qz<n].

~

Now PII starts by playing 7, as long as

*) p [a, (f;“'zlz‘ﬂ —aL+(1—p¥e; (1)>k

If (*) fails for the first time after stage 6, , PII uses 7, in order to approach C (1), in

the game starting at stage 8, + 1, conditionally on m > 6. Hence he will play 7; as
long as -

p;‘[al (t;;—l—l!;)] ~aL+(1=p¥e; ) > k.

and so on until occasionally reaching g and then PIT will play R’?g/ht and approach Z.
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Thus it is enough to prove that PIf approaches C (0) within € on the first block (i.e.
from stage 1 to ), if 8, is large enough, and that, if PIf approaches C (1) within € on
the second block conditionally on m > 8, its total vector payoff on this block will be
C (0) within €. -

Assume then that (*) holds. Since PII is using 7o, its average payoff in game A4 is at
most k+ L a.

As for the absorbing payoff we have

Pyt —x0)<a

hence

pra, (t;l"— 11{—) —aL <p¥s; (1).

Since C (0) € H (S (1) C (1)) (*) implies
pysa D+ A —pp)e, (D<)
Now the non absorbing payoff in game B is at most z, < ¢, (1), thus

: L
YB<prb, )+ 1 —pH) e D<p®)+aLD+ =

Assume now that PII approaches C (1) within €, in the second block, conditionally on
m>0,. Letp=p} . and define § to be the absorbing vector payoff corresponding to

t(‘;l =t. Now if M is on [B* T*] withp m; =p a; t—-}% —aLthen|pm; +

+(1—=p)ey —k|<alL.Nowpm; <ps; (1)implies as above | p m, + (1 —p) c, —
—¢ (k)| <al d.]It follows that

ps;+(1 —p)(c1+e)<k+2aL+p%+(1 —p)e
ps,+(1 ——p)(c2+e)<cp(k)+2aLd+p§—+(l—p)e.

Thus given € we first choose R > 2G—L— This gives a minorant g for the p¥ where (*)

. €q
fails (for all ) and we take a<< iLd

If k €0, a1, ] with a,, >0, then PII will play &, where « is small, in order to reach
an absorbing payoff S*on [B* T*] satisfying

lpysi+(1 —py)an —k|<al

and then he will approach C, n 3 above. Q.E.D.
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Let A= {(x,y) | (x, ) EM +(R,)* forsome M Eg (¢) Ug (V).

Thus it rémains to prove

Lemma 12
D = A
Proof

We shall prove that PI can force H (Sh C 3 ),V Ck €g (). (A similar proof works
for g (¥)) and we define p, a to be such that D (p, @) =H (S, C,).
Given 7, € and R large in NV, we define inductively, as in the first case

0g = fop
P* (0) = Prob 00,7 (an <+ =)
and ny and P (0) with
PO)= Probgo,f (rzz <ng)>P*(0)—e.

Now given (o

1 ”r-l) we introduce

/\__/

o, = play according to 0, up tostagen, ,, and then ( 1— ILE’ }% )

P12
Px(r) = Probar,T (711 < 4+ o)
and finally n, >n_; and P (r) such that
P{ry= Probar,y (rzz <n)>P*(r)—e.
Introducing p € Q with

o([05])-ro

it follows, as in the first case, that P/ can obtain for n large enough
x . . . R
9y (0. x)= [ a1 (dp )+ (1—px))as (x), where g, (t) = g, (2) @n
0

in game 4, up to €, by playing the relevant g,.
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Note also that by playing o, up to some large stage and then as in Lemma 8.2, PJ

can obtain, up to some ¢, a vector payoff

W=p()U+(1—-p)V (28)

where

@ (Hdp(2)

(=R

p(HU=
by (t)d p ()

Ot =

and
VEAs={aZ+(1—a)S;a€(0,1],SE[T*B*]}.
Hence PI can force the following

inf [pmax { sup ¢, (p,x),p(Dus +(1—p(1))v,}
pPEQ 0<x<1

+p' max { sup ¢p (0, x),p (Dus + (1 —p (1)) vz}
0<y<1

Note first that W € A,. Hence if w, 2z, then W € D (p, ). So it is enough to prove
that for any k €0, 2,,]

¢, (0, x)<k Vx€[0,1] (29)
and

p(Duy + (1 —py)vy <k (30)
which implies

p(Duz +(1=p1)vy 2 ¢ (k). (31

i) Assumek€[at,,an] _

We shall introduce a distribution o (and a corresponding W) satisfying w, = ¢ (%),
and we shall show first when V' = Z, and then for V # Z, that w, = w,, hence the re-
sult will follow.

So let g, —ay

) a1y taqp—ap —ay

a1 —adn

p()=1+K{zt+
P ( ay tap —ap —ay
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where K is such that p (z:k) = 0. It is now easy to see that
04 (B X)=k VxE[t,1] (32)

o4 (7. X)<k Vx€E[0,1]

p (V) uz+(1—p(1)z, =9 (k)
Let us prove that p is the best that PI can do.
Assume first that V =7 :

— if p (1) > p (1), then W belongs to H (d) (by (III")), where d is the parallel to
B* T* through W. Now (30) and (32) imply that w, = w,.

— if p (1)< p (1), (29) and (32) imply then that p (x) > p (x) for x in some neigh-
bourhood of ;k' (Note that the non absorbing payoff is greater than k if x > fk.)

Let x¢ be the last point where

p (x) = p (x) with p > p on [0, x].

By (29) and (32) we obtain
X0 A =
J ar@®@dp@®—dp@)<o0.
0

Thus integrating by parts

(@ —amp) Zo P@O—p®dH<O

which is a contradiction if p # p.

Next assume V # Z.

Using (29), we can assume »; >z, (otherwise v, >z,). We add some mass to p at
point 1 in order to get § with

pMuy + @MW) —p(W)az +(1~5 W) v, =k.

By (32) it follows that the first component of 5 (1) B* + (1 — 5 (1)) V is smaller than
the first component of p (1) B* + (1 — 5 (1)) Z Since V € A,, we have the reverse

the order on the second component, hence (p, Z) is better than (5, V) for PIL
We now compare p and p.
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On the first component we have
Py +(A—pM)vi=k=p(Du; + (1 —p 1),

and we shall prove that 5 (1) < p (1), hence as above w, = W, . Otherwise we have

Py >p(1)uy

but

Wu; +@E @)= p D) an

Py =p
<pMuy +(e(MD—p (1) ay <p(Q)u,
since as above p > p and a, (.) is decreasing.

This completes the proof for case i).

ii) Assumea;; >0and k €[0,a4,].
Let A be such that (1 —X)ay, =k Then p, is defined tobe A 8o + (1 — ) Ean,

8, being the Dirac mass at 0 and p, a1 corresponding to the p defined in i) for k =a;,.

It is straightforward to check that the analogue to (32) holds, and the proof is simi-
lar to ). Q.E.D.

Fourth case
It remains to study the games for which (I) holds and (II) fails. Note that

a1y > 0and by, > 0implya;; =0and by =0

hence PII can approach (0, 0) by playing Teft and 7 = 0. Thus we can restrict ourselves
to the following games.

_ +
ay, =0>ay,ay, >an

by >bli, by, =bh.

The analysis is roughly the same as in the third case, the role of Z now being played
by a point U on the x-axis.
Lett=max {¢t|b; (t)>0}A L (hencet =1if by; > 0)and let U= (g, (2), 0).

Lemma 13
PII can approach U and cannot expect less.
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Proof
If PIT desires a payoff O within ¢? in game B, then the absorbing probability when

T~ i
PI plays (¢ — €) has to be less than some M e. Hence the payoff in game 4 will be at

least a, (}—) within K'e where K depends on the 2 b; 5

Now if PII uses an e-optimal strategy in game B blocking at 1, his non absorbing
payoff in game A will be at most @, (f) + € L and his absorbing payoff is negative,
hence the result follows. Q.E.D.

Now for k € [a3,, a, (;)} we define #;, witha, (7,) =k and S, to be the correspon-
ding absorbing payoff. As in the third case ¢ (k) is defined such that if C;. = (k, ¢ (k)
then S, C, is tangent at C to be graph of ¢. It is then easy to see that we have the
analogue of Lemmas 11 and 12.

Finally for k €[0, a3, ] it follows, like in case three that, denoting the point (2,5,
¢ (@ ))by C,ifay, > 0, the graph of ¢ is the line B* C. This determines completely
the Pareto boundary of D, hence v.

1t is straightforward to check that, due to the symmetry of the games, these four ca-
ses exhaust all the possibilities. Hence this complete the proof of Theorem 3.

Q.ED.

5 Examples

0* 0 0* 1
This game was studied in Sorin [1980], and

v(@)=limv, (p)=Cavu (p)=u()=p (1 —p).

As for the minmax we have (see the first case)

1
v)= inf sup {p/(A-5)dp®+A—-p)t(l—p ()}
peQ te[0,1] 0

=p(l—exp(1—(1—p)/p)).

o* 1 1* 0
This is in the second case.



202 S. Sorin
The extreme points of D on its Pareto boundary are
Y=(1/2,1) (play optimally in game A4)

X=(1,1/2) (play optimally in game B)

5]

U= ( 3 %) intersection of B¥* X and T* Y

PII plays ( %, %—) once and then approaches X (resp. Y) if iy = B (resp. 7). In this ex-

ample, it can be shown, forp = %, that by using only a “mixture of Big Match strate-

gies” as in the first case, PII cannot expect less than+/3 — 1.

1* 0 0* }31
3) 4= B= (second case)
0* 1 1* 0

_ {13 (L3 {1l 9
X”(1’7) Y‘(2’4) v (13’13)

The strategy for PII to approach U can be described by the following diagram

(1/13) L

(12/13) R

approach X

(1/6) L

approach X

(3/10) L

approach X

approach Y

Abb.
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4) A= B= (case 3)

3. 1
Fork €[0,1], G =k, ¢(®)withp (k) =3— T k— 7 K15,

, 4 1 A 25
Forhe[0,2},Ck=(\1/(7\),)\)w1ﬂ1W(?\)=4—§)\-3 >
0* 1 —~1* 1
5) A= B= (case 4)
—-1* 0 1* ~1
1 k-1/2
ForkE[O,-z— =k, pk)withp(k)=—1—2k+2e .
0* 2 1* 0
—1* 1 2% 0

k

Fork€[0,21,C, =k, ¢ (k) witho (k)= (1 —k) +e? on[1,2]
and y is linear on [0, 1] with C; on [B*, C,].

6 Concluding Remarks

1)  We proved the existence of limv,, v and v for the class of games under conside-

ration. This results also hold for games with a lack of information, stochastic games,
and the class studied in Sorin [1984].

2)  However v and v may be different (see example 1), hence G_ may have no va-
lue, which is neither the case for stochastic games nor for games with a lack of infor-
mation on one side.

3)  Moreover v may be a transcendental function (i.e. given a game with parameters
in Q (or algebraic) v (p) may be a transcendental number) which is not the case for
stochastic games or games with a lack of information.

4)  Note that if the results are similar to those in Sorin [1984] the tools used seem to
be necessarily rather different. See Example 2.

5)  Asaconsequence of Remark 3, Part 3 we know that lim v, and lim v, exist and

A
are equal. This is the case for all zero-sum games where lim v, isknown to exist. An open
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problem is to check whether this equality can be obtained directly.
6)  AsinSorin [1984] we proved here that lim v, is equal to the Maxmin. It is con-

jectured that this property holds for all stochastic games with lack of information on
one side. (This would be, in particular, a consequence of the extension of Mertens-
Neyman’s Theorem [1981] to games with compact state spaces.)

7)  Ina forthcoming paper [Sorin, 1984] we show how the tools introduced here can
be used to compute the minmax and the maxmin of a game with lack of information
on both sides, and state dependent signalling matrices.
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