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Asymptotic Properties of a Non-Zero Sum Stochastic Game 

By S. Sorin 1 

Summary: An example of a non-zero sum stochastic game is given where: i) the set of Nash Equilib- 
rium Payoffs in the finitely repeated game and in the game with discount factor is reduced to the 
threat point; ii) the corresponding set for the infinitely repeated game is disjoint from this point 
and equals the set of feasible, individually rational and Pareto optimal payoffs. 

I I n t r o d u c t i o n  

The Folk Theorem states that the set of  Nash Equilibrium Payoffs (NEP for short) in 
an infinitely repeated game coincides with the set D of  individually rational payoffs 
that are feasible. 

Moreover D contains the set of NEP in the game with discount factor )~ and the 
set of NEP in the finitely repeated game. (For these results see e.g. Aumann.) On the 
other hand, for zero-sum stochastic games the value of  the infinitely repeated game 
exists (Mertens/Neyman) and equals the limit of  the values of  both, discounted and 
finitely repeated games. Finally it can be shown (Mertens) that the set of  NEP in non- 
zero sum ). discounted stochastic games has at least one limit point as ~ goes to 0. It 
was thus a natural conjecture to ask whether this point was a NEP in the infinitely 
repeated game (also proving the non-emptiness of  this set). 

In fact this attempt fails and in the following example we show that neither the 
finitely repeated game nor the discounted game is a good approximation of the infi- 
nitely repeated game, as far as the equilibrium concept is concerned. 

I I  T h e  E x a m p l e  

Recall that a (two person) stochastic game is played in stages. At stage m, the players 
observe the current state z m and choose some actions (i m,  ]rn). The triple (Zm, ira, l m )  
determines the current (vector) payoff x m at that stage and the probability according 
to which the new state is ch0osen. Hence a (behavioral) strategy is the random choice 
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of an action at each stage m, conditionally to the history (zl, i 1, ]1 . . . . .  ira-l,  ira-l ,  
Zm) up to that stage. We denote by S and Tthe strategy sets of both players. We shall 
consider the stochastic game described by the following payoff matrix: 

[ (1.0)* (0, 2)* } 
(0, 1) (1,0) 

where a star denotes an absorbing payoff (i.e. this entry, once reached, determines the 
payoff for all remaining stages). 

Given (0, r) in S x T, they induce a (vector) payoff Xn(o, r) in the n-stage game 
G(n) where: 

Xn(o, r) = Eo,r ~ X m 
m = l  

We denote by E(n) the set of NEP in G(n). 
Similarly (o, r) induce a payoffXx(o, r) in the X-discounted game G(X) with: 

Xx(o,r)=Eo,r  X ~ ( 1 - x ) m - l x  m , forXE(0 ,1]  
m = l  

and E(X) is the set of NEP in G(X). 
Note that Nash's theorem implies that E(n) and E(X) are nonempty closed sets. 

Now E(oo), set of NEP in the undiscounted infinitely repeated game G(o~ is defined 
as the set of payoffsy = (yl  ,y2) satisfying: 

V e > 0, 3 oe E S, 3 r e C T, 3 N E N such that, for all o E S, r E T and all n t> N: 

Xtn(o, r~)- e <<. y I < xl(oe, re) + e } 
X2n(Oe, r) - e < y2 < X2n(Oe, re ) + e 

(1) 

(Recall that it is hopeless to look for "exact" Nash equilibrium since already in the 
zero-sum case only e-optimal strategies may exist). 

Let us now remark that the sets of feasible payoffs, namely: 

C(n) = {y i 3 (o,,r) in S x T with Xn(o, r) = y} 

C(X) = {y[ 3 (a , r)  inS x Twi thXx (o , r )  =y} 

C(o~) = {y l 3 (o,r) inS x Twith L (Xn(o, r)) = y } 

(where L is a Banach limit) are equal to the following set: 

C = Co {(1,0), (0, 1), (0, 2)}. 
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Finally the minimax, I)1, for player 1 is given by the value of the following zero-sum 
game: 

which is exactly the "Big Match" of Blackwell/Ferguson. We recall that the value of 
this game is 1/2. An optimal strategy for player 2 is to play (1/2, 1/2)/.i.d. Player 1 
has no optimal strategy but an e optimal strategy can be constructed as follows: Let 
M ~> 1/e and gn be the sum of the (non-absorbing) payoff up to stage n; then player 1 
plays Top at stage n + 1 with probability (M+g n -n /2 )  -2. Intuitively player 1 will 
always play Top with a small probability; but this probability will decrease very fast if 
player 2 is using a frequency of Left less than 1/2 and increase otherwise. Similarly 
v 2 = 2/3 (the corresponding strategies being 2/3, 1/3) i.i.d, for player 2 and Top with 
probability (M-gn + 2n/3) -2 for player 1) and we shall denote by V = (v 1 , v2) the 
threat point. 

It follows that the set F of feasible individually rational and Pareto optimal payoffs 
is given by 

F = {(a; 2(1 -a) ) ;  1/2 ~<a ~< 2/3} 
(o,2) 

(o,i) 

v 2 

,0) 

We can now state our results. 

Theorem I:E(n)=E(k)= {V}, Vn~> 1,V )t E (0, 1]. 

Note that we obviously have E(1) = { V} but this does not a priori even imply: 
{ V} included in E(n) or in E()t), as in repeated games with only one state. 

Theorem 2: E('~) = F. 
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I I I  P r o o f  o f  T h e o r e m  1 

Given (0, r) pair o f  equilibrium strategies in G(n) or G(X) we denote by  (s, t) the cor- 
responding mixed actions of  both  players at the first stage, where s (resp. t) stands for 
the probability of  Top (resp. Left). 

It follows immediatly that  s = 1 is impossible (P II would play t = 0) and similarly 
for t = 1 (P I would play s = 1). 

We now consider the two classes of  games. 

1 Study of  E(X) 

For a given X, let w be the maximal equilibrium payoff  for player 2 and let this payoff  
be obtained by  some equilibrium pair (a, r). 

Define w'  (resp. w") to be the normalized payoffs induced by  (o, f) from stage 2 
on, given the history (Bottom, Left) (resp. (Bottom, Right)) at stage i .  

Assume first s = 0. Since t < i ,  w" is aNEP forP II and the equality w = ( i  - X)w" 
contradicts the definition of  w. 

On the other hand t = 0 would imply s = 0. 
Hence we are left with the case where s and t belong to the open interval (0, 1). 

The equilibrium conditions are thus: 

w = (1 - s) (X + (1 - X)w') = 2s + (1 - s)(1 - X)w". 

By definition o f w  and using the fact that now both w' and w" are NEP we obtain: 

(1 - s ) ( X  + (1 - X)w)/> w 

( 1  - s ) ( 2  - ( 1  - X ) w )  ~< 2 - w.  

These inequalities give: 

(2 - w)(X + (1 - X)w)/> w(2 - (1 - X)w) 

hence: 

2X >i 3Xw 

Since w >~ v2 we obtain w = v 2 and E(X) is included in the line Y2 = v2. 
Let now (o, r) be specified in order that player 1 achieves his maximum equilibri- 

um payoff  u. u'  and u" being defined like w' and w" above we obtain: 

u = t = t(1 - k)u '  + (1 - t)(X + (1 - X)u") 

and since u'  and u" are NEP for player 1 it follows that: 

u ~< t(1 - X)u + (1 - t ) (h + (1 - X)u) 
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but u = t, hence: 

U <~ U2(1 - ~.) + (1 - U)(X + (1 - X)U) 

which gives 

2uX~<X. 

1 
Thus we finally get u ~< ~,  hence u = v 1 and E(X) = { V} for all )t ~ (0, 1]. 

The equilibrium strategies in G(X) are given by: s = X/(X + 2) and t = 1/2. (Note 
that these strategies are stationary.) 

2 Study of  E(n) 

The analysis is roughly similar, except the fact that after one stage both players play in 
a different game, namely G(n - 1). 

So let us define m such that E(n) is included in {Y2 = v2 } for all n ~< m. As above 
we introduce (a, r)  corresponding to some NEP w of  player 2 in G(m + 1), and (s, t) 
being the random actions at stage 1. 

Here again, assuming s = 0 gives (In + 1) w = my2 hence a contradiction, and simi- 
larly if t = 0. 

The equilibrium conditions for s and t in (0, 1) are now: 

(m + 1)w = (1 - s ) ( 1  + my2)  = 2s(m + 1) + (1 - s ) m v 2 .  

v 2 = 2/3 gives s = 1/(2m + 3) and w = 2/3. 

An analogous computat ion for player 1 leads to: 

(m + 1)u = ( m  + 1)t =(1 - t ) l  +my 1 

hence v x = 1/2 implies t = 1/2 and u = 1/2. 
This shows by induction that for all n ~> 1 E(n) = { V}. 
The equilibrium strategies for G(n) are given by: s = 1/(2n + 1) and t = 1/2 at 

stage one, and then equilibrium in G(n - 1) if Bottom. 
This ends the proof  o f  Theorem 1. 

I V  P r o o f  o f  T h e o r e m  2 

We shall split the p roof  into 2 parts. 

Step 1: E(oo) CF. 
Obviously any NEP lies in C and Pareto dominates V. 
It remains thus to show that  it belongs to the line [(1, 0), (0, 2)]. 
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The idea of the proof is very simple: if the probability of getting an absorbing pay- 
off  on the equilibrium path, is less than one, then after some stage P I is essentially 
playing bottom; the corresponding feasible payoffs, from this stage on, are not indivi- 
dually rational, hence a contradiction. 

In fact given-9 inE(~o) and e > 0, let ((re, re) satisfy (I). 
Define m to be the stopping time corresponding to the first action Top of  player 

1 and note t'hat on the event {m = + o~} the average payoff lies on the line Yl + Y= = 1, 
and in particular it is not individually rational. 

Assume now that p = Prob%,r~ ( {m = +oo}) is strictly positive. 
For any 8 > 0, we can introduce some N such that: 

Prob ( { m = + ~ }  t{m~>N}~> 1 - 8 .  

Hence by deviating from stage N on, one player will gain at least 
1 

(v 1 + v 2 - 1)5 (1 - 8 ) -  28, conditionally on {m~>N}. 

For 8 small enough this amount is greater than 1/13; it follows now from (1) that 
p has to be less than some 14e. 

Hence 9 belongs to any neighbourhood of the Pareto boundary, corresponding to 
{m < + ~} and this achieves the proof. 

Step 2: F C E(~). 
It remains now to prove that the points in F can actually be achieved as NEP 

(showing in particular that E(~) is not empty). 
Le ty  = (a, 2(1 - a ) )  in Fwi th  1/2 ~<a ~< 2/3. 

We describe the strategies as follows: 
For player 2, r is defined by playing left with probability a, i.i.d, at each stage. 

For player 1, o is a 6-optimal strategy in the following game: 

I-(1 -a) 
as constructed in BlackweU/Ferguson or more generally in Mertens/Neyman. 

Recall that such a strategy can be defined as follows: play optimally at stage n in 
the game with discount factor ~'n where Xn is a function of the history defined by 
~.n = (M + gn) -2" 

This implies in particular that, if }n denotes the frequency of Left up to stage n, 
there exists some N such that o satisfies: 

Proba,r(m ~<N) t> 1 - 8 

and for all n ~>N and all r '  in T: 

(2) 

Prob a,r' (m ~< n) ~< 1 - 8 ~ Eo,r' (t-n [ m > n) ~< a + 8 (3) 
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Probo, r, (m ~< n)(Prob O'm = tef t l  m • n) - a) ~ - 52. (4) 

Since a is greater than 1/2 it follows from (2) that o is a best reply to r up to 25. 
Now given o, either (3) holds hence the non absorbing average payoff is at most 

a + ~ thus less then 2(1 - a )  + 5(a being less than 2/3) or the probability of  such a pay- 
off is less than ~. 

As for the absorbing part, either it has a weight greater than ~ but by (4) the cor- 
responding payoff is at most 2(1 - a  + 8), or the absorbing probability is less than 6. 

It follows easily that, given e > 0, by taking ~ small enough the above (cr, T) form 
an equilibrium pair associated to y. 

V Conc lud ing  R e m a r k s  

The main feature of  this example is the fact that E(n) and E(X) are constant and dis- 
joint from E(~176 

This implies that the difference between the infinite game and the two approxima- 
"tions cannot be reduced by taking a stronger concept of  Equilibrium. 

It is worthwhile to remark moreover that the NEP in G(oo) are precisely the "good" 
outcomes while E(n) and E(X) are reduced to the threat point. 

This last property exhibits another phenomena, already noticed by Aumann/ 
Maschler: in G(n) and G(X) both players are requested to play at equilibrium strategies 
which induce a payoff V, without guaranteeing it, while strategies guaranteeing it do 
exist for both (Typically player 2 has to play (1/2, 1/2) i.i.d, while (2/3, 1/3) i.i.d, is 
his minmax strategy.) 
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