Asymptotic Properties of a Non-Zero Sum Stochastic Game

By S. Sorin ${ }^{1}$

Abstract

Summary: An example of a non-zero sum stochastic game is given where: i) the set of Nash Equilibrium Payoffs in the finitely repeated game and in the game with discount factor is reduced to the threat point; ii) the corresponding set for the infinitely repeated game is disjoint from this point and equals the set of feasible, individually rational and Pareto optimal payoffs.

I Introduction

The Folk Theorem states that the set of Nash Equilibrium Payoffs (NEP for short) in an infinitely repeated game coincides with the set D of individually rational payoffs that are feasible.

Moreover D contains the set of NEP in the game with discount factor λ and the set of NEP in the finitely repeated game. (For these results see e.g. Aumann.) On the other hand, for zero-sum stochastic games the value of the infinitely repeated game exists (Mertens/Neyman) and equals the limit of the values of both, discounted and finitely repeated games. Finally it can be shown (Mertens) that the set of NEP in nonzero sum λ discounted stochastic games has at least one limit point as λ goes to 0 . It was thus a natural conjecture to ask whether this point was a NEP in the infinitely repeated game (also proving the nonemptiness of this set).

In fact this attempt fails and in the following example we show that neither the finitely repeated game nor the discounted game is a good approximation of the infinitely repeated game, as far as the equilibrium concept is concerned.

II The Example

Recall that a (two person) stochastic game is played in stages. At stage m, the players observe the current state z_{m} and choose some actions (i_{m}, i_{m}). The triple (z_{m}, i_{m}, i_{m}) determines the current (vector) payoff x_{m} at that stage and the probability according to which the new state is choosen. Hence a (behavioral) strategy is the random choice

[^0]of an action at each stage m, conditionally to the history $\left(z_{1}, i_{1}, j_{1}, \ldots, i_{m-1}, j_{m-1}\right.$, z_{m}) up to that stage. We denote by S and T the strategy sets of both players. We shall consider the stochastic game described by the following payoff matrix:
\[

\left[$$
\begin{array}{ll}
(1.0)^{*} & (0,2)^{*} \\
(0,1) & (1,0)
\end{array}
$$\right]
\]

where a star denotes an absorbing payoff (i.e. this entry, once reached, determines the payoff for all remaining stages).

Given (σ, τ) in $S \times T$, they induce a (vector) payoff $X_{n}(\sigma, \tau)$ in the n-stage game $G(n)$ where :

$$
X_{n}(\sigma, \tau)=E_{\sigma, \tau}\left(\frac{1}{n} \sum_{m=1}^{n} x_{m}\right)
$$

We denote by $E(n)$ the set of NEP in $G(n)$.
Similarly (σ, τ) induce a payoff $X_{\lambda}(\sigma, \tau)$ in the λ-discounted game $G(\lambda)$ with:

$$
X_{\lambda}(\sigma, \tau)=E_{\sigma, \tau}\left(\lambda \sum_{m=1}^{\infty}(1-\lambda)^{m-1} x_{m}\right), \quad \text { for } \lambda \in(0,1]
$$

and $E(\lambda)$ is the set of NEP in $G(\lambda)$.
Note that Nash's theorem implies that $E(n)$ and $E(\lambda)$ are nonempty closed sets.

Now $E(\infty)$, set of NEP in the undiscounted infinitely repeated game $G(\infty)$ is defined as the set of payoffs $y=\left(y^{1}, y^{2}\right)$ satisfying:
$\forall \epsilon>0, \exists \sigma_{\epsilon} \in S, \exists \tau_{\epsilon} \in T, \exists N \in \mathbf{N}$ such that, for all $\sigma \in S, \tau \in T$ and all $n \geqslant N$:

$$
\left.\begin{array}{l}
X_{n}^{1}\left(\sigma, \tau_{\epsilon}\right)-\epsilon \leqslant y^{1} \leqslant X_{n}^{1}\left(\sigma_{\epsilon}, \tau_{\epsilon}\right)+\epsilon \tag{1}\\
X_{n}^{2}\left(\sigma_{\epsilon}, \tau\right)-\epsilon \leqslant y^{2} \leqslant X_{n}^{2}\left(\sigma_{\epsilon}, \tau_{\epsilon}\right)+\epsilon
\end{array}\right\}
$$

(Recall that it is hopeless to look for "exact" Nash equilibrium since already in the zero-sum case only ϵ-optimal strategies may exist).

Let us now remark that the sets of feasible payoffs, namely:

$$
\begin{aligned}
& C(n)=\left\{y \mid \exists(\sigma, \tau) \text { in } S \times T \text { with } X_{n}(\sigma, \tau)=y\right\} \\
& C(\lambda)=\left\{y \mid \exists(\sigma, \tau) \text { in } S \times T \text { with } X_{\lambda}(\sigma, \tau)=y\right\} \\
& C(\infty)=\left\{y \mid \exists(\sigma, \tau) \text { in } S \times T \text { with } L\left(X_{n}(\sigma, \tau)\right)=y\right\}
\end{aligned}
$$

(where L is a Banach limit) are equal to the following set:

$$
C=\operatorname{Co}\{(1,0),(0,1),(0,2)\}
$$

Finally the minimax, v_{1}, for player 1 is given by the value of the following zero-sum game:

$$
\left[\begin{array}{ll}
1^{*} & 0^{*} \\
0 & 1
\end{array}\right]
$$

which is exactly the "Big Match" of Blackwell/Ferguson. We recall that the value of this game is $1 / 2$. An optimal strategy for player 2 is to play ($1 / 2,1 / 2$) i.i.d. Player 1 has no optimal strategy but an ϵ optimal strategy can be constructed as follows: Let $M \geqslant 1 / \epsilon$ and g_{n} be the sum of the (non-absorbing) payoff up to stage n; then player 1 plays Top at stage $n+1$ with probability $\left(M+g_{n}-n / 2\right)^{-2}$. Intuitively player 1 will always play Top with a small probability; but this probability will decrease very fast if player 2 is using a frequency of Left less than $1 / 2$ and increase otherwise. Similarly $\nu_{2}=2 / 3$ (the corresponding strategies being $2 / 3,1 / 3$) i.i.d. for player 2 and Top with probability $\left(M-g_{n}+2 n / 3\right)^{-2}$ for player 1) and we shall denote by $V=\left(v_{1}, v_{2}\right)$ the threat point.

It follows that the set F of feasible individually rational and Pareto optimal payoffs is given by

$$
F=\{(a ; 2(1-a)) ; 1 / 2 \leqslant a \leqslant 2 / 3\}
$$

We can now state our results.
Theorem 1: $E(n)=E(\lambda)=\{V\}, \forall n \geqslant 1, \forall \lambda \in(0,1]$.
Note that we obviously have $E(1)=\{V\}$ but this does not a priori even imply: $\{V\}$ included in $E(n)$ or in $E(\lambda)$, as in repeated games with only one state.

Theorem 2: $E(\infty)=F$.

III Proof of Theorem 1

Given (σ, τ) pair of equilibrium strategies in $G(n)$ or $G(\lambda)$ we denote by (s, t) the corresponding mixed actions of both players at the first stage, where s (resp. t) stands for the probability of Top (resp. Left).

It follows immediatly that $s=1$ is impossible (P II would play $t=0$) and similarly for $t=1$ (P I would play $s=1$).

We now consider the two classes of games.

1 Study of $E(\lambda)$

For a given λ, let w be the maximal equilibrium payoff for player 2 and let this payoff be obtained by some equilibrium pair (σ, τ).

Define w^{\prime} (resp. $w^{\prime \prime}$) to be the normalized payoffs induced by (σ, τ) from stage 2 on, given the history (Bottom, Left) (resp. (Bottom, Right)) at stage 1.

Assume first $s=0$. Since $t<1, w^{\prime \prime}$ is a NEP for PII and the equality $w=(1-\lambda) w^{\prime \prime}$ contradicts the definition of w.

On the other hand $t=0$ would imply $s=0$.
Hence we are left with the case where s and t belong to the open interval $(0,1)$. The equilibrium conditions are thus:

$$
w=(1-s)\left(\lambda+(1-\lambda) w^{\prime}\right)=2 s+(1-s)(1-\lambda) w^{\prime \prime}
$$

By definition of w and using the fact that now both w^{\prime} and $w^{\prime \prime}$ are NEP we obtain:

$$
\begin{aligned}
& (1-s)(\lambda+(1-\lambda) w) \geqslant w \\
& (1-s)(2-(1-\lambda) w) \leqslant 2-w
\end{aligned}
$$

These inequalities give:

$$
(2-w)(\lambda+(1-\lambda) w) \geqslant w(2-(1-\lambda) w)
$$

hence:

$$
2 \lambda \geqslant 3 \lambda \omega
$$

Since $w \geqslant \nu_{2}$ we obtain $w=\nu_{2}$ and $E(\lambda)$ is included in the line $y_{2}=\nu_{2}$.
Let now (σ, τ) be specified in order that player 1 achieves his maximum equilibrium payoff u. u^{\prime} and $u^{\prime \prime}$ being defined like w^{\prime} and $w^{\prime \prime}$ above we obtain:

$$
u=t=t(1-\lambda) u^{\prime}+(1-t)\left(\lambda+(1-\lambda) u^{\prime \prime}\right)
$$

and since u^{\prime} and $u^{\prime \prime}$ are NEP for player 1 it follows that:

$$
u \leqslant t(1-\lambda) u+(1-t)(\lambda+(1-\lambda) u)
$$

but $u=t$, hence:

$$
u \leqslant u^{2}(1-\lambda)+(1-u)(\lambda+(1-\lambda) u)
$$

which gives

$$
2 u \lambda \leqslant \lambda
$$

Thus we finally get $u \leqslant \frac{1}{2}$, hence $u=v_{1}$ and $E(\lambda)=\{V\}$ for all $\lambda \in(0,1]$.
The equilibrium strategies in $G(\lambda)$ are given by: $s=\lambda /(\lambda+2)$ and $t=1 / 2$. (Note that these strategies are stationary.)

2 Study of $E(n)$

The analysis is roughly similar, except the fact that after one stage both players play in a different game, namely $G(n-1)$.

So let us define m such that $E(n)$ is included in $\left\{y_{2}=v_{2}\right\}$ for all $n \leqslant m$. As above we introduce (σ, τ) corresponding to some NEP w of player 2 in $G(m+1)$, and (s, t) being the random actions at stage 1 .

Here again, assuming $s=0$ gives $(m+1) w=m \nu_{2}$ hence a contradiction, and similarly if $t=0$.

The equilibrium conditions for s and t in $(0,1)$ are now:

$$
\begin{aligned}
& (m+1) w=(1-s)\left(1+m v_{2}\right)=2 s(m+1)+(1-s) m v_{2} \\
& v_{2}=2 / 3 \text { gives } s=1 /(2 m+3) \text { and } w=2 / 3
\end{aligned}
$$

An analogous computation for player 1 leads to:

$$
(m+1) u=(m+1) t=(1-t) 1+m v_{1}
$$

hence $v_{1}=1 / 2$ implies $t=1 / 2$ and $u=1 / 2$.
This shows by induction that for all $n \geqslant 1 E(n)=\{V\}$.
The equilibrium strategies for $G(n)$ are given by: $s=1 /(2 n+1)$ and $t=1 / 2$ at stage one, and then equilibrium in $G(n-1)$ if Bottom.

This ends the proof of Theorem 1.

IV Proof of Theorem 2

We shall split the proof into 2 parts.
Step 1: $E(\infty) \subset F$.
Obviously any NEP lies in C and Pareto dominates V.
It remains thus to show that it belongs to the line $[(1,0),(0,2)]$.

The idea of the proof is very simple: if the probability of getting an absorbing payoff on the equilibrium path, is less than one, then after some stage P I is essentially playing bottom; the corresponding feasible payoffs, from this stage on, are not individually rational, hence a contradiction.

In fact given \bar{y} in $E(\infty)$ and $\epsilon>0$, let ($\sigma_{\epsilon}, \tau_{\epsilon}$) satisfy (1).
Define m to be the stopping time corresponding to the first action Top of player 1 and note that on the event $\{\underset{\sim}{m}=+\infty\}$ the average payoff lies on the line $y_{1}+y_{2}=1$, and in particular it is not individually rational.

Assume now that $p=\operatorname{Prob}_{\sigma_{\epsilon}, \tau_{\epsilon}}(\{\underset{\sim}{m}=+\infty\})$ is strictly positive.
For any $\delta>0$, we can introduce some N such that:

$$
\operatorname{Prob}(\{\underset{\sim}{m}=+\infty\} \mid\{\underset{\sim}{m} \geqslant N\} \geqslant 1-\delta .
$$

Hence by deviating from stage N on, one player will gain at least

$$
\left(v_{1}+v_{2}-1\right) \frac{1}{2}(1-\delta)-2 \delta, \quad \text { conditionally on }\{\underset{\sim}{m} \geqslant N\} .
$$

For δ small enough this amount is greater than $1 / 13$; it follows now from (1) that p has to be less than some 14ϵ.

Hence \bar{y} belongs to any neighbourhood of the Pareto boundary, corresponding to $\{\underset{\sim}{m}<+\infty\}$ and this achieves the proof.

Step 2: $F \subset E(\infty)$.
It remains now to prove that the points in F can actually be achieved as NEP (showing in particular that $E(\infty)$ is not empty).

Let $y=(a, 2(1-a))$ in F with $1 / 2 \leqslant a \leqslant 2 / 3$.
We describe the strategies as follows:
For player $2, \tau$ is defined by playing left with probability a, i.i.d. at each stage. For player $1, \sigma$ is a δ-optimal strategy in the following game:

$$
\left[\begin{array}{cc}
(1-a)^{*} & -a^{*} \\
-(1-a) & a
\end{array}\right]
$$

as constructed in Blackwell/Ferguson or more generally in Mertens/Neyman.
Recall that such a strategy can be defined as follows: play optimally at stage n in the game with discount factor λ_{n} where λ_{n} is a function of the history defined by $\lambda_{n}=\left(M+g_{n}\right)^{-2}$.

This implies in particular that, if \bar{t}_{n} denotes the frequency of Left up to stage n, there exists some N such that σ satisfies:

$$
\begin{equation*}
\operatorname{Prob}_{a, \tau}(\underset{\sim}{m} \leqslant N) \geqslant 1-\delta \tag{2}
\end{equation*}
$$

and for all $n \geqslant N$ and all τ^{\prime} in T :

$$
\begin{equation*}
\operatorname{Prob}_{\sigma, \tau^{\prime}}(\underset{\sim}{m} \leqslant n) \leqslant 1-\delta \Rightarrow E_{\sigma, \tau^{\prime}}\left(\bar{t}_{n} \mid \underset{\sim}{m}>n\right) \leqslant a+\delta \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Prob}_{\sigma, \tau^{\prime}}(\underset{\sim}{m} \leqslant n)(\operatorname{Prob}(\underset{\sim}{m}=\text { Left } \mid \underset{\sim}{m} \leqslant n)-a) \geqslant-\delta^{2} . \tag{4}
\end{equation*}
$$

Since a is greater than $1 / 2$ it follows from (2) that σ is a best reply to τ up to 2δ.
Now given σ, either (3) holds hence the non absorbing average payoff is at most $a+\delta$ thus less then $2(1-a)+\delta(a$ being less than $2 / 3)$ or the probability of such a payoff is less than δ.

As for the absorbing part, either it has a weight greater than δ but by (4) the corresponding payoff is at most $2(1-a+\delta)$, or the absorbing probability is less than δ.

It follows easily that, given $\epsilon>0$, by taking δ small enough the above (σ, τ) form an equilibrium pair associated to y.

V Concluding Remarks

The main feature of this example is the fact that $E(n)$ and $E(\lambda)$ are constant and disjoint from $E(\infty)$.

This implies that the difference between the infinite game and the two approxima'tions cannot be reduced by taking a stronger concept of Equilibrium.

It is worthwhile to remark moreover that the NEP in $G(\infty)$ are precisely the "good" outcomes while $E(n)$ and $E(\lambda)$ are reduced to the threat point.

This last property exhibits another phenomena, already noticed by Aumann/ Maschler: in $G(n)$ and $G(\lambda)$ both players are requested to play at equilibrium strategies which induce a payoff V, without guaranteeing it, while strategies guaranteeing it do exist for both (Typically player 2 has to play $(1 / 2,1 / 2)$ i.i.d. while $(2 / 3,1 / 3)$ i.i.d. is his minmax strategy.)

References

Aumann RJ (1981) Survey of repeated games. In: Essays in game theory and mathematical economical in honor of Oskar Morgenstern. Bibliographisches Institut, Mannheim Wien Zürich
Aumann RJ, Maschler M (1972) Some thoughts on the minimax principle. Management Science 18/5, part II:54-63
Blackwell D, Ferguson TS (1968) The big match. Annals of Mathematical Statistics 39:159-163
Mertens JF (1982) Repeated games: an overview of the zero-sum case. In: Hildenbrand W (ed) Advances in economic theory. Cambridge UP
Mertens JF, Neyman A (1981) Stochastic games. International Journal of Game Theory 10:53-66

[^0]: 1 Sylvain Sorin, Université Louis Pasteur, Département de Mathématique, 7 rue René Descartes, 67084 Strasbourg, France.

