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ABSTRACT 

We consider two person zero-sum stochastic games. The recursive formula 
for the values v~, (resp. vn) of the discounted (resp. finitely repeated) 
version can be writ ten in terms of a single basic operator @(a, .f) where 

is the weight on the present payoff and .f the future payoff. We give 
sufficient conditions in terms of 4~(c~, f )  and its derivative at 0 for lira vn 
and lira vA to exist and to be equal. 

We apply these results to obtain such convergence properties for absorb- 
ing games with compact action spaces and incomplete information games. 
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I n t r o d u c t i o n  

We study asymptotic properties of zero-sum repeated games. In such a frame- 

work there exist several possible evaluations of the stream of payoffs collected 

stage after stage by the players. Two classical definitions correspond to the A- 

discounted game in which the overall payoff is the expectation of the discounted 

average of the stage payoffs and the n-stage game in which it is the expectation of 

the Cesaro mean of the first n-stage payoffs. Under standard assumptions both 

games have a value, denoted by vx and vn, respectively. The main problem is to 

study the asymptotic behavior of these quantities as A goes to 0 and as n goes 

to infinity. 

In various classes of games the existence of the limit of v~ and vn has been 

proved using specific tools. In the case of games with incomplete information, 

first on one side (Aumann and Maschler [1]) then on both sides (Mertens and 

Zamir [11]) the limit is characterized by a functional equation and the proof 

is based on the explicit construction of best reply strategies and on martingale 

properties. 

For finite stochastic games (Sewley and Kohlberg [2] and [3]) the proof relies 

on properties of solutions of a finite set of algebraic equations. In addition, 

in the cases above, these values converge to the same limit. In the set up of 

dynamic programming (one player stochastic game) Lehrer and Sorin [7] proved 

that uniform convergence of v~ is equivalent to uniform convergence of vn and 

that  moreover the limits are the same. 

For general zero-sum games, one approach to get such a result would be to 

construct a "compactification" of the repeated game as a continuous time game 

on [0, 1] for which the )~-discounted game and the n-stage game would correspond 

to two different time discretizations. This has been done by Sorin in the case of 

Big Match with incomplete information on one side [17], and by Laraki [6] in the 

case of the dual of a game with incomplete information on one side. 

A very large class of games (including stochastic games and incomplete infor- 

mation games) exhibits a recursive structure, [10] Chapter IV.3. This implies the 

existence of recursive formulas satisfied by v,  and v~, extending the usual ones 

occurring in stochastic games (Shapley, [16]) or incomplete information games 

[1], [11]. They can be written using a single basic operator ~(a ,  .) as follows: 

The current approach relies directly on these formulas to get the existence and 

the equality of the limits of v,  and vx. 
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A first result of convergence of v .  along these lines is due to Kohlberg [4] in 

the case of absorbing games. The idea is that the asymptotic analysis of vn can 

be derived from an asymptotic analysis of the mappings ~ ( a ,  .) with c~ near 0. 

The limit v of vn will be characterized by a functional system defined through ~.  

The first equation of the system is ~(0, v) :- v. But such a fixed point formula 

(meaning that  the players should be able to maintain their future payoffs above 

the level v) does not characterize the limit. Indeed it does not depend on the 

current payoffs. Kohlberg shows how v is determined by an equation in terms of 

~(.), the derivative of 4~((~, .) with respect to ~ evaluated at 0. 

Kohlberg and Neyman [5] pointed out that the recursive formulas correspond to 

the n-th iterate (resp. the A-perturbation) of a non-expansive mapping. A general 

result in this framework [5] implies that both norms IIv, II and IIv~ll converge to 

the same limit. In the case of games with incomplete information on one side, 

this is enough to prove the convergence of v ,  and vx [10], Ex. 5, p. 298. 

In this paper we generalize Kohlberg's approach. We first consider a general 

stochastic game and study some properties of the operator 4~((~, .). In section 2 we 

derive sufficient conditions in terms of these mappings for v ,  and vx to converge 

to a function v. In section 3 we characterize the derivative ~o of 4~(~, f )  at 0 as 

the value of the derived game. We deduce then sufficient conditions, expressed in 

terms of ~, for the convergence of the values. We finally apply these results first 

to absorbing games with compact action sets and then to incomplete information 

games. In both cases we prove convergence of v,~ and v~ to the same function v. 

In the latter class we characterize v by means of functional inequalities involving 

�9 (0, .) and ~. Moreover, we prove that this characterization is equivalent to the 

previous one through two functional equations obtained by Mertens and Zamir 

[11]. 

1. R e c u r s i v e  f o r m u l a  

We consider a two person zero-sum stochastic game l" on a state space ~ with 

current payoff g from X•  to [ - 1, 1] and transition p from X • 2 1 5  to 

A(~) (the set of probabilities on ~). At each stage m, given the stat~ w, player 

1 (resp. 2) plays in X (resp. Y), the stage payoff is g,n = g(x ,y ,w) ,  the new 

state w' is selected according to the distribution p(x, y, w) and announced to thc 

players. 

Let ~" be the set of bounded functions on ~: 

~" : {f :  ~--~R, Ilf[[oo : sup If(w)[ < ~}. 
coEfl 
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To each fEJ  r and a in [0, 1], one associates a game F(c~, f )  with strategy spaces 
X and Y and payoff function in state w: 

�9 x~(a, f)(w) = olg(x, y,w) + (1 - ot)Ep(z,y,co)(f). 

Assume that  this game is well defined, has a value on a subset ~'r of ~" and that  

this value itself belongs to .Tr. One introduces then a one parameter family of 

operators ~ ( a ,  .) from ~'r to itself by 

(I) O(ct, f)(w) = valxxyr f)(w) 
= sup inf ~:~  (c~, f)(w) = inf sup ~ y  (a, f)(w) 

X Y X 

and another operator �9 by 

(2) ~ ( f ) ( w )  = va lx •  y, w) + Ep(z,u,~)(f)}. 

The game I'(a, f )  is the one shot game where the present, with current payoff g, 

has weight a and the future, with weight ( l - a ) ,  is evaluated through the function 

f which depends only on the state tomorrow. �9 is the primitive non-expansive 
"Shapley operator" [16] from which one can derive ~ (a ,  .) for a > 0. 

The main basic properties of these operators are the following: 

LEMMA 1: (a) For any constant a, 

and 

(I'(a, f -I- a) = (I,(~, f) + (1 - a)a 

~ ( f  -4- a) = ~ ( f )  -I- a. 

(b) �9 and �9 are monotonic w.r . t . f .  

(c) Ir f )  - r  f)l<lA - ~1 max(llflloo, 1). 
(d) For a > 0, 

@(c~,f) = a ~ ( ( X  - a ) f ) .  
ot 

C O R O L L A R Y  1:  (a) On the set (~r,  II Iloo), ~ is contracting with coef~cient 
(1 - a) and �9 is non-expansive. 

(b) �9 is jointly continuous on [0, 1] x ~ r .  

We now relate these operators to the repeated game. In the n-stage game, Fn 
1 n (nE1N), the payoff is ~ , , ~ = l g m  and in the A-discounted game, Fx (AE(0, 1]), it 

is ~ = x A ( 1  - A)'n-tgm. If these games have values, respectively denoted by vn 
and vx, they obey recursive formulas and can be characterized by means of the 
mappings defined above. 
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PROPOSITION 1: (a) 

(b) 

(c) 

(d) 

(e) I f  in addition (~r ,  II 

= 

v,, = '~(1/n,v,~_x). 

n v .  = 

v x  = v x ) .  

v~ = A~I, ((1 -~-~)vx). 

I1 ) is complete, 

for any f in Jrr. 

The current approach aims at deducing asymptotic properties of vn (as n goes 

to infinity) and of vx (as A goes to 0) from a direct study of the mapping 4i. We 

describe now explicitly how the previous framework applies to specific classes. A 

much more general analysis can be found in [10], Chapter IV.3. 

I. FINITE STOCHASTIC GAMES [16]. The move sets, say I and J ,  are finite as 

well as the state space f/. A real payoff function g on IxJx~2  and, for each (i ,j) ,  
a transition kernel p(i,j; .) from ~2 to A(f~) are given. Let X = A(I),  Y = A(J)  

be the mixed moves sets. Then one has 

vx (w) = v a l x  • y { A E i T i y j g ( i ,  j, w) + (1 - A)Ei j~ ,x iy jp( i ,  j; w)(w')v~ (w')} 

and similarly 

(n + 1)Vn+l (w) = v a l x  x ~" { E i j x i y j g  (i, j, w) + nEijr xiyip(i, j; w)(w')vn (w') }. 

If we still denote by p and g the multilinear extensions from I x J to X x Y of the 

corresponding functions, the operator is written as 

�9 (ct, f )  = valxxY{Otg(x, y, w) + (1 - c~)Ew,p(x , y; w)(w')f(w')}. 

(Note that  we did not specify the signalling structure; we only assumed w to be 

known at each stage by both players.) 

II. GAMES WITH INCOMPLETE INFORMATION AND STANDARD SIGNALLING [1] 

[11]. For player 1, I is the finite move set, K the finite type set and p the initial 

distribution on K.  The corresponding notions for player 2 are denoted by J,  L 

and q. 
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The payoff matrix in state k, 1 is A kt. The game is played as follows: a couple 

(k, t) in K x L is chosen according to the product probability p| q. Player 1 (resp. 

2) is informed upon k (resp. ~) and the same game A kt is played repeatedly. At 

each stage the moves chosen are announced but the payoff is not revealed. Then 

one has 

k t k k l l  (1 A)Z~j-gi t jvx(p( i ) ,q( j ) )}  , v~(p, q) = valA(i)K • {AE~jk lP  q S i Ai j t  j + - 

(n + 1)v, +1 (P, q) = val  A( I)K X A( J)L ( Z i j k , p  k ql S~ Ai~ t~ + n E , j -g ,  tj vn (p( i), q(j ) ) }, 

where sEA( I )  g,-g = y]~kpks k and p(i) is the conditional probability on K given 

i (and similarly for t, i and q(j)): 

p(i)  - p s, 

Note that  in the true play of the incomplete information game, none of the players 

is able to compute both p(i) and q(j). However, the above formulas show that 

the values would not change if these posteriors were publicly announced at each 

stage. This property allows us to consider these games as stochastic games (as 

far as only the values vn or vx are concerned). Explicitly X is the set of type- 

dependent mixed moves of player 1, X = A(I)  K and similarly Y = A(J )  L. The 

state space is 12 = A ( K ) x A ( L ) .  The transition p(x,y ,  (p,q)) gives probability 

~ t j  to the new state (p(i), q(j)). 

III. FINITE PUBLIC CASE. This corresponds to a finite stochastic game (I and 

J are the finite pure action sets) on a finite parameter space Z, with lack of 

information on both sides, K being the set of types of player 1 and L of player 2, 

p and q being the initial distributions according to which k and ~ are chosen, once 

and for all. Assume move/parameter/types dependent payoff A and transition 

lr on Z. Hence for each (k, l) a stochastic game on Z is defined. In addition, 

the players get random signals after each stage and we assume that  the signal of 

each player contains the new parameter z' (and his own move) and allows us to 

compute the posterior probability of the opponent on his unknown state variable, 

k I k k l z  l v~(p, q, z) = vala(x)K •  q S~ Aij tj 

+ (1 - )t)E,r,p,q,s,t,zvx(p(ct, 1~), q(a, [3), z((~,/3))}, 

where cr and fl are the signals to the players, z(cr,/~) the corresponding new 

parameter in Z, and p(a,/3) and q(cr,/~) the new conditional distributions on K 

and L given the signals. The public hypothesis means that, for any couple of 
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signals (a, fl) and (a,/3') having positive probability under (s, t), the conditional 

probability on K is the same given/3 or/3' (and is p(cz,/3)) and similarly for q. 

Here X = A(I)  ~ and Y = A(J)  L, f~ = A ( K ) x A ( L ) x Z .  The transition on f~ 

is defined by the distribution on the signals. 

Remark: The "public" hypothesis implies that one can keep ~ as "universal 

belief space" (see [10], Chapter III): at each stage, player 1 can compute the new 

beliefs of player 2 on his unknown variable k. He does not have to introduce 

private beliefs on those. A same property holds for player 2. 

2. Properties of  qb 

The basic property is expressed by the domination of fixed points v~ (AE(0, 1]) 

by approximately superharmonic functions in the following sense: 

PROPOSITION 2: Assume that for some constant 5: 

r  <_ f(w) +~, VwE~; 

vj~(w) ~ f(w) +~1~, v ea. 

Proo~ Let p = sup~,(vx - f - 51~)+(w). Then 

- l - < - I )  + 6 - 

but v~ < f + 5/A + p. Thus by Lemma 1 (a) and (b) 

(I)(A, vx) <_ (I)(A, .f + 5/A + p) _< @(A, f )  + (1 - A)(~i/A + p), 

hence 

(vx - f - 6/)~) <_ (1 - )~)p, 

a contradiction, if p > 0. I 

Remark: The same bound holds on a subset f~' if for each weft '  and for 

each x E X  there exists y = y(w,x)  such that  f~' is stable under x , y  at w and 

Cxu(~,f)(w) < f(w)  + 5. 

We let now the "per stage error" & be proportional to the "per stage weight" 

6. 

then 
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C + is the set of functions f for which there exists a positive eo such 

and similarly C~- for the set of f such that there exists ~o > 0 with 

(4) f - 6 e  < ~ (e , f ) ,  Vce(0,e0); 

fEC~ + is approximately (up to 6) superharmonic for all maps ~(e, .) for e small 

enough. We will call such f ,  6 superuharmonic (u is for uniform). Then one 

obtains 

COROLLARY 2: If f belongs to C~, then 

f + 6 _> lim sup vx. 
A ~ 0  

Similarly, if  f belongs to C~ , then 

f - ~ _< lim inf vx. 
A--+0 

Proof." f belongs to C~" implies that for all A small enough ~(A, f)  _< f + 6A, 

thus by Proposition 2, vx _< f + 6. | 

A related result holds for the value vn of the finite game. 

LEMMA 2: If  f belongs to C +, then 

f+~>_ 

If f belongs to C[, then 

lim sup v,. 
~ - - ~ o o  

f - ~ < lim inf v,~. 
n - - - + o o  

Proof: Let fEC + and e0 > 0 be such that (3) holds. Choose N > 1/eo. We 

show by induction that 

v,  ~ f +  

In fact by Lemma 1 

and 

(n + 1 - N ) 6  + (N - 1.____~)]lf _ UN-1H~, 
n n 

N 
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Now at step n + 1 

1 
Vn+l : ~i ( ~ ~ ,  Vn) 

< ~ (  l_.~_.~,f)..F_~_.__~ n ((n+l-N)5-F n 

<__ f+ ( n + 2 - g ) 5 +  ( N - l )  
n + 1 I1: - vN-111 . . 

Remark: Given a distribution 0 on the positive integers, let vs be the value of 

the game with payoff ~-]~=lOmg,~. The same proof as above shows that  vo < f+5  
c~ < 

as soon as Ore~ ~t=m Ot_eo, for all m. 

Definition: Let A/'~(f) = {f '  : Ill' - film < 6} be a 5 neighborhood of f in the 

uniform norm. C is the set of fEgVr satisfying 

VS>0 ,  3f',f'e.T'rCtN'6(f), f '~C[,  f "eC +. 

This means that  in each 5 neighborhood of fEC, there exists both a sub and a 

super 6 uharmonic function. 

Then one obtains 

PROPOSITION 3: If  f belongs to C, then 

f =  l i m v x =  lim vn. 
A~0 n--~c~ 

Proof: The proof follows from Corollary 2 and Lemma 2. 

COROLLARY 3: C has at  most  one element. 

3. The derived game 

We first prove the following extension of Mills' result ([13], see also [10] pp. 12- 

13). 

PROPOSITION 4: Let X and Y be compact sets, f and g real functions on X x Y .  

Assume that for any a>O, the functions g and f + ag are u.s.c, in x and l.s.c. 
in y and that the game ( f  + ag; X, Y) has a value, v a l x x Y ( f  + ag). Denote the 
optimal strategy sets by X ( f  + ag) and Y ( f  + ag). Then 

v a l x x Y (  f q- ag) -- v a l x x Y ( f )  
valx(l)xY(l)(g ) = lim 

a-~0 + 
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Proo~ L e t a > 0 ,  x ~ i n X ( f + a g )  a n d y i n Y ( f ) .  Then 

ag(xa,y)  = ( f  + ag)(x,~,y) - f ( xa , y )>_va lxxY( f  + otg) - v a l x x Y ( f ) .  

Hence 

and 

v a l x x Y ( / +  ag) - valxxY( . f )  
inf g(x~,, y) 

Y(] ')  O 

v a l x x Y ( f  + ag) - v a l x •  
l imsup inf g(Xa, y)> limsup 

a - + 0 +  Y ( I )  --  a-+O+ 0r 

Let x be an accumulation point of a family {xa}, as a goes to 0 along a sequence 

realizing the lira sup. Since g is u.s.c, in x, one obtains 

inf g(x, y)>_ limsup inf g(xa, y). 
Y ( I )  a~O + Y ( I )  

Note also that x is in X ( f )  (X  is compact and f + (~g is u.s.c, in x), hence 

sup inf g(x ,y)>l imsup 
x(.f) Y(f) - o-+0 + 

v a l x •  + ag) - valx•  

and the result follows from the dual inequality. | 

Remark: The derivative of the value of f in the direction g is the value of g 

played on the optimal subsets for f .  

Before applying this result we assume from now on the following hypotheses: 

(i) X and Y are compact Hausdorff. 
The function (x, y)~-~xy(a,  f)(w) is, for each a, f ,w,  upper semi-continuous 

in x and lower semi-continuous in y (u.s.c./1.s.c.). 

The game F(a,  f)(w) has a value. (This is in particular the case if in addition 

the sets X and Y are convex and (x, y)~-~4,,y(a, f)(w) is quasi-concave in x and 

quasi-convex in y.) 

We denote by X ( a , f ) ( w )  and Y ( a , f ) ( w )  the corresponding sets of optimal 

strategies, for a6[0, 1]. 

(ii) The function 

(x, y)~-+~y(f)(w) = g(x, y, w) - Ep(x,y,~)(f) 

is u.s.c.fl.s.c, on X • Y.  
Following [13], see also [10] pp. 12-13, we consider the "derivative" of the value 

of the game F(a,  f )  at 0 and associate to it a new game as follows: 
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Definition: The d e r i v e d  g a m e  G(f)(w) is the game with payoff ~::y(f)(w) 

played on X(0, f)(w)xY(O, f)(w). 

The main property is the following: 

PROPOSITION 5: G(f)(w) has a value and optimal strategies. Moreover, its value, 
denoted by ~o(f)(w), satisfies 

r  f)(w) - r  f)(w) 
~(f)(w) = lim 

a-+0 + 

Proo~ Recall that ~y(O, f ) (w)  = Eq(~,~,~)(f) so that ~ y ( a , f ) ( w )  -- 

~xv(O, f)(w) d- otqo~y(f)(w). 

For w given, apply the previous Proposition 4 to the game F(a,  f)(w). | 

Remark: Note that ~ ( f  + c) = f - c for any constant c, but qo is not monotonic 

since the set of optimal strategies may change. 

F(0, f )  appears as the p r o j e c t i v e  game:  if f represents the "level" on the 

state space, the payoff today is the expectation of the level tomorrow, Ep(x,y,~)(f). 

The payoff ~o in the derived game measures the difference between the current 

payoff g and the expected future "level" when both players play optimally in the 

projective game. 

A useful consequence of the previous Proposition is the following property: if 

a strategy x is good in the projective game, it cannot guarantee more than the 

value in the derived game. 

COROLLARY 4: For any w, for any t3 > O, there exists q > 0 such that, for all 
xEX,  either 

(a) there exists yEY with @~(0, f)(w)<_~(O, f)(w) - T  h 
o r  

(b) for any y optimal in ~(f)(w), ~oxy(f)(w)<_~o(f)(w) + 13. 

Proof: By contradiction, otherwise for a specific w and some ~ > 0 one can find, 

for each positive integer m, xm in X with 

�9 ~.y(0, f)(w) > ~(0,  f ) ( w ) -  1/m, VyeY 

and 

~oxmy.,(f)(w) > ~o(f)(w) + 13, for some Ym optimal in G(f)(w). 
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If x* (resp. y*) is an accumulation point of the sequence xm (resp. Ym), the first 

inequality 

'~z.v(O,f)(w)>_O(O,f)(w) VvEY 

shows that x* belongs to X(O, f ) (w)  which, together with the second inequality 

qo=. u. (f)(w)>_qo(f)(w) + fl, for y* optimal in •(f)(w), 

contradicts the definition of qo(f)(w). | 

From Proposition 1, it is clear that any uniform limit of Vn or vx will satisfy 

4~(0, f )  = f .  It is thus natural to consider also the ratio {4~(a, f)(w) - f (w)} /a .  

PROPOSITION 6: 

qo*(f)(w) ---- lim 4i(a, f)(w) - f(w) 
a--*O C~ 

exists in R U { - ~ ,  + ~ } .  

Proof: If,h(0, f)(w) < f(w),  then qo'(f)(w) = -oc.  

If ~(0,  f ) (~)  > f(w),  then qo*(f)(w) = +oc. 

If ~(0,  f )(w) = f(co), then qo*(f)(w) = ~o(f)(w). l 

These operators are useful to define new subsets of functions. 

Definition: Let S + be the set of functions f satisfying the following system: 

~ ( O , f ) ~ f ,  

(5) O(0, f)(w) = f(w)~qo(f)(w)~_O, 

or equivalently 

qo*(f)<0. 

Let similarly S -  be the set defined by 

(I)(0, f)_>f, 

(6) '~(0, f)(w) = f (w)=v~o(f )(w)>_O, 

or 

qo" (f)>0.  

We now relate these new sets to the ones introduced in Part 2. 
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PROPOSITION 7: 

Proof'. Let f �9 N~>oC6 +" 

e _< e((f)  and all w E $2, 

N C+ c , S  + . 
(~>o 

Then for any ~ there is an e(6) such that for all 

~(~, f)(w) < f (w) + ~ .  

By letting e go to 0, one gets 

~o*(f)(w) < 5. II 

In fact the reverse inclusion holds in the finite case. 

PROPOSITION 8: Assume f~ is finite. 

8+CC +, V~ > 0 

(and similarly for S -  and C[ ). 

Proof: Let f E $  +. Fix w E f~. Hence ~o*(])(w)_<0, so that by Proposition 6, for 

any 6 > 0 there exists c0(w) > 0 such that e<E0(w) implies 

�9 - 

Since ~ is finite the conclusion follows. | 

We obtain in this case a "local" condition implying that f belongs to C, namely, 

with S being the closure of $, 

COROLLARY 5: Assume ~ finite. I f  f is in the (uniform) closure of both ,5 + and 

,5-, then f belongs to C. In particular, S+ NS-  contains at most one point. 

In the remainder of this section, we provide conditions that generalize to some 

extent such a result to compact state space f~. 

The next proposition compares the variation 4~(a, f )  - f for two functions at 

a point w maximizing their difference. A similar property is proved by Kohlberg 

[4] for the case of constant functions. 

PROPOSITION 9 (Maximum principle): (i) Let f l ,  f2 and w satisfy 

f2(w) - fl(w) = (~ = m,~(f2 - fl)(W t) > 0; 

then 

(~(C~, fl/(W) -- fl(WII -- (r f2)(w) -- f 2 I w ) l ~ ( f 2 ( w )  -- fl(W)), 
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(ii) I f  moreover 

then 

hence 
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qo*(fl)(W)- qo*(f2)(w) ~ eh. 

rID(O, f2)(w)_>h(w),  0 (0 ,  f l ) ( w ) < f l ( w ) ,  

#(O, f i ) (w)  = f i (w) ,  i = 1,2, 

Isr. J. Math. 

case.  

PROPOSITION 10: 

f 2 E S -  one has: 

Assume fl compact. For all continuous functions f i E 8  + and 

w e n .  

Proof: Otherwise,  let w be a point realizing the m a x i m u m  of (f2 - f l )  on 12 and 

assume (f2 - f l ) (w)  = 6 > 0. By Proposi t ion 9, ~*(f l ) (W) - ~o*(f2)(w)_>6, hence 

a contradic t ion to ~ * ( f l ) < 0  and w*(f2)>_O on 12. | 

Hence we obta in  also uniqueness in this case. 

Proof." For any w'E~ 

�9 (~, f2)(w') - r fl)(W')~_~(~, fl + ~)(w') - ~(~, fl)(w') 

<_(1 - 

__<(1 - a ) ( f2(w)  - f l (w)) .  

Hence, in par t icular ,  

(~(0~, fl)(W) -- It(w)) - (~(c~, A)(w) - f2(w))~_o~(f2(w) - f1(w)). 

Hence dividing by a and lett ing a go to 0, using Proposi t ion 6 one has 

qo*(f2)(w) - qo* (fl)(W)~t~. 

For (ii), taking a = 0 in the previous inequality implies ~(0 ,  f~)(w) = f i (w),  i = 

1, 2 so t ha t  one obtains  as well 

(r f2)(w) - ~(0, f2)(w)) -- (~(~, fl)(W) - ~(0, fl)(w))~_o~(fl(w) -/2(w)), 

hence 

~o(f2)(w) - qo(fl)(W)___(~. | 

This  result, allows one to compare  functions in S + and $ -  in the continuous 
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COROLLARY 6: 

UOUS functions on ~ belonging to 8 + (resp. S - ) .  

3 0 have at most one common element. 

In the same spirit as Proposi t ion 9 one has 

PROPOSITION 11: Let f ,  v~ and w satisfy 

Then 

Proo~ 

hence 
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Assume ~ compact. Let $+ (resp. S o )  be the subset of contin- 

Then the closures of S + and 

f(w) - vx(w) = m a x ( f  - vx)(w') = ~ > O. 
w' E~l 

~ ( A , f ) ( w ) ~ f ( w ) .  

~ ( ~ ,  l ) ( ~ )  - ~ ( ~ ,  v ~ ) ( ~ ) < o ( ~ ,  v~ + , ) ( w )  - o ( ~ , , ~ ) ( w )  

_ ( 1  - A)6 = (1 - A ) ( f ( w )  - v;~(w)), 

In par t icular  one deduces 

~(A, f ) (w)~ f (w) .  | 

COROLLARY 7: Assume that w maximizes ( f -  v ~  ) and satisfies f (w) - vx, (w) >_ 0 

on a sequence An going to O; then ~o*(f)(w)<_0. 

Proof'. Follows from Proposi t ion 11. | 

The  next  p roper ty  expresses the fact tha t  under the condition of Proposi t ion 

9 one has a full interval of fixed points. 

PROPOSITION 12 (Tightness): Let f l ,  f2 and w satisfy 

f2(w) - f l (w)  = t~ : wm~.~(f2 - f l ) ( t J )  > 0 

and 

r f2)(w)>_f2(w), 

Then, for any OE[O, 1], 

and 

r  fx ) (w)~f l (w) .  

#(0 ,  Of 2 + (1 - O)fl)(W) = Oh(w) + (1 - O)fl(w) 

X(0,  h ) ( w ) c X ( 0 ,  0f2 + (1 - 0)fx)(w), 
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Proo~ One has 

hence at w 

Y(O, f~)(w)cY(O, Of 2 + (1 - O)f~)(w). 

#(0 ,  Of 2 -}- (1 -- O)/1)~J~(O, f l  + Ot~) ~ f l  + Ot~, 

#(0,  Of 2 + (1 - O)fl)(W)~Of2(w) + (1 - O)fl(w) 

and a dual inequality holds. 

Let xeX(O,  f2)(w); 

#xv(O,  Of 2 + (1 - O) fi)(w)>#xv(O, f2 - (1 - O)5)(w) 

>~xv(O, f2)(w) - (1 - O)ti>_f2(w) - (1 - 0)(5 

> o f 2 ( w )  + (1 - O)Yl(W) = o.f2 + (1 - 

hence the result. | 

In the next two sections, we apply these results to various classes of repeated 

games and deduce from the operator approach the convergence of Vn and vx to 

the same limit. 

4 .  A b s o r b i n g  g a m e s  

We first consider a subclass of stochastic games. 

Definition: An a b s o r b i n g  s t a t e  w satisfies p({w}[w,i , j)  = 1 for all i , j .  An 

a b s o r b i n g  g a m e  is a stochastic game where all states except one, wo, are 

absorbing. 

It is thus enough to describe the game starting from wo and we drop the 

references to this state. I and J are compact sets and the payoff g is separately 

continuous on I •  (12,A) is a measurable space and for each AEA,  p(A[i,j)  
is separately continuous on I x  J.  Finally, there is a bounded and measurable 

absorbing payoff, r, defined on f~ \{wo}. Let X = A(I)  and Y = A(J) .  In this 

set up the domain of the recursive operator can be reduced to the payoff in state 

wo. Hence one considers the operator on R defined by 

#(~ ,  f )  = val  x •  {ag(x,  y) + (1 - a)E,(~,u)(](&))}, 

where ] is equal to f on the active state Wo and equal to the absorbing payoff r 

elsewhere. 

(Note that  the only relevant parameters are for each (i, j ) ,  the probability of ab- 

sorption ( 1 -  q({wo}]i,j)) and the absorbing part of the payoff 
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( f  f~ ..{~o}r(w)q(dwl i, J)). 
two absorbing states, with payoff 0 and 1.) 

Clearly the conditions of section 3 are satisfied. 

Proposition 9 has the following simple form [4]: 

LEMMA 3: Assume f2 > f l .  Then 

ZERO-SUM R E P E A T E D  GAMES 237 

By rescaling, one could assume that there are only 

In the currcnt framework 

( ~ ( c e ,  ft) - f l )  -- ( ~ ( o t ,  f 2 )  -- f 2 ) ~ a ( f 2  -- f l )  

and 

~0*(fl) - qo*(f2)>_(f2 - fl) .  

Then one deduces that  ~o* is strictly decreasing. Clearly ~*(f)<0 for f large 

enough and similarly ~o*(f)>_0 for f small enough and therefore: 

COROLLARY 8: There exists a unique real number W such that: 

W' < W ~ o * ( W ' )  > O, 

W" > W ~ o *  (W") < O. 

Note that  this W satisfies W = ~(0, W), hence ~o(W) = ~o*(W). 

T H E O R E M  1: 

lim vx = lim vn = W. 
A~0  n ~ o o  

Proof: Let W' > W and consider the associated function 1~" on fL It belongs 

to S +, hence by Proposition 8 to C +, for ~ > 0. The result then follows from 

Proposition 3. II 

5. Incomplete information repeated games 

We consider incomplete information games as defined in section 1, subsection II. 

Recall that  with the previous notations one has w = (p,q), X = A(I )  to, 
Y = A(J)  L and g(x ,y ,w)  = ~epkq t skAk~y  e with x = { s l , . . . ,  s/~}, skeA( I ) ,  

and similarly for y. 

Then the operator is defined by 

�9 (r f)(p, q) = v a l x x v  (ag(x, y, p, q) + (1 - a)~-~.ij-g(i)t(j)f(p(i),~ q(j))), 

which we write as 

~/i(a, f)(p, q) = val(ag(p,  q) + (1 - a)E(f(f i ,  8)))- 
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Notations: ~" denotes the set of bounded real functions on A ( K ) x  A(L), concave 

on A(K)  and convex on A(L)..Tc denotes the subset ~ of separately continuous 

functions. 

Let us also denote by NRI(p) the set of non-revealing strategies of player 1, 

i.e. such that pkpk' > 0 implies s k ---- s k', and similarly for player 2. 

u(p, q) is the value of the non-revealing game 

u(p, q) = vala(/)• 

Given a function h on A ( K ) x A ( L ) ,  Cavh denotes the smallest function on 
A ( K ) x A ( L ) ,  greater than h, and such that for each q, h(.,q) is concave. 

Similarly, Vexh denotes the greatest function on A ( K ) x A ( L ) ,  smaller than h, 

and such that for each p, h(p, .) is convex. 

PROPOSITION 13: The operator ~(a,  f)  is well defined on ~c and maps 3r to 
itself. 

Proof." (1) The game F(~,f)(p,q) has a value whenever fe3rc. In fact in this 

case ~ y ( a ,  f )  is continuous and concave in x, continuous and convex in y and 

Sion's theorem applies. 

(2) This value ~(a , f ) (p ,q)  belongs to 9 v. In fact let p = #Pl + (1 - #)P2 be a 

convex combination. Given x,~ optimal for Player 1 in F(a, f)(p,~, q), m = 1, 2, 

consider x which chooses, if k, xl with probability #p~/pk. The corresponding 

payoff, given some y, is 

O~y(a, f)(p, q) =aEktpkqtskAk~t  t + (1 -- a)E~j:~(i)t(j)f(p(i),  q(j)) 

_ k e k k te  (1 # ) Ek ~p2qs 2A  t )  - - a ( # E k t p l q  s lA  t + - k ~ k kt 

+ (1 - a ) E . . : ~ ( i ) t ( j ) f ( # ~ p l  (i) + (1 - p ) ~ p 2 ( i ) ,  q(j)), 
,3 s~z) 

hence from the concavity of f in p 

�9 ~y(a, f)(p,  q ) _ ) # ~ y ( a , / ) ( P I ,  q) + (1 - #)~z~y(a, f)(P2, q) 

~ # ~ ( a ,  f)(Px, q) + (1 - # )~(a ,  f)(P2, q). 

(3) Moreover, the value ~ (a ,  f)(p, q) is separately continuous. Indeed, since f 

is continuous there is a ~ such that [ ]p-  p'[[ _< ~ implies If(p, q) - f(p',  q)[ ~ e. 

Let l i p -  p'[] <_ ~.r Then, ,~i _> r implies ] [pi -  p'i[[ <_ ~. Moreover, f being 

bounded by M, 

[~(a, f)(p,  q) - ~ ( a ,  f)(p' ,  q)] ~_ a][A][([]p - P'H) 4- (1 - a ) (2Mr 4- E sic), 
i 
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which is the result. I 

A first property shows that any function in ~'c is invariant by ~(0, .). 

LEMMA 4: 

Vf E.T'c, 4i(0, f ) = f .  

Proof: Recall that 4~(O,f)(p,q) = valxxyE(f(~,~l)) and that t5 and ~ are 

martingales. For any y non-revealing, one has by Jensen's inequality 

~xy(O, f) = E~(f(~,q))<f(p,q). 

The dual inequality implies the result. I 

Definition: Given fE~',, let gf(q) denote the set of p such that (p, f(p, q)) is an 

extreme point of the hypograph of the function f(. ,  q) defined on A(K). 

From the previous proof we deduce 

COROLLARY 9: VfEJrc, V(p,q)EA(K)xA(L),  

NRI(p)CX (O, f)(p, q), 

pECi(q)=:,gRl(p) = X(O, f)(p, q). 

Proof'. For x non-revealing one has 

�9 ~y(0, f )  = Eu(f(p, ?l))>:(p, q) = (/i(0, f ) ,  

hence the first inclusion. 

On the other hand, if player 2 plays non-revealing, 

4ixu(0, f )  = Ex(f(15, q))<f(p, q) 

and the last inequality is strict whenever pEEl(q) and x is revealing at p. I 

This result means in particular that in an incomplete information game, a non- 

revealing behavior is an asymptotically optimal strategy in order to preserve the 

level f .  It is the only optimal one whenever f is strictly concave at the current 

state. The incentive for using the information comes from the current payoff. 

Definition: A + is the set of functions f in :'c such that, for any function h 

positive, concave and continuous on A(K), with f + h strictly concave, 

v ( f  + h)(p,q)<_O, V(p,q)EA(K)xA(L).  
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A dual definition holds for J[- ,  which is thus the set of functions f in .Tc such 

that, for any function h positive, concave and continuous on A(L) and with f - h 

strictly convex, 

~(f-h)(p,q)>_O, V(p,q)EA(K)xA(L).  

PROPOSITION 14: A + f'l ,4- contains at most one function. 

Proo~ Note simply that .A + is included in the closure of S+M.%'c and apply 

Corollary 6. I 

We now turn to the study of the asymptotic behavior of the game. We first 

deal with the discounted case. Let W be an accumulation point of the family 

{vx }, which is uniformly Lipschitz, hence relatively compact, and let vx, converge 

(uniformly) to W. Note that WE~'c. 

PROPOSITION 15: W E A  +. 

Proof'. Assume by contradiction r + h)(p,q)>_5 > 0 for some h positive, 

continuous and concave on A(K) with W + h strictly concave. We now use 

Corollary 4 (or rather its dual) at (p, q) with ~ = 5/2. 
Thus given yEY: 
(a) Either there exists xEX and 0 > 0 with 

�9 z~(O, W + h)(p, q)>_~(0, W + h)(p, q) + 0. 

Hence, afortiori,  since h is concave 

�9 ~(0,  W)(p,q) + h(p)>_4~(O, W + h)(p,q) + 0 = (W + h)(p,q) + 0 

by Lemma 4. 
Hence by continuity, there exists N t such that for n>_N t 

~ u  (An, vx,)(p, q)>_vx,, (p, q) + 0/2. 

(b) Or there exists xEX(0, W + h)(p, q) with 

r + h)(p,q)>_~(W + h)(p,q) - ~>_ 5/2. 

Note that  since W + h is strictly concave, x is non-revealing (Corollary 9), hence 

the stage payoff satisfies 

g(x, y,p, q)>_E~u( (W + h)(~5, 4)) + 5 /2>_W (p, q) + 5/2. 
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Thus there exists N "  such that,  since x is in NRI(p) and vx, E.Tc, n >_ N" 
implies 

~u(An,  vx.)(p, q)>Jng(x, y, p, q) + (1 - An)vx. (p, q)>vx, (p, q) + ANSI4. 

Thus from (a) and (b) we deduce that,  for all n___ max(N  t, N") ,  and all y there 

exists x such that  

~zy(An, V~,,)(p,q) > vXn(p,q), 

a contradiction. | 

Obviously one has also WE.A-. 

We now consider the finitely repeated game Gn. Let us introduce V -  = 

l iminfvn and V + = l imsupvn.  Note that  V + and V -  are, like all vn, Lipschitz 

with constant IIAll. We first prove 

PROPOSITION 16: V-  = V + 

Proof: The proof goes by contradiction. We assume that  V + - V -  is non-0. 

Hence there exists h + and h -  both positive, continuous and strictly concave 

on A(L) (resp. A(K) )  such that  the maximum of (V + - h +) - ( V -  -t- h - )  on 

A(K)  xA(L)  is positive. Consider now an extreme point (p, q) of the set where 

Cav(V + - h +) - Vex(V- + h - )  is maximum (and equal to (f > 0). Since V + and 

CavV + are convex in q and Cav(V + - h +) = CavV + - h + (and dual properties 

for V -  and h - ) ,  one has CavY+(p,q) = Y+(p,q) and VexV-(p,q) = Y-(p,q) .  
Note that  V -  is concave and V + is convex, and both are continuous, and 

therefore both Cav(V + - h +) and Vex(V- + h - )  belong to ~'c. Hence Proposition 

9 implies 

~o(Vex(Y- + h- ) ) (p ,  q) - ~o(Cav(Y + - h+))(p, q)>_5. 

Assume thus ~(Vex(V-  + h-))(p,q)>_6/2. By the Lipschitz property of v ,  and 

V -  one has: Ve > 0 , 3 N  such that  N>n implies Vn>_V- - ~. Let vn.,(p,q) be 

a subsequence converging to V- (p ,  q) as m goes to co. As in Proposition 15 we 

obtain, using Corollary 4 with ~ = 6/4, that  given y6Y: 

(a) Either there exists x 6 X  with 

4~zy(O, Vex(Y- + h-))(p,q) > ~(O, Vex(V- + h-))(p,q) + 71 

= Vex(V- + h-)(p,q) + 71 

= V-(p,q) + h-(p,q) + 71. 
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Hence by continuity (Lemma 1), there exists M such that for m _> M 

1 v ~ z u ( ~ ,  n,~)(P,q)>-vn,,(P,q) + •/2. 

(b) Or there exists xEX(O, Vex(V- + h-))(p,q), hence in NRt(p), with 

g(x, y)(p, q) >_ V-(p, q) + ~/4. 
Thus one can choose a and ~, positive such that in both cases, for m large 

enough Ivn,, (p, q) - V-  (p, q)l_<'~ implies 

( n m +  1)vn,,+l (p, q)>_(nm + 1)vn~ (p, q) + a. 

This shows that  the sequence vt (p, q) for s leaves the band [vt (p, q ) - V -  (p, q)[ 

< fl from above. Let M be such that m>_M implies [[Vm+l - Vmi[<_7/2 and 

m > M, a first index, where [vm+l(p, q) - V - ( p ,  q)1<_7/2. It follows that already 

[vm (p, q) - V-  (p, q)[_<7, hence vm+ 1 (P, q) >_vm (p, q), a contradiction to the choice 

of m. | 

We now obtain, denoting V* = V + = V- ,  

PROPOSITION 17: V*EA +. 

Proof." The previous result shows that V* belongs to ~'c. Assume by 

contradiction: ~a(V* + h)(p,q)>_5 > 0 for some positive concave function h on 

A(K) such that V* + h is strictly concave. 

Exactly like in the previous proof of Proposition 15, one gets 

3N, Vn > N, vn+l(p,q) > vn(p,q) + min ' 4 ( n + l )  " 

This contradicts Proposition 16. I 

COROLLARY 10: There exists VE~4 + M .4-;  limvx and limvn exist and equal V 
with {Y} = A+nA -. 

Proof'. From Proposition 15, any accumulation point W of the family vx belongs 

to A+nA - and Proposition 14 shows that  this set contains at most one point. 

Hence vx converges to V. Similarly for vn using Proposition 17. | 

Definition: We recall the functional equations introduced by Mertens and Zamir 

[11] where f is defined on A(K)•  

(1) f = Car min(u, f ) ,  
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( I I )  f = Vox maze(u, f) .  

Mertens and Zamir [11] prove that this system has a unique solution which is the 

limit both of vn and vx; see also [12]. Let us prove now that on ~-c the systems 

{(I) and (II)} and {,4 + and A-} are equivalent. 

PROPOSITION 18: Let f c . A  + and ,4-;  then f satisfies (I) and ( I I ) .  

Proof'. The proof is based on the following 

LEMMA 5: Let l e A -  and pEl f (q ) .  Then 

f (p, q) <_u(p, q). 

Proof: Let h be strictly concave, continuous and positive on A(L) so that 

qo(f - h)(p,q)>_O. 

Note that  X(O, f - h)(p, q) = X(O, f ) (p ,  q) = NRI (p )  and Y(O, f - h)(p, q) = 

NR2(q)  by Corollary 9. Hence 

qa(f - h)(p, q) = VaINR,(p)xNR" (q){g(x, y; p, q) -- Ezu( ( f  - h)(/5, ~))} 

= u(p,q) - ( f  - h)(p,q), 

so that u(p, q)>_f(p, q) - h(q) and the result follows. I 

We now deduce 

]" = 0av min(u, f ) .  

In fact, f being concave in p, f>0av  min(u, f ) .  
On the other hand, for each fixed q, f ( . ,q )  is smaller than min(u , f ) ( . , q )  at 

each extreme point pEEs(q) , by Lemma 5. Hence f_<0av min(u, f )  on A(K),  for 

each fixed q, hence everywhere on A(K)•  

This ends the proof of Proposition 18. I 

Note that this provides an alternative proof of the existence of a solution to 

(I) and ( I I ) .  

Finally, we deduce the unicity of the solution of (I) and ( I I )  on ~'c through 

the following: 

PROPOSITION 19: I f  f is separately continuous and satisfies (I) and ( I I )  it 

belongs to A + N A  - . 

Proof: Let f satisfy (I) and ( I I )  (hence f belongs to ~'c) and choose h 

positive, continuous concave on A(K) with f + h strictly concave. Recall that 
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X(O, f + h)(p, q) is reduced to NRI(p). On the other hand, Y(O, f + h)(p, q) = 
Y(O, f)(p, q). From (II) there exists a finite family qr, rCR, in A(L) and/~EA(R) 

such that: 

f(p, q) = Z [3r max(u, f)(p, q~) 

and 

qr) VreR. 

Let y~ be a non-revealing optimal strategy of player 2 for u(p, q~) and y* the 

"splitting strategy" generating the qr through the yr's: if e is his type, play yr 

with probability/~rqe/qe. 

Note that y* is optimal for ~(0, f)(p,q) since, f being concave in p, 

~-'jff* (j) f (p, q(j) )>~zy. (0, f)(p, q); 

but f is convex in q and the q(j)'s can be decomposed as q(j) = Y'~,-Y~(J)qr, 
hence 

f(P, q ) > Z  ~f (P,  q~)>~-'~jy* (j)f(p, q(J)) 

and the equality. 

Let us now consider qa(f + h)(p, q). For any x in NRI(p) one has 

~ozy. ( f  + h)(p, q) = g(x, y*; p, q) - E=,y. ( f  + h)(~5, ~). 

But 

X * g( ,y ;p,q) =  rZrg(X, yr;p, qr) 

and 

Sz,y. (f  + h)(~, ~) = ~-~jy*(j)f(p, q(j)) + h(p). 

Using g( x, yr; p, qr) <_u(p, q~) one obtains 

qoxy. (f  + h)(p, q ) < Z  l3~(u - f)(p, qr) - h(p)< - h(p) 

and the result follows. II 

6. C o n c l u d i n g  r e m a r k s  

This paper was devoted to the study of the asymptotic behavior of vn and v~ 

through the recursive operator 4i and its derivative ~. It allows one not only 

to show the convergence of vn and vx but also to identify their common limit 

through functional inequalities. This approach underlines: 
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(1) the connection between the asymptotic behavior of vn and vx in regular 

games (since the tools are the same), 

(2) the relation between incomplete information and stochastic games since 

the former are studied as stochastic games on the belief spaces, 

(3) the role of the derived game - -  in terms of asymptotic optimal strategies 

- -  and not only in terms of value. 

Moreover, we obtain a convergence result in absorbing games with compact 

action sets, hence avoiding algebraic arguments, and shed new light on the func- 

tional equation in [11] by showing its equivalence to some variational inequalities. 
Similar tools are successfully used in the framework of absorbing games with 

incomplete information on one side [15] and we conjecture that this perspective 
will apply to more general classes. 
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