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A stochastic process that describes a payoff-based learning procedure and the associated
adaptive behavior of players in a repeated game is considered. The process is shown to
converge almost surely towards a stationary state which is characterized as an equilibrium
for a related game. The analysis is based on techniques borrowed from the theory of
stochastic algorithms and proceeds by studying an associated continuous dynamical system
which represents the evolution of the players’ evaluations. An application to the case
of finitely many users in a congested traffic network with parallel links is considered.
Alternative descriptions for the dynamics and the corresponding rest points are discussed,
including a Lagrangian representation.

 2008 Elsevier Inc. All rights reserved.

1. Introduction

This paper belongs to the growing literature on the dynamics of repeated games in which players make decisions
day after day based on partial information derived from prior experience. The accumulated experience is summarized
in a state variable that determines the strategic behavior of players through a certain stationary rule. This is the frame-
work of learning and adaptation in games, an area intensively explored in the last decades (Fudenberg and Levine, 1998;
Young, 2004). Instead of studying the dynamics at an aggregate level in which the informational and strategic aspects are
unspecified, we consider the question from the perspective of the individual player’s strategy. At this level the most promi-
nent adaptive procedure is fictitious play, early studied by Brown (1951) and Robinson (1951), which assumes that at each
stage players choose a best reply to the observed empirical distribution of past moves of their opponents. A recent account
of the convergence of this procedure for games with perturbed payoffs can be found in Benaim and Hirsch (1999) intro-
ducing tools that we will use here. This variant, called smooth fictitious play, is closely tied with Logit random choice and is
analyzed in Fudenberg and Levine (1998) and Hofbauer and Sandholm (2002).

The assumption that players are able to record the past moves of their opponents is very stringent for games involving
many players with limited observation capacity and bounded rationality. A milder assumption is that each player observes
only the outcome vector, namely, the payoff obtained at every stage and the payoff that would have resulted if a different
move had been played. Several procedures such as exponential weight (Freund and Schapire, 1999), calibration (Foster and
Vohra, 1997), and no-regret procedures à la Hannan (Hannan, 1957; Hart, 2005), deal with such limited information contexts:
players build statistics of their past performance and infer what the outcome would have been if a different strategy had
been played. Eventually, adaptation leads to configurations where no player regrets the choices he makes.
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Although these procedures are flexible and robust, the underlying rationality may still be considered as too demanding
in the context of games where players are boundedly rational and less informed. This is the case for traffic in congested
networks where a multitude of small players make routing decisions with little or no information about the strategies of
the other drivers nor on the actual congestion in the network. The situation is often described as a game where traffic
equilibrium is seen as a sort of steady state that emerges from an underlying adaptive mechanism. Wardrop (1952) con-
sidered a non-atomic framework ignoring individual drivers and using continuous variables to represent aggregate flows,
while Rosenthal (1973) studied the case in which drivers are taken as individual players. Traffic has also been described
using random utility models for route choice, leading to the notion of stochastic user equilibrium (Daganzo and Sheffi, 1977;
Dial, 1971). All these models assume implicitly the existence of a hidden mechanism in travel behavior that leads to equilib-
rium. Empirical support for this has been given in Avineri and Prashker (2006), Horowitz (1984), Selten et al. (2007) based
on laboratory experiments and simulations of different discrete time adaptive dynamics, though it has been observed that
the steady states attained may differ from all the standard equilibria and may even depend on the initial conditions. Ad-
ditional empirical evidence to support the use of discrete choice models in the context of games is presented in McKelvey
and Palfrey (1995). From an analytical point of view, the convergence of a class of finite-lag adjustment procedures was
established in Cantarella and Cascetta (1995), Cascetta (1989), Davis and Nihan (1993). On a different direction, several con-
tinuous time dynamics describing plausible adaptive mechanisms that converge to Wardrop equilibrium were studied in
Friesz et al. (1994), Sandholm (2002), Smith (1984), though these models are of an aggregate nature and are not directly
linked to the behavior of individual players.

A simpler idea is considered in this paper. We assume that each player has a prior perception or estimate of the payoff
performance for each possible move and makes a decision based on this rough information using a random choice rule such
as Logit. The payoff of the chosen alternative is then observed and is used to update the perception for that particular move.
This procedure is repeated day after day, generating a discrete time stochastic process which we call the learning process.
The basic ingredients are therefore: a state parameter; a decision rule from states to actions; an updating rule on the state
space. This structure is common to many procedures in which the incremental information leads to a change in a state
parameter that determines the current behavior through a given stationary map. The specificity here is that the updating
rule depends uniquely on the realized payoffs: although players observe only their own payoffs, these values are affected
by everybody else’s choices revealing information on the game as a whole. The question is whether a simple learning
mechanism based on such a minimal piece of information may be sufficient to induce coordination and make the system
stabilize to an equilibrium.

It is worth noting that several learning procedures, initially conceived for the case when the complete outcome vector
is available, have been adapted to deal with the case where only the realized payoff is known: see Fudenberg and Levine
(1998, §4.8) for smooth fictitious play, Auer et al. (2002) for exponential weight, Foster and Vohra (1998) for calibration, and
Hart and Mas-Collel (2001) for non-regret. The idea of this kind of approaches is to use the observed payoffs to build an
unbiased estimator of the outcome vector, to which the initial version of the procedure is applied. More explicitly, a pseudo-
outcome vector is defined by the observed payoff divided by the probability with which the actual move was played, on
the component corresponding to that move, and completed by zeroes on the other components. Alternatively, the pseudo-
outcome vector is built as the empirical average of payoffs obtained on random exploration stages having a positive density.
The resulting update rules depend not only on the observed payoffs, but also on the probability according to which a move
was played as well as on the nature of the stage (exploitation or exploration).

Our process is much simpler in that it relies only on the past sequence of realized moves and payoffs. The idea is
closer to the so-called reinforcement dynamics in which the only information of a player is her daily payoff (Arthur, 1993;
Beggs, 2005; Borgers and Sarin, 1997; Erev and Roth, 1998; Laslier et al., 2001; Posch, 1997), though it differs in the way
the state variable is updated as well as in the choice of the decision rule as a function of the state. Usually, reinforcement
models use a cumulative rule on a propensity vector in which the current payoff is added to the component played, while the
remaining components are kept unchanged. A stage-by-stage normalization of the propensity vector leads to a mechanism
which is related to the replicator dynamics (Posch, 1997). In this context, convergence has been established for the case
of an i.i.d. environment, for zero-sum games, and also for some games with unique equilibria (Laslier et al., 2001; Beggs,
2005). We should also mention here the mechanism proposed in Borgers and Sarin (1997) which uses an averaging rule
with payoff dependent weights. Our updating rule uses instead a time average criteria that induces a specific dynamics on
perceptions and strategies which appears to be structurally different from the previously studied ones, while preserving the
qualitative features of probabilistic choice and sluggish adaptation (Young, 2004, §2.1).

The paper is organized as follows. Section 2 describes the learning process in the general setting of repeated games,
providing sufficient conditions for this process to converge almost surely towards a stationary state which is characterized
as an equilibrium for a related game. The analysis relies on techniques borrowed from stochastic algorithms (see e.g. Benaim,
1999; Kushner and Yin, 1997), and proceeds by studying an associated continuous deterministic dynamical system which
we call the adaptive dynamics. Under suitable assumptions the latter has a unique rest point which is a global attractor, from
which the convergence of the learning process follows. In Section 3 we apply the general convergence result to a simple
traffic game on a network with parallel links. In this restricted setting the convergence results are established in terms of a
“viscosity parameter” which represents the amount of noise in players’ choices, namely, if noise is large enough the learning
process and the associated adaptive dynamics have a unique global attractor. Besides, we obtain a potential function that
yields an equivalent Lagrangian description of the dynamics together with alternative characterizations of the rest points.
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Finally, we study the case of identical players proving the existence of a unique symmetric mixed equilibrium which is a
local attractor for the dynamics under a weaker assumption on the viscosity parameter.

We stress that our model proceeds bottom-up from a simple and explicit behavioral rule to equilibrium: a particular
discrete time random model for individual behavior gives rise to an associated continuous time deterministic dynamics
which leads ultimately to an equilibrium of a specific associated game. We do not make any claim about the realism of our
basic learning rule and several alternatives could be considered. Our contribution is mainly methodological showing that a
unified treatment is possible in which a learning process, the adaptive dynamics, and a corresponding notion of equilibrium
can be considered in a unified and self-consistent way.

2. Payoff-based adaptive dynamics

2.1. The model

We begin by introducing a dynamical model of adaptive behavior in a repeated game, where each player adjusts itera-
tively her strategy as a function of past payoffs observed as the game evolves.

Let P = {1, . . . ,N} denote the set of players. Each i ∈P is characterized by a finite set Si of pure strategies and a payoff
function Gi : Si × S−i → R where S−i = ∏

j &=i S
j . We denote ∆i the set of mixed strategies or probability vectors over Si ,

and we set ∆ = ∏
i∈P ∆i . As usual we keep the notation Gi for the multilinear extension of payoffs to the set of mixed

strategies.
The game is played repeatedly. At stage n, each player i ∈P selects a move sin ∈ Si at random using the mixed strategy

π i
n = σ i(xin

)
∈∆i (1)

which depends on a vector xin = (xisn )s∈Si that represents her perception of the payoff performance of the pure strategies
available. Here σ i :RSi → ∆i is a continuous map from the space of perceptions to the space of mixed strategies, which
describes the stationary behavior rule of player i. We assume throughout that σ is(·) is strictly positive for all s ∈ Si .

At the end of the stage, player i observes her own payoff gin = Gi(sin, s
−i
n ), with no additional information about the

moves or payoffs of the opponents, and uses this value to adjust her perception of the performance obtained with the pure
strategy just played and keeping unchanged the perceptions of the remaining strategies, namely

xisn+1 =
{

(1− γn)xisn + γn gin if s = sin,
xisn otherwise,

where γn ∈ (0,1) is a sequence of averaging factors with
∑

n γn =∞ and
∑

n γ 2
n <∞ (a simple choice is γn = 1

n ). This
iteration may be written in vector form as

xn+1 − xn = γn[wn − xn] (2)

with

wis
n =

{
gin if s = sin,
xisn otherwise.

The distribution of the payoffs and therefore of the random vector wn is determined by the current perceptions xn , so that
(1) and (2) yield a Markov process for the evolution of perceptions. It may be interpreted as a process in which players
simultaneously probe the different pure strategies to learn about their payoffs, and adapt their behavior accordingly using
the accumulated information to play. The iteration from xn to xn+1 can be decomposed into a chain of elementary steps:
the prior perceptions give rise to mixed strategies that lead to moves, which determine the payoffs that are finally used to
update the perceptions. Schematically, the procedure just described looks like: xisn � π is

n � sin � gin � xisn+1. The information
gathered at every stage by each player is very limited—only the payoff of the specific move played at that stage—but
it conveys implicit information on the behavior of the rest of the players. The basic question we address is whether an
iterative procedure based on such a minimal piece of information can lead to coordination among the players on a steady
state.

Informally, dividing (2) by the small parameter γn the iteration may be interpreted as a finite difference Euler scheme
for a related differential equation, except that the right-hand side is not deterministic but a random field. Building on this
observation, the theory of stochastic algorithms (see e.g. Benaim, 1999; Benaim et al., 2005) establishes close connections
between the asymptotics of the discrete time random process (2) for n→∞ and the behavior as t→∞ of the continuous-
time deterministic averaged dynamics

dx
dt

= E(w|x)− x, (3)

where E(·|x) stands for the expectation on the moves induced by the mixed strategies σ i(xi). In particular, if (3) admits a
global attractor x∗ (in the sense of dynamical systems) then the discrete process (2) will also converge to x∗ with probability
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one. This point will be further developed in Section 2.3 using Lyapunov function techniques to establish the existence of
such an attractor.

Let us begin by making Eq. (3) more explicit. To this end we consider the space of perceptions Ω = ∏
i∈P RSi and

Σ :Ω →∆ the profile of mixed strategies of the players at state x

Σ(x) =
(
σ i(xi

))
i∈P . (4)

We introduce the map C :Ω →Ω of expected vector payoffs as a function of the state

C(x) = F
(
Σ(x)

)
(5)

with F :∆→Ω given by F (π) = (F i(π))i∈P , where F i(π) = (F is(π))s∈Si is the expected payoff vector of player i, namely

F is(π) = Gi(s,π−i). (6)

The latter represents the expected payoff for player i when she chooses s ∈ Si and the other players use mixed strategies
{π j} j &=i . Note that F i does not depend on π i and that

Gi(π) =
〈
π i, F i(π)

〉
.

Proposition 1. The continuous dynamics (3) may be expressed as

dx
dt

is

= σ is(xi
)[
Cis(x)− xis

]
. (7)

Proof. Denoting π = Σ(x) and using the definition of the random vector w , the expected value E(w|x) at x may be
computed by conditioning on player i’s move as

E
(
wis|x

)
= π isGi(s,π−i) +

(
1−π is)xis = σ is(xi

)
Cis(x) +

(
1− σ is(xi

))
xis

which plugged into (3) yields (7). !

We call (7) the adaptive dynamics associated to the learning process (2). Note that (7) is not directly postulated as a
mechanism of adaptive behavior, but instead it is an auxiliary construction to help analyze (2). These dynamics describe the
evolution of perceptions and are not stated in the space of mixed strategies as in other adaptive procedures like fictitious
play, nor in the space of correlated strategies such as for no-regret or reinforcement dynamics. Moreover, we recall that
fictitious play requires the knowledge of all the past moves of the opponents, while no-regret procedures rely on the
knowledge of Gi(a, s−i) for all a ∈ Si . Concerning the cumulative proportional reinforcement rule, the state variable is a
vector indexed over the set of pure strategies where each component is the sum of the payoffs obtained when that pure
strategy was played, while the decision rule is the normalized state variable, so it corresponds to a different dynamics.

2.2. Rest points and perturbed game

According to the general results on stochastic algorithms, the rest points of the continuous dynamics (7) are natural
candidates to be limit points for the stochastic process (2). Since σ is(xi) > 0 these rest points are the fixed points of
the map x (→ C(x) whose existence follows easily from Brouwer’s theorem if one notes that this map is continuous with
bounded range. In this subsection we describe the nature of these rest points focusing on the case where the profile map
Σ(x) is given by a Logit discrete choice model.

Let E denote the set of rest points for (7). We note that a point x ∈ E is completely characterized by its image π = Σ(x).
To see this it suffices to restate the fixed point equation x = C(x) as a coupled system in (x,π)

{
π = Σ(x),
x = F (π)

(8)

so that for x ∈ E the map x (→Σ(x) has an inverse given by π (→ F (π). We state this observation in the following

Proposition 2. The map x (→Σ(x) is one-to-one over the set E .

A particular choice for the map σ i(·) is given by the Logit rule

σ is(xi
)
= exp(βi xis)∑

a∈Si exp(βi xia)
(9)

where the parameter βi > 0 has a smoothing effect with βi ↓ 0 leading to a uniform choice while for βi ↑∞ the probability
concentrates on the pure strategies with higher perceptions. We notice the formal similarity with smooth fictitious play
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where xis is replaced by the average past payoff that would have been produced by the move s (which is unknown in
the current framework). A closer connection may be established with the notion of quantal response equilibria introduced
in McKelvey and Palfrey (1995) which are exactly the π ’s corresponding to system (8), that is to say, the solutions of
π = Σ(F (π)). As a matter of fact, under the Logit choice formula the one-to-one correspondence between rest points x
and the associated π ’s allows to establish a link between the set E and the Nash equilibria for a related N-person game G
defined by strategy sets ∆i for i ∈P and payoff functions G i :∆i ×∆−i →R given by

G i(π) =
〈
π i, F i(π)

〉
− 1

βi

∑

s∈Si
π is[lnπ is − 1

]

which is a perturbation of the original game by an entropy term.

Proposition 3. If the maps σ i(·) are given by the Logit rule (9) then Σ(E) is the set of Nash equilibria of the perturbed game G .

Proof. A well-known characterization of the Logit probabilities gives

σ i(xi
)
= argmax

π i∈∆i

〈
π i, xi

〉
− 1

βi

∑

s∈Si
π is[lnπ is − 1

]
.

Setting xi = F i(π) and since this expression does not depend on π i , Nash equilibria of G are characterized by π i = σ i(xi)
with xi = F i(π). But this is precisely (8) so that Σ(E) is the set of Nash equilibria of G . !

Remark. The previous characterization extends to the case where the maps σ i(·) are given by more general discrete choice
models, namely, player i selects an element s ∈ Si that yields a maximal utility xis + εis where εis are non-atomic random
variables (the Logit model corresponds to the case when {εis}s∈Si are independent Gumbel variables with shape parameter
βi). In this more general framework the probabilities

σ is(xi
)
= P

(
s maximizes xis + εis)

can be expressed as σ i(xi) =∇ϕ i(xi) with ϕ i(xi) = E[maxs∈Si {xis + εis}] which is smooth and convex. The perturbed payoff
functions are now given by

G i(π) =
〈
π i, F i(π)

〉
− θ i(π i)

with θ i(·) the Fenchel conjugate of the convex function ϕ i(·).

2.3. Asymptotic convergence of the dynamics

As mentioned earlier, the asymptotics of (2) and (7) are intimately linked. More precisely, since payoffs are bounded the
same holds for any sequence xn generated by (2), and therefore combining Benaim (1999, Propositions 4.1 and 4.2) and the
Limit Set Theorem (Benaim, 1999, Theorem 5.7) it follows that the set of accumulation points of the discrete time random
process xn is almost surely an internally chain transitive set (ICT) for the deterministic continuous time dynamics (7). The
latter is a strong notion of invariant set for dynamical systems, which allows for the possibility of introducing asymptotically
vanishing shocks in the dynamics. For the precise definitions and results, which are somewhat technical, we refer to Benaim
(1999). For our purposes it suffices to mention that, according to Benaim (1999, Corollary 5.4), if (7) has a unique rest point
x̄ which is a global attractor then it is the only ICT and xn converges to x̄ almost surely.

Theorem 4. If C :Ω →Ω is a ‖ · ‖∞-contraction then its unique fixed point x̄ ∈Ω is a global attractor for the adaptive dynamics (7)
and the learning process (2) converges almost surely towards x̄.

Proof. Let + ∈ [0,1) be a Lipschitz constant for C(·). The existence and uniqueness of x̄ is clear, while almost sure conver-
gence of (2) will follow from the previously cited results in stochastic approximation together with (Benaim, 1999, Corol-
lary 6.6), provided that we exhibit a strict Lyapunov function with a unique minimum at x̄. We claim that Φ(x) = ‖x− x̄‖∞
has this property.

Since Φ(x(t)) is the maximum of the smooth functions ±(xis(t) − x̄is), it is absolutely continuous and its derivative
coincides with the derivative of one the functions attaining the max. Specifically, let i ∈P and s ∈ Si be such that Φ(x(t)) =
|xis(t)− x̄is|. If xis(t) � x̄is , using the fixed point property x̄is = Cis(x̄) we get

d
dt

[
xis(t)− x̄is

]
= σ is(xi

)[
Cis(x)− Cis(x̄) + x̄is − xis

]
� σ is(xi

)[
+‖x− x̄‖∞ + x̄is − xis

]
=−σ is(xi

)
[1− +]Φ(x)

and a similar argument for the case xis(t) < x̄is then yields

d
dt

Φ
(
x(t)

)
�−min

is
σ is(xi(t)

)
[1− +]Φ

(
x(t)

)
.
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Now, since Cis(x) is bounded it follows from (7) that the same holds for x(t) and then σ is(xi(t)) stays bounded away
from 0 so that d

dt Φ(x(t)) � −εΦ(x(t)) for some ε > 0. This implies that Φ is a Lyapunov function which decreases to 0
exponentially fast along the trajectories of (7), and since x̄ is the unique point with Φ(x̄) = 0 the conclusion follows. !

It is worth noting that the convergence of the state variables xn → x̄ for the learning dynamics (2), entails the conver-
gence of the corresponding mixed strategies π i

n = σ i(xin) and therefore of the behavior of players.
An explicit condition for C(·) to be a contraction is obtained as follows. Let ω = maxi∈P

∑
j &=i β j and take θ an upper

bound for the impact over a player’s payoff when a single player changes her move, namely
∣∣Gi(s,u)− Gi(s, v)

∣∣ � θ

for each player i ∈P , every pure strategy s ∈ Si , and all pairs u, v ∈ S−i such that u j = v j except for one j &= i.

Proposition 5. Under the Logit rule (9), if 2ωθ < 1 then C(·) is a ‖ · ‖∞-contraction.

Proof. Consider the difference Cis(x)− Cis(y) = F is(Σ(x))− F is(Σ(y)) for a fixed player i ∈P and pure strategy s ∈ Si . We
may write this difference as a telescopic sum of the terms Λ j = F is(π j)− F is(π j−1) for j = 1, . . . ,N where

π j =
(
σ 1(x1

)
, . . . ,σ j(x j),σ j+1(y j+1), . . . ,σ N(

yN))
.

Since F is(π) does not depend on π i we have Λi = 0. For the remaining terms we note that they can be expressed as
Λ j = 〈A j,σ j(x j)− σ j(y j)〉 where for t ∈ S j we put

At
j =

∑

u∈S−i , u j=t

Gi(s,u)
∏

k &=i, j

πkuk
j .

Moreover, since both σ j(x j) and σ j(y j) belong to the unit simplex ∆ j , we may also write Λ j = 〈A j− Ar
j1,σ j(x j)−σ j(y j)〉

for any fixed r ∈ S j . It is now easy to see that |At
j − Ar

j | � θ and therefore we deduce
∣∣Cis(x)− Cis(y)

∣∣ � θ
∑

j &=i

∥∥σ j(x j)− σ j(y j)∥∥
1. (10)

Take w j ∈RS j
with ‖w j‖∞ = 1 and ‖σ j(x j)−σ j(y j)‖1 = 〈w j,σ j(x j)−σ j(y j)〉, so that using the mean value theorem we

may find z j ∈ [x j, y j] with
∥∥σ j(x j)− σ j(y j)∥∥

1 =
∑

t∈S j

wt
j

〈
∇σ jt(z j), x j − y j 〉 �

∑

t∈S j

∥∥∇σ jt(z j)∥∥
1

∥∥x j − y j
∥∥
∞.

Using Lemma 6 below, together with the fact that σ j(z j) ∈∆ j , we get
∥∥σ j(x j)− σ j(y j)∥∥

1 �
∑

t∈S j

2β jσ
jt(z j)∥∥x j − y j

∥∥
∞ � 2β j‖x− y‖∞

which combined with (10) gives finally
∣∣Cis(x)− Cis(y)

∣∣ � 2ωθ‖x− y‖∞. !

Lemma 6. For each i ∈P and s ∈ Si the Logit rule (9) satisfies
∥∥∇σ is(xi

)∥∥
1 = 2βiσ

is(xi
)(
1− σ is(xi

))
.

Proof. Let π i = σ i(xi). A direct computation gives ∂σ is

∂xit
= βiπ is(δst − π it) with δst = 1 if s = t and δst = 0 otherwise, from

which we get
∥∥∇σ is(xi

)∥∥
1 = βiπ

is
∑

t∈Si

∣∣δst −π it
∣∣ = 2βiπ

is(1−π is). !

3. An application to traffic games

In this section we use the previous framework to model the adaptive behavior of drivers in a congested traffic network.
The setting for the traffic game is as follows. Each day a set of N users, i ∈ P , choose one among M alternative routes
from a set R. The combined choices of all players determine the total route loads and the corresponding travel times. Each
user experiences only the cost of the route chosen on that day and uses this information to adjust the perception for that
particular route, affecting the mixed strategy to be played in the next stage.



Author's personal copy

R. Cominetti et al. / Games and Economic Behavior 70 (2010) 71–83 77

More precisely, a route r ∈R is characterized by an increasing sequence cr1 � · · · � crN where cru represents the average
travel time of the route when it carries a load of u users. The set of pure strategies for each player i ∈ P is Si =R and
if r jn ∈R denotes the route chosen by each player j at stage n, then the payoff to player i is given as the negative of the
experienced travel time gin = Gi(rn) =−cru with r = rin and u = #{ j ∈P: r jn = r}.

We assume that the route rin is randomly chosen according to a mixed strategy π i
n = σ i(xin) which depends on prior

perceptions about route payoffs through a Logit model

σ ir(xi
)
= exp(βi xir)∑

a∈R exp(βi xia)
, (11)

while the evolution of perceptions is governed by (2) as in Section 2.
In the model we assume that all users on route r experience exactly the same travel time cru , though the analysis remains

unchanged if we merely suppose that each i ∈P observes a random time c̃ir with conditional expected value cru given the
number u of users that choose r. On the other hand, the network topology here is very simple with only a set of parallel
routes, and a natural extension is to consider more general networks. Note however that the parallel link structure allows to
model more complex decision problems such as the simultaneous choice of route and departure time, by using the standard
trick of replacing a physical route by a set of parallel links that represent the route at different time windows.

3.1. Potential function and global attractor

In the traffic game setting, the vector payoff map F (·) defined by (6) can be expressed as the gradient of a potential
function2 which is inspired from Rosenthal (1973). Namely, consider the map H : [0,1]P×R→R defined by

H(π) =−EB
π

[
∑

r∈R

Ur∑

u=1

cru

]

, (12)

where EB
π denotes the expectation with respect to the random variables Ur = ∑

i∈P Xir with Xir independent non-
homogeneous Bernoulli random variables such that P(Xir = 1) = π ir .

A relevant technical remark is in order here. We observe that H(π) was defined for π ∈ [0,1]P×R and not only
for π ∈ ∆, which allows to differentiate H with respect to each variable π ir independently, ignoring the constraints∑

r∈Rπ ir = 1. As a result of this independence assumption, the random variable Xir cannot be identified with the indi-
cator Y ir of the event “player i chooses route r” for which we do have these constraints: each player i ∈ P must choose
one and only one route r ∈R so that the family {Y ir}r∈R is not independent. However, since player i chooses his route
independently from other players, once a route r ∈R is fixed we do have that {Ykr}k &=i is an independent family, so that the
distinction between Xkr and Ykr becomes superfluous when computing expected payoffs as shown next.

Lemma 7. For any given r ∈R and i ∈ P let Ur
i = ∑

k &=i X
kr with Xkr independent non-homogeneous Bernoulli’s such that P(Xkr =

1) = πkr . Then

F ir(π) = EB
π

[
−crUr

∣∣ Xir = 1
]
= EB

π

[
−crUr

i +1

]
. (13)

Proof. By definition we have F ir(π) = E[−crV r
i +1] with the expectation taken with respect to the random variable V r

i =
∑

k &=i Y
kr where Ykr denotes the indicator of the event “player k chooses route r.” Since r is fixed, the variables {Ykr}k &=i are

independent Bernoulli’s with P(Ykr = 1) = πkr so we may replace them by Xkr , that is to say

F ir(π) = EB
π

[
−crUr

i +1

]
= EB

π

[
−crUr

∣∣ Xir = 1
]
. !

We deduce from this property that H is a potential.

Proposition 8. F (π) =∇H(π) for all π ∈∆.

Proof. We note that H(π) =−∑
r∈REB

π [∑Ur

u=1 c
r
u] so that conditioning on the variables {Xir}r∈R we get

H(π) =−
∑

r∈R

[

π irEB
π

( Ur
i +1∑

u=1

cru

)

+
(
1−π ir)EB

π

( Ur
i∑

u=1

cru

)]

2 Although the traffic game is also a potential game in the sense of Monderer and Shapley (1996), our notion of potential is closer to the one in Sandholm
(2001) in the context of games with a continuous set of players and which simply means that the vector payoff is obtained as the gradient of a real valued
smooth function.
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which combined with (13) yields

∂H

∂π ir
(π) = EB

π

[ Ur
i∑

u=1

cru

]

−EB
π

[ Ur
i +1∑

u=1

cru

]

= EB
π

[
−crUr

i +1

]
= F ir(π). !

Using formula (13), or equivalently Proposition 8, we may obtain the Lipschitz estimates required to study the conver-
gence of the learning process. In particular we note that F ir(π) turns out to be a symmetric polynomial in the variables
(πkr)k &=i only, and does not depend on the probabilities with which the users choose other routes. This allows us to obtain
sufficient conditions which are tighter than the one derived from Proposition 5. The following results are expressed in terms
of a parameter that measures the congestion effect produced by an additional user, namely

δ = max
{
cru − cru−1: r ∈R; u = 2, . . . ,N

}
. (14)

Lemma 9. The second derivatives of H are all zero except for

∂2H

∂π jr∂π ir
(π) = EB

π

[
crUr

i j+1 − crUr
i j+2

]
∈ [−δ,0] (15)

with j &= i, where Ur
i j =

∑
k &=i, j X

kr .

Proof. We just noted that ∂H
∂π ir (π) = EB

π [−crUr
i +1] depends only on (πkr)k &=i . Also, conditioning on X jr we get

∂H

∂π ir
(π) = π jrEB

π

[
−crUr

i j+2

]
+

(
1−π jr)EB

π

[
−crUr

i j+1

]

from which (15) follows at once. !

As a corollary of these estimates and Theorem 4 we obtain the following global convergence result. Recall that ω =
maxi∈P

∑
j &=i β j .

Theorem 10. Assume in the traffic game that ωδ < 2. Then the corresponding adaptive dynamics (7) has a unique rest point x̄ which
is a global attractor and the process (2) converges almost surely to x̄.

Proof. Proposition 8 gives Cir(x) = F ir(Σ(x)) = ∂H
∂π ir (Σ(x)), and since ∂H

∂π ir (π) depends only on {πkr}k &=i , using Lemma 9 we
deduce

∣∣Cir(x)− Cir(y)
∣∣ =

∣∣∣∣
∂H

∂π ir

(
Σ(x)

)
− ∂H

∂π ir

(
Σ(y)

)∣∣∣∣ � δ
∑

j &=i

∣∣σ jr(x j)− σ jr(y j)∣∣.

Now Lemma 6 and the inequality σ (1− σ ) � 1
4 gives us

∣∣σ jr(x j)− σ jr(y j)∣∣ � 1
2
β j

∥∥x j − y j
∥∥
∞ � 1

2
β j‖x− y‖∞

which combined with the previous estimate yields
∣∣Cir(x)− Cir(y)

∣∣ � 1
2
δ
∑

j &=i

β j‖x− y‖∞ � 1
2
ωδ‖x− y‖∞.

Thus C(·) is a ‖ · ‖∞-contraction and we may conclude using Theorem 4. !

To interpret this result we note that the βi ’s in the Logit formula are inversely proportional to the standard deviation
of the random terms in the discrete choice model. Thus, the condition ωδ < 2 requires either a weak congestion effect
(small δ) or a sufficiently large noise (small ω). Although this condition is sharper than the one obtained in Proposition 5,
the parameter ω involves sums of βi ’s so that it becomes more and more stringent as the number of players increases. In
the sequel we show that uniqueness of the rest point still holds under the much weaker condition βiδ < 1 for all i ∈P , and
even for βiδ < 2 in the case of linear costs (cru = ar + δru) or when players are symmetric (βi ≡ β).

It is important to note that at lower noise levels (large βi ’s) player behavior becomes increasingly deterministic and
multiple pure equilibria will coexist, as in the case of the market entry game proposed in Selten and Guth (1982) which in
our setting corresponds to the special case of 2 roads with linear costs and symmetric players. For this game, two alternative
learning dynamics were analyzed in Duffy and Hopkins (2005): a proportional reinforcement rule and a Logit rule based on
hypothetical reinforcement (which requires further information about the opponents’ moves). In the first case convergence
to a pure Nash equilibrium is established, while in the second the analysis is done at small noise levels proving convergence
towards a perturbed pure Nash equilibrium.
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3.2. Lagrangian description of the dynamics

The potential function H(·) allows to rewrite the dynamics (7) in several alternative forms. A straightforward substitution
yields

ẋir = σ ir(xi
)[ ∂H

∂π ir

(
Σ(x)

)
− xir

]
(16)

so that defining

Ψ (π) = H(π)−
∑

i∈P

1
βi

∑

r∈R
π ir[ln(π ir)− 1

]
,

λi(xi
)
= 1

βi
ln

( ∑

r∈R
exp

(
βi x

ir)
)

one may also put it as

ẋir = σ ir(xi
)[ ∂Ψ

∂π ir

(
Σ(x)

)
− λi(xi

)]
. (17)

Now, setting µi = λi(xi) we have σ ir(xi) = π̄ ir(xir,µi) � exp[βi(xir −µi)]. If instead of considering µi as a function of xi

we treat it as an independent variable we find ∂π̄ ir

∂xir
= βiπ̄ ir , and then introducing the Lagrangians

L(π ;µ) = Ψ (π)−
∑

i∈P
µi

[ ∑

r∈R
π ir − 1

]
,

L(x;µ) =L
(
π̄(x,µ);µ

)

we may rewrite the adaptive dynamics in gradient form

ẋir = 1
βi

∂L

∂xir
(
x;λ(x)

)
. (18)

Alternatively we may differentiate µi = λi(xi) in order to get

µ̇i =
∑

r∈R
π̄ ir(xir,µi)ẋir = 1

βi

∑

r∈R
π̄ ir(xir,µi) ∂L

∂xir
(x;µ)

which may be integrated back to yield µi = λi(xi) as unique solution, so that (18) is also equivalent to the system of coupled
differential equations






ẋir = 1
βi

∂L

∂xir
(x;µ),

µ̇i = 1
βi

∑

r∈R
π̄ ir(xir,µi) ∂L

∂xir
(x;µ).

(19)

Finally, all these dynamics may also be expressed in terms of the evolution of the probabilities π ir as





π̇ ir = βiπ
ir
[
π ir ∂L

∂π ir
(π ;µ)− µ̇i

]
,

µ̇i =
∑

r∈R

(
π ir)2 ∂L

∂π ir
(π ;µ).

(20)

We stress that (16)–(20) are equivalent ways to describe the adaptive dynamics (7), so they provide alternative means
for studying the convergence of the learning process. In particular, (17) may be interpreted as a gradient flow for finding
critical points of the functional Ψ on the product of the unit simplices defined by

∑
r∈Rπ ir = 1 (even if the dynamics are

in the x-space), while (20) can be seen as a dynamical system that searches for saddle points of the Lagrangian L with the
variables µi playing the role of multipliers. We show next that these critical points are closely related to the rest points of
the adaptive dynamics.

Proposition 11. Let x ∈Ω and π = Σ(x). The following are equivalent:

(a) x ∈ E ,
(b) ∇xL(x,µ) = 0 for µ = λ(x),
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(c) π is a Nash equilibrium of the game G ,
(d) ∇πL(π ,µ) = 0 for some µ ∈RN ,
(e) π is a critical point of Ψ on ∆(R)N , i.e. ∇Ψ (π) ⊥ ∆N

0 where ∆0 is the tangent space to ∆(R), namely ∆0 = {z ∈
RM :

∑
r∈R zr = 0}.

Proof. The equivalence (a)⇔ (b) is obvious if we note that (7) and (18) describe the same dynamics, while (a)⇔ (c) was
proved in Proposition 3. The equivalence (d)⇔ (e) is also straightforward. For (a)⇔ (d) we observe that the vector µ in
(d) is uniquely determined: indeed, the condition ∇πL(π ,µ) = 0 gives ∂H

∂π ir (π)− 1
βi

ln(π ir) = µi so that setting x =∇H(π)

we get π ir = exp[βi(xir −µi)] and since π i ∈∆(R) we deduce µi = λi(xi). From this observation it follows that (d) may be
equivalently expressed by the equations x =∇H(π) and π = Σ(x) which is precisely (8) and therefore (a)⇔ (d). !

When the quantities βiδ are small, the function Ψ turns out to be concave so we may add another characterization of
the equilibria and a weaker alternative condition for uniqueness.

Proposition 12. Let β = maxi∈P βi . If βδ < 1 then Ψ is strongly concave with parameter ( 1
β − δ) and attains its maximum at a

unique point π̄ ∈∆. This point π̄ is the only Nash equilibrium of the game G while x̄ = F (π̄) is the corresponding unique rest point of
the adaptive dynamics (7).

Proof. It suffices to prove that h′∇2Ψ (π)h �−( 1
β − δ)‖h‖2 for all h ∈∆N

0 . Using Lemma 9 we get

h′∇2Ψ (π)h =
∑

r∈R

[∑

i &= j

hirh jrEB
π

[
crUr

i j+1 − crUr
i j+2

]
−

∑

i

1
βiπ ir

(
hir

)2
]
. (21)

Setting Y ir = vir X ir with vir = hir

π ir , and δru = (cru − cru−1) with δr0 = δr1 = 0, this may be rewritten as

h′∇2Ψ (π)h =
∑

r∈R

[∑

i &= j

vir v jrπ irπ jrEB
π

[
crUr

i j+1 − crUr
i j+2

]
−

∑

i

π ir

βi

(
vir)2

]

=
∑

r∈R
EB

π

[∑

i &= j

Y irY jr(crUr−1 − crUr

)
−

∑

i

1
βi

(
Y ir)2

]

�
∑

r∈R
EB

π

[
−δrUr

∑

i &= j

Y irY jr − 1
β

∑

i

(
Y ir)2

]

=
∑

r∈R
EB

π

[
−δrUr

(∑

i

Y ir
)2

−
(
1
β
− δrUr

)∑

i

(
Y ir)2

]
.

The conclusion follows by neglecting the first term in the latter expectation and noting that δrUr � δ while E[(Y ir)2] =
(hir )2

π ir � (hir)2. !

When the costs cru are linear the previous result may be slightly improved.

Proposition 13. Suppose that the route costs are linear cru = ar + δru. Let β = maxi∈P βi and δ given by (14). If βδ < 2 then the
function Ψ (·) is quadratic and strongly concave on the space ∆(R)N with parameter ( 2

β − δ).

Proof. Under the linearity assumption Eq. (21) gives

h′∇2Ψ (π)h =−
∑

r∈R

[
δr

∑

i &= j

hirh jr +
∑

i

1
βiπ ir

(
hir

)2
]

=−
∑

r∈R

[
δr

{(∑

i

hir
)2

−
∑

i

(
hir

)2
}

+
∑

i

1
βiπ ir

(
hir

)2
]

�
∑

r∈R

[
δ
∑

i

(
hir

)2 − 1
β

∑

i

1
π ir

(
hir

)2
]
.

Maximizing this latter expression with respect to the variables π ir � 0 under the constraints
∑

r π
ir = 1, we get
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h′∇2Ψ (π)h � δ
∑

i

∑

r

(
hir

)2 − 1
β

∑

i

(∑

r

∣∣hir
∣∣
)2

=
∑

i

[
δ
∥∥hi

∥∥2
2 −

1
β

∥∥hi
∥∥2
1

]
.

Now if we restrict to vectors h = (hi)i∈P in the tangent space ∆N
0 , that is to say,

∑
r h

ir = 0, we may use the inequality
‖hi‖1 �

√
2‖hi‖2 to conclude

h′∇2Ψ (π)h �
∑

i

[
δ
∥∥hi

∥∥2
2 −

2
β

∥∥hi
∥∥2
2

]
=−

(
2
β
− δ

)
‖h‖22. !

The characterization of π̄ as a minimizer suggests that Ψ might provide an alternative Lyapunov function to study
the asymptotic convergence under weaker assumptions than Theorem 10. Unfortunately, numerical simulations show that
neither the energy Ψ (π) nor the potential H(π) decrease along the trajectories of (7), at least initially. However they do
decrease for large t and therefore they may eventually serve as local Lyapunov functions near π̄ .

3.3. The symmetric case

In this final section we consider the case in which all players are identical with βi ≡ β for all i ∈ P . We denote σ (·)
the common Logit function (9). Under these circumstances one might expect rest points to be also symmetric with all
players sharing the same perceptions: x̄i = x̄ j for all i, j ∈P . This is indeed the case when βδ is small, but beyond a certain
threshold there is a multiplicity of rest points all of which except for one are non-symmetric.

Lemma 14. For all x, y ∈Ω , each i, j ∈P and every r ∈R, we have

∣∣Cir(x)− C jr(x)
∣∣ � 1

2
βδ

∥∥xi − x j
∥∥
∞. (22)

Proof. We observe that the only difference between F ir and F jr is an exchange of π ir and π jr . Thus, Proposition 8 and
Lemma 9 combined imply that |F ir(π)− F jr(π)| � δ|π ir −π jr | and then (22) follows from the equality C(x) = F (Σ(x)) and
Lemma 6. !

Theorem 15. If βi ≡ β for all i ∈ P then the adaptive dynamics (7) has exactly one symmetric rest point x̂ = ( ŷ, . . . , ŷ). Moreover, if
βδ < 2 then every rest point is symmetric (thus unique).

Proof. Existence. Consider the continuous map T from the cube
∏

r∈R[−crN ,−cr1] to itself that maps y to T (y) = (T r(y))r∈R
where T r(y) = Cir(y, . . . , y). Brouwer’s theorem implies the existence of a fixed point ŷ so that setting x̂ = ( ŷ, . . . , ŷ) we
get a symmetric rest point for (7).

Uniqueness. Suppose x̂ = ( ŷ, . . . , ŷ) and x̃ = ( ỹ, . . . , ỹ) are two distinct symmetric rest points and assume with no loss of
generality that the set R+ = {r ∈R: ỹr < ŷr} is non-empty. Let R− =R\R+ . The fixed point condition gives Cir(x̃) < Cir(x̂)
for all r ∈R+ , and since F ir is decreasing with respect to the probabilities π jr we deduce σ r( ỹ) > σ r( ŷ). Summing over all
r ∈R+ and setting Q (z) = [∑a∈R− eβza ]/[∑a∈R+ eβza ] we get

1
1+ Q ( ỹ)

=
∑

r∈R+
σ r( ỹ) >

∑

r∈R+
σ r( ŷ) = 1

1+ Q ( ŷ)

and therefore Q ( ŷ) > Q ( ỹ). However, eβ ŷr > eβ ỹr for r ∈R+ and eβ ŷr � eβ ỹr for r ∈R− , so that Q ( ŷ) < Q ( ỹ) which yields
a contradiction.

Symmetry. Suppose next that βδ < 2 and let x be any rest point. For any two players i, j ∈ P and all routes r ∈ R,
property (22) gives

∣∣xir − x jr
∣∣ =

∣∣Cir(x)− C jr(x)
∣∣ � 1

2
βδ

∥∥xi − x j
∥∥
∞

and then ‖xi − x j‖∞ � 1
2βδ‖xi − x j‖∞ which implies xi = x j . !

Corollary 16. If βi ≡ β for all i ∈P then the game G has a unique symmetric equilibrium. Moreover, if βδ < 2 then every equilibrium
is symmetric (hence unique).

The existence of a symmetric rest point requires not only that players be identical in terms of the βi ’s but also with
respect to payoffs. If these payoffs are given by Cir(x) = Cr(x) + αir where Cr(x) is a common value which depends only on
the number of players that use route r and αir is a user specific value, then symmetry may be lost.
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Going back to the stability of rest points we observe that the condition ωδ < 2 in Theorem 10 becomes more and more
stringent as the number of players grows: for identical players this condition reads βδ < 2

N−1 . Now, since βδ < 2 already
guarantees a unique rest point x̂, one may expect that this remains an attractor under this weaker condition. Although
extensive numerical experiments confirm this conjecture, we have only been able to prove that x̂ is a local attractor. Unfor-
tunately this does not allow to conclude the almost sure convergence of the learning process (2).

Theorem 17. If βi ≡ β for all i ∈ P with βδ < 2 then the unique rest point x̂ = ( ŷ, . . . , ŷ) is symmetric and a local attractor for the
dynamics (7).

Proof. We will prove that

Φ(x) = max
{
max
i, j

∥∥xi − x j
∥∥
∞,

1
N − 1

max
i

∥∥xi − ŷ
∥∥
}

is a local Lyapunov function. More precisely, fix any ε > 0 and choose a lower bound π̄ � π ir := σ r(xi) over the compact
set Sε = {Φ � ε}. This set is a neighborhood of x̂ since the minimum of Φ is attained at Φ(x̂) = 0. Now set α = 1

2βδ and
b = π̄ [1− α], and reduce ε so that β|C jr(x)− x jr | � b for all x ∈ Sε . We claim that Sε is invariant for the dynamics with
ρ(t) = Φ(x(t)) decreasing to 0. To this end we show that ρ̇(t) �− b

2ρ(t). We compute ρ̇(t) distinguishing 3 cases.

Case 1: xir − x jr = ρ(t).
A simple manipulation using (7) gives

ẋir − ẋ jr =−π irρ(t) + π ir[Cir(x)− C jr(x)
]
+

(
π ir −π jr)[C jr(x)− x jr]

so that (22) implies

ẋir − ẋ jr �−π ir[1− α]ρ(t) + 1
2
β
∣∣C jr(x)− x jr

∣∣ρ(t) �−b
2
ρ(t).

Case 2: 1
N−1 (xir − ŷr) = ρ(t).

In this case we have xia − ŷa � xir − ŷr for all a ∈R so that

σ r(xi
)
=

[ ∑

a∈R
eβ(xia−xir )

]−1

�
[ ∑

a∈R
eβ( ŷa− ŷr )

]−1

= σ r( ŷ)

which then implies

Cir(xi, . . . , xi
)
� Cir( ŷ, . . . , ŷ) = ŷr = xir − (N − 1)ρ(t).

On the other hand, using Lemmas 9 and 6 we have
∣∣Cir(x)− Cir(xi, . . . , xi

)∣∣ � (N − 1)αmax
j &=i

∥∥x j − xi
∥∥
∞ � (N − 1)αρ(t) (23)

so that Cir(x)− xir �−(N − 1)[1− α]ρ(t) and therefore

d
dt

[
1

N − 1

(
xir − ŷr

)]
�−π ir[1− α]ρ(t) �−b

2
ρ(t).

Case 3: 1
N−1 ( ŷr − xir) = ρ(t).

Similarly to the previous case we now have σ r(xi) � σ r( ŷ) so that

Cir(xi, . . . , xi
)
� Cir( ŷ, . . . , ŷ) = ŷr = xir + (N − 1)ρ(t).

This combined with (23) gives xir − Cir(x) �−(N − 1)[1− α]ρ(t) and then as in the previous case we deduce

d
dt

[
1

N − 1

(
ŷr − xir

)]
�−b

2
ρ(t). !

This last result shows that x̂ is a local attractor when βδ < 2. As a matter of fact, in this case we have observed through
extensive simulations that (7) always converges towards x̂ so we conjecture that it is a global attractor. More generally, the
simulations show that even for values βδ > 2 the continuous dynamics converge towards an equilibrium, although there
is a bifurcation value beyond which the symmetric equilibrium becomes unstable and convergence occurs towards one of
the multiple non-symmetric equilibria. The structure of the bifurcation is quite intricate and deserves more attention. The
possibility of selecting the equilibrium attained by controlling the payoffs using tolls or delays to incorporate the externality
that each user imposes to the rest, may be also of interest in this context. Eventually one might think of a feedback
mechanism in the adaptive dynamics that would lead the system to a more desirable equilibrium from the point of view of
the planner.
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