A Note on the Value of Zero-Sum Sequential Repeated Games with Incomplete Information

By S. Sorin, Paris ${ }^{1}$)

Abstract: We consider repeated two-person zero-sum games with lack of information on both sides. If the one shot game is played sequentially, it is proved that the sequence v_{n} is monotonic, v_{n} being the value of the n shot game. Moreover the speed of convergence is bounded by K / n, and this is the best bound.

Introduction

The class of games considered in this note are those introduced and studied by $A u$ mann/Maschler [1966, 1967, 1968]. Later it was proved by Mertens/Zamir [1971] that, if v_{n} is the value of an n repeated zero-sum game with lack of information on both sides, $\lim v_{n}$ exists and $d_{n}=\left|v_{n}-\lim v_{n}\right|$ is bounded by K / \sqrt{n}. Then Zamir [1972] has proved that it is the best bound. Now, if we consider the "independent" case, where moreover the moves are made sequentially, we can compute v_{n} by using an explicit formula proved by Ponssard [1975] for "games with almost perfect information". Then we prove that the sequence v_{n} is monotonic and that d_{n} is bounded by K / n. We also give an example of a game with $d_{n}=1 / 2 n$.

1. The Game

Let $\left(A^{r s}\right), r \in\{1, \ldots, R\}, s \in\{1, \ldots, S\}$, be $m \times n$ matrices viewed as payoff matrices of two-person zero-sum games, with elements $a_{i j}^{r s}, i \in I=\{1, \ldots, m\}$, $j \in J=\{1, \ldots, n\}$. Let P (resp. Q) be the simplex of \mathbf{R}^{R} (resp. \mathbf{R}^{S}).

For each $p \in P, q \in Q, n \in \mathbf{N}, G_{n}(p, q)$ is the n-times repeated game played as follows.

Stage 0 . Chance chooses some r (resp. s) according to the probability distribution p (resp. q). Then player I is informed of r and player II of s. (All of the above description is common knowledge.)

Stage 1. Player I chooses $i_{1} \in I$, player II is told which i_{1} was choosen and chooses $j_{1} \in J$; then player I is informed of j_{1}.

[^0]Now this stage is repeated again and again. After the n-stage player I receives from player II the following amount:
$\frac{1}{n} \sum_{h=1}^{n} a_{i_{h} j_{h}}^{r}$, where $\left(i_{h}, j_{h}\right)$ are the strategies used at the h-th stage. We denote by $v_{n}(p, q)$ the value of $G_{n}(p, q)$.

Le us define, for each $p \in P, q \in Q$:
$A(p, q)=\sum_{r=1}^{R} \sum_{s=1}^{S} p^{r} q^{s} A^{r s}$ and let $u(p, q)$ be the value of the zero-sum sequential game with matrix $A(p, q)$. (The game where both players play non revealing strategies.)

For each real function f on $P \times Q$ we denote by $C f$ the smallest real function g on $P \times Q$ such that:

$$
\begin{aligned}
& g(\cdot, q) \text { is concave on } P \text { for each } q \in Q \\
& g(p, q) \geqslant f(p, q) \text { on } P \times Q
\end{aligned}
$$

Similarly we define $V f=\underset{Q}{\operatorname{Vex}} f$.
We can now state the main result of Mertens/Zamir [1971]:
$\lim _{n \rightarrow \infty} v_{n}(p, q)$ exists and is the only solution of the system:

$$
\begin{align*}
& x(p, q)=V \max \{u(p, q), x(p, q)\} \tag{1}\\
& x(p, q)=C \min \{u(p, q), x(p, q)\}
\end{align*}
$$

In order to symplify the notations we shall denote by:
M the maximum over $i, i \in I$,
m the minimum over $j, j \in J$,
Σ the expression $\sum_{r=1}^{R} \sum_{s=1}^{S} p^{r} q^{s} a_{i j}^{r s}$. (In fact Σ is some $\Sigma(i, j)$ but no confusion will result.)

2. The Results

Proposition 1: For each $p \in P, q \in Q$, the sequence $v_{n}(p, q)$ is increasing.
Proof: Using Theorem 1 of Ponssard [1975] we have:

$$
\begin{equation*}
n v_{n}(p, q)=\operatorname{CMVm}\left(\Sigma+(n-1) v_{n-1}(p, q)\right) \tag{2}
\end{equation*}
$$

for all $n \geqslant 1$, where $\nu_{0}(p, q)=0$ on $P \times Q$. Then

$$
\begin{aligned}
2 v_{2}(p, q) & =\operatorname{CMVm}\left(\Sigma+v_{1}(p, q)\right) \\
& \geqslant C M\left(\operatorname{Vm} \Sigma+v_{1}(p, q)\right)
\end{aligned}
$$

since $\operatorname{Vex}(a+b) \geqslant \operatorname{Vex}(a)+\operatorname{Vex}(b)$ and $v_{n}(p, q)$ is convex w.r.t. q, for all n. Now we have

$$
2 v_{2}(p, q) \geqslant C\left(M V m \Sigma+v_{1}(p, q)\right)
$$

Let us denote by $g_{1}(p, q)$ the function $M V m \Sigma$, then

$$
v_{1}(p, q)=C g_{1}(p, q) .
$$

$\operatorname{But} \operatorname{Cav}(a+\operatorname{Cav}(a))=2 \operatorname{Cav}(a)$, so that

$$
2 v_{2}(p, q) \geqslant 2 v_{1}(p, q)
$$

Let us assume now that

$$
v_{n}(p, q) \geqslant v_{n-1}(p, q) \text { on } P \times Q
$$

We have

$$
\begin{aligned}
(n+1) v_{n+1}(p, q) & =\operatorname{CMV}\left(m \Sigma+n v_{n}(p, q)\right) \\
& \geqslant \operatorname{CMV}\left(m \Sigma+(n-1) v_{n-1}(p, q)+v_{n}(p, q)\right)
\end{aligned}
$$

But the right expression is greater than

$$
C M\left(V\left(m \Sigma+(n-1) v_{n-1}(p, q)\right)+v_{n}(p, q)\right)
$$

Denoting by $g_{n}(p, q)$ the function $M V\left(m \Sigma+(n-1) v_{n-1}(p, q)\right)$, we obtain

$$
(n+1) v_{n+1}(p, q) \geqslant C\left(g_{n}(p, q)+\frac{1}{n} C g_{n}(p, q)\right)
$$

and the right side is

$$
\frac{n+1}{n} C g_{n}(p, q)=(n+1) v_{n}(p, q) .
$$

If we denote $\lim v_{n}(p, q)$ by $v(p, q)$ we get obviously.
Corollary 1:

$$
v_{n}(p, q) \leqslant v(p, q) \text { on } P \times Q \text { for all } n
$$

Proposition 2 (The Error Term):

$\left|v(p, q)-v_{n}(p, q)\right| \leqslant K / n$ on $P \times Q$, for some $K \in \mathbf{R}$, and this is the best bound.

Proof: We still suppose that player I is the maximizer. We shall write, for $i \in I$,

$$
f_{i}(p, q)=-m\left(\sum_{r=1}^{R} \sum_{s=1}^{S} p^{r} q^{s} a_{i j}^{r s}\right)
$$

Note that the f_{i} are convex and piecewise linear in both variables.
Let $f(p, q)=\sum_{i=1}^{m} f_{i}(p, q)-L$ where $L \in \mathbf{R}$ is choosen such that
$\nu_{1}(p, q) \geqslant v(p, q)+f(p, q)$ on $P \times Q .\left(v_{1}\right.$ and v are bounded on $\left.P \times Q.\right)$
Let us suppose now that:

$$
n v_{n}(p, q) \geqslant n v(p, q)+f(p, q)
$$

Using (2) we have

$$
\begin{aligned}
(n+1) v_{n+1}(p, q) & \geqslant \operatorname{CMVm}(\Sigma+f(p, q)+n v(p, q)) \\
& \geqslant C M(V(m \Sigma+f(p, q))+n v(p, q))
\end{aligned}
$$

since v is convex w.r.t. q.
But, by constructions, $m \Sigma+f(p, q)$ is convex w.r.t. q, for each $i \in I$, so that

$$
(n+1) v_{n+1}(p, q) \geqslant C(u(p, q)+f(p, q)+n v(p, q))
$$

Now $\operatorname{Cav}(a+b) \leqslant \operatorname{Cav}(a)+\operatorname{Cav}(b)$ so by letting $a=u(p, q)+f(p, q)+n v(p, q)$ and $b=-f(p, q)$, the right member is greater than

$$
C(u(p, q)+n v(p, q))-C(-f(p, q))
$$

Now $-f$ is concave w.r.t. p so we obtain

$$
\begin{aligned}
(n+1) v_{n+1}(p, q) & \geqslant C(u(p, q)+n v(p, q))+f(p, q) \\
& \geqslant C((n+1) \min (u(p, q), v(p, q)))+f(p, q)
\end{aligned}
$$

Using (1), the fact that f is bounded on $P \times Q$ and $v_{n} \leqslant v$ for all n (Cor. 1), we arrive at the proof.

Example:

The following example shows that it is the best bound. Assume that $R=1$ and $S=2$ (there is lack of information on one side but player I is uninformed). The payoff matrices are given by:
$A^{11}=\left(\begin{array}{cc}0 & 1 \\ 1 & -2\end{array}\right) \quad A^{12}=\left(\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right)$
The functions $u(q), v_{n}(q), v(q)$, are given in the diagrams below.
We note that $v(1 / 2)-v_{n}(1 / 2)=1 / 2 n$.
Remarks: If there is lack of information on one side, the informed player maximizing and moving first, we obviously have $v_{1}(p) \geqslant \operatorname{Cav} u(p)=v(p)$ so that Prop. 1 and Cor. 1 imply $v_{n}(p)=v(p)$ for all n, a result which was already proved by Ponssard/ Zamir [1973].

In the general case of game with lack of information on one side, the sequence v_{n} is monotonic, but decreases if the informed player is the maximizer, as already mentioned by Aumann/Maschler [1968]. This can be seen immediatly if one writes the recursion formula [Zamir] in the following manner:

$$
(n+1) v_{n+1}(p)=\operatorname{Max}_{s}\left\{\operatorname{Min}_{t} \sum_{k} p^{k} s^{k} A^{k} t+n \sum_{i} \bar{s}_{i} v_{n}\left(p_{i}\right)\right\}
$$

where $s=\left(s^{1}, \ldots, s^{k}, \ldots, s^{r}\right), s^{k}$ is a probability vector over I for all k, t is a probability vector over $J, \bar{s}_{i}=\sum_{k} s_{i}^{k} p^{k}$, and p_{i} is the conditional probability over K given i.
Assuming $v_{n}(p) \leqslant v_{n-1}(p)$ we have

$$
\begin{aligned}
(n+1) v_{n+1}(p) & \leqslant \operatorname{Max}_{s}\left\{\operatorname{Min}_{t} \sum_{k} p^{k} s^{k} A^{k} t+(n-1) \sum_{i} \bar{s}_{i} v_{n-1}\left(p_{i}\right)+\right. \\
& \left.+\sum_{i} \bar{s}_{i} v_{n}\left(p_{i}\right)\right\}
\end{aligned}
$$

and since v_{n} is concave it follows that

$$
(n+1) v_{n+1}(p) \leqslant \operatorname{Max}_{s}\left\{\operatorname{Min}_{t} \sum_{k} p^{k} s^{k} A^{k} t+(n-1) \sum_{i} \bar{s}_{i} v_{n-1}\left(p_{i}\right)\right\}+v_{n}(p)
$$

Hence

$$
(n+1) v_{n+1}(p) \leqslant(n+1) v_{n}(p)
$$

Acknowledgements

This note greatly benefited from extensive discussions with J.P. Ponssard in the framework of joint research on games with incomplete information.

References

Aumann, R.J., and M. Maschler: Game Theoretic Aspects of Graduate Disarmament. Report to the U.S. A.C.D.A. Final report on contract ACDA/ST-80, prepared by Mathematica, Princeton, N.J., June 1966, Chapter V, 1-55.
-: Repeated Games with Incomplete Information. A Survey of Recent Results. Report to the U.S. A.C.D.A. Final report on contract ACDA/ST-116, prepared by Mathematica, Princeton, N.J., September 1967, Chapter III, 287-403.
-: Repeated Games with Incomplete Information. The Zero-Sum Extensive Case. Report to the U.S. A.C.D.A. Final report on contract ACDA/ST-143, prepared by Mathematica, Princeton, N.J., November 1968, Chapter II, 25-108.

Mertens, J.F., and S. Zamir: The Value of Two-Person Zero-Sum Repeated Games with Lack of Information on Both Sides. International Journal of Game Theory, 1, 1971, 39-64.
Ponssard, J.P.: Zero-Sum Games with "Almost" Perfect Information. Management Science 21 (7), 1975, 794-805.
Ponssard, J.P., and S. Zamir: Zero-Sum Sequential Games with Incomplete Information. International Journal of Game Theory 2, 1973, 99-107.
Zamir, S: : On the Relation Between Finitely and Infinitely Repeated Games with Incomplete Information. International Journal of Game Theory 1, 1972, 179-198.

Received December 1978

[^0]: ${ }^{1}$) Dr. S. Sorin, Laboratoire d'Econométrie, Université Paris 6, 4 Place Jussieu, F-75230 Paris Cedex 05.

