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O. Summary 

The theory of repeated games is concerned with the analysis of behavior in 
long-term interactions as opposed to one-shot situations; in this framework 
new objects occur in the form of threats, cooperative plans, signals, etc. that 
are deeply related to "real life" phenomena like altruism, reputation or 
cooperation. More precisely, repeated garnes with complete information, also 
called supergames, describe situations where a play corresponds to a sequence 
of plays of the same stage garne and where the payoffs are some long-run 
average of the stage payoffs. Note that unlike general repeated garnes [see, for 
example, Mertens, Sorin and Zamir (1992)] the stage game is the same (the 
state is constant; compare with stochastic games; see the chapter on 'stochastic 
garnes' in a forthcoming volume of this Handbook) and known to the players 
(the state is certain; compare with garnes of incomplete information, Chapters 
5 and 6 in this Handbook). 

1. Introduction and notation 

A repeated game results when a given garne is played a large number of times 
and, when deciding what to do at each stage, a player may take into account 
what happened at all previous stages (or more precisely what he knows about 
it). The payoff is an average of the stage payoffs. 

More formally let G = G a be the following strategic form garne: ! is the finite 
set of players with generic element i (we also write I for its cardinality). Each 
player i has a finite non-empty set of moves (or actions) S i and a payoff 
function gi from S = I~j~ I S j into ~. X i will denote the set of randomized or 
mixed moves of i, i.e. probabilities on S ~. For x in X = II~ X ~, g(x) stands for 
the usual multilinear extension of g and is the expected vector payoff if each 
player i plays x ~. 

To G is associated a supergame F, played in stages: at stage 1, all players 
choose a move simultaneously and independently, thus defining a move profile, 
that is an I-tuple s 1 = {sil} of moves in S. s I is then announced to all players 
and the garne proceeds to stage 2. (Note that we are assuming full monitoring; 
all past behavior is observed by everyone. For a more general framework see 
Section 5.) Inductively at stage n + 1, knowing the previous sequence of move 
profiles (sl, s 2 , . . ,  sn), all players again choose their moves simultaneously 
and independently. This choice is then told to all and the garne proceeds to the 
next stage. 

A history (resp. a play) is a finite (resp. infinite) sequence of elements of S; 
and the set of such sequences will be denoted by H (resp. Ha). H n is the subset 
of n-stage histories. Histories are the basic ingredients of repeated games; they 
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allow the players to coordinate their behavior. Note that in the present 
f ramework histories are known by all players, but in more general models (see 
Section 5) they will lead to differentiated information. 

A pure strategy for player i in F is, by the above description, a mapping from 
H to S i, specifying after each history the action to select. A mixed strategy is a 
probability distribution on the set of pure strategies. Since F is a game with 
perfect  recall, Kuhn's theorem implies that it is enough to work with behavior- 
al strategies, a behavioral strategy eri of player i being a mapping from H to X i. 
Alternatively, er~ can be represented by a sequence {o-in}, er/n being a mapping 
from Hù_ 1 to X i that describes the "strategy of player i at stage n" .  Write X ' 
for the corresponding set and X = II ~i. 

Each pure strategy profile er induces a play ho~ in a natural way. Formally: 
sl = er(0), sn+l = er(si, s 2 ,  • • , sù) and ho~ = (s l, . . . , s ~ ,  . .). Accordingly, 
each er in X (or in the set of mixed strategies) defines a probability, say P~, on 
(H=, Y(=), where Yt°oo is the product o--algebra on Ha - S ~ (and similarly 2(ù on 
Hn); we denote  by E~ the expectation operator  corresponding to probability 
Pc" 

To complete the description of F it remains to define a payoff function q~ 
from ~ to R ( The theory of repeated games deals with mappings that are some 
kind of average of the sequence of stage payoffs (gl = g ( s l ) , . . ,  gn = 
g ( s n ) , . . )  associated with a play. This is (with the stationary structure of 
information) the main difference from multimove garnes where the payoff can 
be any function on plays. Three classes will be analyzed here. 

(i) The finite game G~. The payoff is the arithmetic average of the sum of 
the payoffs for the n first stages and is denoted by ~~; hence ~~(o-) = E~(~~), 
where ~. = (l/n)~,nm= I g(Sm) , n E N. G n is the usual n-stage garne where we 
normalize the payoffs to allow for a comparative study as n varies. 

(ii) The discounted garne G~. Here  ~o is the geometric average of the infinite 
stream of payoffs; it is written ~~ with ,~A(o-)=E~(Em=~ A ( 1 - A )  m-1 
× g(Sm)), A Œ (0, 1]. G~ is thus the game with discount factor A (where again the 
payoff  is normalized). 

In each of these two cases F is a well-defined game in strategic form, so that 
the usual concepts (like equilibrium) apply. The situation is a little more 
delicate in the final case. 

(iii) The infinite game G~. The payoff is taken here as some limit of ~n. 
Different  definitions are possible, because the above limit may not exist and 
one may choose liminf or limsup or some Banach limit, and because one can 
take the expectation first or the limit first. Finally, especially if the infinite 
garne is considered as an approximation of a long but finite garne, some 
uniformity conditions may be required for equilibrium. 

We will use mainly the following definitions: er is a lower (resp. upper) 
equilibrium if ~n(er) converges to some ,~(er) as n goes to infinity, and for each 
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~.i in ùa~ i and each i one has: liminf (resp. limsup) ~i (~j, o - - i )  ~ ,~i(o.) ' where as 
usual o--~ stands for the ( I -  1) tuple induced by o- on/~{i}.  

Similarly, o- is a uniform equilibrium if ~~(o-) converges and, moreover, 
Ve > O, 3N ,  n >i N ~ ~in(Ti , O "-i) ~ ~in(o- ) ~- E, for each ~.i and each i. In words, 
for any positive e, o- is an e-equilibrium in any sufficiently long garne Gù. 

When the payoff function is unspecified, the result will be independent of its 
particular choice. 

Remark.  One can also work with the random variables gn and say that a 
deviation is profitable if limsup gn increases with probability one. 

Recall, finally, that a subgame perfect equilibrium of F is a strategy profile o- 
such that for all h in H, o[h] is an equilibrium in F, where o-[h] is defined on H 
by o-[h](h') = o(h, h')  and (h, h ' )  stands for the history h followed by h'. 

The main aim of the theory is to study the behavior of long games. Hence, 
we will consider the asymptotic properties of G n as n goes to infinity or G A as A 
goes to 0, as weil as the limit garne G~. 

(Note once and for all that the 0-sum case is trivial: each player can play his 
optimal strategy i.i.d, and the value is constant - compare with Chapter 5 and 
the chapter on 'stochastic games' in a forthcoming volume of this Handbook.) 

Each of these approaches has its own advantages and drawbacks and to 
compare them is very instructive. G n corresponds to the "real" finite garne, but 
usually the actual length is unknown or not common knowledge (see Subsec- 
tion 7.1.2). Here the existence of a last stage has a disturbing backwards effect. 
G a has some nice properties (compactness, stationary structure) but cannot be 
studied inductively and here the discount factor has to be known precisely. 
Note that G A can be viewed as some G~, where 17 is an integer-valued random 
variable, finite a.s., whose law (but not the actual value) is known by the 
players. On the other hand, the use of G= is especially interesting if a uniform 
equilibrium exists. 

A few more definitions are needed to state the results. 
Given a normal form game F = (Y,, ~p), the set of achievable payoffs is 

A = {dEN~;  3O-EX,  q~(o-) = d} = q~(X); it is denoted by Dn, D A and D= for 
G n, G A and G~, respectively. 

Similarly, the set of Nash equilibrium payoffs is ~ = {d E Nz; 3o- E X that is 
an equilibrium in F with p(o-)= d}; it is denoted by En, E h or E= in the 
respective cases. Finally, ~ '  - and specifically, E ' ,  E] and EL -- will denote the 
set of subgame perfect equilibrium payoffs. 

D is the set of feasible payoffs with (public pure) correlated strategies in G1, 
or equivalently, if Co denotes the convex hull: D = Co D 1 = Co g(S). (This 
corresponds to the convex combination of payoffs in the original game G.) In 
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fact we shall see that repetition will allow us to mimic this public correlation in 
a verifiable way (because of the pure support ). 

The minimax level is defined by v ' =  min x imaxxigi(x i, x i) (recall that 
X - ;  = II~+eX j is the set of vectors of mixed actions of the opponents of i). If 
x- i ( i )  realizes the above minimum, it will be referred to as a punishing strategy 
of players in/k{i} against i, and fr(i) will be the best reply of player i to it. V 
with components  v i is the threat point. 

Finally, E is the set of individually rational (i.r. for short) and feasible 
payoffs: E =  { d E D; Vi E I, d~ »- v~}. 

We will be interested in studying the asymptotic behavior of the sets 
Dù, DA, E . . . . .  (all convergence of sets will be with respect to the Hausdorff  
topology) and in describing D~, E= and E ' .  We shall see that the sets D and E 
will play a crucial role. 

Before  letting the parameters vary, we note that the games (~, q~) for the 
first two classes (i) and (ii) have compact pure strategy spaces and jointly 
continuous payoffs; hence the following properties hold. 

Proposition 1.1. D~ and D A are non-empty, path-connected, compact sets. 

Proposition 1.2 (Nash). E, ,  E'n, E A and E x are non-empty, compact sets. 

Remarks.  It is easy to see that neither D n nor D A is necessarily convex, and 
neither E n nor E A connected. On the other hand, both D and E are convex, 
compact,  and non-empty,  since E contains E 1. 

The  following easy result illustrates one aspect of repetition: the possibility 
of convexifying the joint payoffs. 

Proposition 1.3. (i) D n converges to D as n goes to infinity. 
(ii) The same & true for D A as A goes to O. 

(iii) D~ = D. 

Proof. Note first that the random stage payoff takes its values in the closed 
convex set D and hence expectation, average and limits share the same 
proper ty  so that q~(o-) belongs to D for all 0-; thus A C D (but Co(A)= D).  
Now for every e > 0, there exists some integer p such that any point d in D can 
be e-approximated by a barycentric rational combination of points in g(S), say 
d ' =  Z m (qù,/p)g(Sm). Thus the strategy profile o- defined as: play cycles of 
length p consisting of qa times Sa, q2 times s2, and so on, induces a payoff near 
d '  in G n for n large enough. 

(ii) follows from (i) since the above strategy satisfies ~A(o-)-+ d '  as A-+O. 
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(iii) is obtained by taking for o- a sequence of strategies %,  used during n k 
stages, w i t h  I I~ .~ (~~)  - all--<- X/k. [] 

Note that D n may differ from D for all n, but one can show that D A coincides 
with D as soorl as A ~< 1 / I  [Sorin (1986a)]. 

It is worth noting that the previous construction associates a play with a 
payoff, and hence it is possible for the players to observe any deviation. This 
point will be crucial in the future analysis. 

The next three sections are devoted to the study of various equilibrium 
concepts in the framework of repeated garnes, using both the asymptotic 
approach and that of limit garnes. Section 2 deals with strategic or Nash 
equilibria, Section 3 with subgame perfection, and Section 4 with correlated 
and communication equilibria. 

2. Nash equilibria 

To get a rough feeling for some of the ideas involved in the construction of 
equilibrium strategies, consider an example with two players having two 
strategies each, Friendly and Aggressive. In a repeated framework, an equilib- 
rium will be composed of a plan, like playing (F, F) at each stage, and of a 
threat, like: "play A forever as soon as the other does so once". Note that in 
this way one can also sustain a plan like playing (F, F)  on odd days and (A, A) 
otherwise, or even playing (F, F)  at stage n, for n prime (which is very 
inefficient), as well as other convex combinations of payoffs. On the one hand 
new good equilibria (in the sense of being Pareto superior) will appear, but the 
set of all equilibrium payoffs will be much greater than in the one-shot game. 

In a discounted game two new aspects arise. One is related to the relative 
weight of the present versus the future (some punishment may be too weak to 
prevent deviations), but this failure disappears when looking at asymptotic 
properties. The second one is due to the stationary structure of the garne: the 
strategy induced by an equilibrium, given a history consistent with it, is again 
an equilibrium in the initial game. For example, if a "deviation" is ignored at 
one stage, then there is an equilibrium in which similar "deviations" at all 
stages are ignored. We shall nevertheless see that this constraint will generical- 
ly not decrease the set of equilibrium payoffs. 

In finite games, there cannot be any threat on the last day; hence by 
induction some constraints arise that may prevent some of the previous 
plan/ threat  combinations. Nevertheless in a large class of garnes, the asymp- 
totic results are roughly similar to those above. 

Let us now present the formal analysis. 
A first result states that all equilibrium payoffs are in E; obviously they need 

to be achievable and i.r. Formally: 
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Propos i t ion  2.0.  ~ C E.  

Proof.  Obviously ~ C D. Now let d be in E and o- be an associated equilib- 
rium strategy profile. Then player i can, after any history h, use a best reply to 
o--i(h). This gives him a (stage, and hence total) payoff greater than v i in Gù or 
GA. As for G= (if the payoff is not defined through limits of expectations), let 
g~ denote  the random payoff of player i at stage m, then the random variables 

i i zm = g m -  E(gml~m-1) are bounded,  uncorrelated and with zero mean and 
hence by an extension of the strong law of large numbers converge a.s. in 

i i Cesaro mean to 0. Since E(gml~m_l)>~o, this implies that player i can 
guarantee v i and hence d i ~  v i as well. [] 

It follows that to prove the equality of the two sets, it will be sufficient to 
represent  points in E as equilibrium payoffs. 

We now consider the three models. 

2.1. The infinitely repeated game G= 

The following basic result is known as the Folk theorem and is the cornerstone 
of the theory of repeated games. It states that the set of Nash equilibrium 
payoffs in an infinitely repeated garne coincides with the set of feasible and 
individually rational payoffs in the one-shot garne so that the necessary 
condition for a payoff to be an equilibrium payoff obtained in Proposition 2.0 
is also sufficient. 

Most of the results in this field will correspond to similar statements but with 
other  hypotheses regarding the kind of equilibria, the type of repeated game or 
the nature of the information for the players. 

T h e o r e m  2.1 .  E~ = E.  

Proof .  Let  d be in E and h a play achieving it ~ (Proposition 1.3). The 
equilibrium strategy is defined by two components: a cooperative behavior and 
punishments in the case of deviation. Explicitly, o- is: play according to h as 
long as h is followed; if the actual history differs from h for the first time at 
stage n, let player i be the first (in some order) among those whose move 
differs from the recommendation at that stage and switch to x(i) i.i.d, from 
stage n + 1 on. Note that it is crucial for defining tr that h is a play (not a 
probabili ty distribution on plays). The corresponding payoff is obviously d. 
Assume now that player i does not follow h at some stage and denote by N(s i) 
the set of subsequent stages where he plays s( The law of large numbers 
implies that ( l /  #N(si)) ~ nEN(s i) gi n converges a.s. t o  g(s i, x-i(i)) <~ t3 i as #N(s  ~) 
goes to ~ and hence limsup ~i ~< v ~, a.s. Moreover,  it is easy to see that o- 
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defines a uniform equilibrium, since the total gain by deviation is uniformly 
bounded. This proves that E C E= and hence the result by the previous 
proposition. [] 

Note that since we are looking only for Nash equilibria, it may be better for 
one player not to punish. This point will be taken into account in the next 
section. For a nice interpretation of and comments on the Folk Theorem, see 
Kurz (1978). Conceptual problems arise when dealing with a continuum of 
players; see Kaneko (1982). 

2.2. The discounted game G A 

Note first that in this case the asymptotic set of equilibrium payoffs may differ 
ffom E, see Forges, Mertens and Neyman (1986). A simple example is the 
following three-person garne, where player 3 is a dummy: 

((1, 0, 0) (0,1,0) 
(0, 1, 0) (1, 0, 1)) " 

This being basically a constant-sum garne between players 1 and 2, it is easy 
to see that for all values of the discount factor A, the only equilibrium (optimal) 
strategies in G A are (1/2, 1/2) i.i.d, for both, leading to the payoff ( l /2,  1/2, 
1/4). Hence the point (1/2, 1/2, 1/2) in E cannot be obtained. In particular 
this implies that Pareto payoffs cannot always be approached as equilibrium 
payoffs in repeated games even with low discount rates. 

In fact this phenomenon does not occur in two-person garnes or when a 
generic condition is satisfied [Sorin (1986a)]. 

Theorem 2.2. A s s u m e  I = 2 or that there exists a p a y o f f  vector d in E with 
d i > v i f o r  all i. Then E A converges to E. 

The idea, as in the Folk Theorem, is to define a play that the players should 
follow and to punish after a deviation. If I ~  >3 ,  the play is cyclic and 
corresponds to a strictly i.r. payoff near the requested payoff. It follows that 
for A smaU enough, the one-stage gain ffom deviating (coefficient A) will be 
smaller than the loss (coefficient 1 - A) of getting at most the i.r. level in the 
future. If I = 2 and the additional condition is not satisfied, either E -- {V} or 
only one player can profitably deviate and the result follows. [] 

2.3. The n-stage garne G n 

It is weil known that E n may not converge to E, the classical example being the 
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Prisoner's Dilemma described by the following two-person game: 

(3, 3) (0,4) 
(4,0) ( 1 , 1 ) / '  

where E~ = {(1, 1)} for all n. This property is not related to the existence of 
dominant strategies; a similar one holds with a mixed equilibrium in 

(2,0) (0, 1) 
(0, 1) (1, 0) / 

In fact, these games are representative of the following class [Sorin (1986a)]: 

Proposition 2.3.1. I f  E 1 = {V}, then E n = {V} f o r  all n. 

Proof. Let cr be an equilibrium in G n and denote by H(o-) the set of histories 
having positive probability under o-. Note first that on all histories of length 
(n - 1) in H(o-), o- induces V, by uniqueness of the equilibrium in 6 1  . NOW let 
m be the smallest integer such that after each history in H(cr) with length 
strictly greater than m, o- leads to V. Assume m ~> 0 and take a history, say h, 
of length m in H(o-) with o-(h) not inducing V. It follows that one player has a 
profitable deviation at that stage and cannot be punished in the future. [] 

The following result is typical of the field and shows that a good equilibrium 
payoff can play a dissuasive role and prevent backwards induction effects: 

Theorem 2.3.2 [Benoit and Krishna (1987)]. A s s u m e  that f o r  all i there exists 
e( i )  in E 1 with e i ( i ) >  v ~. Then E n converges to E. 

Proof. The idea is to split the stages into a cooperative phase at the beginning 
and a reward/punishment phase of fixed length at the end. During the first part 
the players are requested to follow a cyclic history leading to a strictly i.r. 
payoff approximating the required point in E. The second phase corresponds 
to playing a sequence of R cycles of length I, leading to ( e ( 1 ) , . . .  , e(I) ) .  Note 
that this part consists of equilibria and hence no deviation is profitable. On the 
other hand, a deviation during the first period is observable and the players are 
then requested to switch to x ( i )  for the remaining stages if i deviates. It follows 
that, by choosing R large enough, the one-shot gain is less than R x (ei(i) - v i) 
and hence the above strategy is an equilibrium. Letting n grow sufficiently 
large gives the result. [] 

Note that the above proof also shows the following: if E contains a strictly 
i.r. payoff, a necessary and sufficient condition for E n to converge to E is that 
for all i there exists n i and ei(i) in Eni with ei(i) > v i. 
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In conclusion, repetition allows for coordination (and hence new payoffs) 
and threats (new equilibria). Moreover, for a large class of garnes, the set of 
equilibria increases drastically with repetition and one has continuity at ~: lim 
E n = lim E A = E~ = E; every feasible i.r. payoff can be sustained by an equilib- 
rium. On the other hand, this set seems too large (it includes the threat point 
V) and a first attempt to reduce it is to ask for subgame perfection. 

3. Subgame perfect equilibria 

The introduction of the requirement of perfection will basically not change the 
basic results concerning the limit garne. Going back to the example at the 
beginning of Section 2, the length of the punishment (playing A) can be 
adapted to the deviation, but can remain finite and hence its impact on the 
payoff is zero. 

On the other hand, the specific features of the discounted garne (fixed point 
property) and of the finite garne (backwards induction) will have a much larger 
impact, being applied on each history. For example, if A is a dominant move, 
playing A at each stage will be the only subgame perfect equilibrium strategy of 
the finite repeated garne. 

As in the previous section we will consider each type of garne (and recall that 
~ ' C  ~). 

3.1. G= 

The first result is an analog of the Folk Theorem, showing that the equilibrium 
set is not reduced by requiring perfection. In fact, the possibly incredible threat 
of everlasting punishment can be adapted so that the same play will still be 
supported by a perfect equilibrium. 

Theorem 3.1 [Aumann and Shapley (1976), Rubinstein (1976)]. E'= = E. 

Proof. The cooperative aspect of the equilibrium is like in the Folk Theorem. 
The main difference is in the punishment phase; if the payoff is defined 
through some limiting average it is enough to punish a deviator during a finite 
number of stages and then to come back to the original cooperative play. It is 
not advantageous to deviate; it does not harm to punish. Explicitly, if a 
deviation happens at stage n, punish until the deviator's average payoff is 
within 1/n of the required payoff. Deviations during the punishment phase are 
ignored. (To get more in the spirit of subgame perfection, one might require 
inductively the punisher to be punished if he is not punishing. For this to be 
done, since a deviation may not be directly observable during the punishment 
phase, some statistical test has to be used.) [] 
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The interpretation of the "Perfect Folk Theorem" is that punishments can be 
enforced either because they do not hurt the punisher or because higher levels 
of punishment are available against a player who would not punish. This 
second idea will be used below. 

Remarks. (1) Note that a priori the previous construction will not work in G n 
or G a since there a profitable deviation during a finite set of stages counts, and 
on the other hand the hierarchy of punishment phases may lead to longer and 
longer phases. 

(2) For similar results with different payoffs or concepts, see Rubinstein 
(1979a, 1980). 

3.2. G a 

A simple and useful result in this framework, which is due to Friedman (1985), 
states that any payoff that strictly dominates a one-shot equilibrium payoff is in 
E~ for A small enough. (The idea is, as usual, to follow a play that generates 
the payoff and to switch to the equilibrium if a deviation occurs.) 

In order to get the analog of Theorem 2.2, not only is an interior condition 
needed (recall the example in Subsection 2.2), but also a dimensional condi- 
tion, as shown by the following example due to Fudenberg and Maskin 
(1986a). Player 1 chooses the row, player 2 the column and player 3 the matrix 
in the garne with payoffs: 

( ( 1 , 1 , 1 )  (0 ,0 ,0)  (0 ,0 ,0)  (0, 0))  
(o,o,o) (o,o,o)) and ( O, (0, 0, 0) ( 1 , 1 , 1 )  " 

Let w be the worst subgame perfect equilibrium payoff in G a. Then one has 
w ~ Ag a + (1 - A)w, where gl is any payoff achievable at stage 1 when two of 
the players are using their equilibrium strategies. It is easily seen that for any 
triple of randomized moves there exists orte player's best reply that achieves at 
least 1/4, i.e. ga >~ 1/4; hence w 1> 1/4 so that (0, 0, 0) cannot be approached in 
E~. 

A generic result is due to Fudenberg and Maskin (1986a): 

Theorem 3.2. I f  E has a non-empty  interior, then E '  A converges to E.  

Proof. This involves some nice new ideas and can be presented as follows. 
First define a play leading to the payoff, then a family of plans, indexed by I, 
consisting of some punishment phase [play x(i)] and some reward phase [play 
h( i )  inducing an i.r. payoff f(i)]. Now if at some stage of the garne player i is 
the first (in some order)deviator,  the plan i is played from then on until a new 
possible deviation. 
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To get the equilibrium condition, the length R of the punishment phase has 
to be adapted and the the rewards taust provide an incentive for punishing, i.e. 
for all i, j one needs f i ( j ) > f i ( i  ) (here the dimensional condition is used). 
Finally, if the discount factor is small enough, the loss in punishing is 
compensated by the future bonus. 

The proof itself is much more intricate. Care has to be taken in the choice of 
the play leading to a given payoff; it has to be smooth in the following sense: 
given any initial finite history the remaining play has to induce a neighboring 
payoff. Moreover, during the punishment phase some profitable and non- 
observable deviation may occur [recall that x(i)  consists of mixed actions] so 
that the actual play following this phase will have to be a random variable h'(i) 
with the following property: for all players j, j ~ i, the payoff corresponding to 
R times x(i) ,  then h(i)  is equal to the one actually obtained during the 
punishment phase followed by h'(i). At this point we use a stronger version of 
Proposition 1.3 which asserts that for all A small enough, any payoff in D can 
be exactly achieved by a smooth play in G a. [Note that h'(i) has also to satisfy 
the previous conditions on h(i).] [] 

Remarks. (1) The original proof deals with public correlation and hence the 
plays can be assumed "stationary". Extensions can be found in Fudenberg and 
Maskin (1991), Neyman (1988) (for the more general class of irreducible 
stochastic games) or Sorin (1990). 

(2) Note that for two players the result holds under weaker conditions; see 
Fudenberg and Maskin (1986a). 

3.3. Gn 

More conditions are needed in G n than in G a to get a Folk Theorem-like 
result. In fact, to increase the set of subgame perfect equilibria by repeating 
the game finitely many times, it is necessary to start with a game having 
multiple equilibrium payoffs. 

Lemma 3.3.1. I f  E~ = E I has exactly one point, then E" = E~ for  all n. 

Proof. By the perfection requirement, the equilibrium strategy at the last 
stage leads to the same payoff, whatever the history, and hence backwards 
induction gives the result. [] 

Moreover, a dimension condition is also needed, as the following example 
due to Benoit and Krishna (1985) shows. Player 1 chooses the row, player 2 
the column and player 3 the matrix, with payoffs as follows: 
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(0,0,0)  (0,0,0) and (0,1,1) (0,1,1) . 
(0, 1,1) (0, 0, 0) (0,1, 1) (0, 0, 0) 

One has V = (0,0,0);  (2, 2, 2) and (3, 3, 3) are in E t but players 2 and 3 
have the same payoffs. Let w n be the worst subgame perfect equilibrium payoff 
for them in G n. Then by induction w n/> 1/2 since for every strategy profile one 
of the two can, by deviating, get at least 1/2. (If player 1 plays middle with 
probability less than 1/2, player 2 plays left; otherwise, player 3 chooses right.) 
Hence E', remains far from E. 

A general result concerning pure equilibria (with compact action spaces) is 
the following: 

Theorem 3.3.2 [Benoit and Krishna (1985)]. Assume that for each i there 
exists e(i) and f ( i )  in E 1 (or in some En) with ei(i) > f i ( i ) ,  and that E has a 
non-empty interior. Then E'  n converges to E. 

Proof. One proof can be constructed by mixing the ideas of the proofs in 
Subsections 2.3 and 3.2. Basically the set of stages is split into three phases; 
during the last phase, as in Subsection 2.3, cycles of ( e ( 1 ) , . . ,  e(I)) will be 
played. Hence no deviations will occur in phase 3 and one will be able to 
punish "late" deviations (i.e. in phase 2) of player i, say, by switching to f ( i )  
for the remaining stages. In order to take care of deviations that may occur 
before and to be able to decrease the payoff to V, a family of plans as in 
Subsection 3.2 is used. One first determines the length of the punishment 
phase, then the reward phase; this gives a bound on the duration of phase 2 
and hence on the length of the last phase. Finally, one gets a lower bound on 
the number of stages to approximate the required payoff. [] 

As in Subsection 3.2 more precise results hold for I = 2; see Benoit and 
Krishna (1985) or Krishna (1988). 

An extension of this result to mixed strategies seems possible if public 
correlation is allowed. Otherwise the ideas of Theorem 3.2 may not apply, 
because the set of achievable payoffs in the finite garne is not convex and hence 
future equalizing payoffs cannot be found. 

3.4. The recursive structure 

When studying subgame perfect equilibria (SPE for short) in G~, one can use 
the fact that after any history, the equilibrium conditions are similar to the 
initial ones, in order to get further results on E A while keeping A fixed. 
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The first property arising ffom dynamic programming tools and using only 
the continuity in the payoffs due to the discount factor (and hence true in any 
multistage garne with continuous payoffs) can be written as follows: 

Proposition 3.4.1. A strategy profile is a SPE in G A iff  there is no one-stage 
profitable deviation. 

Proof. The condition is obviously necessary. Assume now that player i has a 
profitable deviation against the given strategy o-, say ~i. Then there exists some 
integer N, such that 0 ~ defined as "play ~.i on histories of length less than N and 
o -i otherwise", is still better than cr '. Consider now the last stage of a history of 
length less than N, where the deviation from ~r i to 0 i increase i's payoff. It is 
then clear that to älways play o -i, except at that stage of this history where z ~ is 
played, is still a profitable deviation; hence the claim. [] 

This criterion is useful to characterize all SPE payoffs. 
We first need some notation. Given a bounded set F of Et, let ~A(F) be the 

set of Nash equilibrium payoffs of all one-shot garnes with payoff Ag + (1 - 
A)f, where f is any mapping from S to F. 

Proposition 3.4.2. E'~ is the largest (in terms o f  set inclusion) bounded fixed 
point  o f  q9 A. 

Proof. Assume first F C q~A(F). Then, at each stage n, the future expected 
payoff given the history, say fn in F, can be supported by an equilibrium 
leading to a present payoff according to g and some future payofff~+l in F. Let 
o- be the strategy defined by the above family of equilibria. It is clear that in G A 
o- yields the sequence fn of payoffs, and hence by construction no one-stage 
deviation is profitable. Then, using the previous proposition, ~A(F)C E~. On 
the other hand, the equilibrium condition for SPE implies E~ C @(Eä) and 
hence the result. [] 

Along the same lines one has Eä = (-)n q)~(D') for any bounded set D '  that 
contains D. These ideas can be extended to a much more general setup; see the 
following sections. 

Note that when working with Nash equilibria the recursive structure is 
available only on the equilibrium path and that when dealing with G~ one loses 
the stationarity. 

Restricting the analysis to pure strategies and using the compactness of the 
equilibrium set (strategies and payoffs) allows for nice representations of all 
pure SPE; see Abreu (1988). Tools similar to the following, introduced by 
Abreu,  were in fact used in the previous section. 
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Given (I + i )  plays [h; h(i),  i ~ I], a simple strategy profile is defined by 
requiring the players to follow h and inductively to switch to h(i) from stage 
n + 1 on, if the last deviation occurred at stage n and was due to player i. 

Lemma 3.4.3. [h(O); h(i),  i E I] induces a SPE in G A iff for all j = 0 , . . ,  I, 
[h( j ) ;  h(i) ,  i C  I] defines an equilibrium in G A. 

Proof.  The condition is obviously necessary and sufficiency comes from 
Proposition 3.4.1. [] 

Define o-(i) as the pure SPE leading to the worst payoff for i in G A and 
denote by h*(i) the corresponding cooperative play. 

Lemma 3.4.4. [h*(j) ;  h*(i),  i @ I] induces a SPE. 

Proof. Since h*( j )  corresponds to a SPE, no deviation [leading, by o-(j), to 
some other SPE] is profitable a fortiori if it is followed by the worst SPE payoff 
for the deviator. Hence the claim by the previous lemma. [] 

We then obtain: 

Theorem 3.4.5 [Abreu (1988)]. Let o- be a pure SPE in G, and h be the 
corresponding play. Then [h; h*(i), i ~ I] is a pure SPE leading to the same 
play. 

These results show that extremely simple strategies are sufficient to represent 
all pure SPE; only (I + 1) plays are relevant and the punishments depend only 
on the deviator, not on his action or on the stage. 

3.5. Final comments 

In a sense it appears that to get robust results that do not depend on the exact 
specification of the length of the garne (assumed finite or with finite mean), the 
approach using the limit garne is more useful. Note nevertheless that the 
counterpart  of an "equilibrium" in G~ is an e-equilibrium in the finite or 
discounted garne (see also Subsection 7.1.1). The same phenomena of "discon- 
tinuity" occur in stochastic games (see the chapter on 'stochastic garnes' in a 
forthcoming volume of this Handbook) and even in the zero-sum case for 
games with incomplete information (Chapter 5 in this Handbook). 
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4. Correlated and communication equilibria 

We now consider the more general situation where the players can observe 
signals. In the ffamework of repeated games (or multimove games) several 
such extensions are possible depending on whether the signals are given once 
or at each stage, and whether their law is controlled by the players or not. 
These mechanisms increase the set of equilibrium payoffs, but under the 
hypothesis of full monitoring and complete information lead to the same 
results. (Compare with Chapter 6 in this Handbook.) 

Recall that given a normal form game F = (X, q~) and a correlation device 
C = (S2, sC, P; .ffi), i E I, consisting of a probability space and sub cr-algebras 
of ~ ,  a correlated equilibrium is an equilibrium of the extended game F c 
having as strategies, say ix i for i, sqLmeasurable mappings from O to X i, and as 
payoff q~(/x) = J q~(/x(w)) P(dw). In words, w is chosen according to P and j i  
is i's information structure. Similarly, in a multimove garne the notion of an 
extensive form correlated equilibrium can be defined with the help of private 
filtrations, say ~~ù for player i -  i.e. there is new information on ~o at each 
stage - and by requiring/xin to be ~/i n ® ~n measurable on a x H n. Finally, for 
cõmmunication equilibria [see Forges (1986)], the probability induced by P on 
s/~+ 1 is s/in ® YC n measurable, i.e. the law of the signal at each stage depends on 
the past history, including the moves of the players. 

Let us consider repeated garnes with a correlation device (resp. extensive 
correlation device; communication device). We first remark that the set of 
feasible payoffs is the same in any extended garne and hence the analog of 
Proposition 1.3 holds. 

For any of these classes we consider the union of the sets of equilibrium 
payoffs when the device varies and we shall denote it by cE=, CE= and KE=, 
respectively. It is clear that the main difference from the previous analysis 
(without information scheme) comes from the threat point, since now any 
player can have his payoff reduced to w i = miny-, maxxi gi(xi, y i), where y - i  
stands for the probabilities on S -~ (correlated moves of the opponent to i) and 
this set is strictly larger than X i for more than two players. Hence the new 
threat point W will usually differ from V and the set to consider will be 
C E = { d ~ D :  V i E I ,  d ~>~w~}. Then one shows easily that cE~=CE= = 
KE= = CE. 

There is a deep relationship between these concepts and repeated games (of 
multimove garnes) in the sense that given a strategy profile o-, Cn = 
(Hù, Y(n, P~) is a correlation device at stage n (where in the framework of 
Sections 1-3, the private o--algebra is N~ for all players). This was first 
explicitly used in garnes with incomplete information when constructing a 
jointly controlled lottery [see Aumann,  Maschler and Stearns (1968)]. For 
extensions of these tools under partial monitoring, see the hext section. 



Ch. 4: Repeated Garnes with Complete Information 87 

5. Partial monitoring 

Only partial results are available when one drops the assumption of full 
monitoring, namely that after each stage all players are told (or can observe) 
the previous moves of their opponents.  In fact the first models in this direction 
are due to Radner  and Rubinstein and also incorporate some randomness in 
the payoffs (moral hazard problems). We shall first cover results along these 
lines. Basically one looks for sufficient conditions to get results similar to the 
Folk Theorem or for Pareto payoffs to be achievable. In a second part we will 
present  recent results of Lehrer,  where the structure of the game is basically as 
in Section 1 except for the signalling function, and one looks for a characteriza- 
tion of E= in terms of the one-stage garne data. 

5.1. Partial monitoring and random payoffs (see also the chapter on 'principal- 
agent models'  in a forthcoming volume of this Handbook)  

5.1.1. One-sided moral hazard 

The basic model arises from principal-agent situations and can be represented 
as follows. Two players play sequentially; the first player (principal) chooses a 
reward function and then with that knowledge the second player (agent) 
chooses a move. The outcome is random but becomes common knowledge and 
depends only on the choice of player 2, which player 1 does not know. 
Formally,  let 22 be the set of outcomes. The actions of player 1 are measurable 
mappings ffom J2 to some set S. Denote  by T the actions set of player 2 and by 
Qt the corresponding probabilities on J2. The payoff functions are real continu- 
ous bounded measurable mappings, f on J2 x S for player 1 and g on 
22 x S x T for player 2. Assume, moreover,  some revelation condition (RC),  
namely that there exists some positive constant K such that, for all positive e, if 
Es,,g>~ Es,cg + e, then If to d Q t -  S o~ dQr  ] ~> Ke. In words, this means that 
profitable deviations of player 2 generate a different distribution of outcomes. 

It is easy to see that generically one-shot Nash equilibria are not efficient in 
such games. The interest of repetition is then made clear by the following 
result: 

Theorem 5.1.1 [Radner (1981)]. Assume that a feasible payoff d strictly 
dominates a one-shot Nash equilibrium payoff e. Then d E E~. 

Proof. The idea of the proof is to require both players to use the strategy 
combination leading to d, as in the Folk Theorem. A deviation from player 1 is 
observable and one then requires that both players switch to the equilibrium 
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payoff e. The main difficulty arises from the fact that the deviations of player 2 
are typically non-observable (even if he is using a pure strategy the Qt may 
have non-disjoint support). Both players have to use some statistical test, 
based for example on the law of large numbers, to check with probability one 
whether player 2 was playing a profitable deviation, using RC. In such a case 
they again both switch to e. [] 

By requiring the above punishment to last for a finite number of stages 
(adapted to the precision of the test), one may even obtain a form of "subgame 
perfection" (note that there are no subgames, but one may ask for an 
equilibrium condition given any common knowledge history); see again Rad- 
ner (1981). 

Similar results with alternative economic content have been obtained by 
Rubinstein (1979a, 1979b) and Rubinstein and Yaari (1983). 

Going back to the previous model, it can also be shown [Radner (1985)] that 
the modified strategies described above lead to an equilibrium in G A if the 
discount factor is small enough, and that they approach the initial payoff d. A 
similar remark about perfection applies and hence formally the following 
holds: 

Theorem 5.1.2. Let d be feasible, e E El ,  and assume d » e. Then for  all e > 0 
there exists A* such that for  all A ~< A*, d is e-close to E'» 

Other classes of strategies with related properties have been introduced and 
studied by Radner (1986c). 

5.1.2. Two sided moral hazard 

A model where both players have private information on the history has been 
introduced and studied by Radner (1986a) under the name partnership garne. 
Here the players are simultaneously choosing moves in some sets S and T. The 
outcome is again random with some law Qst. At each stage the information of 
each player consists of his move and of the outcome; moreover, his own stage 
payoff depends only on this information and the revelation condition is still 
required. Then the analogy of the previous Theorem 5.1.1 holds [Radner 
(1986a)]. Here also the construction of the strategies is based on some 
statistical test and uses review and punishment phases. 

Nevertheless, if one studies G A the previous arguments are no longer valid. 
More precisely, since none of the moves is observable it may be worthwhile for 
one player to deviate from the prescribed strategy when the sequence of 
records of outcomes starts to differ significantly from the mean and to try to 
"correct" it in order to avoid the punishment phase. (Note that when the 
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payoff is not discounted, by the strong law of large numbers, there is no gain in 
doing so.) 

In fact, an example of a partnership garne due to Radner, Myerson and 
Maskin (1986) shows that E h may be uniformly (in A) bounded away from the 
Pareto boundary. Schematically, the payoffs depend upon an outcome that 
may be good or bad and the game is symmetrical. If, at equilibrium, the future 
payoff is independent of the outcome one obtains only one-shot equilibrium 
payoffs. Thus, this future payoff has to be discriminating (higher for a good 
outcome than for a bad) and hence cannot be Pareto optimal in expectation. 
(See also the example in the next section.) 

5.1.3. Public signals and recursive structure 

We now turn to results that are not based on the use of statistical tests but 
rather on the recursive structure. 

A first model due to Abreu, Pearce and Stachetti (1986, 1990) considers an 
oligopoly with compact pure strategy sets where the I firms are only told, after 
each stage, the price, which is a random function of the moves with a fixed 
support. One can see that in this case Nash and "subgame perfect" equilibria 
coincide and, moreover, the recursive properties still hold. This allows us to 
give a nice description of the set of equilibrium payoffs by using its extreme 
points. 

Finally, in a recent work, Fudenberg, Levine and Maskin (1989) succeed in 
getting a theorem analogous to Theorem 3.2 in the following framework. 
Consider a garne where after each stage each player gets some private 
information on a random signal depending on the moves of all players at that 
stage. We call public those strategies that depend only on events known to all 
players. Note first that an equilibrium in the discounted garne restricted to 
public strategies is an equilibrium in the original game (given a best reply to 
public strategies, taking its conditional expectation on public events, is still a 
best reply) and that one can define "subgame perfect public equilibria" by 
introducing subgames related to public events. The tools of Subsection 3.4 are 
then applicable, and sufficient conditions are given, basically on the independ- 
ence of the conditional laws of the signals as function of the moves of each 
player - the strategy of the others being fixed - to ensure that the correspond- 
ing set of payoffs converges to E as A goes to 0. More precisely, it is shown that 
a smooth convex set F of payoffs included in E and at a small Hausdorff 
distance from it satisfies F C ~A(F) for A small enough. The main difficulty is to 
check the inclusion on extreme points. In fact, the above conditions allow us to 
compute explicitly the future payoffs by solving linear equations. 

Note that here a dimension condition is needed, even in the two-player case. 
Let  us consider the following garne, due to Fudenberg and Maskin (1986b). 
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The payoff matrix is 

(1,1) (0,0) ] 
(0,0) ( - 1 , - 1 ) / '  

the moves of player 2 are announced and a public signal with values (a, 13) has 
the following distribution: 

(3 /4 ,1 /4)  ( 1 / 2 , 1 / 2 ) )  
(1 /2 ,1 /2)  (1 /4 ,3 /4)  " 

Then (1, 1) is the only point in E~. In fact, denote by w the worst SPE, by s 
and t the corresponding random moves of both players at stage 1, and by 
wL~(>~w ) the expected payoff after Left and a, and so on. We note first that if 
s = 1 one has w ~> A + (1 - A)(3/4wL~ + 1/4wr¢),  and hence w/> 1. Otherwise 
one has: 

w = t ( ( 1 -  A)(1/2wL~ + 1/2wL¢)) 

+ (1-- t )(--A+ (1-- A)(1/4wn~ +3/4wRy))  

i> t(A + (1 - A)(3/4wL~ + 1/4wL~)) 

+ (1-- t)((1-- A)(1/2wR~ + 1/2wR¢)), 

so that t(1 - A)WL¢ + (1 -- t)(1 -- A)WR¢ /> 4A + (1 -- A)W. Substituting this into 
the first equality yields w 1> t + 1. 

Note that 0 is a subgame perfect public equilibrium payoff in G= (even if 2's 
moves are not announced) by asking the players to use their dominated move 
at each stage where the empirical past frequency of a is greater than 1/2. 
[Compare with Sorin (1986b).] 

On the other hand, 0 can be obtained as a perfect equilibrium in G, if l 's  
moves are observable by asking him to follow a history consisting of a sequence 
of 1 and - 1  inducing a payoff increasing to 0 and playing again the same move 
in the case of a deviation from - 1  to 0. In the previous framework player 1 
could pretend to punish even if he did not and hence the punishment was not 
credible and player 2 would deviate. 

It is important to remark that in these games the signals can be used as a 
correlation device or an extensive correlation device (recall Section 4 and see 
also Subsection 5.2). In particular, the set of equilibria can be larger than the 
set of public equilibria and can contain payoffs that are not i.r. (but in CE), if 
for example a subgroup of players get some common signal, unknown to the 
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others. (But if there are two players and one is more informed than the other 
one can always assume public strategies.) 

Finally, similar results are used in the framework of games with long-run and 
short-run players [Fudenberg and Levine (1989b)]. 

5.2. Signalling funct ions  

The results of this section are due mainly to Lehrer. We consider the infinitely 
repeated game G= of Section 1, but after each stage n, each player i is only told 

i i qn = Q (sn), sn being the I-action at that stage and Qi being i's signalling 
(deterministic) function, defined on S with values in some set Q. Each player's 
strategy is then required to be measurable with respect to his private informa- 
tion. Hence a pure strategy o-in is a mapping from sequences (qil, i • " , q ù - l )  to 
S i and perfect recall is assumed. 

Let us first consider the case of two players and a general signalling function 
(we shall assume in this section non-trivial information, namely that each 
player may, by playing some move, get some information about his opponent 's 
move, so that the players can communicate through their ac t ions-  the other 
case is rauch simpler to analyze). 

It is easy to see that, since the signals are not common knowledge, 
equilibrium strategies do not induce, after finitely many stages, an equilibrium 
in the remaining garne but rather a correlated equilibrium (see Section 4). 

Orte is thus led to consider extensive form correlated equilibria and in fact 
these are much easier to characterize. 

We first define two relations on actions by 

S i ~ ti~::~ Q - i ( t i ,  s - i )  = Q i(si, S - i )  for a l i s  - i  

(in words, in a one-shot garne player - i  has no way to distinguish whether 
player i is playing s i or ti); and 

s i > ti¢:>s i ~  t i and Qi(ti, s -i)  # Qi(ti, t -i)  implies 

Qi(si, s - i)  # Qi(si, t -i)  for all s i, t - i  

(player i gets more information on - i ' s  move by playing s i t h a n / ) .  
The crucial point is that player i can mimic a pure strategy, say ~.i, by any 

other o -i with oJ(h) > 7i(h), for all h, without being detected. [Inductively, at 
each stage n he uses an action sin > ~-i(h), h being the history that would have 
occurred had he used {t~}, m < n, up to now.] 
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Let P be the set of probabilities on S (correlated moves). The set of 
equilibrium payoffs will be characterized through the following sets (note that, 
as in the Folk Theorem, they depend only on the one-shot game): 

A i = ( p  E P: E p(s  i, s - i )g i ( s  i, s - i )  >~ E p(s  i, s - i )g i ( t  i, s - i )  for all s i 
s-i s-i 

and all t i with t i > s i }. 

B i = A i A X = {x E X:  gi(si, x - i )  >t gi(ti, x - i )  for all s i, t i with xi(s i) > 0 

and t i > S i}  . 

Write IR  for the set of i.r. payoffs and E~ (resp. cE~, CE~, KE~)  for the set 
of Nash (resp. correlated, extensive form correlated, communication) equilib- 
rium payoffs in the sense of upper, 5f or uniform, lE~ and lCE~ will denote 
lower equilibrium payoffs [recall paragraph (iii) in Section 1]. 

Theorem 5.2.1 [Lehrer (1992a)]. (i) cE~ = CE~ = KE= = g((-')i A i )  N IR.  
(ii) ICE~ = (-~i g(A~) fq IR.  

Proof. The proof of this result (and of the following) is quite involved and 
introduces new and promising ideas. Only a few hints will be presented here. 

For (ii), the inclusion from left to right is due to the fact that given 
correlated strategies, each player can modify his behavior in a non-revealing 
way to force the correlated moves at each stage to belong to A i. 

Similarly, for the corresponding inclusion in (i) one obtains by convexity that 
if a payoff does not belong to the right-hand set, one player can profitably 
deviate on a set of stages with positive density. To prove the opposite inclusion 
in (i) consider p in Oi  A/- We define a probability on histories by a product 
Q Pn; each player is told his own sequence of moves and is requested to follow 
i t .pù  is a perturbation of p, converging to p as n---~ 0% such that each / -move  
has a positive probability and independently each recommended move to one 
player is announced with a positive probability to his opponent. It follows that 
a profitable deviation, say from the recommended s i to {, will eventually be 
detected if { 7  z s i. To control the other deviations ( t / -  s i but t i J  si), note first 
that, since the players can communicate through their moves, one can define a 
code, i.e. a mapping from histories to messages. The correlated device can 
then be used to generate, at infinitely many fixed stages, say nk, random times 
m k in (n~_a, nÆ): at the stages following n k the players use a finite code to 
report the signal they got at time m~. In this case also a deviation, if used with 
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a positive density, will eventually occur at some stage m k where moreover  the 
opponent  is playing a revealing move and hence will be detected. Obviously 
f rom then on the deviator is punished to his minimax. To obtain the same 
result for correlated equilibria, let the players use their moves as signals to 
generate themselves the random times m k [see Sorin (1990)]. 

Finally, the last inclusion in (ii) follows from the next result. [] 

Theorem 5.2.2 ]Lehrer (1989)]. lE~ = Ni Co g(B i) N IR(=ICE~). 

Proof. It is easy to see that Co g(B i) = g(A ~) and hence a first inclusion by 
part (il) of the previous theorem. To obtain the other  direction let us 
approximate the reference payoff by playing on larger and larger blocks Mk, 
cycles consisting of extreme points in B ~ [if k ~ i (mod 2)]. On each block, 
alternatively, one of the players is then playing a sequence of pure moves; thus 
a procedure  like in the previous proof can be used. [] 

A simpler framework in which the results can be extended to more than two 
players is the following: each action set S i is equipped with a partition S ~ and 
each player is informed only about the elements of the partitions to which the 
other  players' actions belong. Note thät in this case the signal received by a 
player is independent  of his identity and of his own move. The above sets B i 
can now be written as 

C i = {x E X: gi(x) >~ g(x -i, yi) for all yZ with y~ = x z } 

where x i is the probability induced by x ~ on S i . 

Theorem 5.2.3 [Lehrer (1990)]. (i) E= = Co g(Ni  Ci) N IR. 
Ni  Co g(C i) N IR 

(ii) lE~= 

Proof. It already follows in this case that the two sets may differ. On the 
other  hand, they increase as the partitions get finer (the deviations are easier to 
detect)  leading to the Folk Theorem for discrete par t i t ions-  full monitoring. 

For  (ii), given a strategy profile o-, note that at each stage n, conditional to 
h~ = ( X l , . . . ,  x~_l) , the choices of the players are independent and hence each 
player i can force the payoff to be in g(C') ;  hence the inclusion of IE~ in the 
right-hand set. On the other hand, as in Theorem 5.2.2, by playing alternately 
in large blocks to reach extreme points in C 1, then C 2 , . . ,  one can construct 
the required equilibrium. 

As for E~, by convexity if a payoff does not belong to the right-hand set, 
there is for some i a set of stages with positive density where, with positive 
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probability, the expected move profiles, conditioned on hn, are not in C( Since 
h n is common knowledge, player i can profitably deviate. 

To obtain an equilibrium one constructs a sequence of increasing blocks on 
each of which the players are requested to play alternately the right strategies 
in Nj  C i to approach the convex hull of the payoffs. These strategies may 
induce random signals so that the players use some statistical test to punish 
during the following block if some deviation appears. [] 

For the extension to correlated equilibria, see Naudé (1990). 
Finally a complete characterization is available when the signals include the 

payoffs: 

Theorem 5.2.4 [Lehrer (1992b)]. I f  gi(s) ¢ gi(t) implies Qi(s)  5 ~ Qi(t) for all 
i, s, t, then E~ = IE= = Co g(Ni  ci)  N IR. 

Proof. To obtain this result we first prove that the signalling structure implies 
N i  Co g(B i) N IR = Co g(Ni  B i) N IR. Then one uses the structure of the 
extreme points of this set to construct equilibrium strategies. Basically, one 
player is required to play a pure strategy and can be monitored as in the proof 
of Theorem 5.2.10); the other player's behavior is controlled through some 
statistical test. [] 

While it is clear that the above ideas will be useful in getting a general 
formula for E~, this one is still not available. For results in this direction, see 
Lehrer (1991, 1992b). 

When dealing with more than two players new difficulties arise since a 
deviation, even when detected by one player, has first to be attributed to the 
actual deviator and then this fact has to become common knowledge among 
the non-deviators to induce a punishment. 

For non-atomic garnes results have been obtained by Kaneko (1982), Dubey 
and Kaneko (1984) and Masso and Rosenthal (1989). 

6. Approachability and strong equilibria 

In this section we review the basic works that deal with other equilibrium 
concepts. 

6.1. Blackwell' s theorem 

The following results, due to Blackwell (1956), are of fundamental importance 
in many fields of game theory, including repeated games and games with 
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incomplete information. [A simple version will be presented here; for exten- 
sions see Mertens, Sorin and Zamir (1992).] 

Consider a two-person garne G 1 with finite action sets S and T and a random 
payoff function g on S x T with Values in Nk, having a finite second-order 
moment (write f for its expectation). We are looking for an extension of the 
minimax theorem to this framework in Ga (assuming full monitoring) and 
hence for conditions for a player to be able to approach a (closed) set C in 
E h -  namely to have a strategy such that the average payoff will remain, in 
expectation and with probability one, close to C, after a finite number of 
stages. C is excludable if the complement of some neighborhood of it is 
approachable by the opponent. 

To state the result we introduce, for each mixed action x of player 1, 
P(x) = Co{ f (x ,  t): t E  T} and similarly Q ( y ) =  Co{f(s ,  y): s E S} for each 
mixed action y of player 2. 

Theorem 6.1.1 Assume that, for each point d ~ C there exists x such that if  c is 
a closest point to d in C, the hyperplane orthogonal to [cd] through c separates d 
from P(x). Then C is approachable by player 1. 

An  optimal strategy is to use at each stage n a mixed action having the above 
property, with d = g,n-1. 

Proof. This is proved by showing by induction that, if d n denotes the distance 
from gn, the average payoff at stage n, to C, then E(d 2) is bounded by some 
K/n.  Furthermore, one constructs a positive supermartingale converging to 
zero, which majorizes d a. [] 

If the set C is convex we get a minimax theorem, due to the following: 

Theorem 6.1.2. A convex set C is either approachable or excludable; in the 
second case there exists y with Q(y)  N C = O. 

Proof.  Note that the following sketch of the proof shows that the result is 
actually stronger: if Q ( y ) o  C =  0 for some y, C is clearly excludable (by 
playing y i.i.d.). Otherwise, by looking at the game with real payoff ( d -  
c, f ) ,  the minimax theorem implies that the condition for approachability in 
the previous theorem holds. [] 

Blackwell also showed that Theorem 6.1.2 is true for any set in N, but that 
there exist sets in N2 that are neither approachable nor excludable, leading to 
the problem of "weak approachability", recently solved by Vieille (1989) 
which showed that every set is asymptotically approachable or excludable by a 
family of strategies that depend on the length of the garne. This is related to 
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the definitions of lim v n and v~ in zero-sum games (see Chapter 5 and the 
chapter on "stochastic games" in a forthcoming volume of this Handbook). 

6.2. Strong equilibria 

As seen previously, the Folk Theorem relates non-cooperative behavior (Nash 
equilibria) in Ga to cooperative concepts (feasible and i.r. payoffs) in the 
one-shot garne. One may try to obtain a smaller cooperative set in G1, such as 
the Core, and to investigate what its counterpart in G= would be. This problem 
has been proposed and solved in Aumann (1959) using his notion of strong 
equilibrium, i.e., a strategy profile such that no coalition can profitably deviate. 

Theorem 6.2.1. The strong equilibrium payoffs in G= coincide with the ~-Core 
of  G 1 . 

Proof. First, if d is a payoff in the fl-Core, there exists some (correlated) 
action achieving it that the players are requested to play in G=. Now for each 
subset /kJ of potential deviators, there exists a correlated action o -J of their 
opponent that prevents them from obtaining more than d t\J, and this will be 
used as a punishment in the case of deviation. 

On the other hand, if d does not belong to the fl-Core there exists a 
coalition J that possesses, given each history and each corresponding correlated 
move I \J  tuple of its complement, a reply giving a better payoff to its 
members. [] 

Note the similarity with the Folk Theorem, with the/~-characteristic function 
here playing the role of the minimax (as opposed to the a-one and the 
maximin). 

If one works with garnes with perfect information, one has the counterpart of 
the classical result regarding the sufficiency of pure strategies: 

Theorem 6.2.2 [Aumann (1961)]. I f  G 1 has perfect information the strong 
equilibria of G~ can be obtained with pure strategies. 

Proof. The result, based on the convexity of the fl-characteristic function and 
on Zermelo's theorem, emphasizes again the relationship between repetition 
and convexity. [] 

Finally, Mertens (1980) uses Blackwell's theorem to obtain the convexity 
and superadditivity of the fl-characteristic function of G~ by proving that it 
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coincides with the «-characteristic function (and also the /3-characteristic 
function) of G~. 

7. Bounded rationality and repetition 

As we have already pointed out, repetition alone, when finite, may not be 
enough to give rise to cooperation (i.e., Nash equilibria and a fortiori subgame 
perfect equilibria of the repeated game may not achieve the Pareto boundary). 
On the other hand, empirical data as well as experiments have shown that 
some cooperation may occur in this context [for a comprehensive analysis, see 
Axelrod (1984)]. 

We will review hefe some models that are consistent with this phenomenon. 
Most of the discussion below will focus on the Prisoner's Dilemma but can be 
easily extended to any finite garne. 

7.1. Approximate rationality 

7.1.1. e-equilibria 

The intuitive idea behind this concept is that deviations that induce a small gain 
can be ignored. More precisely, o- will be an e-equilibrium in the repeated 
game if, given any history (or any history consistent with o-), no deviation will 
be more than e-profitable in the remaining game [see Radner (1980, 1986b)]. 
Consider the Prisoner's Dilemma (cf. Subsection 2.3): 

Theorem 7.1. 'de > 0, "d6 > 0, 3 N  such that for all n >i N there exists an 
e-equilibrium in G n inducing a payoff within 6 of the Pareto point (3, 3). 

Proofl Define o- as playing cooperatively until the last N O stages (with 
N O >/1/e),  where both players defect. Moreover, each player defects forever as 
soon as the other does so once. It is easy to see that any defection will induce 
an (average) gain less than e, and hence the result for N large enough. [] 

The above view implicitly contains some approximate rationality in the 
behavior of the players (they neglect small mistakes). 

7.1.2. Lack of common knowledge 

This approach deals with games where there is lack of common knowledge on 
some specific data (strategy or payoff), but common knowledge of this 
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uncertainty. Then even if all players know the true data, the outcome may 
differ from the usual framework by a contamination e f f e c t -  each player 
considers the information that the others may have. 

The following analysis of repeated garnes is due to Neyman (1989). Consider 
again the finitely repeated Prisoner's Dilemma and assume that the length of 
the game is a random variable whose law P is common knowledge among the 
players. (We consider here a closed model, including common knowledge of 
rationality.) If P is the point mass at n we obtain G n and " E  n = {1, 1}" is 
common knowledge. On the other hand, for any A there exists P,  such that the 
corresponding garne is G A if the players get no information on the actual length 
of the game. Consider now non-symmetric situations and hence a general 
information scheme, i.e. a correlation device with a mapping o ) ~  n(w) corre- 
sponding to the length of the garne at w. 

Recall that an event A is of mutual knowledge of order k [say mk(k)] at w if 
KiO . . . . .  Ki~(w) C A, for all sequences i 0 , . . .  , i~, where K i is the knowledge 
operator  of player i (for simplicity, assume g2 is countable and then Ki(B)= 
71{C: B C C, C is Mi-measurable}; hence K ~ is independent of P).  Thus mk(O) 
is public knowledge and mk(~) common knowledge. 

It is easy to see that at any o) where "n(o))" is mk(k), (1, 1) will be played 
during the last k + 1 stages [and this fact is even mk(0)],  but Neyman has 
constructed an example where even if n(w) = n is mk(k) at o9, cooperation can 
occur during n - k - 1 stages, so that even with large k, the payoff converges 
to Pareto as n ~ oc. 

The inductive hierarchy of K ~ at w will eventually reach games with length 
larger than n(w), where the strategy of the opponent  justifies the initial 
sequence of cooperative moves. 

Thus, replacing a closed model with common knowledge by a local one with 
large mutual knowledge leads to a much richer and very promising framework. 

7.2. Restricted strategies 

Another  approach, initiated by Aumann,  Kurz and Cave [see Aumann (1981)], 
requests the players to use subclasses of "simple" strategies, as in the next two 
subsections. 

7.2.1. Finite automata 

In this model the players are required to use strategies that can be im- 
plemented by finite automata. The formal description is as follows: A finite 
automaton (say for player i) is defined by a finite set of states K / and two 
mappings, a from K' x S -i to K / and/3 from K / to S i. « models the way the 
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internal memory or state is updated as a function of the old memory and of the 
previous moves of the opponents. /3 defines the move of the player as a 
function of his internal state. Note that given the state and/3, the action of i is 
known, so it is not necessary to define a as a function of S z. 

To represent the play induced by an automaton, we need in addition to 
specify the initial state ki0 . Then the actions are constructed inductively by 

i i - i  i ~(kl), a ( k o ) ,  o~(/3(k o, sa )) = . . . .  
Games where both players are using automata have been introduced by 

Neyman (1985) and Rubinstein (1986). 
Define the size of an automaton as the cardinality of its set of states and 

denote by G(K) the garne where each player i is using as pure strategies 
automata of size less than Ki. 

Consider again the n-stage Prisoner's Dilemma. It is straightforward to 
check that given Tit for Tat (start with the the cooperative move and then at 
each following stage use the move used by the opponent at the previous stage) 
for both players, the only profitable deviation is to defect at the last stage. Now 
if K z ~]Vl, none of the players can "count"  until the last stage, so if the 
opponent plays stationary, any move actually played at the last stage has to be 
played before then. It follows that for 2 ~< K ~ < n, Tit for Tat is an equilibrium 
in G, .  Actually a rauch stronger result is available: 

Theorem 7.2.1 [Neyman (1985)]. For each integer m,  3 N  such that n >i N and 
1/m Ki nm n <~ <~ implies the existence o f  a Nash equil ibrium in G , (K  1, /(2) with 

p a y o f f  greater than 3 - 1 / m  fo r  each player.  

Proof. Especially in large garnes, even if the memory of the players is much 
larger than the length of the game (namely polynomial), Pareto optimality is 
almost achievable. 

The idea of the proof relies on the observation that the cardinality of the set 
of histories is an exponential function of the length of the game. It is now 
possible to "fill" all the memory states by requiring both players to remember 
"small"  histories, i.e. by answering in a prespecified way after such histories 
(otherwise the opponent defects for ever) and then by playing cooperatively 
during the remaining stages. Note that no internal state will be available to 
count the stages and that cooperative play arises during most of the game. [] 

It is easy to see that in this framework an analog of Theorem 2.3 is available. 
Similar results using Turing machines have been obtained by Megiddo and 

Widgerson (1986); see also Zemel (1989). 
The model introduced in Rubinstein (1986) is different and we shall discuss 

the related version of Abreu and Rubinstein (1988). Both players are required 
to use finite automata (and no mixture is allowed) but there is no fixed bound 
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on the memory. The main change is in the preference function, which is strictly 
increasing in the payoff and strictly decreasing in the size [in Rubinstein (1986) 
some lexicographic order is used]. A complete structure of the corresponding 
set of equilibria is then obtained with the following striking aspect: K l =  K 2" 
moreover, during the cycle induced by the automata each state is used only 
once; and finally both players change their moves simultaneously. In particular, 
this implies that in 2 x 2 two-person garnes the equilibrium payoffs have to lie 
on the "diagonals". 

Considering now two-person, zero-sum garnes, an interesting question is to 
determine the worth of having a memory much larger than the memory of the 
other player: note that the payoff in G=(K ~, K 2) is weil defined, hence also its 
value V(K', K2). Denote by V the value of the original G 1 and by 17 the 
minimax in pure strategies. This problem has been solved by Ben Porath 
(1986): 

Theorem 7.2.2. For any polynomial P, limK2_,= V(P(K2), K 2) = V. There exists 
some exponential function gt such that limK2_~~ V(g*(K2), K z) = 17. 

Proof. The second part is not difficult to prove, player 1 can identify player 
2's automaton within gr(K2) stages. 

For the first part, player 2 uses an optimal strategy in the one-shot game to 
generate K 2 random moves and then follows the corresponding distribution to 
choose an automaton generating these moves. The key point is, using large 
deviation tools, to show that the probability, with this procedure, of producing 
a sequence of K 2 pairs of moves biased by more than e is some exponential 
function, ~, of - K  2. 82, Since player 1 can have at most K 1 different behaviors, 
the average payoff will be greater than V + e with a probability less than 
P(K~)~,(--K ~. e2). [] 

7.2.2. Strategies with bounded recall 
Another  way to approach bounded rationality is to assume that players have 
bounded recall. Two classes of strategies can be introduced according to the 
following definitions: o -i is of I- (resp. II)-bounded recall (BR) of size k if, for 
all histories h, o-i(h) depends only upon the last k components of h (resp. the 
last k moves of player - i ) .  

It is easy to see that Tit for Tat can be implemented by a II-bounded recall 
strategy with k = 1; to punish forever after a deviation can be reached by a 
I-BR hut not by a II-BR, and to punish forever after two deviations cannot be 
achieved with BR strategies (if the first deviation occurred a long time ago, the 
player will not remember it). Note nevertheless that with II-BR strategies the 
players can maintain the average frequency of deviations as low as required. 

Using I-BR strategies Lehrer (1988) proves a result similar to Theorem 7.2.2 
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by using tools from information theory. (Note that in both cases player 1 does 
not need to know the moves of player 2.) 

This area is currently very active and new results include the study of the 
complexity of a strategy and its relation with the size of an equivalent 
automaton [Kalai and Stanford (1988)], an analog of Theorems 3.1 and 3.2 in 
pure strategies for finite automata [Ben Porath and Peleg (1987)], and the 
works of Ben Porath, Gilboa, Kalai, Megiddo, Samet, Stearns and others on 
complexity. For a recent survey, see Kalai (1990). 

To end these two subsections one should also mention the work of Smale 
(1980) on the Prisonner's Dilemma, in which the players are restricted to 
strategies where the actions at each stage depend continuously on some 
vector-valued parameter. The analysis is then performed in relation to dynami- 
cal systems. 

7.3. Pareto optimality and perturbed games 

The previous results, as well as sections 2 and 3, have shown that under quite 
general conditions a kind of Folk Theorem emerges; rationality and repetition 
enables cooperation. Note nevertheless that the previous procedures lead to a 
huge set of equilibrium payoffs (including all one-shot Nash equilibrium 
payoffs and even the threat point V). A natural and serious question was then 
to äsk under which conditions would long-term interaction and utility maximiz- 
ing behavior lead to cooperation; in other words, whether we would necessarily 
achieve Pareto points as equilibrium payoffs. 

It is clear from the previous results that repetition is necessary and that 
complete rationality or bounded rationality alone would not be sufficient. In 
fact, one more ingredient- perturbation or uncertainty- is needed. Note that 
a similar approach was initiated by Selten (1975) in his work on perfect 
equilibria. 

A first result in this direction was obtained in a very stimulating paper by 
Kreps, Milgrom, Roberts and Wilson (1982). Consider the finitely repeated 
Prisoner's Dilemma and assume that with some arbitrarily small but positive 
probability one of the players is a kind of automaton: he always uses Tit for 
Tat räther than maximizing. Then for sufficiently long games all the sequential 
equilibrium payoffs will be close to the cooperative outcome. The proof relies 
in particular on the following two facts: first, if the equilibrium strategies were 
non-cooperative, the perturbed player may play Tit for Tat thus pretending to 
be the automaton and thereby convincing bis opponent that this is in fact the 
case; second, Tit for Tat induces payoffs that are close to the diagonal. 

These suggestive and important ideas will be needed when trying to extend 
this result by dropping some of the conditions. The above result in fact 
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depends crucially on Tit for Tat (inducing itself almost the cooperative 
outcome as the best reply) being the only perturbation. More precisely a result 
of Fudenberg and Maskin (1986a) indicates that by choosing the perturbation 
in an adequate way the set of sequential equilibrium payoffs of a sufficiently 
long but finitely repeated game would approach any prespecified payoff. Now 
if all perturbations are allowed, each of the players may pretend to be a 
different automaton, advantageous from his own point of view. 

One is thus lead to consider two-person garnes with common interest: one 
payoff strongly Pareto dominates all the others. Assume then that each player's 
strategy is e-perturbed by some probability distribution having as support the 
set of II-BR strategies of some size k. Then the associated repeated garne 
possesses equilibria in pure strategies and all the corresponding payoffs are 
close to the cooperative (Pareto) outcome P(G). Formally, if pEr(resp, pE[) 
denotes the set of pure equilibria payoffs in the n-stage (resp. A-discounted) 
perturbed garne, one has: 

Theorem 7.3 [Aumann and Sorin (1989)].  limo__, o limn~ = pE~ = lim~_~ o lim~_~ o 
pE[ : P(G). 

Proof. To prove the existence of a pure equilibrium, one considers Pareto 
points in the payoff space generated by pure strategies in the perturbed garne. 
One then shows that these are sustained by equilibrium strategies. 

Now assuming the equilibrium to be not optimal, one player could deviate 
and mimic his best BR perturbation. Note that the corresponding history has 
positive probability under the initial strategies. Moreover, for n large enough 
(or A small enough) a best reply on histories inconsistent with the "main" 
strategy is to identify the BR strategy used and then to maximize agäinst it. For 
this to hold it is crucial to use II-BR perturbations: the moves used during this 
identification phase will eventually be forgiven and hence no punishment 
forever can arise. Finally, the game being with common interest a high payoff 
for one player implies the same for the other so that the above procedure 
would lead to ä payoff close to t h e  cooperative outcome; hence the 
contradiction. [] 

The cruciat properties of the set of perturbations used in the proof are: (1) 
identifiability (each player has a strategy such that, after finitely many stages he 
can predict the behavior of his opponent, if this opponent is in the perturbed 
mode); (2) the asymptotic payoff corresponding to a best reply to a perturba- 
tion is history independent. [For example, irreducible automata could be used; 
see Gilboa and Samet (1989).] 

The extension to more than two players requires new tools since, even with 
bounded recall, two players can build everlasting events (e.g. punish during 
two stages if the other did so at the previous stage). 
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To avoid non-Pareto mixed equilibria one has to ask for some kind of 
perfection (or equivalently more perturbation) to avoid events of common 
knowledge of rationality (i.e. histories in which the probability of facing an 
opponent who is in the perturbed mode is 0 and common knowledge). 

More recently, similar results, when a long-run player can build a reputation 
leading to Pareto payoffs against a sequence of short-run opponents, have been 
obtained by Fudenberg and Levine (1989a). 

8. Concluding remarks 

Before ending let us mention a connected field, multimove games, where 
similar features (especially the recursive structure) can be observed (and in fact 
were sometimes analyzed previously in specific examples). In this class of 
games the strategy sets have the same structure as in repeated garnes but the 
payoff is defined only on the set of plays and does not necessarily come from a 
stage payoff. A nice sampling can be founded in Contributions to the Theory of  
Games, Vol. III [Dresher, Tucker and Wolle (1957)], and deals mainly with 
two-person garnes. 

A game with two-move information lag was extensively studied by Dubins 
(1957), Karlin (1957), Ferguson (1967) and others, introducing new ideas and 
tools. The case with three-move information lag is still open. A general 
formulation and basic properties of games with information lag can be found in 
Scarf and Shapley (1957). A deep analysis of games of survival (or ruin) in the 
general case can be found in Milnor and Shapley (1957), using some related 
works of Everett (1957) on "recursive games". [For some results in the 
non-zero-sum case and ideas of the difficulties there, see Rosenthal and 
Rubinstein (1984).] 

The properties of multimove garnes with perfect information are studied in 
Chapter 3 of this Handbook. The extension of those to general games seems 
very difficult [see, for example the very elegant proof of Blackwell (1969) for 
~ô games] and many problems are still open. 

To conclude, we make two observations. 
The first is that it is quite difficult to draw a well-defined frontier for the field 

of repeated games. Games with random payoffs are related to stochastic 
garnes; games with partial monitoring, as well as perturbed garnes, are related 
to garnes with incomplete information; sequential bargaining problems and 
garnes with multiple opponents are very close . . . . .  To get a full overview of 
the field the reader should also consult Chapters 5, 6 and 7, and the chapter on 
'stochastic garnes' in a forthcoming volume of this Handbook. 

The second comment is that not only has the domain been very active in the 
last twenty years but that it is still extremely attractive. The numerous recent 
ideas and results allow us to unify the field and a global approach seems 
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conceivable [see the nice survey of Mertens (1987)]. Moreover, many concepts 
that are now of fundamental importance in other areas originate from repeated 
games problems (like selection of equilibria, plans, signals and threats, ap- 
proachability, reputation, bounded complexity, and so on). In particular, the 
applications to economics (see, for example, Chapters 7, 8, 9, 10 and 11 in this 
Handbook) as weil as to biology (see the chapter on 'biological garnes' in a 
forthcoming volume of this Handbook) have been very successful. 
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