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Abstract. We show that by coupling two well-behaved exit-time problems

one can construct two-person zero-sum dynamic games having oscillating dis-
counted values. This unifies and generalizes recent examples of stochastic

games with finite state space, due to Vigeral (2013) and Ziliotto (2013).

1. Introduction. 1) We first consider zero-sum games in discrete time where the
purpose is to control the law of a stopping time of exit. For each evaluation of the
stream of outcomes (defined by a probability distribution on the positive integers
n = 1, 2, ...), value and optimal strategies are well defined. In particular for a given
discount factor λ ∈]0, 1] optimal stationary strategies define an inertia rate Qλ: the
expected normalized time before exit.

When two such configurations (1 and 2) are coupled: the exit of each one being
the starting point of the other, this induces a dynamic game. Under optimal play
the state will move from one configuration to the other in a way depending on the
previous rates Qiλ, i = 1, 2. The main observation is that the discounted value is a

function of the ratio
Q1
λ

Q2
λ

that can oscillate as λ goes to 0, when both inertia rates

converge to 0.
2) This construction reveals a common structure in two recent “counter-examples”

by Vigeral [12] and Ziliotto [13] dealing with two-person zero-sum stochastic games
with finite state space: compact action spaces and standard signalling in the first
case, finite action spaces and signals on the state space in the second. In both cases
it was proved that the family of discounted values does not converge.
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2. A basic model. A configuration P is defined by a general two-person zero-sum
repeated game form (see [6], Chapter IV) in discrete time on a state space Ω, with
a specific starting state ω and an exit state ω∗ 6= ω. We will restrict ourselves to
the three following frameworks :

A) Finite games with signals : the set of actions, states and signals are finite.
B) Games with a finite state space, compact action sets, continuous transition

function, and standard signaling (observation of the moves and state by both play-
ers).

C) Games with a countable state space, finite action sets, and standard signaling.
In that case we also assume that for any state and couple of actions the law of the
transition has a finite support.

Let S be the stopping time of exit of Ω = Ω \ {ω∗}:
S = min{n ∈ IN;ωn = ω∗}

where ωn is the state at stage n.
Each couple of strategies (σ, τ) of the players specifies, with the parameters of

the game (initial state, transition function on states and signals), the law of S.
For each evaluation θ = {θn;n = 1, 2, ..., θn ≥ 0,

∑
n θn = 1}, let dθ(σ, τ) be the

expected (normalized) duration spent in Ω :

dθ(σ, τ) = Eσ,τ [

S−1∑
n=1

θn].

For each real parameters α < β, consider the game Γα,β with payoff α in any state

in Ω and with absorbing payoff β in ω∗. Then for any evaluation θ, player 1 (the
maximizer) minimizes dθ(σ, τ) since the payoff γθ(σ, τ) is given by:

γθ(σ, τ) = αdθ(σ, τ) + β(1− dθ(σ, τ)).

In particular, one has:

Lemma 2.1. For any α < β and evaluation θ the game Γα,β has a value vθ and

vθ = αQθ + β(1−Qθ)
with Qθ = supτ infσ dθ(σ, τ) = infσ supτ dθ(σ, τ), called the inertia rate.

Proof. The only thing to prove is the existence of vθ. In case A) this follows from
[6], Chapter IV. In case B), Proposition 5.3 and 5.4 in [9] are easily extended to any
evaluation with finite length, then to the general case by approximation. Finally, in
case C), under evaluations of finite length the hypotheses imply that only a finite
number of states can be visited so we are back to case B).

Here are 3 examples corresponding to a Markov Chain (0 player), a Dynamic
Programming Problem (1 player) and a Stochastic Game (2 players).

In all cases Ω = {ω, ω∗, ω−} and ω− is an absorbing state. For the sake of
readability we will not draw the transition probabilities from one state to itself.

2.1. 0 player. The configuration is given is Figure 1, where a (resp. b, 1− (a+ b))
is the probability to go from ω to ω∗ (resp. to ω−, ω) with a, b, a+ b ∈ [0, 1], and a
∗ stands for an absorbing payoff.

2.2. 1 player. See Figure 2 ; the action set is X = [0, 1] and the transition proba-
bility is given by a(x) from ω to ω∗ and b(x) from ω to ω−, where a and b are two
continuous function from [0, 1] to [0, 1] with a+ b ∈ [0, 1].
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β∗α

α∗

a

b

ω

ω−

ω∗

Figure 1.

β∗α

α∗

a(x)

b(x)

ω

ω−

ω∗

Figure 2.

2.3. 2 players. In state ω the players have two actions and the transitions are
given by:

Stay Quit
Stay ω ω∗

Quit ω∗ ω−

Let x (resp. y) be the probability on Stay and a(x, y) = x(1 − y) +y(1 − x),
b(x, y) = xy. The mixed extension gives the configuration in Figure 3. Of course
one can define such a configuration for any maps a and b from [0, 1]2 to [0, 1] with
a+ b ≤ 1.

β∗α

α∗

a(x, y)

b(x, y)

ω

ω−

ω∗

Figure 3.
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Consider the λ-discounted case Pλ where θn = λ(1− λ)n−1. Let rλ(x, y) be the
expected payoff induced by the stationary strategies σ and τ corresponding to x
and y.

Lemma 2.2.

rλ(x, y) =
(λ+ (1− λ)b(x, y))× α+ (1− λ)a(x, y)× β

λ+ (1− λ)(a(x, y) + b(x, y))

and

dθ(σ, τ) = qλ(x, y) =
(λ+ (1− λ)b(x, y))

λ+ (1− λ)(a(x, y) + b(x, y))
.

Proof. By stationarity:

rλ(x, y) = λ×α+ (1−λ)[a(x, y)×β+ b(x, y)×α+ (1−a(x, y)− b(x, y))× rλ(x, y)].

In particular letting:

qλ(x, y) =
(λ+ (1− λ)b(x, y))

λ+ (1− λ)(a(x, y) + b(x, y))
(1)

one has:

rλ(x, y) = qλ(x, y)× α+ (1− qλ(x, y))× β.

3. Reversibility. Consider now a two person zero-sum dynamic game G on Ω
1∪Ω

2

generated by two dual configurations P 1 and P 2 of the previous type, which are
coupled in the following sense: the exit state from P 1, ω∗1 is the starting state ω2

in P 2 and reciprocally. In addition the exit events are known by the players : any

transition from Ω
i

to ω−i is observed by both. Finally the payoff is α1 = −1 on Ω
1

and α2 = 1 on Ω
2
.

We thus obtain a reversible game (it is possible to go from Ω
1

to Ω
2

and vice

versa) in which player 1 minimize (reps. maximize) the expected time spent in Ω
1

(resp. in Ω
2
).

3.1. Two examples.

3.1.1. Two configurations with one player in each. There are four states Ω = {ω1,
ω2, ω−, ω+}.

Both ω+ and ω− are absorbing states with constant payoff +1 and −1, respec-
tively.

The payoff in state ωi is also constant and equals to −1 for i = 1 and to +1 for
i = 2. The action set for player 1 in ω1 is X = [0, 1] and the transition probability
is given by a1(x) from ω1 to ω2 and b1(x) from ω1 to ω−, where a1 and b1 are two
continuous function from [0, 1] to [0, 1].

Similarly the action set for player 2 in ω2 is Y = [0, 1] and a2(y) is the transition
probability from ω2 to ω1 and b2(y) from ω2 to ω+. This corresponds to the coupling
of configuration 2.2 and its dual, see Figure 4.
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1−1

−1∗ 1∗

a2(y)

a1(x)

b1(x) b2(y)

ω1

ω−

ω2

ω+

Figure 4.

3.1.2. Two configurations with 2 players. There are two absorbing states with payoff
1 and −1. In the two other states (ω1 and ω2) the payoff is constant and the
transitions are given by the following matrices (compare to Bewley and Kohlberg
[1]):

ω2 Stay Quit
Stay 1 1−→
Quit 1−→ 1∗

ω1 Stay Quit
Stay −1 −1←−
Quit −1←− −1∗

where an arrow means a transition to the other state.
The mixed extension corresponds to the coupling of configuration 2.3 and its

dual, with a(x, y) = x+ y − 2xy and b(x, y) = xy, see Figure 5.

1−1

−1∗ 1∗

a(x2, y2)

a(x1, y1)

b(x1, y1) b(x2, y2)

ω1

ω−

ω2

ω+

Figure 5.

3.2. The discounted framework. For each λ ∈]0, 1] the coupling between the
two configurations defines a discounted game Gλ with value vλ satisfying:

vλ(ω1) = v1λ ∈ [−1, 1[, vλ(ω2) = v2λ ∈]− 1, 1].

In particular, starting from state ω1 the game is value-equivalent to the configura-
tion where the exit state is ω2 with absorbing payoff vλ(ω2) (by observation of the
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exit event and stationarity of the discounted evaluation), which thus corresponds
to the payoff β1 > α1 in the configuration P 1 of the previous section 2.

Hence one obtains, using Lemma 2.1, where Qλ stands for Qθ when θ is the
λ-discounted evaluation, that {viλ} is a solution of the next system of equations:

Proposition 1.

v1λ = Q1
λ × (−1) + (1−Q1

λ)× v2λ
v2λ = Q2

λ × (+1) + (1−Q2
λ)× v1λ.

It follows that:

Corollary 1.

v1λ =
Q2
λ −Q1

λ −Q1
λQ

2
λ

Q1
λ +Q2

λ −Q1
λQ

2
λ

v2λ =
Q2
λ −Q1

λ +Q1
λQ

2
λ

Q1
λ +Q2

λ −Q1
λQ

2
λ

.

Comments:
1) In the framework of section 2.2 and 2.3 one has Qλ = minx maxy qλ(x, y) =
maxy minx qλ(x, y) where qλ appears in (1).
2) As λ goes to 0, Qλ converges to 0 in the model of section 2.2, as soon as

lim sup a(x)
b(x) = +∞, as x goes to 0.

Note also that by (1), xλ minimizes qλ(x) iff it minimizes

ρλ(x) =
λ+ (1− λ)b(x)

a(x)
=

1− λ
1/qλ(x)− 1

(2)

and then Qλ ∼ ρλ(xλ) as soon as they both tend to 0.
3) Assuming that both Qiλ go to 0, the asymptotic behavior of v1λ depends upon

the evolution of the ratio
Q1
λ

Q2
λ

. In fact one has:

v1λ ∼ v2λ ∼
1− Q1

λ

Q2
λ

1 +
Q1
λ

Q2
λ

.

4) In particular one obtains:

Theorem 3.1. Assume that Qiλ, i = 1, 2 go to 0 as λ goes to 0 and that
Q1
λ

Q2
λ

has

more than one accumulation point, then viλ does not converge.

More precisely it is enough that Qiλ ∼ λrf i(λ) for some r > 0, with 0 < A ≤
f i ≤ B and that exactly one of the f i(λ) does not converge as λ goes to 0, to obtain
the result.

The next sections 4 and 5 will describe several models generating such probabil-
ities Qiλ, with f i converging or not.

We will use the terminology regular or oscillating configurations.
The above result implies that by coupling any two of these configurations (of the

same order of magnitude r) where one is oscillating, one can generate a game for
which the family of discounted values does not converge, see Section 6.

4. Some regular configurations of order 1
2 . We give here three examples of

regular configurations of order 1
2 .
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4.1. A regular configuration with 0 players and countable state space.
Consider a random walk on N ∪ {−1} and exit state −1. In any other state m ∈
N the transition is 1

2δm−1 + 1
2δm+1. The starting state is 0. Denote by sn the

probability that exit occurs at stage n ; it is well known (Theorem 5b p. 164 in [3])

that the generating function of S is given by F (z) = 1−
√
1−z2
z . Hence,

Qλ =

+∞∑
n=1

sn

n∑
t=1

λ(1− λ)i−1

=

+∞∑
n=1

sn(1− (1− λ)n)

= F (1)− F (1− λ)

=

√
2λ− λ2 − λ

1− λ
∼
√

2λ.

4.2. A regular configuration with one player, finitely many states, com-
pact action space and continuous transition. Consider example 2.2.

Take a(x) = x and b(x) = x2 . Then Qλ = minx{ λ+(1−λ)x2

λ+(1−λ)x2+(1−λ)x} and a first

order condition gives xλ =
√

λ
1−λ hence Qλ ∼ 2

√
λ.

4.3. A regular configuration with two players and finitely many states
and actions. Consider example 2.3.

It is straightforward [12] to compute that in Γλ the optimal strategy for each

player is xλ = yλ =
√
λ

1+
√
λ

. Hence:

Qλ =
λ+ (1− λ)xλyλ

λ+ (1− λ)(xλ + yλ − xλyλ)

∼
√
λ.

4.4. Remarks. These configurations are in a certain sense minimal ones. Any con-
figuration with one player, with finitely many states and actions and full observation
is, by Blackwell optimality, asymptotically equivalent to a finite Markov chain. And
in any such chain,

• either with positive probability the state never exits Ω, and Qλ is of order 0.
• or at each stage, given no prior exit, an exit occurs in the next m stages with

probability at least p, where m and p > 0 are fixed. This implies that Qλ is
of order 1.

5. Some oscillating configurations of order 1
2 .

5.1. Example 4.2. perturbed. Recall that the choice of a(x) = x and b(x) = x2

leads to Qλ ∼ 2
√
λ.

To get oscillations one can choose b = x2 and a(x) = xf(x) with f(x) bounded
away from 0, oscillating and such that f ′(x) = o(1/x). For example, f(x) = 2 +
sin(ln(−lnx)).
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Proposition 2. For this choice of transition functions one has:

Qλ ∼
2
√
λ

f(
√
λ)
.

Proof. Using Comment 2 after Corollary 1, the first order condition in (2) gives:

λ

1− λ
=
x2(f(x)− xf ′(x))

f(x) + xf ′(x)

which leads to:
xλ ∼

√
λ.

By the mean value theorem and since f ′(x) = o(1/x),

‖f(xλ)− f(
√
λ)‖

‖xλ −
√
λ‖

= o

(
1√
λ

)
hence f(xλ) ∼ f(

√
λ) and:

Qλ ∼
2
√
λ

f(
√
λ)
.

In particular Qλ√
λ

has no limit.

5.2. Example 4.3. perturbed. Let s ∈ C1(]0, 1
16 ],R) such that s and x→ xs′(x)

are both bounded by 1
16 . Consider a configuration as in Figure 3 but for perturbed

functions a and b:

a(x, y) =
(
√
x+
√
y)(1−

√
x+ s(x))(1−√y + s(y)

2(1− x)(1− y)(1− f2(x, y))

b(x, y) =

√
xy
[
(1−

√
x)(1−√y) + f1(x, y)−√xyf2(x, y)

]
(1− x)(1− y)(1− f2(x, y))

where

f1(x, y) =

{√
xs(x)−√ys(y)√

x−√y if x 6= y

2xs′(x) + s(x) if x = y

and

f2(x, y) =

{√
ys(x)−

√
xs(y)√

x−√y if x 6= y

2xs′(x)− s(x) if x = y.

Then a and b are continous (Lemma 12 and Lemma 10 in [12]), the game with
payoff qλ has a value in pure strategies and xλ = yλ = λ are optimal [12]. Hence:

Qλ =
λ

1−λ + b(λ, λ)
λ

1−λ + b(λ, λ) + a(λ, λ)

∼
λ+ λ(1+s(λ)+2λs′(λ))

1+s(λ)−2λs′(λ)
2
√
λ(1+s(λ))2

2(1+s(λ)−2λs′(λ))

∼ λ(1 + s(λ)− 2λs′(λ) + 1 + s(λ) + 2λs′(λ))√
λ(1 + s(λ))2

∼ 2
√
λ

1 + s(λ)
.

The configuration is thus oscillating for s(x) = sin ln x
16 for example.
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Next we recall 4 models that appear in Ziliotto [13] (in which the divergence of
vλ was proven) and we compute the corresponding Qλ.

5.3. Countable action space. Consider again the Example 2.2 but assume now
that the action space X is a countable subset of [0, 1]: X = {0} ∪ { 1

2n , n ∈ IN∗}.
The transition are still given by (a(x), b(x)) = (x, x2).

Proposition 3. For this configuration Qλ/
√
λ oscillates on a sequence {λm} of

discount factors like λm = 1
2m .

Proof. Use Comment 2 and recall by (2) that ρλ(x) = λ
x + (1−λ)x which is strictly

convex.
For λ = 1

4n , ρλ( 1
2n ) ∼ 2

√
λ while ρλ( 1

2n+1 ) ∼ ρλ( 1
2n−1 ) ∼ 5/2

√
λ, hence Qλ ∼

2
√
λ.
On the other hand, for λ2 = 1

4n
1

4n+1 one obtains:

ρλ(
1

2n
) ∼ (

1

2
× 1

4n
+

1

4n
)2n

∼ 3
√

2

2

√
λ

and similarly:

ρλ(
1

2n+1
) ∼ (

1

2
× 1

4n
+

1

4n+1
)2n+1

∼ 3
√

2

2

√
λ.

Finally one checks that ρλ( 1
2n+m ) ≥ 3

√
2

2

√
λ for m = −n, ...,−1 and m ≥ 2. Thus

for this specific λ, Qλ(x) ∼ 3
√
2

2

√
λ.

It follows that Qλ/
√
λ oscillates between 2 and 3

√
2

2 on a sequence {λm} of

discount factors like λm = 1
2m .

Note that this result is conceptually similar to example 5.1.

5.4. Countable state space. We consider here a configuration which is the dual
of the previous one: finite action space and countable state space.

The state space is a countable family of probabilities y = (yA, yB) on two posi-
tions A and B with yn = ( 1

2n , 1−
1
2n ), n = 0, 1, ..., and two absorbing states A∗ and

B∗.
The player has two actions: Stay or Quit. Consider state yn. Under Quit

an absorbing state is reached: A∗ with probability yAn and B∗ with probability yBn .
Under Stay the state evolves from yn to yn+1 with probability 1/2 and to y0 = (1, 0)
with probability 1/2.

The player is informed upon the state, the starting state is y0 and the exit state
is B∗.

A strategy of the player can be identified with a stopping time corresponding to
the first state yn when he chooses Quit.

Let Tn be the random time corresponding to the first occurrence of yn (under
Stay) and µn the associated strategy: Quit (for the first time) at yn. This strategy
plays the role of x = 1/2n in the previous example.
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Proposition 4. Under µn the λ-discounted normalized duration before B∗ is

qλ(n) = 1−
(1− λ2)

(
1− 1

2n

)
1 + 2n+1λ(1− λ)−n − λ

.

Proof. Lemma 2.5 in Ziliotto [13] gives

E[(1− λ)Tn ] =
1− λ2

1 + 2n+1λ(1− λ)−n − λ

and

qλ(n) = 1 + (
1

2n
− 1)E[(1− λ)Tn ].

Proposition 5. The configuration is irregular : Qλ√
λ

oscillates between two positive

values.

Proof. With our notations, Ziliotto’s Lemma 2.8 [13] states that

qλ

(
− lnλ+ ln 2 + 2 ln c

2 ln 2

)
∼ (c+ c−1)

√
2λ

hence,

Qλ√
2λ
∼ min

{
c+ c−1 such that − lnλ+ ln 2 + 2 ln c

2 ln 2
∈ N

}
.

When − lnλ+ln 2
2 ln 2 is an integer, one can take c = 1 which gives Qλ ∼ 2

√
2λ. Whereas

when − lnλ+ln 2
2 ln 2 is an integer plus one half, the best choice is c =

√
2, leading to

Qλ ∼ 3
√
λ.

5.5. A MDP with signals. The next configuration corresponds to a Markov de-
cision process with 2 states: A and B, 2 absorbing states A∗ and B∗ and with
signals on the state. The player has 2 actions: Stay or Quit. The transitions are
as follows:

A 1
2 ; ` 1

2 ; r
Stay A ( 1

2A+ 1
2B)

Quit A∗ A∗

B 1
2 ; ` 1

2 ; r
Stay A B
Quit B∗ B∗

Hence the transition is random: with probability 1/2 of type ` and probability 1/2
of type r. The player is not informed on the state reached but get only the signal
` or r.

The natural “auxiliary state” space is then the beliefs of the player on (A,B)
and one can check [13] that the model is equivalent to the previous one, starting
from A and where the exit state is B∗. In fact under Stay, ` occurs with probability
1/2 and the new parameter is y0 = (1, 0). On the other hand, after r the belief goes
from yn to yn+1.

Again this configuration generates an oscillating Qλ of the order of
√
λ. The

crucial point here is that the belief evolves in a countable subset of ∆(Ω), and in a
reversible way.
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5.6. A game in the dark. A next transformation is to introduce two players and
to generate the random variable 1

2 (`)+ 1
2 (r) in the above configuration by a process

induced by the moves of the players.
This leads to the original framework of the game defined by Ziliotto [13]: action

and state spaces are finite and the only information of the players is the initial state
and the sequence of moves along the play.

Player 1 has three moves: Stay1, Stay2 and Quit, and player 2 has 2 moves: Left
and Right. The transitions are as follows:

A Left Right
Stay1 A ( 1

2A+ 1
2B)

Stay2 ( 1
2A+ 1

2B) A
Quit A∗ A∗

B Left Right
Stay1 A B
Stay2 B A
Quit B∗ B∗

By playing (1/2, 1/2, 0) (resp. (1/2, 1/2)) player 1 (resp. player 2) can mimick
the previous distribution on (`, r) where ` corresponds to the event “the moves are
on the main diagonal”. It follows that this behavior is consistent with optimal
strategies hence the induced distribution on plays is like in the previous example
5.5.

6. Combinatorics. In order to obtain oscillations for the discounted values of a
stochastic game, it is enough to consider the coupled dynamics generated by a
regular and an oscillating configuration, both of order 1

2 .

6.1. Example 4.2 + Example 5.1. Combining these two configurations yields
a coupling of two one-person decision problems, hence a compact stochastic game
with perfect information and no asymptotic value. Explicitly the game is given for
example by Figure 6.

1−1

−1∗ 1∗

y(2 + sin(ln(−lny)))

x

x2 y2

ω1

ω−

ω2

ω+

Figure 6.

Remark that the transition functions can be taken as smooth as one wants.

6.2. Examples 4.2 + Example 5.3. With this combination one recovers exactly
an example of Ziliotto (see section 4.2 in [13]) which is also a stochastic game with
perfect information and no asymptotic value. The main difference is that in that
case the action space of player 1 is countable instead of being an interval.
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6.3. Example 4.3 + Example 5.1. Combining these two configurations yields a
stochastic game with finite action space for player 2 and no asymptotic value. Here
also the transition functions can be taken as smooth as one wants.

6.4. Example 5.2 + 5.2. By coupling Example 5.2 with a similar configuration
controlled by the other player, one recovers exactly the family of counterexamples in
[12]. Note than in this case both configurations are oscillating, but with a different
phase so the ratio does not converge.

6.5. Example 5.4 + 5.4, 5.5 + 5.5 and 5.6 + 5.6. Three examples of Ziliotto
([13], sections 2.1 2.2 and 4.1) are combinations of either 5.4, 5.5 or 5.6 with a
similar configuration. In those cases both configurations are oscillating of order 1

2
but one is oscillating twice as fast as the other hence the oscillations of vλ in the
combined game.

6.6. Example 4.1 + 5.4. This gives a MDP with a countable number of states
(and only 2 actions) in which vλ does not converge. Observe that one can compactify
the state space in such a way that both the payoff and transition functions are
continuous.

7. Comparison and conclusion.

7.1. Irreversibility. The above analysis shows that oscillations in the inertia rate
and reversibility allows for non convergence of the discounted values.

These two properties seem to be also necessary. In fact, Sorin and Vigeral [11]
prove the convergence of the discounted values for stochastic games with finite
state space, continuous action space, continuous payoffs and transitions, in the two
following framework: absorbing games (see also [4, 5, 8]) and recursive games (see
also [10]). These two classes corresponds to the “irreversible” case where once one
leaves a state, it cannot be reached again.

A similar property holds for incomplete information games where the irreversible
aspect is due to the martingale property of the sequence of states (beliefs).

7.2. Oscillations. Remark that any oscillating configuration of Section 5 leads,
under optimal play, to an almost immediate exit. Hence, by itself, any such config-
uration leads to a regular asymptotic behavior. It is only the “resonance” between
two configurations that yields asymptotic issues.

7.3. Semi-algebraic. For stochastic games with finitely many states and full mon-
itoring, all the examples of the previous section lack a semi-algebraic structure:
either transition functions oscillate infinitely often or a set of actions has infin-
itely many connected components. While the existence of an asymptotic value
with semi-algebraic parameters in the case of either perfect information or finitely
many actions on one side holds [2], it is not known in full generality. In particular,
an interesting question is to determine whether there exists a configuration with
semi-algebraic parameters such that Qλ is not semi-algebraic.

7.4. Related issues. The stationarity of the model is crucial here. However it
is possible to construct similar examples in which lim vn does not exist. The idea
grounds on a lemma of Neyman [7] giving sufficient conditions for the two sequences
vn and vλn for λn = 1

n , to have the same asymptotic behavior as n tends to infinity.
See [12] for specific details in the framework of sections 5.1 and 5.2 and [13] in the
framework of sections 5.3-5.6.
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