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Abstract: In the framework of dynamic programming we provide two results: 
- An example where uniform convergence of the T-stage value does not imply equality 

of the limit and the lower infinite value. 
- Generalized Tauberian theorems, that relate uniform convergence of the T-stage value 

to uniform convergence of values associated with a general distribution on stages. 

1 Introduction 

Let S be a state space. For each sES let OCF(s)C_S, and let f be a real bounded 
function on S. Consider the dynamic programming problem where the decision 
maker on day t, at stage st, has to choose a new state st+lEF(st), and receives a 
payoff f(st). A play at s s S  is a sequence (st)~~ with So=S and st+~ ~F(st) fo r  all 
t ~ 0. One traditionally considers the X-discounted value Vx (s): 

oo 

V~(s)= sup ( 1 - 2 )  ~. Xtf(st), 
(st) 7~ o t = 0 

or the T-stage value Vr(s): 

1 T 
VT(S) = sup - -  ~, f(s,), 

(s,)Y=o T +  1 t=o 

where in both cases the supremum ranges over all plays at s. 
One can also consider other evaluations: Let 0=  (0(t))F=o be a probabili ty on 

the set of non-negative integers and define: 

oo 

Vo(s)= sup ~, O(t) f(st). 
(st) t =  o t = O  

Lehrer and Sorin (1992) proved that if either one of the limits limz~l Vz(s), or 
l imr~=  Vr(s) exists uniformly in s~S, then the other limit also exists uniformly, and 
the limit functions coincide. 

In Section 3 we give sufficient conditions on linearly ordered families (| < )  of 
probabilities on the integers to get analogous results for (Vo)o~o and (Vr)r>_o- 
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There are other natural ways of evaluating streams of payoffs in dynamic pro- 
gramming (except for those discussed above): 

The lower (long-run average) value, 

1 T 
V(s) = sup lim inf ~, f ( s t ) ,  

(~,Y;=o r ~  T +  I t=o 

and the upper (long-run average) value, 

1 T 
V(s)  = sup lim sup ~ ~, f(s~),  

(st)~= 0 T~oo 1-}- I t=O 

where, again, the supremum is taken on all plays at s. 
Lehrer and Monderer (1989) proved that uniform convergence of (V~)x~to ,1) to 

some V implies V= V, and showed in an example that it does not imply the equality 
V=V. If one allows the decision maker to use mixed strategies, i.e., to choose a play 
in random, and then defines the payoff of each state as the expectation, one obtains 
new evaluations. It is clear that the evaluations Vx, Vr ,  Vo, and Vwill not change by 
allowing mixed strategies, but V will change in general. Let 

U(s) = sup lim inf E u t , 
/z~A T~oo t 

where A is the set of all probabilities on the set of plays, endowed with the cylinder 
a-field, and E u stands for the expectation operator with respect to ~. 

Obviously U _  V. As for the relationship between __U and the limit V of the dis- 
counted value functions, Mertens and Neyman (1981) provided sufficient condi- 
tions, stronger than the uniform convergence of (VDz~to,1) (and satisfied in every 
finite setup), that ensure the equality __U= V (even for stochastic games). In Section 2 
we show that uniform convergence alone is not sufficient by providing a counter 
example. See Mertens (1987) for related conjectures, hints, and comments. Other 
type of necessary conditions, for specific types of dynamic programming problems, 
are discussed in Dutta (!991). 

2 The Counter Example 

Every rooted directed tree without terminal nodes naturally defines a dynamic pro- 
gramming problem when we attach payoffs to the nodes. Our dynamic program- 
ming problem will be defined as a tree, constructed inductively in the spirit of Lehrer 
and Monderer (1989). 

Given two decreasing vanishing sequences (an)~=l and (fin);=1, define for 
every real number x the tree T ( x )  as follows: 
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Every node of T(x)  except for the root has an outdegree one, and the root itself 
has countably many branches. On the n th branch of the root the payoff, g(s),  is 0 
until node [enn] + 1, it then equals x - a n  until node n, and from then on it equals 0. 
Define a valuation r at each node s different from the root as follows: ~o(s)=x-an 
for every s in the n th branch appearing before the n th node in this branch, and 
~o(s) = 0 for every node thereafter. Set T~ = T(1). T2 is obtained from T~ by attaching 
the tree T(r  to each node s of T1, different from the root, and keeping the old 
payoff of s (i.e., its payoff in 7"1). One can continue naturally and define inductively 
the trees T3, T4, . . .  and finally define T= U ~= ~ T,. Denote the root of T b y  So, and 
the payoff function by g. 

Note that although g is bounded from above by 1, it is not necessarily bounded 
from below. Therefore we replace g with a new bounded payoff function f ,  defined 
by: f ( s ) = m a x ( g ( s ) ,  0) for every node s of T. 

It is clear that l imr~= VT(S)= q~(s) uniformly on all nodes s of T. In particular 
V(so) = 1. 

g We will show that for a specific choice of the sequences ( ,)n=~ and (an)n%1, 
_U(so) = O. 

Let then ~ >  0 and let us prove that __U(so)< o~. Assume in negation that there 
ex i s t s /~A such that for some integer M ,  T>_M implies 

E 1 T _ OL. (2.1) 

We remark that we can assume that all plays in the support of/~ belong to the fol- 
lowing set ~: 

If  a play in f2 is on the n th branch of some T(.) ,  it remains in this branch until 
exactly node n. In fact, if some play leaves the branch before node [en n] + 1, the 
decision maker will increase his payoff by leaving the branch at its root, and if a 
play leaves the n 'h branch after node n, it is better for the decision maker to leave it 
at precisely node n. In particular, a play in f~ never remains in a branch of some 
T( . )  and is thus characterized by a sequence (m3ff=l of integers inducing the path: 
Branch ml of T(1) until the ml th node, Sin1, branch m2 of T(~o(s,,q)) until node m2 of 
this branch (with the valuation 1 - a m ~ - a , , ) ,  etc . . . .  Finally, for every play in ~ ,  

ao 

~, am,_< 1. (2.2) 
i ~ l  

Having done the above reduction, we can now replace any strictly positive payoff on 
any play in f~ by 1. 

The basic idea of the proof is to choose a sequence (an)~~ converging very 
slowly to zero, implying by (2.2), that for every play in f~, for a set of integers i with 
positive density, emimt is much larger than ~.k<,'mk. Hence, every play in f] has 
"many" large blocks of zeros. 

More precisely, let 341 =2,  and define inductively ni= ~.k_~iMk and M~+ i=  n~ 

for every i_> 1. Define an =-1 for all i and extend a by monotonicity to all other in- 
' i 
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1 
tegers. Choose e, = ~ n "  We say that a play w is good in the i th block li = [ni_ 1, n;] if 

v - -  

a sequence of ones starts in this block. That is, if w is determined by ml, m2 . . . . .  
there exists mk adapted to Ii in the sense that 

Z mj+emkmkEIi  9 (2.3) 
j<k 

1 
Set S~ (w) = - ~.e= 1 we. We claim that there exists io such that for every i >  io and for 

n 
every wef t ,  if S~,(w)>_ot, then w is good in the i th block. Otherwise, denote by k the 
largest integer such that the k th sequence of ones in w starts before the i th block. 

Then em, mk<_ni_l, and hence 2 mk < - n i_ ~ = M/. This implies that this sequence 
ni_l  

ofonesendsveryearlyintheithblock,  andthat wt=Ofor ( 1 - n l ~ ) M i t ' s i n  

this block. As hi-1 ~ 0 as i ~  ~ ,  then S,i(w) must be very small contradicting our 
Mi assumption. 

Define Ji(w) to be one if S,,(w) >_ o~ and 0 otherwise. If Ji(w) = 1, one can by the 
above claim, define k(w, t) as the smallest k that satisfy (2.3). Denote Oi(w)= ~k<w.o if 
Ji(w) = 1 and 0 otherwise. 

Using the monotone convergence theorem we have: 

l~-~E,u( Z Ji(w)Oi(w)) I ~ Z E,u(Ji(W)Oi(W)~ Z El~(Ji(w))(~ni. \ i>_i o / i>_i o i>_i o 

1 
Since (2.1) at ni implies E~(J~(w))>_~, we obtain, recalling that ~,, = _ ,  

l 

1 ~" i>_i07 Ol, 

a contradiction.  9 

3 Uniform Convergence 

We first establish a few notations. Let D denote the set of all probability distribu- 
tions 0 on the set N =  {0, 1, 2 . . . .  } of non-negative integers, that are non-increasing. 
That is, 

O(t + 1)_<-0(t) for all teN. (A) 

For real numbers c~_<fl and for a distribution 0, 



Asymptotic Properties in Dynamic Programming 5 

o[~, p]= Y o(t). 
c~<--t<_fl 

For OeD, define 0 on N as follows: 

0(t) = ( 0 ( t ) - 0 ( t +  1))(t+ 1) for all teN. (3.1) 

Note that 

T T 

~. O(t)= ~, O(t)-(T+ 1) O(T+ 1) for all T_>0. (3.2) 
t = 0  t~O 

Because of (A), limt~oo tO(t)=O, and therefore 0 is a probability distribution on 
N. 

Let a =  (at)t=| be a bounded sequence. For every T_0 ,  denote 

1 T 

- -  Z a t ,  ST(a) T+ 1 t=o 

and denote S(a)= (St(a));~174 For every probability 0, set, 

co 

So(a)= ~ Off)at. 
t=O 

Observe that by (3.1), similarly to the way (3.2) was obtained, we have 
So(a) = So(S(a)) for all sequences a and probabilities 0, that is, 

o| o |  

~. Off)at= ~. O(t)St(a). (3.3) 
t=O t=O 

We consider linearly ordered families (0,  >) ,  where @_CD, and " > "  is a linear 
(complete) order on | satisfying: 

N 

r e > 0 ,  vN___0, ~0oe| such that V0>0o, ~ O(t)<e, (B) 
t = 0  

which is obviously equivalent to: 

r e>O,  ~OoeO, such that vO>Oo, O(O)<e. (B*) 

Note that Condition (B) implies that for every 0eO, there exists 0e |  with 
0<0.  Therefore, the notions of lira, lira inf, lira sup, etc . . . .  are naturally defined 
for real-valued function on | An increasing sequence (0n)~=o in 0 ,  is increasing 
to oo, if for every 0cO,  there exists an integer N such that 0~> 0 for all n>_N. For 
the equivalence results we will need the next properties: 

(C) ~eo>0 and ~:(0, eo)~(0, 1) such that re<e| 3J(e), and a sequence 
(0~,,)n% J(~), that increases to o| and satisfies: 
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0,. ~ [ ( 1 -  e) n, nl>~o(e) for all n>_J(e). 

(D) There exists a sequence - (0n),=o, that increases to oo 
~u:(0, eo)~(0,  1) such that ve<eo ,  aI(e), 

O, [~ (e) n, n] > 1 - e for all n >_ I(e). 

D. Monderer and S. Sorin 

, and 3eo>O and 

3.1 Preliminary Results 

We will assume without loss of  generality that the payoff  function in our dynamic 
programming satisfies 0_<f__. 1. 

Lemma 3.1. r e > 0 ,  vN,  300 such that v0>0o,  qso~S, 3n>__N satisfying 
V .  (So) >- Vo (So) - e. 

Proof." By condition (B) and by (3.2), there exists 0o, such that  ~.tU=o 0 ( t ) <  _e for 
2 

all 0>0o.  Let 0>0o,  and let sotS.  Let s=(st)?'=o be an  88 play for 0 
in So. Then by (3.3), 

~. O(t)S,(f(s))>>- Vo(so)-e, 
t=N+ 1 

where f (s)  = (f(st)) ~= o. 
A S  Zt~ 1 0( t )~  1,  the above inequality implies that  a convex combination of 

{St(f(s))lt>>_N+ 1} is greater or equals Ve(so)-e. Therefore there exists t>>_N+l 
with St (f(s)) >_ Vo (So), implying V t (So) ~ V O (So) - e .  [] 

Corollary 3.2. 

lim sup V. _> lim sup 11o. 

Lemma 3.3. lim sup 11o is non-increasing in plays. That is, 

lim sup Vo(so)>_lim sup Vo(sD for  every sl~F(so). 

S 00 Proof." Note that  if (st)~~ is e-optimal in sl for O, then s=(  t)t=o is a play in So. 
Hence, it suffices to prove that for every e > O, for sufficiently large O, 

~, O(t)f(st+ 1) - f ( s t )  < e. 
t=O 
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By rearranging terms and by (3.3), the last inequality can be proved by showing 
that 

~. O(t) f(st+ 1) - f ( so )  
t :o  t + l  

< c .  

Hence, it suffices to prove that for every e > 0, for sufficiently large 0, 

which follows easily f rom Condition (B). 

2 
L e m m a  3.4 (Lehrer and Sorin (1992)). r e > 0 ,  vn > - ,  and u there exist ap lay  

S '~' s = ( t)t=o and a stage L such that 

1 T C 
~, f(sL + t) >- Vn (So) - e f o r  every 0 <_ T <_ - n. 

T+ 1 t~o 2 

3.2 From Vo to V~ 

Proposition 1. Assume  limo~ 0o 11o = V, uniformly. 

r e > 0  3N, such that vn>_N, Vn <_ V+ e. 

C 
Proof." Set el = ~ .  By the uniform convergence assumption, there exists 0o, such 

J 
that 

IVo(so)-V(so)l  <el  for all sotS .  (3.4) 

Let M be an integer satisfying 

M 

~, Oo(t)> 1 - ~ ,  (3.5) 
t = o  

and let N be an integer satisfying N > --.2 We now show that N satisfies the asser- 

tion of  the proposition. Indeed, let n >_N, and let so tS .  By Lemma 3.4, there exists a 
play s =  (st)~-o and an integer L that satisfy the assertion of  Lemma 3.4 for el. By 
(3.3) and (3.5), this implies, Voo (sz) - Vn (So) - 2 el. Therefore V(SL) -- V~ (So) -- 3 el, by 
(3.4). Hence, by Lemma 3.3, and because 3el = e, 
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V(so) >- V~ (So) - e.  9 

Proposition 2. Assume (| > )  satisfies Condition (C), and uniform convergence of 
(Vo)o~o to V. 

r e > 0 ,  ~N, such that vn>_N, V,>_ V-e .  

Proof." Otherwise, there exists e > 0  such that for every N, there exists n>_N and 
So e S with V, (So)< V(so)- e. We now choose a particular integer N as follows: set 

el = e2 = ~ ,  and choose e3, e4, e5 in a way that will be described later. Choose an 

integer K satisfying the following 4 properties. 
(1) K is large enough such that at every play s=(st)t=o, vn>_K, if 

II. (So) < V(so) - e, then 

Sr ( f ( s ) )<  V(so)-el for all ( 1 - e l ) n <  T<n. 

(2) Let J(~2) and the sequence (0 . . . .  ),--J(~2) satisfy the property stated in Condi- 
tion (C). Choose K>J(82). That is, 

0 n [(1 --  e2) n ,  n] > ~o (e2) for every n ~ K, 

where 0, = 0,, ~2" 
0 (3) As ( ,)n=k is increasing to oo, and Vo~ V, we can choose K large enough 

such that 

- -  •4 < V o  n - -  V <  •4 f o r  a l l  n _> K .  

(4) By Proposition 1, we can choose K large enough, such that for every 
n ~K ,  

Vn< V+a3 for all n>_K. 

Finally, choose N >  K satisfying 

K 

t=O 
for al n>_N. 

By our initial assumption there exists n _> N and So with Vn (So)< V(so)- e. Let 
s =  (st)7~ o be any play at So. Set a t=  O,(t)St(f(s)). Then 

K 
So,,(f(s)): E a, + 7 a, + Z a, + Z a,. 

t=O K < t < ( 1 - - a z ) n  (1 - - e z ) n ~ t ~ n  t > n  

Therefore, by the way we chose N, 
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So. ( f  (s)) ~_ V(so) + A, 

where 

A = e3 + es - (o (e2) e l .  

As the last inequality holds for every play at So, then 

vo~ V(so) + a .  

Hence, by property (3), satisfied by K and hence by N, 
e 

e2 = ~ ,  we have 

(ff ~ <" ~3 + ~4 + e5  9 

Thus we can 

and recalling that el = 

have a contradiction by choosing ei, i = 3 , 4 ,  5, to be less than 

3.3 From Vn to I1o 

Proposition 3. Assume  lim,~ o~ V, = W uniformly. 

r e > 0 ,  30o, such that u Vo < - W+ e. 

Proof." The proof  is an immediate consequence of  Lemma 3.1.  9 

L e m m a  3.5 (Lehrer and Sorin (1992)). Assume  limn~ oo V, = W uniformly. Then f o r  
every e small enough, there exists an integer N, such that f o r  every n>_N and soeS, 
there is a play s = (si)2~ o at so satisfying: 

1 r 
f(st)>_ W ( s o ) - e  f o r  every en<_ T_<(1-e)n .  

T + I  t=o 

Proposition 4. Assume  (| > )  satisfies condition (D), and l im,~o  V, = W uni- 
formly.  

r e > 0 ,  3N, such that u Vo >_ W - e ,  

where (0,)2'=o is defined in Condition (D). 
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f 
Proof." Let e > 0. Let fi > 0 satisfies < rain (~u(e), e). Then by Lemma 3.5 there 

1 - d  
exists N such that for every n>_N and soeS, there is a play s=(st)?~=o at So satis- 
fying: 

T 1 
~, f(st) > W(so) - f 

T+ 1 t=o 
for every dn_< T_(1 - d ) n .  

Without loss of generality we can choose N>_I(e). Note that if m >_N (assuming that 
N was chosen large enough), there exists n>_N, with 

[q/(e)m, m] c_ [fin, (1 - d ) n l .  

Hence, t~m [q/(e)m, ml - - -1 -  e, and S t ( f  (s))-> 1 -  O_ 1 -  e, for T~ [q/(e)m, m]. There- 
fore, 

Vom (So) >-- W(so) - 2 e for all m _ N and all So ~ S. 

Remark 1. 
If  the sequence (0n)2=o, given in Condition (D) is dense in (| > )  (in the sense 

that its uniform convergence implies the uniform convergence of (Vo)o~| then un- 
der conditions (C) and (D), uniform convergence of (Vn)~~ implies uniform con- 
vergence of (Vo)o~o to the same limit function. As it was proved in Lehrer and Sorin 
(1992), such is the case when |  {0h: 2~[0, 1)}, where 0~(t) = ( 1 - 2 ) 2  t, and " > "  is 
the natural order on real numbers. 

Remark 2. 
Let (| > )  be a linearly ordered set of distributions on N satisfying (B), (C*), 

and (D*), where (C*) and (D*) are obtained from (C) and (D) respectively, by re- 
placing 0 with 0 everywhere. Define, 

Uo(so)= sup Z O(t)St(f(S)). 
(s t)  ~'= o t = o  

It is obvious that our proofs yield the equivalence theorem for this solution concept 
as well. E.g., for every 0 < 2 <  1 define 

U~(so)= sup ( 1 - 2 )  ~. 2tSt(f(s)). 
(s t)  ~ -  o t ~ 0 

Then (UD converges uniformly if and only if (V,) converges uniformly, and both 
share the same limit function. 
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