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a b s t r a c t

Mertens, Neyman and Rosenberg (Mertens et al., 2009) used the Mertens and Neyman theorem (Mertens
and Neyman, 1981) to prove the existence of a uniform value for absorbing gameswith a finite state space
and compact action sets. We provide an analogous proof for another class of stochastic games, recursive
gameswith a finite state space and compact action sets. Moreover, both players have stationary ε-optimal
strategies.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Zero-sum stochastic games were introduced by [10], and the
model Γ = ⟨K , I, J, g, q⟩ is as follows: K is the finite state space,
I (resp. J) is the action set for player 1 (resp. player 2), g : K ×

I × J → R is the stage payoff function and q : K × I × J →

∆(K) is a probability transition function (∆(S) stands for the set of
probabilities on a measurable set S). We assume throughout that I
and J are compact metric sets and that both g and q are separately
continuous on I × J (this implies their measurability, cf. I.1.Ex.7a
in [8]).

The game is played as follows. Let k1 ∈ K be the initial state.
At each stage t ≥ 1, after observing a t-stage history ht =

(k1, i1, j1, . . . , kt−1, it−1, jt−1, kt), player 1 chooses an action it ∈ I
and player 2 chooses an action jt ∈ J . This profile (kt , it , jt) induces
a current stage payoff gt := g(kt , it , jt) and a probability q(kt , it , jt)
which is the law of kt+1, the state at stage t + 1.

Let Ht = K × (I × J × K)t−1 be the set of t-stage histories for
each t ≥ 1, and H∞ = (K × I × J)∞ be the set of infinite histories.
We endow Ht with the product sigma-algebra Ht (discrete on K ,
Borel on I and J) and endow H∞ = (K × I × J)∞ with the product
sigma-algebra H∞ spanned by ∪t≥1 Ht . A behavior strategy σ for
player 1 is a sequence σ = (σt)t≥1 where for each t ≥ 1, σt is a
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measurable map from (Ht , Ht) to ∆(I). A behavior strategy τ for
player 2 is defined analogously. The set of player 1’s (resp. player
2’s) behavior strategies is denoted by Σ (resp. T ).

Given an initial state k1, any strategy profile (σ , τ ) ∈ Σ × T

induces a unique probability distribution Pk1
σ ,τ over the histories

(H∞, H∞). The corresponding expectation is denoted by Ek1
σ ,τ .

In a λ-discounted game Γλ (for λ ∈ (0, 1]), the (global) payoff
is defined as γλ(k1, σ , τ ) = Ek1

σ ,τ


t≥1 λ(1 − λ)t−1g(it , jt , kt)


and the corresponding (minmax) value is vλ. The n-stage game Γn
(for n ≥ 1) is defined analogously by taking the n-stage averaged
payoff, and its value is denoted by vn.

In the finite actions setup, [10] introduced the operator Φ

where ∀f ∈ R|K |,

Φ(λ, f )(k) = valx∈∆(I),y∈∆(J)Ek
x,y


λg(i, j, k) + (1 − λ)f (k′)


, (1)

with valx∈∆(I),y∈∆(J) = maxx∈∆(I) miny∈∆(J) = miny∈∆(J) maxx∈∆(I).
He proved that

vλ = Φ(λ, vλ) (2)

and moreover that stationary optimal strategies exist for each λ,
i.e. depending at each stage t only on the current state kt . These
results extend to the current framework (cf. VII.1.a in [8]).

We are interested in long-run properties of Γ . A first notion
corresponds to the existence of an asymptotic value: convergence
of vλ as λ tends to zero and convergence of vn as n tends to infinity,
to the same limit. Moreover, one can ask for the existence of ε-
optimal strategies for both players that guarantee the asymptotic
value in all sufficiently long games, explicitly:
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Definition 1.1. Letw ∈ R|K |. Play 1 can guaranteew inΓ if, for any
ε > 0 and for every k1 ∈ K , there exist N(ε) ∈ N and a behavior
strategy σ ∗

∈ Σ for player 1 s.t.: ∀τ ∈ T ,

(A)
1
n

Ek1
σ∗,τ

 n
t=1

gt


≥ w(k1) − ε, ∀n ≥ N(ε),

(B) Ek1
σ∗,τ


lim inf
n→∞

1
n

n
t=1

gt


≥ w(k1) − ε.

A similar definition holds for player 2.
v is the uniform value of Γ if both players can guarantee it.

Remark. The existence of a uniform value v implies the existence
of an asymptotic value, equal to v.

For stochastic games with a finite state space and finite action
sets, [1] proved the convergence of vλ as λ tends to zero (and later
deduced the convergence of vn as n tends to infinity to the same
limit), relying on an algebraic argument. Using the property that
the function λ → vλ has bounded variation, that follows from [1],
[6] proved the existence of a uniform value. Actually, Mertens and
Neyman’s main result is even applicable to a stochastic game Γ

with compact action sets under the following form:

Theorem 1.2 ([6]). Let λ → wλ ∈ R|K | be a function defined on
(0, 1]. Player 1 can guarantee lim supλ→0+ wλ in the stochastic game
Γ if wλ satisfies:
(i) for some integrable function φ : (0, 1] → R+, ∥wλ − wλ′∥∞ ≤ λ′

λ
φ(x)dx, ∀λ, λ′

∈ (0, 1), λ < λ′;
(ii) for every λ ∈ (0, 1) sufficiently small, Φ(λ, wλ) ≥ wλ.

Remark. In the construction of an ε-optimal strategy in [6], wλ is
taken to be vλ, so condition (i) is implied by the bounded variation
property of vλ and condition (ii) is implied by Eq. (2).

Below we focus on two important classes of stochastic games:
absorbing games and recursive games.

An absorbing state is such that the probability of leaving it is
zero. Without loss of generality one assumes that at any absorbing
state, the payoff is constant (equal to the value of the static game to
be played after absorption), as long as one states that both players
are informed of the current state.

A stochastic gameΓ is an absorbing game if all states but one are
absorbing. [7] used Theorem1.2 to prove the existence of a uniform
value for absorbing games with a finite state space and compact
action sets, extending a result of [4] for the finite actions case.

Recursive games, introduced by [3], are stochastic games where
the stage payoff is zero in all nonabsorbing states.

This note proves the existence of a uniform value for recursive
games with a finite state space and compact action sets, using an
approach analogous to [7] for absorbing games. Moreover, due to
the specific payoff structure, we show that ε-optimal strategies in
recursive games can be taken stationary. This is not the case for
a general stochastic game, in which an ε-optimal strategy has to
be usually a function of the whole past history, even in the finite
actions case (cf. [2] for the ‘‘Big match’’ as an example).

[3] proved the existence of stationary ε-optimal strategies for
the ‘‘limiting-average value’’ (property (B) in Definition 1.1). As
our proof relies on his characterization of this value (and on its
existence), we describe here the result.
Given S ⊆ Rd, let S denote its closure.

Let K 0
⊆ K be the set of nonabsorbing states.

Φ(0, ·) refers to the operator Φ(λ, ·) with λ = 0 in Eq. (1).
When working with the operator Φ(0, ·) or Φ(λ, ·), it is suffi-

cient to consider those vectors u ∈ RK identical to the absorbing
payoffs on the absorbing states K \ K0. Whenever no confusion is
caused, we identify uwith its projection on R|K0|.
Theorem 1.3 ([3]). A recursive game Γ has a limiting-average value
v and both players have stationary ε-optimal strategy, in the sense
that ∀ε > 0, there are stationary strategies (σ ∗, τ ∗) ∈ Σ × T s.t.:
for any (σ , τ ) ∈ Σ × T ,

Ek1
σ∗,τ


lim inf
n→∞

1
n

n
t=1

gt


≥ v(k1) − ε and

Ek1
σ ,τ∗


lim sup
n→∞

1
n

n
t=1

gt


≤ v(k1) + ε.

Moreover, the limiting-average value v is characterized by {v} =

ξ+ ∩ ξ−, where

ξ+
=


u ∈ R|K0

|
: Φ(0, u) ≥ u, and Φ(0, u)(k)

> u(k) whenever u(k) > 0

,

ξ−
=


u ∈ R|K0

|
: Φ(0, u) ≤ u, and Φ(0, u)(k)

< u(k) whenever u(k) < 0

.

[3]’s proof of the above result consists of the following two
arguments: first, any vector u ∈ ξ+ (resp. u ∈ ξ−) can be
guaranteed by player 1 (resp. player 2); second, the intersection of
ξ+ and ξ− is nonempty.

2. Main results and the proof

We prove that v (as characterized in Theorem 1.3) is also the
uniform value of Γ , and that players have stationary ε-optimal
strategies.

Theorem 2.1. A recursive game has a uniform value. Moreover, both
players can guarantee the uniform value in stationary strategies.

Remark. We emphasize that our definition of uniform value
includes that of limiting-average value, thus our results extend [3]
to a much stronger set-up.

Proof. We first prove that v is the uniform value of Γ using Theo-
rem 1.2. Let u be any vector in ξ+. An equivalent characterization
for u is:

Φ(0, u) ≥ u and u(k) ≤ 0 whenever Φ(0, u)(k) = u(k), ∀k ∈ K 0.

Define wλ = u, ∀λ ∈ (0, 1). We check that wλ satisfies the two
conditions (i) and (ii) in Theorem 1.2.

(i) It is trivial since u does not depend on λ;
(ii) The crucial point is that Φ(λ, u) = (1 − λ)Φ(0, u) on K 0 for

recursive games. Then the condition Φ(λ, wλ) ≥ wλ for all λ
close to 0 is satisfied in the following two cases:
• for k ∈ K 0 with Φ(0, u)(k) > u(k), we have (1 −

λ)Φ(0, u)(k) > u(k) for λ close to 0+;
• for k ∈ K 0 with Φ(0, u)(k) = u(k), we have u(k) ≤ 0, thus

(1 − λ)Φ(0, u)(k) = (1 − λ)u(k) ≥ u(k), ∀λ ∈ (0, 1).

NowTheorem1.2 states that player 1 can guarantee any u ∈ ξ+.
A symmetric argument proves that player 2 can guarantee any
vector u ∈ ξ−. As {v} = ξ+ ∩ ξ− is nonempty by Theorem 1.3,
this proves that v is the uniform value of Γ .

Next, we point out that any ε-optimal strategy appearing in the
Mertens and Neyman theorem can be taken stationarywhen Γ is a
recursive game. Indeed, letwλ be the function satisfying conditions
(i) and (ii) in Theorem 1.2. The general construction of σ for player
1 to guarantee lim supλ→0+ wλ is as follows: at each stage t ≥ 1,
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• Step 1. the t-stage history is used to compute in an inductive
way a small enough discount factor λt ;

• Step 2. play an optimal strategy xλt (wλt , kt) ∈ ∆(I) in the zero-
sum game corresponding to Φ(λt , wλt )(kt), defined in Eq. (1)
by letting f = wλt , λ = λt , k = kt .

Since (1) we have chosen in the first part of the proof wλ =

u to be constant, (2) Φ(λ, u) = (1 − λ)Φ(0, u) for recursive
games, this implies that xλt (wλt , kt) can be taken as x(u, kt), an
optimal strategy of player 1 in the zero-sum game associated to
Φ(0, u)(kt) = valx∈∆(I),y∈∆(J)Ekt

x,y[u(k
′)]. Hence, to define σ , we

do not need (as in [6]) the whole t-stage history to compute λt ,
and the only necessary information is the current state kt . �

3. Concluding remarks

1. To have a better understanding of the existence of stationary
ε-optimal strategy in recursive games, one can compare our
construction to the one in [7] for absorbing games. Indeed,
they have also chosen wλ to be some constant function u.
However, there is no such equality Φ(λ, u) = (1 − λ)Φ(0, u)
for absorbing games, so the optimal strategy xλt (wλt , kt) at each
stage t for Φ(λt , u) depends on λt , hence on the whole history.
On the other hand, choosing wλ as vλ (like in [13]) will induce
strategies that will still depend upon λ.

2. Since the constructed ε-optimal strategy is stationary, our proof
extends to recursive games with signals on actions: there is no
need to assume perfect observation of the opponent’s actions,
as long as both players are informed of the current state.

3. For absorbing games with a finite state space and compact
action sets, [9] characterized and proved the existence of
an asymptotic value, via the so-called operator approach,
following [4]. Using the same approach, [11] provided the
corresponding result for recursive games with a finite state
space and compact action sets and in particular showed that the
asymptotic value is equal to the unique vector characterized by
ξ+ ∩ ξ− in [3], see also [12].
However, these convergence results do not extend to general
stochastic games with a finite state space and compact action
sets: [14] provided an example with no convergence of vλ. This
implies a fortiori that the existence result of a uniform value
for absorbing/recursive games with compact actions does not
extend to general stochastic games.
4. Our proof does not extend to recursive games with an infinite
state space. In fact, we used the nonemptiness of ξ+ ∩ξ−, which
is obtained in [3] by an inductive proof on the (finite) number
of states.
[5] provided a sufficient condition for recursive games with an
infinite state space to have a uniform value, that is, the family of
n-stage values {vn} being totally bounded for the uniformnorm.
They presented also an example for which this condition is not
satisfied and no uniform value exists.

Acknowledgments

The authors are grateful to Guillaume Vigeral for helpful
comments. Part of Xiaoxi Li’s research is done when he was an
ATER (teaching and research fellow) at THEMA, Université Cergy-
Pontoise during the academic year 2015–2016.

References

[1] T. Bewley, E. Kohlberg, The asymptotic theory of stochastic games, Math. Oper.
Res. 1 (1976) 197–208.

[2] D. Blackwell, T.S. Ferguson, The big match, Ann. Math. Statist. 39 (1968)
159–163.

[3] H. Everett, Recursive games, in: M. Dresher, A.W. Tucker, P. Wolfe (Eds.),
Contributions to the Theory of Games III, in: Annals of Mathematical Studies,
vol. 39, Princeton University Press, 1957, pp. 47–78.

[4] E. Kohlberg, Repeated games with absorbing states, Ann. Statist. 2 (1974)
724–738.

[5] X. Li, X. Venel, Recursive games: uniform value, Tauberian theorem and the
Mertens conjecture ‘‘Maxmin = limn→∞ vn = limλ→0 vλ ’’, Internat. J. Game
Theory 45 (2016) 155–189.

[6] J.-F. Mertens, A. Neyman, Stochastic games, Internat. J. Game Theory 10 (1981)
53–66.

[7] J.-F. Mertens, A. Neyman, D. Rosenberg, Absorbing games with compact action
spaces, Math. Oper. Res. 34 (2009) 257–262.

[8] J.-F. Mertens, S. Sorin, S. Zamir, Repeated Games, Cambridge University Press,
2015.

[9] D. Rosenberg, S. Sorin, An operator approach to zero-sum repeated games,
Israel J. Math. 121 (2001) 221–246.

[10] L.S. Shapley, Stochastic games, Proc. Natl. Acad. Sci. 39 (1953) 1095–1100.
[11] S. Sorin, The operator approach to zero-sum stochastic games, in: A. Neyman,

S. Sorin (Eds.), Stochastic Games and Applications, Kluwer Academic
Publishers, 2003, pp. 417–426. (Chapter 27).

[12] S. Sorin, G. Vigeral, Existence of the limit value of two person zero-sum
discounted repeated games via comparison theorems, J. Optim. Theory Appl.
157 (2013) 564–576.

[13] F. Thuijsman, O.J. Vrieze, Note on recursive games, in: B. Dutta, D. Mookherjee,
T. Parthasarathy, T.E.S. Raghavan, S.H. Tijs (Eds.), Game Theory with Economic
Applications, in: Lecture Notes in Economics and Mathematical Systems,
vol. 389, Springer-Verlag, 1992, pp. 133–145.

[14] G. Vigeral, A zero-sum stochastic game with compact action sets and no
asymptotic value, Dyn. Games Appl. 3 (2013) 172–186.

http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref1
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref2
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref3
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref4
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref5
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref6
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref7
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref8
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref9
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref10
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref11
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref12
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref13
http://refhub.elsevier.com/S0167-6377(16)30046-3/sbref14

	Uniform value for recursive games with compact action sets
	Introduction
	Main results and the proof
	Concluding remarks
	Acknowledgments
	References


