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DELEGATION EQUILIBRIUM PAYOFFS
IN INTEGER-SPLITTING GAMES ∗

Sylvain Sorin1,2 and Cheng Wan1

Abstract. This work studies a new strategic game called delegation
game. A delegation game is associated to a basic game with a finite
number of players where each player has a finite integer weight and her
strategy consists in dividing it into several integer parts and assigning
each part to one subset of finitely many facilities. In the associated
delegation game, a player divides her weight into several integer parts,
commits each part to an independent delegate and collects the sum
of their payoffs in the basic game played by these delegates. Delega-
tion equilibrium payoffs, consistent delegation equilibrium payoffs and
consistent chains inducing these ones in a delegation game are defined.
Several examples are provided.

Keywords. Basic integer-splitting game, delegation game, delegation
equilibrium payoffs, consistent delegation equilibrium payoffs, consis-
tent chains.
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1. Motivation

In an N–player routing game with parallel paths, each player holds a certain
quantity of stock that she has to send by one or several directed paths from its
origin vertex to its destination vertex. The cost of using a certain path depends
upon the quantity of stock passing through it. Every player wishes to minimize

Received April 30, 2012. Accepted January 22, 2013.
∗ The research of the first author was supported by grant ANR-08-BLAN- 0294-01 (France).
1 Combinatoire et Optimisation, IMJ, CNRS UMR 7586, Faculté de Mathématiques,
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her cost. If the stocks are unsplittable, a player must send all her stock through
a single path, otherwise she can split it into several parts so as to send them by
different paths. In this work, an integer-splittable case will be considered: every
player has a stock of integer weight which can be divided into several parts of
integer weight. For example, a player holding a stock of weight 2 can only split
it into two parts, each of weight 1, but not one part of weight 0.5 and another
of weight 1.5. If a player has R available paths, then her pure strategy set is the
finite set of the divisions of her stock into R integer weight parts.

Suppose that, instead of deciding by herself how to send her stock, a player n
divides it into integer weight parts and commits each part to a different delegate.
The delegates are independent players who ensure the transportation of the stocks
committed to them. The cost to player n is the sum of the costs to her delegates.
This procedure is called (integer) delegation.

Why should a player be interested in delegating her stock? If there is only one
player, the minimum cost that she obtains at the equilibrium of this one-player
game is just the social optimum cost. If she commits her stock to some delegates,
then whatever the outcome is, it will not be better than the social optimum. Hence,
she has no incentive to delegate.

However, when there are several players, the situation might be different. Here
is an example which shows the potential advantage of producing delegates.

Example 1.1. Consider the following two-player routing game with integer-
splittable stock where player I has a stock of weight 2 and player II has a stock
of weight 1. Both players have to send their stock from vertex O to vertex D in
Figure 1. The per-unit cost function of the upper path is c1(x) = x, which means
that the cost to each unit on the path is x if the total weight is x. The per-unit
cost of the lower path is c2(x) = 0.1x + 2.3.

First, let us consider the routing game. Player I has three pure strategies: (u, u),
i.e. to send both units by the upper path, (u, l), i.e. to send one unit by the upper
path and the other the lower path, and (l, l), i.e. to send both units by the lower
path. Player II has two pure strategies: u, i.e. to send her unit by the upper
path, and l, i.e. to send it by the lower path. In the cost matrix of the game
in Table 1, player I (resp. player II) is the row (resp. column) player, and the
entries of form (CI , CII) are the two players’ costs. For example, if player I plays
(u, l) and player II plays l, then player I’s cost is 3.5 while player II’s cost is 2.5.
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Table 1.

u l
u,u 6, 3 4, 2.4
u,l 4.4, 2 * 3.5, 2.5
l,l 5, 1 5.2, 2.6

Table 2.

u l
u 3, 3, 3 2, 2.4, 2 *
l 2.4, 2, 2 * 2.5, 2.5, 1

u

u l
u 2, 2, 2.4 * 1, 2.5, 2.5
l 2.5, 1, 2.5 2.6, 2.6, 2.6

l

The only pair of pure Nash equilibrium costs (4.4, 2) is starred. Besides, as the
strategy (u, l) is a dominant one for player I, the pure equilibrium is also the
unique equilibrium.

Now, suppose that player I splits her stock into two parts, each of weight 1, and
commits them to two delegates called I1 and I2 respectively. In the routing game
played by the three players I1, I2 and II, each of them has a stock of weight 1
and has two pure strategies u and l. The corresponding costs (CI1 , CI2 , CII) are
in Table 2. Player I1 (resp. player I2) is the row (resp. column) player. The left
(resp. right) matrix corresponds to the choice u (resp. l) of player II.

The three pure Nash equilibria are starred. At two of them, (u, l, u) and (l, u, u),
player I’s total cost, CI = CI1 + CI2 , and player II’s cost, CII , are the same as
in the previous model without delegation: 4.4 and 2. At the third one (u, u, l),
player I’s total cost is 4 and player II’s cost is 2.4. Player I’s cost is lower than
in the case without delegation. Conclusion: delegation can be advantageous!

Remark 1.2. Notice that in the three-player game, the equilibrium (u, u, l) ex-
ists because player II is facing the strategy profile (u, u) of the two delegates of
player I. But if player I knew that player II would choose l, she would not delegate
but rather assign by herself one unit weight of stock to u and the other to l so as
to get a cost 3.5 instead of 4. Then the best reply of player II would be u. This
underlines the fact that the existence of the equilibria relies on the independence
of the delegates.

Since a delegate is an independent player, she may well delegate her stock in
her turn. By induction, the procedure can continue until all the players/delegates
have a stock of weight 1.

This work will establish a rigorous model of integer-splitting delegation game
and define the corresponding delegation equilibrium payoffs.
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2. Basic (integer-splitting) game

2.1. Game definition

Before introducing the notion of delegation, let us first define formally a basic
(integer-splitting) game. For example, the routing game with integer-splittable
stocks introduced in Example 1.1 is a basic game.

Definition 2.1. A basic (integer-splitting) game G(N , P ) is defined by the fol-
lowing elements.
• Q is a nonempty finite set of facilities.
• P ⊂ 2Q \ {∅}, a collection of nonempty subsets of Q, is a nonempty finite set

of choices.
• N is a finite set of players.

A player n ∈ N is characterized by three pieces of data:
1) her non zero integer weight mn ∈ N,
2) the nonempty set of her available choices Pn ⊂ P ,
3) a vector function ψn = (ψn

q )q∈Q, where ψn
q , her per-unit payoff function for

facility q, is a real-valued function defined on [0, M ]∩N, where M =
∑

n∈N mn.
In particular a player’s type is specified by the pair (Pn,ψn).

• A pure strategy fn of player n is an integer partition of her weight onto Pn.
Explicitly, it is a |Pn|-dimensional vector (|A| denotes the cardinality of a finite
set A) with integer components: fn = (fn

p )p∈P n , fn
p ∈ N being the part of her

weight that she assigns to choice p ∈ Pn. The finite set of player n’s pure
strategies is thus Fn = {fn = (fn

p )p∈P n ∈ N|P n| |
∑

p∈P n fn
p = mn}.

• F =
∏

n∈N Fn is the space of pure strategy profiles. A profile of pure strategies
f =(fn)n∈N induces a vector ξ(f)=(ξq(f))q∈Q called aggregated configuration,
where ξq(f) =

∑
n∈N

∑
p∈P n:q∈p fn

p is the total weight assigned to facility q.
Denote by X the set of feasible aggregated configurations. It is a subset of N|Q|.

• The payoff function of player n is defined as follows:

Un(f) = Un(fn, ξ(f)) =
∑

p∈P n

fn
p

∑

q∈p

ψn
q (ξq(f)). (1)

Remark 2.2. Every player’s payoff is additive: the payoff associated to the weight
that player n assigns to choice p is counted separately for each choice p ∈ Pn, then
her total payoff Un is the sum of these payoffs.

Remark 2.3. A basic game is an anonymous aggregate game according to the
definition of ψn. This means that only the total weight assigned to a certain
facility is taken into account, but not the identity of the players who send them
nor the specific decomposition in terms of choices.

Example 2.4. When Q is the set of arcs in a finite directed graph, P is the set
of elementary directed paths and Pn is the set of elementary paths connecting
player n’s origin On to her destination Dn, the basic game is an extension of
Rosenthal’s congestion game [6].
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The game G(N , P ) is finite: the number of players and the number of strate-
gies for each player are finite. Thus, according to Nash’s theorem, there exists an
equilibrium (in mixed strategies). The set of equilibrium payoff vectors is denoted
by E(G(N , P )). This is a nonempty subset of R|N |.

In the current analysis, we fix a choice set P and consider different profiles of
players with specific available choices in P . The set of players of a basic game G
is denoted by NG and, by abuse of notation, |G| will denote its cardinality, i.e.
|G| := |NG|, the number of players.

2.2. Delegation

Consider a basic game G.

Definition 2.5. A player n in G, of weight mn and type (Pn,ψn), delegates if
she is replaced by two players n′ and n′′ of the same type as her and of strictly
positive integer weights mn′

and mn′′
respectively, and mn′

+ mn′′
= mn.

Definition 2.6. A basic game G′ is a direct successor of another basic game G if
G′ is obtained by the delegation of one of the players in G.

Remark 2.7. |G′ | = |G| + 1.

Definition 2.8. A basic game G′ is a successor of another basic game G if there
exists a finite sequence of basic games G0, G1, . . . , Gk such that G = G0, G′ = Gk,
and Gl is a direct successor of Gl−1 for l = 1, 2, . . . , k.

Remark 2.9. |G′ | = |G| + k.

Definition 2.10. Denote the family consisting of a basic game G and all its suc-
cessors by ΞG. This set has a natural tree structure with root G. The derived
game Ḡ of G is the element in ΞG which is the last on each branch. It has the
largest cardinality. In other words, each player in Ḡ has weight 1, and |Ḡ| = M .
Recall that M =

∑
n∈NG

mn, the total weight of the players in G.

3. Equilibrium payoffs in delegation games

In this section we will define and construct the set of delegation equilibrium
payoffs.

3.1. Game form

The game form of the delegation game D(G) associated to the basic game G,
i.e. its set of players and their strategy sets, is defined as follows.

The player set is NG, the same as that of G.
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For each player n ∈ NG of weight mn, her strategy set Sn is the finite set of
integer partitions of mn. Explicitly, for each sn ∈ Sn, there is an integer ln ≥ 1
such that

sn = {mn
i }ln

i=1 ∈ (N∗)ln ,
ln∑

i=1

mn
i = mn.

The interpretation is that player n creates ln delegates with delegate i having
weight mn

i , i = 1, · · · , ln. In particular, the strategy set Sn is finite.

Remark 3.1. A profile of strategies s = {sn}n∈N induces a successor G′ of G
if there exists n ∈ N such that ln > 1, i.e. at least one player delegates: it
is the basic game with player profile defined by

{
{mn

i }
ln
i=1

}
n∈N . Otherwise, if

ln = 1, sn = {mn} for all n ∈ N , the profile {sn}n∈N induces the basic game G.

3.2. Set of delegation equilibrium payoffs

The payoff functions associated to the delegation game D(G) and the set of
delegation equilibrium payoffs, denoted by E(G), are defined by induction on the
tree ΞG.

For the derived basic game Ḡ, let E(Ḡ) be E(Ḡ), the set of equilibrium payoffs.
Let Ĝ ∈ ΞG and assume that the set of delegation equilibrium payoffs E(G′) in

D(G′) is defined for all successors G′ of Ĝ. We define E(Ĝ) in three steps.

1) Let e be a selection from E(Ĝ), i.e. e(Ĝ) ∈ E(Ĝ) ⊂ R|Ĝ|.
Let y be a selection from the sets of delegation equilibrium payoffs of all suc-
cessors Ĝ of Ĝ, i.e. y(G′) ∈ E(G′) ⊂ R|G′|. Let Y (Ĝ) denote the collection of
all such selections.

2) For each pair (e, y) ∈ E(Ĝ) × Y (Ĝ), consider an auxiliary game G(Ĝ; e, y)
associated to the game form of D(G). The payoff F k to player k ∈ NĜ as a
function of the strategy profile s = {sk}k∈NĜ

is defined as follows.
If s induces the basic game Ĝ, F k(s) = ek(Ĝ).
If s induces a successor G′ of Ĝ so that the player profile of G′ is{
{mk

i }
lk
i=1

}
k∈NĜ

, then

F k(s) =
lk∑

i=1

yk
i (G′).

Namely, the payoff to player k is the sum of the delegation equilibrium payoffs
to her delegates according to y.
The auxiliary game G(Ĝ; e, y) is a finite game. Therefore, it admits equilibria (in
mixed strategies) according to Nash’s theorem. We denote by E(Ĝ; e, y) ⊂ R|Ĝ|

its non empty set of equilibrium payoff profiles.
3) The set of delegation equilibrium payoff profiles in the delegation game D(Ĝ)

is finally defined by

E(Ĝ) =
⋃

e∈E(Ĝ), y∈Y (Ĝ)

E(Ĝ; e, y).
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This ends the construction of E . Hence, we obtain by induction the following:

Proposition 1. The set of delegation equilibrium payoff profiles E(G) is a
nonempty subset of R|G|.

3.3. Consistent delegation equilibrium payoffs

Now we define, for a delegation game D(G), the set of consistent chains of del-
egation equilibrium payoffs, denoted by H(G) ⊂

∏
G′∈ΞG

R|G′|, and the associated
set of consistent delegation equilibrium payoffs, denoted by Ẽ(G) ⊂ E(G).

The definition of a consistent chain of equilibrium payoffs h =
(
h(G′)

)
G′∈ΞG

is obtained by induction as in the previous section.
For Ḡ, let h(Ḡ) be an arbitrary element in E(Ḡ) = E(Ḡ).
Let Ĝ ∈ ΞG \ {G} and assume that h(G′) is defined for all successors G′ of Ĝ

with h(G′) ∈ R|G′|. As above, for any selection e of E(Ĝ) ⊂ R|Ĝ|, the auxiliary
game G(Ĝ; e, h) has a nonempty equilibrium payoff profile set E(Ĝ; e, h) ⊂ R|Ĝ|.
Choose h(Ĝ) as an element in

⋃
e∈E(Ĝ) E(Ĝ; e, h) ⊂ E(Ĝ). In this way, a consistent

chain of delegation equilibrium payoffs h is defined by induction for the delegation
game D(G). Let H(G) be the collection of all such chains.

For any h ∈ H(G), h(G) ∈ E(G) is called a consistent delegation equilibrium
payoff profile induced by the consistent chain h. The set of consistent delegation
equilibrium payoff profiles in D(G), denoted by Ẽ(G), is defined as a subset of
E(G), by

Ẽ(G) = { h(G) }h∈H(G).

The previous induction implies:

Proposition 2. The collection of consistent chains of delegation equilibrium pay-
offs H(G) is a nonempty set in

∏
G′∈ΞG

R|G′|.
The set of consistent delegation equilibrium payoffs Ẽ(G) is a nonempty subset

of E(G) ⊂ R|G|.

4. Example

In this section a delegation game on a network is studied in detail. A delegation
equilibrium, a chain of consistent delegation equilibrium payoffs and the consistent
delegation equilibrium payoffs that it induces will be obtained. A construction of
a non consistent delegation equilibrium profile will also be provided.

The basic game G takes place in a network composed of two vertices O and D,
with two parallel arcs r1 and r2 connecting O to D. Their per-unit cost functions
are respectively l1(x) = x + 1, l2(x) = 0.1x + 3.6. Two players both hold a stock
to send from O to D. The weight of player I’s stock is 3 and that of player II’s
is 2. The profile of the players is NG = {I|3, II|2}, where the name of a player
is her type and the number after the name of a player is her weight. G has five
successors A, B, C, D and Ḡ. The set of players of the six basic games and some
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of their equilibrium cost profiles are given below. The type of a player depends on
the initial possessor of her stock. In each profile, players of the same type are put
in the same pair of brackets.

NG =
{
{I|3}, {II|2}

}
NA =

{
{a1|2, a2|1}, {a3|2}

}

NB =
{
{b1|1, b2|1, b3|1}, {b4|2}

}
NC =

{
{c1|3}, {c2|1, c3|1}

}

ND =
{
{d1|2, d2|1}, {d3|1, d4|1}

}
NḠ =

{
{q1|1, q2|1, q3|1}, {q4|1, q5|1}

}

E(G) ⊃ {(10.8, 6.9), (9.9, 7.8)}
E(A) ⊃ {(7.8, 3, 6.9), (6.9, 3, 7.8), (6, 3.9, 7.8), (7.8, 3.9, 6), (6.9, 3.9, 6.9)}
E(B) ⊃ {(3, 3, 3.9, 7.8), (3, 3.9, 3, 7.8), (3.9, 3.9, 3.9, 6), (3.9, 3.9, 3, 6.9),

(3.9, 3, 3.9, 6.9)}
E(C) ⊃ {(10.8, 3.9, 3), (10.8, 3, 3.9), (9.9, 3.9, 3.9)}
E(D) ⊃ {(7.8, 3, 3, 3.9), (7.8, 3.9, 3, 3), (6, 3.9, 3.9, 3.9), (6.9, 3, 3.9, 3.9),

(6.9, 3.9, 3, 3.9)}
E(Ḡ) ⊃ {(3.9, 3.9, 3.9, 3, 3), (3.9, 3.9, 3, 3.9, 3), (3.9, 3, 3.9, 3.9, 3),

(3.9, 3, 3, 3.9, 3.9), (3, 3, 3.9, 3.9, 3.9)}

Figure 2 illustrates ΞG by its tree structure.

1) In the delegation game D(Ḡ), select h(Ḡ) = (3.9, 3.9, 3.9, 3, 3) ∈ E(Ḡ) =
E(Ḡ). Note another possible selection y(Ḡ) = (3, 3, 3.9, 3.9, 3.9).

2) In the basic game D, select e(D) = (7.8, 3.9, 3, 3) ∈ E(D).
3) In the delegation game D(D), the payoff matrix of the auxiliary game

G(D; e, h) determined by (e(D), h(Ḡ)) is shown on the left in Table 3, while
the one determined by (e(D), y(Ḡ)) is shown on the right in Table 3. Player
d1 is the row player. Players d2, d3 and d4 have no actions.
The pure equilibria outcomes are starred. In the auxiliary game on the left,
select h(D) = (7.8, 3.9, 3, 3) ∈ E(D). In the auxiliary game on the right,
select y(D) = (6, 3.9, 3.9, 3.9) ∈ E(D).

4) In the basic game C, select e(C) = (10.8, 3.9, 3) ∈ E(C).
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Table 3. G(D; e, h) and G(D; e, y).

{2} D : (7.8, 3.9, 3, 3) *
{1,1} Ḡ : (3.9 + 3.9, 3.9, 3, 3) *

{2} D : (7.8, 3.9, 3, 3)
{1,1} Ḡ : (3 + 3, 3.9, 3.9, 3.9) *

Table 4. G(C; e, h).

{3} C : (10.8, 3.9, 3) *
{2,1} D : (7.8 + 3.9, 3, 3) *

{1,1,1} Ḡ : (3.9 + 3.9 + 3.9, 3, 3) *

Table 5. G(B; e, h).

{2} B : (3, 3.9, 3, 7.8)
{1, 1} Ḡ : (3.9, 3.9, 3.9, 3 + 3) *

Table 6. G(A; e, h).

{2} {1,1}
{2} A : (6.9, 3, 7.8) D : (7.8, 3.9, 3 + 3) *

{1, 1} B : (3.9 + 3.9, 3.9, 6) Ḡ : (3.9 + 3.9, 3.9, 3 + 3)*

5) In the delegation game D(C), the payoff matrix of the auxiliary game deter-
mined by (e(C), h(D), h(Ḡ)) is shown in Table 4. Player c1 is the row player.
Players c2 and c3 have no choice.
Select h(C) = (10.8, 3.9, 3) ∈ E(C).

6) In the basic game B, select e(B) = (3, 3.9, 3, 7.8) ∈ E(B).
7) In the delegation game D(B), the payoff matrix of the auxiliary game deter-

mined by (e(B), h(Ḡ)) is shown in Table 5. Player b4 is the row player. Players
b1, b2 and b3 have no action.
Select h(B) = (3.9, 3.9, 3.9, 6) ∈ E(B).

8) In the basic game A, select e(A) = (6.9, 3, 7.8) ∈ E(A).
9) In the delegation game D(A), the payoff matrix of the auxiliary game deter-

mined by (e(A), h(D), h(B), h(Ḡ)) is shown in Table 6. Player a1 is the row
player and player a3 is the column player. Player a2 has no action.
Select h(A) = (7.8, 3.9, 6) ∈ E(A).

10) In the basic game G, select e(G) = (9.9, 7.8) ∈ E(G).
11) In the delegation game D(G), the payoff matrix of the auxiliary game deter-

mined by (e(G), h(A), h(B), h(C), h(D), h(Ḡ)) is shown in Table 7. Player I
is the row player and player II is the column player.
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Table 7. G(G; e, h).

{2} {1,1}
{3} G : (9.9, 7.8) C : (10.8, 3.9 + 3) *

{2, 1} A : (7.8 + 3.9, 6) D : (7.8 + 3.9, 3 + 3)
{1, 1, 1} B : (3.9 + 3.9 + 3.9, 6) Ḡ : (3.9 + 3.9 + 3.9, 3 + 3)

Table 8. G(G; e, y).

{2} {1,1}
{3} G : (9.9, 7.8) C : (10.8, 3.9 + 3)

{2, 1} A : (7.8 + 3.9, 6) D : (6 + 3.9, 3.9 + 3.9)
{1, 1, 1} B : (3.9 + 3.9 + 3.9, 6) Ḡ : (3.9 + 3.9 + 3.9, 3 + 3)

Select h(G) = (10.8, 6.9). Then the construction of a consistent chain of del-
egation equilibrium profiles h is completed, and (10.8, 6.9) is a consistent
delegation equilibrium profile in D(G).

Alternatively, the auxiliary game G(G; e, y) which uses y(D) instead of h(D)
has the payoff matrix in Table 8.

The only equilibrium is attained if player I plays {3} with probability 2/3 and
{2, 1} with probability 1/3, and player II plays {2} with probability 1/3 and
{1, 1} with probability 2/3. The equilibrium cost profile is (10.5, 7.2). This is an
equilibrium cost profile in D(G) but is not constructed by a consistent chain.

5. Comments and extensions

5.1. Nash equilibria

One could define equilibrium payoffs F (G) in the delegation game D(G) by
induction using first an auxiliary game G(G; e, z) where e is a selection of E(G)
and for each successor G′, z(G′) is a selection of feasible payoff in G′. Then, one
would require that an equilibrium σ in the auxiliary game satisfies the coherency
condition: for each G′ in the support of σ, z(G′) belongs to F (G′). However, this
would assume that off the equilibrium path the delegate players would play a
specific “threat” which is not an equilibrium and is thus difficult to justify.

5.2. Subgame perfection

The induction procedure used to define delegation equilibria is reminiscent of
subgame perfection [7]. However, there are important differences. First, the tree
structure involves new players and the consistency argument used in subgame
perfection (the (same) players should play an equilibrium at each node of the tree)
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is replaced by an argument involving the rationality of the delegates. Moreover,
for the notion of consistent delegation equilibrium, one goes even one step further
since one asks for the same perception of the play in the successor games. One could
relate the construction of delegation equilibrium to the usual selection of subgame
perfect equilibria through forward induction: if G′ is reached, play an equilibrium
in G′. Then, the notion of consistent delegation equilibria would add a backward
induction property: the behavior in a successor game G′ of G is independent of the
way G′ is reached during the hypothetical play of D(G) and depends only on G′

(and its successors).

5.3. Composite equilibria

The same concepts can be defined in games where each player has a finitely
divisible stock, even in the presence of a set of nonatomic players who hold each
an infinitesimal stock, using the notion of composite equilibria [3,8]. However, the
general case where each player n can divide arbitrarily her stock mn composed
of finitely (or countably) many atoms mn

i , i ≥ 1 and a nonatomic part mn
0 with∑+∞

j=0 mn
j = mn deserves further study, since the definition of delegation equilib-

rium by backward induction is no longer available.

5.4. A special case

A special case where there are only two choices in the basic game is studied
in [9], Chapter 3. In such a setting, all players have the same payoff function. In
the basic game G, a player holding a stock of strictly positive weight can arbitrarily
divide her stock into two parts and affect them to the two choices respectively and
is called atomic splittable. Under a standard concavity assumption on the payoff
functions, a unique equilibrium exists in each basic game. In a delegation game,
each atomic splittable player can arbitrarily delegate her stock to finitely many
atomic delegates and a set of nonatomic delegates. Her payoff is the sum of the
payoffs to her delegates at the equilibrium of the basic game played by all the
delegates. It is shown that, if one or several players delegate, then the payoff to
any player not delegating is reduced or does not change in any successor G′ of G
compared with G, and the social payoff, i.e. the sum of the payoffs to all the
players, is reduced or does not change in G′ compared with G.

5.5. Final comments

Several papers (for example, [1, 2, 4]) deal with variation of the structure of
players in congestion games, in particular, comparing the social optimum cost
to the cost at the Wardrop equilibrium [10]. Other approaches (for example, [8])
evaluate the “advantage of coalitions”. In all such frameworks, a procedure has to
be defined that allows for such a cooperative behavior.

In our case, – and this is specific to these anonymous games – the fact that
one player delegates is: 1) feasible in terms of strategies, and 2) undetectable to



58 S. SORIN AND C. WAN

the other players. This appears then as a true strategic opportunity that has to
be taken into account. This approach seems to be new and would lead to an
alternative evaluation of “price of competition”.

Acknowledgements. We thank G. Vigeral and the anonymous referee for their valuable
comments and suggestions.
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Université Pierre et Marie Curie (Paris 6), France (2012).
[10] G. Wardrop, Some theoretical aspects of road traffic research communication networks. Proc.

Inst. Civ. Eng. II (1952) 325–378.


